1
|
Yang Q, Ji J, Jing R, Su H, Wang S, Guo A. Reynolds rules in swarm fly behavior based on KAN transformer tracking method. Sci Rep 2025; 15:6982. [PMID: 40011603 PMCID: PMC11865518 DOI: 10.1038/s41598-025-91674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
The analysis of complex flight patterns and collective behaviors in swarming insects has emerged as a significant focus across biological and computational fields. Tracking these insects, like fruit fly, presents persistent challenges due to their rapid motion patterns and frequent occlusions in densely populated environments. To address these challenges, we propose a tracking method using particle filter framework combined with a Kolmogorov-Arnold Network (KAN)-Transformer model to extract the global features and fine-grained features of the trajectory. Additionally, manually annotated ground truth datasets are established to enable thorough assessment of tracking methods. Experimental results demonstrate the effectiveness and robustness of our proposed tracking method. Analysis of tracked trajectories revealed the Reynolds rules of flocking behavior.
Collapse
Affiliation(s)
- Qi Yang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiajun Ji
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruomiao Jing
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Haifeng Su
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Shuohong Wang
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Aike Guo
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
Ehrhardt E, Whitehead SC, Namiki S, Minegishi R, Siwanowicz I, Feng K, Otsuna H, Meissner GW, Stern D, Truman J, Shepherd D, Dickinson MH, Ito K, Dickson BJ, Cohen I, Card GM, Korff W. Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.31.542897. [PMID: 37398009 PMCID: PMC10312520 DOI: 10.1101/2023.05.31.542897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Samuel C Whitehead
- Physics Department, Cornell University, 509 Clark Hall, Ithaca, New York 14853, USA
- California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Kai Feng
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - FlyLight Project Team
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - David Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Jim Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - David Shepherd
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ
| | - Michael H Dickinson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Itai Cohen
- Physics Department, Cornell University, 509 Clark Hall, Ithaca, New York 14853, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| |
Collapse
|
3
|
Buchsbaum E, Schnell B. Activity of a descending neuron associated with visually elicited flight saccades in Drosophila. Curr Biol 2025; 35:665-671.e4. [PMID: 39788121 DOI: 10.1016/j.cub.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Approaching threats are perceived through visual looming, a rapid expansion of an image on the retina. Visual looming triggers defensive responses such as freezing, flight, turning, or take-off in a wide variety of organisms, from mice to fish to insects.1,2,3,4 In response to looming, flies perform rapid evasive turns known as saccades.5 Saccades can also be initiated spontaneously to change direction during flight.6,7,8,9 Two types of descending neurons (DNs), DNaX and DNb01, were previously shown to exhibit activity correlated with both spontaneous and looming-elicited saccades in Drosophila.10,11 As they do not receive direct input from the visual system, it has remained unclear how visually elicited flight turns are controlled by the nervous system. DNp03 receives input from looming-sensitive visual projection neurons and provides output to wing motor neurons12,13 and is therefore a promising candidate for controlling flight saccades. Using whole-cell patch-clamp recordings from DNp03 in head-fixed flying Drosophila, we showed that DNp03 responds to ipsilateral visual looming in a behavioral-state-dependent manner. We further explored how DNp03 activity relates to the variable behavioral output. Sustained DNp03 activity, persisting after the visual stimulus, was the strongest predictor of saccade execution. However, DNp03 activity alone cannot fully explain the variability in behavioral responses. Combined with optogenetic activation experiments during free flight, these results suggest an important but not exclusive role for DNp03 in controlling saccades, advancing our understanding of how visual information is transformed into motor commands for rapid evasive maneuvers in flying insects.
Collapse
Affiliation(s)
- Elhanan Buchsbaum
- Research Group Neurobiology of Flight Control, Max Planck Institute for Neurobiology of Behavior - caesar, 53175 Bonn, Germany
| | - Bettina Schnell
- Research Group Neurobiology of Flight Control, Max Planck Institute for Neurobiology of Behavior - caesar, 53175 Bonn, Germany.
| |
Collapse
|
4
|
Wood LJ, Putney J, Sponberg S. Flight power muscles have a coordinated, causal role in controlling hawkmoth pitch turns. J Exp Biol 2024; 227:jeb246840. [PMID: 39475128 PMCID: PMC11698061 DOI: 10.1242/jeb.246840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 10/14/2024] [Indexed: 12/19/2024]
Abstract
Flying insects solve a daunting control problem of generating a patterned and precise motor program to stay airborne and generate agile maneuvers. In this motor program, each muscle encodes information about movement in precise spike timing down to the millisecond scale. Whereas individual muscles share information about movement, we do not know whether they have separable effects on an animal's motion, or whether muscles functionally interact such that the effects of any muscle's timing depend heavily on the state of the entire musculature. To answer these questions, we performed spike-resolution electromyography and electrical stimulation in the hawkmoth Manduca sexta during tethered flapping. We specifically explored how flight power muscles contribute to pitch control. Combining correlational study of visually induced turns with causal manipulation of spike timing, we discovered likely coordination patterns for pitch turns, and investigated whether these patterns can drive pitch control. We observed significant timing change of the main downstroke muscles, the dorsolongitudinal muscles (DLMs), associated with pitch turns. Causally inducing this timing change in the DLMs with electrical stimulation produced a consistent, mechanically relevant feature in pitch torque, establishing that power muscles in M. sexta have a control role in pitch. Because changes were evoked in only the DLMs, however, these pitch torque features left large unexplained variation. We found this unexplained variation indicates significant functional overlap in pitch control such that precise timing of one power muscle does not produce a precise turn, demonstrating the importance of coordination across the entire motor program for flight.
Collapse
Affiliation(s)
- Leo J. Wood
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, GA 30313, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, USA
| | - Joy Putney
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, GA 30313, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30313, USA
| | - Simon Sponberg
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, GA 30313, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30313, USA
| |
Collapse
|
5
|
Verbe A, Lea KM, Fox JL, Dickerson BH. Flies tune the activity of their multifunctional gyroscope. Curr Biol 2024; 34:3644-3653.e3. [PMID: 39053466 PMCID: PMC11338719 DOI: 10.1016/j.cub.2024.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Members of the order Diptera, the true flies, are among the most maneuverable flying animals. These aerial capabilities are partially attributed to flies' possession of halteres, tiny club-shaped structures that evolved from the hindwings and play a crucial role in flight control. Halteres are renowned for acting as biological gyroscopes that rapidly detect rotational perturbations and help flies maintain a stable flight posture. Additionally, halteres provide rhythmic input to the wing steering system that can be indirectly modulated by the visual system. The multifunctional capacity of the haltere is thought to depend on arrays of embedded mechanosensors called campaniform sensilla that are arranged in distinct groups on the haltere's dorsal and ventral surfaces. Although longstanding hypotheses suggest that each array provides different information relevant to the flight control circuitry, we know little about how the haltere campaniforms are functionally organized. Here, we use in vivo calcium imaging during tethered flight to obtain population-level recordings of the haltere sensory afferents in specific fields of sensilla. We find that haltere feedback from both dorsal fields is continuously active, modulated under closed-loop flight conditions, and recruited during saccades to help flies actively maneuver. We also find that the haltere's multifaceted role may arise from the steering muscles of the haltere itself, regulating haltere stroke amplitude to modulate campaniform activity. Taken together, our results underscore the crucial role of efferent control in regulating sensor activity and provide insight into how the sensory and motor systems of flies coevolved.
Collapse
Affiliation(s)
- Anna Verbe
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Kristianna M Lea
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jessica L Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
6
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Lesser E, Azevedo AW, Phelps JS, Elabbady L, Cook A, Syed DS, Mark B, Kuroda S, Sustar A, Moussa A, Dallmann CJ, Agrawal S, Lee SYJ, Pratt B, Skutt-Kakaria K, Gerhard S, Lu R, Kemnitz N, Lee K, Halageri A, Castro M, Ih D, Gager J, Tammam M, Dorkenwald S, Collman F, Schneider-Mizell C, Brittain D, Jordan CS, Macrina T, Dickinson M, Lee WCA, Tuthill JC. Synaptic architecture of leg and wing premotor control networks in Drosophila. Nature 2024; 631:369-377. [PMID: 38926579 PMCID: PMC11356479 DOI: 10.1038/s41586-024-07600-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles1. MN activity is coordinated by complex premotor networks that facilitate the contribution of individual muscles to many different behaviours2-6. Here we use connectomics7 to analyse the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. By contrast, wing premotor networks lack proportional synaptic connectivity, which may enable more flexible recruitment of wing steering muscles. Through comparison of the architecture of distinct motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.
Collapse
Affiliation(s)
- Ellen Lesser
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Leila Elabbady
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sumiya Kuroda
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anthony Moussa
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Su-Yee J Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Stephan Gerhard
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- UniDesign Solutions LLC, Zurich, Switzerland
| | - Ran Lu
- Zetta AI, LLC, Sherrill, NY, USA
| | | | - Kisuk Lee
- Zetta AI, LLC, Sherrill, NY, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Dodam Ih
- Zetta AI, LLC, Sherrill, NY, USA
| | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | | | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Ehweiner A, Duch C, Brembs B. Wings of Change: aPKC/FoxP-dependent plasticity in steering motor neurons underlies operant self-learning in Drosophila. F1000Res 2024; 13:116. [PMID: 38779314 PMCID: PMC11109550 DOI: 10.12688/f1000research.146347.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 05/25/2024] Open
Abstract
Background Motor learning is central to human existence, such as learning to speak or walk, sports moves, or rehabilitation after injury. Evidence suggests that all forms of motor learning share an evolutionarily conserved molecular plasticity pathway. Here, we present novel insights into the neural processes underlying operant self-learning, a form of motor learning in the fruit fly Drosophila. Methods We operantly trained wild type and transgenic Drosophila fruit flies, tethered at the torque meter, in a motor learning task that required them to initiate and maintain turning maneuvers around their vertical body axis (yaw torque). We combined this behavioral experiment with transgenic peptide expression, CRISPR/Cas9-mediated, spatio-temporally controlled gene knock-out and confocal microscopy. Results We find that expression of atypical protein kinase C (aPKC) in direct wing steering motoneurons co-expressing the transcription factor FoxP is necessary for this type of motor learning and that aPKC likely acts via non-canonical pathways. We also found that it takes more than a week for CRISPR/Cas9-mediated knockout of FoxP in adult animals to impair motor learning, suggesting that adult FoxP expression is required for operant self-learning. Conclusions Our experiments suggest that, for operant self-learning, a type of motor learning in Drosophila, co-expression of atypical protein kinase C (aPKC) and the transcription factor FoxP is necessary in direct wing steering motoneurons. Some of these neurons control the wing beat amplitude when generating optomotor responses, and we have discovered modulation of optomotor behavior after operant self-learning. We also discovered that aPKC likely acts via non-canonical pathways and that FoxP expression is also required in adult flies.
Collapse
Affiliation(s)
- Andreas Ehweiner
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Bavaria, 93040, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg Universitat Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Bavaria, 93040, Germany
| |
Collapse
|
9
|
Rauscher MJ, Fox JL. Asynchronous haltere input drives specific wing and head movements in Drosophila. Proc Biol Sci 2024; 291:20240311. [PMID: 38864337 PMCID: PMC11338569 DOI: 10.1098/rspb.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Halteres are multifunctional mechanosensory organs unique to the true flies (Diptera). A set of reduced hindwings, the halteres beat at the same frequency as the lift-generating forewings and sense inertial forces via mechanosensory campaniform sensilla. Though haltere ablation makes stable flight impossible, the specific role of wing-synchronous input has not been established. Using small iron filings attached to the halteres of tethered flies and an alternating electromagnetic field, we experimentally decoupled the wings and halteres of flying Drosophila and observed the resulting changes in wingbeat amplitude and head orientation. We find that asynchronous haltere input results in fast amplitude changes in the wing (hitches), but does not appreciably move the head. In multi-modal experiments, we find that wing and gaze optomotor responses are disrupted differently by asynchronous input. These effects of wing-asynchronous haltere input suggest that specific sensory information is necessary for maintaining wing amplitude stability and adaptive gaze control.
Collapse
Affiliation(s)
| | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Lesser E, Azevedo AW, Phelps JS, Elabbady L, Cook A, Sakeena Syed D, Mark B, Kuroda S, Sustar A, Moussa A, Dallmann CJ, Agrawal S, Lee SYJ, Pratt B, Skutt-Kakaria K, Gerhard S, Lu R, Kemnitz N, Lee K, Halageri A, Castro M, Ih D, Gager J, Tammam M, Dorkenwald S, Collman F, Schneider-Mizell C, Brittain D, Jordan CS, Macrina T, Dickinson M, Lee WCA, Tuthill JC. Synaptic architecture of leg and wing premotor control networks in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542725. [PMID: 37398440 PMCID: PMC10312524 DOI: 10.1101/2023.05.30.542725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. MN activity is coordinated by complex premotor networks that allow individual muscles to contribute to many different behaviors. Here, we use connectomics to analyze the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. In contrast, wing premotor networks lack proportional synaptic connectivity, which may allow wing steering muscles to be recruited with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.
Collapse
Affiliation(s)
- Ellen Lesser
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Anthony W. Azevedo
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Leila Elabbady
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | | | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Sumiya Kuroda
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Anthony Moussa
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Chris J. Dallmann
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Su-Yee J. Lee
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | | | - Stephan Gerhard
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- UniDesign Solutions LLC, Switzerland
| | | | | | - Kisuk Lee
- Zetta AI, LLC, USA
- Princeton Neuroscience Institute, Princeton University, NJ, USA
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, NJ, USA
- Computer Science Department, Princeton University, NJ, USA
| | | | | | | | - Chris S. Jordan
- Princeton Neuroscience Institute, Princeton University, NJ, USA
| | | | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, MA, USA
| | - John C. Tuthill
- Department of Physiology and Biophysics, University of Washington, WA, USA
| |
Collapse
|
11
|
Melis JM, Siwanowicz I, Dickinson MH. Machine learning reveals the control mechanics of an insect wing hinge. Nature 2024; 628:795-803. [PMID: 38632396 DOI: 10.1038/s41586-024-07293-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Insects constitute the most species-rich radiation of metazoa, a success that is due to the evolution of active flight. Unlike pterosaurs, birds and bats, the wings of insects did not evolve from legs1, but are novel structures that are attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings2. The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the three-dimensional motion of the wings with high-speed cameras. Using machine learning, we created a convolutional neural network3 that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder4 that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation incorporating our hinge model generates flight manoeuvres that are remarkably similar to those of free-flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.
Collapse
Affiliation(s)
- Johan M Melis
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
12
|
Deora T. An exploration of how the insect-wing hinge functions. Nature 2024; 628:727-728. [PMID: 38632425 DOI: 10.1038/d41586-024-00912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
13
|
Ding SS, Fox JL, Gordus A, Joshi A, Liao JC, Scholz M. Fantastic beasts and how to study them: rethinking experimental animal behavior. J Exp Biol 2024; 227:jeb247003. [PMID: 38372042 PMCID: PMC10911175 DOI: 10.1242/jeb.247003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior. This Commentary proposes a framework of 10 key questions that aim to guide researchers in incorporating a rich natural context into their experimental design or in choosing a new animal study system. The 10 questions cover overarching experimental considerations that can provide a template for interspecies comparisons, enable us to develop studies in new model organisms and unlock new experiments in our quest to understand behavior.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abhilasha Joshi
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA 94158, USA
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
| |
Collapse
|
14
|
Melis JM, Siwanowicz I, Dickinson MH. Machine learning reveals the control mechanics of an insect wing hinge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547116. [PMID: 37425804 PMCID: PMC10327165 DOI: 10.1101/2023.06.29.547116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Insects constitute the most species-rich radiation of metazoa, a success due to the evolution of active flight. Unlike pterosaurs, birds, and bats, the wings of insects did not evolve from legs 1 , but are novel structures attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings 2 . The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here, we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the 3D motion of the wings with high-speed cameras. Using machine learning approaches, we created a convolutional neural network 3 that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder 4 that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation that incorporates our model of the hinge generates flight maneuvers that are remarkably similar to those of free flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.
Collapse
|
15
|
Cooney PC, Huang Y, Li W, Perera DM, Hormigo R, Tabachnik T, Godage IS, Hillman EMC, Grueber WB, Zarin AA. Neuromuscular basis of Drosophila larval rolling escape behavior. Proc Natl Acad Sci U S A 2023; 120:e2303641120. [PMID: 38096410 PMCID: PMC10743538 DOI: 10.1073/pnas.2303641120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/06/2023] [Indexed: 12/18/2023] Open
Abstract
When threatened by dangerous or harmful stimuli, animals engage in diverse forms of rapid escape behaviors. In Drosophila larvae, one type of escape response involves C-shaped bending and lateral rolling followed by rapid forward crawling. The sensory circuitry that promotes larval escape has been extensively characterized; however, the motor programs underlying rolling are unknown. Here, we characterize the neuromuscular basis of rolling escape behavior. We used high-speed, volumetric, Swept Confocally Aligned Planar Excitation (SCAPE) microscopy to image muscle activity during larval rolling. Unlike sequential peristaltic muscle contractions that progress from segment to segment during forward and backward crawling, muscle activity progresses circumferentially during bending and rolling escape behavior. We propose that progression of muscular contraction around the larva's circumference results in a transient misalignment between weight and the ground support forces, which generates a torque that induces stabilizing body rotation. Therefore, successive cycles of slight misalignment followed by reactive aligning rotation lead to continuous rolling motion. Supporting our biomechanical model, we found that disrupting the activity of muscle groups undergoing circumferential contraction progression leads to rolling defects. We use EM connectome data to identify premotor to motor connectivity patterns that could drive rolling behavior and perform neural silencing approaches to demonstrate the crucial role of a group of glutamatergic premotor neurons in rolling. Our data reveal body-wide muscle activity patterns and putative premotor circuit organization for execution of the rolling escape response.
Collapse
Affiliation(s)
- Patricia C. Cooney
- Grueber Laboratory, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
- Department of Neuroscience, Columbia University, New York, NY10027
| | - Yuhan Huang
- Department of Biology, Texas A&M University, College Station, TX77843
- Zarin Laboratory, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX77843
| | - Wenze Li
- Laboratory for Functional Optical Imaging, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
- Department of Electrical Engineering, Columbia University, New York, NY10027
| | - Dulanjana M. Perera
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX77843
| | - Richard Hormigo
- Grueber Laboratory, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
| | - Tanya Tabachnik
- Grueber Laboratory, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
| | - Isuru S. Godage
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX77843
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX77843
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX77843
| | - Elizabeth M. C. Hillman
- Laboratory for Functional Optical Imaging, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
- Department of Biomedical Engineering, Columbia University, New York, NY10027
- Laboratory for Functional Optical Imaging, Kavli Institute for Brain Science, Columbia University, New York, NY10032
| | - Wesley B. Grueber
- Grueber Laboratory, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
- Department of Neuroscience, Columbia University, New York, NY10027
- Department of Physiology and Cellular Biophysics, Jerome L. Greene Science Center, New York, NY10027
| | - Aref A. Zarin
- Department of Biology, Texas A&M University, College Station, TX77843
- Zarin Laboratory, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX77843
| |
Collapse
|
16
|
Xue Y, Cai X, Xu R, Liu H. Wing Kinematics-Based Flight Control Strategy in Insect-Inspired Flight Systems: Deep Reinforcement Learning Gives Solutions and Inspires Controller Design in Flapping MAVs. Biomimetics (Basel) 2023; 8:295. [PMID: 37504183 PMCID: PMC10807585 DOI: 10.3390/biomimetics8030295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Flying insects exhibit outperforming stability and control via continuous wing flapping even under severe disturbances in various conditions of wind gust and turbulence. While conventional linear proportional derivative (PD)-based controllers are widely employed in insect-inspired flight systems, they usually fail to deal with large perturbation conditions in terms of the 6-DoF nonlinear control strategy. Here we propose a novel wing kinematics-based controller, which is optimized based on deep reinforcement learning (DRL) to stabilize bumblebee hovering under large perturbations. A high-fidelity Open AI Gym environment is established through coupling a CFD data-driven aerodynamic model and a 6-DoF flight dynamic model. The control policy with an action space of 4 is optimized using the off-policy Soft Actor-Critic (SAC) algorithm with automating entropy adjustment, which is verified to be of feasibility and robustness to achieve fast stabilization of the bumblebee hovering flight under full 6-DoF large disturbances. The 6-DoF wing kinematics-based DRL control strategy may provide an efficient autonomous controller design for bioinspired flapping-wing micro air vehicles.
Collapse
Affiliation(s)
- Yujing Xue
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center (SJTU-CU ICRC), 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (Y.X.); (X.C.); (R.X.)
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Xuefei Cai
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center (SJTU-CU ICRC), 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (Y.X.); (X.C.); (R.X.)
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ru Xu
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center (SJTU-CU ICRC), 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (Y.X.); (X.C.); (R.X.)
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hao Liu
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center (SJTU-CU ICRC), 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (Y.X.); (X.C.); (R.X.)
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
17
|
Whitehead SC, Leone S, Lindsay T, Meiselman MR, Cowan NJ, Dickinson MH, Yapici N, Stern DL, Shirangi T, Cohen I. Neuromuscular embodiment of feedback control elements in Drosophila flight. SCIENCE ADVANCES 2022; 8:eabo7461. [PMID: 36516241 PMCID: PMC9750141 DOI: 10.1126/sciadv.abo7461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
While insects such as Drosophila are flying, aerodynamic instabilities require that they make millisecond time scale adjustments to their wing motion to stay aloft and on course. These stabilization reflexes can be modeled as a proportional-integral (PI) controller; however, it is unclear how such control might be instantiated in insects at the level of muscles and neurons. Here, we show that the b1 and b2 motor units-prominent components of the fly's steering muscle system-modulate specific elements of the PI controller: the angular displacement (integral) and angular velocity (proportional), respectively. Moreover, these effects are observed only during the stabilization of pitch. Our results provide evidence for an organizational principle in which each muscle contributes to a specific functional role in flight control, a finding that highlights the power of using top-down behavioral modeling to guide bottom-up cellular manipulation studies.
Collapse
Affiliation(s)
| | - Sofia Leone
- Department of Biology, Villanova University, Villanova, PA 19805, USA
| | - Theodore Lindsay
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew R. Meiselman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Noah J. Cowan
- Department of Mechanical Engineering, Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael H. Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | | | - Troy Shirangi
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
18
|
Agrawal S, Tobalske BW, Anwar Z, Luo H, Hedrick TL, Cheng B. Musculoskeletal wing-actuation model of hummingbirds predicts diverse effects of primary flight muscles in hovering flight. Proc Biol Sci 2022; 289:20222076. [PMID: 36475440 PMCID: PMC9727662 DOI: 10.1098/rspb.2022.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hummingbirds have evolved to hover and manoeuvre with exceptional flight control. This is enabled by their musculoskeletal system that successfully exploits the agile motion of flapping wings. Here, we synthesize existing empirical and modelling data to generate novel hypotheses for principles of hummingbird wing actuation. These may help guide future experimental work and provide insights into the evolution and robotic emulation of hummingbird flight. We develop a functional model of the hummingbird musculoskeletal system, which predicts instantaneous, three-dimensional torque produced by primary (pectoralis and supracoracoideus) and combined secondary muscles. The model also predicts primary muscle contractile behaviour, including stress, strain, elasticity and work. Results suggest that the primary muscles (i.e. the flight 'engine') function as diverse effectors, as they do not simply power the stroke, but also actively deviate and pitch the wing with comparable actuation torque. The results also suggest that the secondary muscles produce controlled-tightening effects by acting against primary muscles in deviation and pitching. The diverse effects of the pectoralis are associated with the evolution of a comparatively enormous bicipital crest on the humerus.
Collapse
Affiliation(s)
- Suyash Agrawal
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Bret W. Tobalske
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Zafar Anwar
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoxiang Luo
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Tyson L. Hedrick
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bo Cheng
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Cai X, Xue Y, Kolomenskiy D, Xu R, Liu H. Elastic storage enables robustness of flapping wing dynamics. BIOINSPIRATION & BIOMIMETICS 2022; 17:045003. [PMID: 35504276 DOI: 10.1088/1748-3190/ac6c66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Flying insects could perform robust flapping-wing dynamics under various environments while minimizing the high energetic cost by using elastic flight muscles and motors. Here we propose a fluid-structure interaction model that couples unsteady flapping aerodynamics and three-torsional-spring-based elastic wing-hinge dynamics to determine passive and active mechanisms (PAM) in bumblebee hovering. The results show that a strategy of active-controlled stroke, passive-controlled wing pitch and deviation enables an optimal elastic storage. The flapping-wing dynamics is robust, which is characterized by dynamics-based passive elevation-rotation and aerodynamics-based passive feathering-rotation, capable of producing aerodynamic force while achieving high power efficiency over a broad range of wing-hinge stiffness. A force-impulse model further confirms the capability of external perturbation robustness under the PAM-based strategy.
Collapse
Affiliation(s)
- Xuefei Cai
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, People's Republic of China
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yujing Xue
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, People's Republic of China
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Dmitry Kolomenskiy
- Skoltech Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ru Xu
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, People's Republic of China
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Hao Liu
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, People's Republic of China
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
20
|
Deora T, Sane SS, Sane SP. Wings and halteres act as coupled dual oscillators in flies. eLife 2021; 10:53824. [PMID: 34783648 PMCID: PMC8629423 DOI: 10.7554/elife.53824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanics of Dipteran thorax is dictated by a network of exoskeletal linkages that, when deformed by the flight muscles, generate coordinated wing movements. In Diptera, the forewings power flight, whereas the hindwings have evolved into specialized structures called halteres, which provide rapid mechanosensory feedback for flight stabilization. Although actuated by independent muscles, wing and haltere motion is precisely phase-coordinated at high frequencies. Because wingbeat frequency is a product of wing-thorax resonance, any wear-and-tear of wings or thorax should impair flight ability. How robust is the Dipteran flight system against such perturbations? Here, we show that wings and halteres are independently driven, coupled oscillators. We systematically reduced the wing length in flies and observed how wing-haltere synchronization was affected. The wing-wing system is a strongly coupled oscillator, whereas the wing-haltere system is weakly coupled through mechanical linkages that synchronize phase and frequency. Wing-haltere link acts in a unidirectional manner; altering wingbeat frequency affects haltere frequency, but not vice versa. Exoskeletal linkages are thus key morphological features of the Dipteran thorax that ensure wing-haltere synchrony, despite severe wing damage.
Collapse
Affiliation(s)
- Tanvi Deora
- Department of Biology, University of Washington, Seattle, Washington, United States
| | | | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
21
|
Nicholas S, Nordström K. Efference copies: Context matters when ignoring self-induced motion. Curr Biol 2021; 31:R1388-R1390. [PMID: 34699803 DOI: 10.1016/j.cub.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Across the animal kingdom, efference copies of neuronal motor commands are used to ensure our senses ignore stimuli generated by our own actions. New work shows that the underlying motivation for an action affects whether visual neurons are responsive to self-generated stimuli.
Collapse
Affiliation(s)
- Sarah Nicholas
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia.
| | - Karin Nordström
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia; Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Fenk LM, Kim AJ, Maimon G. Suppression of motion vision during course-changing, but not course-stabilizing, navigational turns. Curr Biol 2021; 31:4608-4619.e3. [PMID: 34644548 DOI: 10.1016/j.cub.2021.09.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022]
Abstract
From mammals to insects, locomotion has been shown to strongly modulate visual-system physiology. Does the manner in which a locomotor act is initiated change the modulation observed? We performed patch-clamp recordings from motion-sensitive visual neurons in tethered, flying Drosophila. We observed motor-related signals in flies performing flight turns in rapid response to looming discs and also during spontaneous turns, but motor-related signals were weak or non-existent in the context of turns made in response to brief pulses of unidirectional visual motion (i.e., optomotor responses). Thus, the act of a locomotor turn is variably associated with modulation of visual processing. These results can be understood via the following principle: suppress visual responses during course-changing, but not course-stabilizing, navigational turns. This principle is likely to apply broadly-even to mammals-whenever visual cells whose activity helps to stabilize a locomotor trajectory or the visual gaze angle are targeted for motor modulation.
Collapse
Affiliation(s)
- Lisa M Fenk
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA; Active Sensing, Max Plank Institute of Neurobiology, Martinsried, Germany.
| | - Anmo J Kim
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA; Department of Biomedical Engineering, Hanyang University, Seoul, South Korea; Department of Electronic Engineering, Hanyang University, Seoul, South Korea.
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
23
|
Cellini B, Salem W, Mongeau JM. Mechanisms of punctuated vision in fly flight. Curr Biol 2021; 31:4009-4024.e3. [PMID: 34329590 DOI: 10.1016/j.cub.2021.06.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
To guide locomotion, animals control gaze via movements of their eyes, head, and/or body, but how the nervous system controls gaze during complex motor tasks remains elusive. In many animals, shifts in gaze consist of periods of smooth movement punctuated by rapid eye saccades. Notably, eye movements are constrained by anatomical limits, which requires resetting eye position. By studying tethered, flying fruit flies (Drosophila), we show that flies perform stereotyped head saccades to reset gaze, analogous to optokinetic nystagmus in primates. Head-reset saccades interrupted head smooth movement for as little as 50 ms-representing less than 5% of the total flight time-thereby enabling punctuated gaze stabilization. By revealing the passive mechanics of the neck joint, we show that head-reset saccades leverage the neck's natural elastic recoil, enabling mechanically assisted redirection of gaze. The consistent head orientation at saccade initiation, the influence of the head's angular position on saccade rate, the decrease in wing saccade frequency in head-fixed flies, and the decrease in head-reset saccade rate in flies with their head range of motion restricted together implicate proprioception as the primary trigger of head-reset saccades. Wing-reset saccades were influenced by head orientation, establishing a causal link between neck sensory signals and the execution of body saccades. Head-reset saccades were abolished when flies switched to a landing state, demonstrating that head movements are gated by behavioral state. We propose a control architecture for active vision systems with limits in sensor range of motion. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wael Salem
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
24
|
Maximally efficient prediction in the early fly visual system may support evasive flight maneuvers. PLoS Comput Biol 2021; 17:e1008965. [PMID: 34014926 PMCID: PMC8136689 DOI: 10.1371/journal.pcbi.1008965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
The visual system must make predictions to compensate for inherent delays in its processing. Yet little is known, mechanistically, about how prediction aids natural behaviors. Here, we show that despite a 20-30ms intrinsic processing delay, the vertical motion sensitive (VS) network of the blowfly achieves maximally efficient prediction. This prediction enables the fly to fine-tune its complex, yet brief, evasive flight maneuvers according to its initial ego-rotation at the time of detection of the visual threat. Combining a rich database of behavioral recordings with detailed compartmental modeling of the VS network, we further show that the VS network has axonal gap junctions that are critical for optimal prediction. During evasive maneuvers, a VS subpopulation that directly innervates the neck motor center can convey predictive information about the fly’s future ego-rotation, potentially crucial for ongoing flight control. These results suggest a novel sensory-motor pathway that links sensory prediction to behavior. Survival-critical behaviors shape neural circuits to translate sensory information into strikingly fast predictions, e.g. in escaping from a predator faster than the system’s processing delay. We show that the fly visual system implements fast and accurate prediction of its visual experience. This provides crucial information for directing fast evasive maneuvers that unfold over just 40ms. Our work shows how this fast prediction is implemented, mechanistically, and suggests the existence of a novel sensory-motor pathway from the fly visual system to a wing steering motor neuron. Echoing and amplifying previous work in the retina, our work hypothesizes that the efficient encoding of predictive information is a universal design principle supporting fast, natural behaviors.
Collapse
|
25
|
Rauscher MJ, Fox JL. Haltere and visual inputs sum linearly to predict wing (but not gaze) motor output in tethered flying Drosophila. Proc Biol Sci 2021; 288:20202374. [PMID: 33499788 DOI: 10.1098/rspb.2020.2374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the true flies (Diptera), the hind wings have evolved into specialized mechanosensory organs known as halteres, which are sensitive to gyroscopic and other inertial forces. Together with the fly's visual system, the halteres direct head and wing movements through a suite of equilibrium reflexes that are crucial to the fly's ability to maintain stable flight. As in other animals (including humans), this presents challenges to the nervous system as equilibrium reflexes driven by the inertial sensory system must be integrated with those driven by the visual system in order to control an overlapping pool of motor outputs shared between the two of them. Here, we introduce an experimental paradigm for reproducibly altering haltere stroke kinematics and use it to quantify multisensory integration of wing and gaze equilibrium reflexes. We show that multisensory wing-steering responses reflect a linear superposition of haltere-driven and visually driven responses, but that multisensory gaze responses are not well predicted by this framework. These models, based on populations, extend also to the responses of individual flies.
Collapse
Affiliation(s)
- Michael J Rauscher
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Jessica L Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| |
Collapse
|
26
|
Dickerson BH. Timing precision in fly flight control: integrating mechanosensory input with muscle physiology. Proc Biol Sci 2020; 287:20201774. [PMID: 33323088 DOI: 10.1098/rspb.2020.1774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals rapidly collect and act on incoming information to navigate complex environments, making the precise timing of sensory feedback critical in the context of neural circuit function. Moreover, the timing of sensory input determines the biomechanical properties of muscles that undergo cyclic length changes, as during locomotion. Both of these issues come to a head in the case of flying insects, as these animals execute steering manoeuvres at timescales approaching the upper limits of performance for neuromechanical systems. Among insects, flies stand out as especially adept given their ability to execute manoeuvres that require sub-millisecond control of steering muscles. Although vision is critical, here I review the role of rapid, wingbeat-synchronous mechanosensory feedback from the wings and structures unique to flies, the halteres. The visual system and descending interneurons of the brain employ a spike rate coding scheme to relay commands to the wing steering system. By contrast, mechanosensory feedback operates at faster timescales and in the language of motor neurons, i.e. spike timing, allowing wing and haltere input to dynamically structure the output of the wing steering system. Although the halteres have been long known to provide essential input to the wing steering system as gyroscopic sensors, recent evidence suggests that the feedback from these vestigial hindwings is under active control. Thus, flies may accomplish manoeuvres through a conserved hindwing circuit, regulating the firing phase-and thus, the mechanical power output-of the wing steering muscles.
Collapse
Affiliation(s)
- Bradley H Dickerson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Cellini B, Mongeau JM. Hybrid visual control in fly flight: insights into gaze shift via saccades. CURRENT OPINION IN INSECT SCIENCE 2020; 42:23-31. [PMID: 32896628 DOI: 10.1016/j.cois.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Flies fly by alternating between periods of fixation and body saccades, analogous to how our own eyes move. Gaze fixation via smooth movement in fly flight has been studied extensively, but comparatively less is known about the mechanism by which flies trigger and control body saccades to shift their gaze. Why do flies implement a hybrid fixate-and-saccade locomotion strategy? Here we review recent developments that provide new insights into this question. We focus on the interplay between smooth movement and saccades, the trigger classes of saccades, and the timeline of saccade execution. We emphasize recent mechanistic advances in Drosophila, where genetic tools have enabled cellular circuit analysis at an unprecedented level in a flying insect. In addition, we review trade-offs in behavioral paradigms used to study saccades. Throughout we highlight exciting avenues for future research in the control of fly flight.
Collapse
Affiliation(s)
- Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16801, USA.
| |
Collapse
|
28
|
Liu H. Simulation-based insect-inspired flight systems. CURRENT OPINION IN INSECT SCIENCE 2020; 42:105-109. [PMID: 33068784 DOI: 10.1016/j.cois.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Insects power and control their flight by flapping their wings. By controlling their aerodynamic forces and torques, they can generate precise and agile aerial manoeuvres. From an engineer's perspective, their closed-loop, flight control system depends on an overarching external mechanical 'frame' consisting of wings and thoracic shell, which is actuated by an internal system consisting of flight muscles and a complex nervous system. Insect flights are diverse but robust relying on the integration of different flexible structures including wings, exoskeletal elements, wing-hinges, musculoskeletal elements, and sensors. Computational modelling of biomechanics in insect-inspired flight systems can offer a powerful and feasible tool to unravel a passive and active mechanism (PAM) strategy, that is, how these flexible structures work interactively and complementarily to achieve a systematically efficient and robust flapping-wing dynamics and aerodynamics as well as flight control in various natural environments.
Collapse
Affiliation(s)
- Hao Liu
- Graduate School of Engineering, Chiba University, Japan.
| |
Collapse
|
29
|
Persistent Firing and Adaptation in Optic-Flow-Sensitive Descending Neurons. Curr Biol 2020; 30:2739-2748.e2. [PMID: 32470368 DOI: 10.1016/j.cub.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
A general principle of sensory systems is that they adapt to prolonged stimulation by reducing their response over time. Indeed, in many visual systems, including higher-order motion sensitive neurons in the fly optic lobes and the mammalian visual cortex, a reduction in neural activity following prolonged stimulation occurs. In contrast to this phenomenon, the response of the motor system controlling flight maneuvers persists following the offset of visual motion. It has been suggested that this gap is caused by a lingering calcium signal in the output synapses of fly optic lobe neurons. However, whether this directly affects the responses of the post-synaptic descending neurons, leading to the observed behavioral output, is not known. We use extracellular electrophysiology to record from optic-flow-sensitive descending neurons in response to prolonged wide-field stimulation. We find that, as opposed to most sensory and visual neurons, and in particular to the motion vision sensitive neurons in the brains of both flies and mammals, the descending neurons show little adaption during stimulus motion. In addition, we find that the optic-flow-sensitive descending neurons display persistent firing, or an after-effect, following the cessation of visual stimulation, consistent with the lingering calcium signal hypothesis. However, if the difference in after-effect is compensated for, subsequent presentation of stimuli in a test-adapt-test paradigm reveals adaptation to visual motion. Our results thus show a combination of adaptation and persistent firing in the neurons that project to the thoracic ganglia and thereby control behavioral output.
Collapse
|
30
|
Pritchard DJ, Vallejo-Marín M. Floral vibrations by buzz-pollinating bees achieve higher frequency, velocity and acceleration than flight and defence vibrations. J Exp Biol 2020; 223:jeb220541. [PMID: 32366691 DOI: 10.1242/jeb.220541] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 01/17/2023]
Abstract
Vibrations play an important role in insect behaviour. In bees, vibrations are used in a variety of contexts including communication, as a warning signal to deter predators and during pollen foraging. However, little is known about how the biomechanical properties of bee vibrations vary across multiple behaviours within a species. In this study, we compared the properties of vibrations produced by Bombus terrestris audax (Hymenoptera: Apidae) workers in three contexts: during flight, during defensive buzzing, and in floral vibrations produced during pollen foraging on two buzz-pollinated plants (Solanum, Solanaceae). Using laser vibrometry, we were able to obtain contactless measures of both the frequency and amplitude of the thoracic vibrations of bees across the three behaviours. Despite all three types of vibrations being produced by the same power flight muscles, we found clear differences in the mechanical properties of the vibrations produced in different contexts. Both floral and defensive buzzes had higher frequency and amplitude velocity, acceleration and displacement than the vibrations produced during flight. Floral vibrations had the highest frequency, amplitude velocity and acceleration of all the behaviours studied. Vibration amplitude, and in particular acceleration, of floral vibrations has been suggested as the key property for removing pollen from buzz-pollinated anthers. By increasing frequency and amplitude velocity and acceleration of their vibrations during vibratory pollen collection, foraging bees may be able to maximise pollen removal from flowers, although their foraging decisions are likely to be influenced by the presumably high cost of producing floral vibrations.
Collapse
Affiliation(s)
- David J Pritchard
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Mario Vallejo-Marín
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
31
|
Azevedo AW, Dickinson ES, Gurung P, Venkatasubramanian L, Mann RS, Tuthill JC. A size principle for recruitment of Drosophila leg motor neurons. eLife 2020; 9:e56754. [PMID: 32490810 PMCID: PMC7347388 DOI: 10.7554/elife.56754] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
To move the body, the brain must precisely coordinate patterns of activity among diverse populations of motor neurons. Here, we use in vivo calcium imaging, electrophysiology, and behavior to understand how genetically-identified motor neurons control flexion of the fruit fly tibia. We find that leg motor neurons exhibit a coordinated gradient of anatomical, physiological, and functional properties. Large, fast motor neurons control high force, ballistic movements while small, slow motor neurons control low force, postural movements. Intermediate neurons fall between these two extremes. This hierarchical organization resembles the size principle, first proposed as a mechanism for establishing recruitment order among vertebrate motor neurons. Recordings in behaving flies confirmed that motor neurons are typically recruited in order from slow to fast. However, we also find that fast, intermediate, and slow motor neurons receive distinct proprioceptive feedback signals, suggesting that the size principle is not the only mechanism that dictates motor neuron recruitment. Overall, this work reveals the functional organization of the fly leg motor system and establishes Drosophila as a tractable system for investigating neural mechanisms of limb motor control.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Evyn S Dickinson
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - John C Tuthill
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
32
|
Tracy CB, Nguyen J, Abraham R, Shirangi TR. Evolution of sexual size dimorphism in the wing musculature of Drosophila. PeerJ 2020; 8:e8360. [PMID: 31988804 PMCID: PMC6970592 DOI: 10.7717/peerj.8360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/05/2019] [Indexed: 11/20/2022] Open
Abstract
Male courtship songs in Drosophila are exceedingly diverse across species. While much of this variation is understood to have evolved from changes in the central nervous system, evolutionary transitions in the wing muscles that control the song may have also contributed to song diversity. Here, focusing on a group of four wing muscles that are known to influence courtship song in Drosophila melanogaster, we investigate the evolutionary history of wing muscle anatomy of males and females from 19 Drosophila species. We find that three of the wing muscles have evolved sexual dimorphisms in size multiple independent times, whereas one has remained monomorphic in the phylogeny. These data suggest that evolutionary changes in wing muscle anatomy may have contributed to species variation in sexually dimorphic wing-based behaviors, such as courtship song. Moreover, wing muscles appear to differ in their propensity to evolve size dimorphisms, which may reflect variation in the functional constraints acting upon different wing muscles.
Collapse
Affiliation(s)
- Claire B Tracy
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Janet Nguyen
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Rayna Abraham
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Troy R Shirangi
- Department of Biology, Villanova University, Villanova, PA, United States of America
| |
Collapse
|
33
|
Abstract
Drosophila melanogaster, colloquially known as the fruit fly, is one of the most commonly used model organisms in scientific research. Although the final architecture of a fly and a human differs greatly, most of the fundamental biological mechanisms and pathways controlling development and survival are conserved through evolution between the two species. For this reason, Drosophila has been productively used as a model organism for over a century, to study a diverse range of biological processes, including development, learning, behavior and aging. Ca2+ signaling comprises complex pathways that impact on virtually every aspect of cellular physiology. Within such a complex field of study, Drosophila offers the advantages of consolidated molecular and genetic techniques, lack of genetic redundancy and a completely annotated genome since 2000. These and other characteristics provided the basis for the identification of many genes encoding Ca2+ signaling molecules and the disclosure of conserved Ca2+ signaling pathways. In this review, we will analyze the applications of Ca2+ imaging in the fruit fly model, highlighting in particular their impact on the study of normal brain function and pathogenesis of neurodegenerative diseases.
Collapse
|
34
|
Putney J, Conn R, Sponberg S. Precise timing is ubiquitous, consistent, and coordinated across a comprehensive, spike-resolved flight motor program. Proc Natl Acad Sci U S A 2019; 116:26951-26960. [PMID: 31843904 PMCID: PMC6936677 DOI: 10.1073/pnas.1907513116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequences of action potentials, or spikes, carry information in the number of spikes and their timing. Spike timing codes are critical in many sensory systems, but there is now growing evidence that millisecond-scale changes in timing also carry information in motor brain regions, descending decision-making circuits, and individual motor units. Across all of the many signals that control a behavior, how ubiquitous, consistent, and coordinated are spike timing codes? Assessing these open questions ideally involves recording across the whole motor program with spike-level resolution. To do this, we took advantage of the relatively few motor units controlling the wings of a hawk moth, Manduca sexta. We simultaneously recorded nearly every action potential from all major wing muscles and the resulting forces in tethered flight. We found that timing encodes more information about turning behavior than spike count in every motor unit, even though there is sufficient variation in count alone. Flight muscles vary broadly in function as well as in the number and timing of spikes. Nonetheless, each muscle with multiple spikes consistently blends spike timing and count information in a 3:1 ratio. Coding strategies are consistent. Finally, we assess the coordination of muscles using pairwise redundancy measured through interaction information. Surprisingly, not only are all muscle pairs coordinated, but all coordination is accomplished almost exclusively through spike timing, not spike count. Spike timing codes are ubiquitous, consistent, and essential for coordination.
Collapse
Affiliation(s)
- Joy Putney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Rachel Conn
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
- Neuroscience Program, Emory University, Atlanta, GA 30322
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
35
|
Nagesh I, Walker SM, Taylor GK. Motor output and control input in flapping flight: a compact model of the deforming wing kinematics of manoeuvring hoverflies. J R Soc Interface 2019; 16:20190435. [PMID: 31795861 DOI: 10.1098/rsif.2019.0435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insects are conventionally modelled as controlling flight by varying a few summary kinematic parameters that are defined on a per-wingbeat basis, such as the stroke amplitude, mean stroke angle and mean wing pitch angle. Nevertheless, as insects have tens of flight muscles and vary their kinematics continuously, the true dimension of their control input space is likely to be much higher. Here, we present a compact description of the deforming wing kinematics of 36 manoeuvring Eristalis hoverflies, applying functional principal components analysis to Fourier series fits of the wingtip position and wing twist measured over 26 541 wingbeats. This analysis offers a high degree of data reduction, in addition to insight into the natural kinematic couplings. We used statistical resampling techniques to verify that the principal components (PCs) were repeatable features of the data, and analysed their coefficient vectors to provide insight into the form of these natural couplings. Conceptually, the dominant PCs provide a natural set of control input variables that span the control input subspace utilized by this species, but they can also be thought of as output states of the flight motor. This functional description of the wing kinematics is appropriate to modelling insect flight as a form of limit cycle control.
Collapse
Affiliation(s)
- Indira Nagesh
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Simon M Walker
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Graham K Taylor
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
36
|
Bartussek J, Lehmann FO. Sensory processing by motoneurons: a numerical model for low-level flight control in flies. J R Soc Interface 2019; 15:rsif.2018.0408. [PMID: 30158188 PMCID: PMC6127168 DOI: 10.1098/rsif.2018.0408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023] Open
Abstract
Rhythmic locomotor behaviour in animals requires exact timing of muscle activation within the locomotor cycle. In rapidly oscillating motor systems, conventional control strategies may be affected by neural delays, making these strategies inappropriate for precise timing control. In flies, wing control thus requires sensory processing within the peripheral nervous system, circumventing the central brain. The underlying mechanism, with which flies integrate graded depolarization of visual interneurons and spiking proprioceptive feedback for precise muscle activation, is under debate. Based on physiological parameters, we developed a numerical model of spike initiation in flight muscles of a blowfly. The simulated Hodgkin–Huxley neuron reproduces multiple experimental findings and explains on the cellular level how vision might control wing kinematics. Sensory processing by single motoneurons appears to be sufficient for control of muscle power during flight in flies and potentially other flying insects, reducing computational load on the central brain during body posture reflexes and manoeuvring flight.
Collapse
Affiliation(s)
- Jan Bartussek
- Institute of Biological Sciences, Department of Animal Physiology, University of Rostock, 18059 Rostock, Germany
| | - Fritz-Olaf Lehmann
- Institute of Biological Sciences, Department of Animal Physiology, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
37
|
Dickerson BH, de Souza AM, Huda A, Dickinson MH. Flies Regulate Wing Motion via Active Control of a Dual-Function Gyroscope. Curr Biol 2019; 29:3517-3524.e3. [PMID: 31607538 DOI: 10.1016/j.cub.2019.08.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 10/25/2022]
Abstract
Flies execute their remarkable aerial maneuvers using a set of wing steering muscles, which are activated at specific phases of the stroke cycle [1-3]. The activation phase of these muscles-which determines their biomechanical output [4-6]-arises via feedback from mechanoreceptors at the base of the wings and structures unique to flies called halteres [7-9]. Evolved from the hindwings, the tiny halteres oscillate at the same frequency as the wings, although they serve no aerodynamic function [10] and are thought to act as gyroscopes [10-15]. Like the wings, halteres possess minute control muscles whose activity is modified by descending visual input [16], raising the possibility that flies control wing motion by adjusting the motor output of their halteres, although this hypothesis has never been directly tested. Here, using genetic techniques possible in Drosophila melanogaster, we tested the hypothesis that visual input during flight modulates haltere muscle activity and that this, in turn, alters the mechanosensory feedback that regulates the wing steering muscles. Our results suggest that rather than acting solely as a gyroscope to detect body rotation, halteres also function as an adjustable clock to set the spike timing of wing motor neurons, a specialized capability that evolved from the generic flight circuitry of their four-winged ancestors. In addition to demonstrating how the efferent control loop of a sensory structure regulates wing motion, our results provide insight into the selective scenario that gave rise to the evolution of halteres.
Collapse
Affiliation(s)
- Bradley H Dickerson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alysha M de Souza
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ainul Huda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
38
|
Liu P, Sane SP, Mongeau JM, Zhao J, Cheng B. Flies land upside down on a ceiling using rapid visually mediated rotational maneuvers. SCIENCE ADVANCES 2019; 5:eaax1877. [PMID: 31681844 PMCID: PMC6810462 DOI: 10.1126/sciadv.aax1877] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/14/2019] [Indexed: 05/31/2023]
Abstract
Flies and other insects routinely land upside down on a ceiling. These inverted landing maneuvers are among the most remarkable aerobatic feats, yet the full range of these behaviors and their underlying sensorimotor processes remain largely unknown. Here, we report that successful inverted landing in flies involves a serial sequence of well-coordinated behavioral modules, consisting of an initial upward acceleration followed by rapid body rotation and leg extension, before terminating with a leg-assisted body swing pivoted around legs firmly attached to the ceiling. Statistical analyses suggest that rotational maneuvers are triggered when flies' relative retinal expansion velocity reaches a threshold. Also, flies exhibit highly variable pitch and roll rates, which are strongly correlated to and likely mediated by multiple sensory cues. When flying with higher forward or lower upward velocities, flies decrease the pitch rate but increase the degree of leg-assisted swing, thereby leveraging the transfer of body linear momentum.
Collapse
Affiliation(s)
- Pan Liu
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sanjay P. Sane
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Jianguo Zhao
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Bo Cheng
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
39
|
Kehl CE, Wu J, Lu S, Neustadter DM, Drushel RF, Smoldt RK, Chiel HJ. Soft-surface grasping: radular opening in Aplysia californica. J Exp Biol 2019; 222:jeb191254. [PMID: 31350299 PMCID: PMC6739808 DOI: 10.1242/jeb.191254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
Grasping soft, irregular material is challenging both for animals and robots. The feeding systems of many animals have adapted to this challenge. In particular, the feeding system of the marine mollusk Aplysia californica, a generalist herbivore, allows it to grasp and ingest seaweeds of varying shape, texture and toughness. On the surface of the grasper of A. californica is a structure known as the radula, a thin flexible cartilaginous sheet with fine teeth. Previous in vitro studies suggested that intrinsic muscles, I7, are responsible for opening the radula. Lesioning I7 in vivo does not prevent animals from grasping and ingesting food. New in vitro studies demonstrate that a set of fine muscle fibers on the ventral surface of the radula - the sub-radular fibers (SRFs) - mediate opening movements even if the I7 muscles are absent. Both in vitro and in vivo lesions demonstrate that removing the SRFs leads to profound deficits in radular opening, and significantly reduces feeding efficiency. A theoretical biomechanical analysis of the actions of the SRFs suggests that they induce the radular surface to open around a central crease in the radular surface and to arch the radular surface, allowing it to softly conform to irregular material. A three-dimensional model of the radular surface, based on in vivo observations and magnetic resonance imaging of intact animals, provides support for the biomechanical analysis. These results suggest how a soft grasper can work during feeding, and suggest novel designs for artificial soft graspers.
Collapse
Affiliation(s)
- Catherine E Kehl
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joey Wu
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sisi Lu
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Richard F Drushel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rebekah K Smoldt
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
40
|
DeAngelis BD, Zavatone-Veth JA, Clark DA. The manifold structure of limb coordination in walking Drosophila. eLife 2019; 8:e46409. [PMID: 31250807 PMCID: PMC6598772 DOI: 10.7554/elife.46409] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/15/2019] [Indexed: 12/19/2022] Open
Abstract
Terrestrial locomotion requires animals to coordinate their limb movements to efficiently traverse their environment. While previous studies in hexapods have reported that limb coordination patterns can vary substantially, the structure of this variability is not yet well understood. Here, we characterized the symmetric and asymmetric components of variation in walking kinematics in the genetic model organism Drosophila. We found that Drosophila use a single continuum of coordination patterns without evidence for preferred configurations. Spontaneous symmetric variability was associated with modulation of a single control parameter-stance duration-while asymmetric variability consisted of small, limb-specific modulations along multiple dimensions of the underlying symmetric pattern. Commands that modulated walking speed, originating from artificial neural activation or from the visual system, evoked modulations consistent with spontaneous behavior. Our findings suggest that Drosophila employ a low-dimensional control architecture, which provides a framework for understanding the neural circuits that regulate hexapod legged locomotion.
Collapse
Affiliation(s)
- Brian D DeAngelis
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
| | | | - Damon A Clark
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
- Department of PhysicsYale UniversityNew HavenUnited States
- Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenUnited States
- Department of NeuroscienceYale UniversityNew HavenUnited States
| |
Collapse
|
41
|
Bui M, Shyong J, Lutz EK, Yang T, Li M, Truong K, Arvidson R, Buchman A, Riffell JA, Akbari OS. Live calcium imaging of Aedes aegypti neuronal tissues reveals differential importance of chemosensory systems for life-history-specific foraging strategies. BMC Neurosci 2019; 20:27. [PMID: 31208328 PMCID: PMC6580577 DOI: 10.1186/s12868-019-0511-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/10/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The mosquito Aedes aegypti has a wide variety of sensory pathways that have supported its success as a species as well as a highly competent vector of numerous debilitating infectious pathogens. Investigations into mosquito sensory systems and their effects on behavior are valuable resources for the advancement of mosquito control strategies. Numerous studies have elucidated key aspects of mosquito sensory systems, however there remains critical gaps within the field. In particular, compared to that of the adult form, there has been a lack of studies directed towards the immature life stages. Additionally, although numerous studies have pinpointed specific sensory receptors as well as responding motor outputs, there has been a lack of studies able to monitor both concurrently. RESULTS To begin filling aforementioned gaps, here we engineered Ae. aegypti to ubiquitously express a genetically encoded calcium indicator, GCaMP6s. Using this strain, combined with advanced microscopy, we simultaneously measured live stimulus-evoked calcium responses in both neuronal and muscle cells with a wide spatial range and resolution. CONCLUSIONS By coupling in vivo live calcium imaging with behavioral assays we were able to gain functional insights into how stimulus-evoked neural and muscle activities are represented, modulated, and transformed in mosquito larvae enabling us to elucidate mosquito sensorimotor properties important for life-history-specific foraging strategies.
Collapse
Affiliation(s)
- Michelle Bui
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Jennifer Shyong
- Department of Entomology and Riverside Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521 USA
| | - Eleanor K. Lutz
- Department of Biology, University of Washington, Seattle, WA 98195 USA
| | - Ting Yang
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Ming Li
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Kenneth Truong
- Department of Entomology and Riverside Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521 USA
| | - Ryan Arvidson
- Department of Entomology and Riverside Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521 USA
| | - Anna Buchman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | | | - Omar S. Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
42
|
Ache JM, Namiki S, Lee A, Branson K, Card GM. State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila. Nat Neurosci 2019; 22:1132-1139. [PMID: 31182867 PMCID: PMC7444277 DOI: 10.1038/s41593-019-0413-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/22/2019] [Indexed: 11/11/2022]
Abstract
An approaching predator and self-motion towards an object can generate similar looming patterns on the retina, but these situations demand different rapid responses. How central circuits flexibly process visual cues to activate appropriate, fast motor pathways remains unclear. Here, we identify two descending neuron (DN) types that control landing and contribute to visuomotor flexibility in Drosophila. For each, silencing impairs visually-evoked landing, activation drives landing, and spike rate determines leg extension amplitude. Critically, visual responses of both DNs are severely attenuated during non-flight periods, effectively decoupling visual stimuli from the landing motor pathway when landing is inappropriate. The flight-dependence mechanism differs between DN types. Octopamine exposure mimics flight effects in one, whereas the other likely receives neuronal feedback from flight motor circuits. Thus, this sensorimotor flexibility arises from distinct mechanisms for gating action-specific descending pathways, such that sensory and motor networks are coupled or decoupled according to the behavioral state.
Collapse
Affiliation(s)
- Jan M Ache
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Shigehiro Namiki
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Allen Lee
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA.,Leap Scientific LLC, Hooksett, NH, USA
| | - Kristin Branson
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Gwyneth M Card
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA.
| |
Collapse
|
43
|
Multifunctional Wing Motor Control of Song and Flight. Curr Biol 2018; 28:2705-2717.e4. [PMID: 30146152 DOI: 10.1016/j.cub.2018.06.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 11/24/2022]
Abstract
Multifunctional motor systems produce distinct output patterns that are dependent on behavioral context, posing a challenge to underlying neuronal control. Flies use their wings for flight and the production of a patterned acoustic signal, the male courtship song, employing in both cases a small set of wing muscles and corresponding motor neurons. We took first steps toward elucidating the neuronal control mechanisms of this multifunctional motor system by live imaging of muscle ensemble activity patterns during song and flight, and we established the functional role of a comprehensive set of wing muscle motor neurons by silencing experiments. Song and flight rely on distinct configurations of neuromuscular activity, with most, but not all, flight muscles and their corresponding motor neurons contributing to song and shaping its acoustic parameters. The two behaviors are exclusive, and the neuronal command for flight overrides the command for song. The neuromodulator octopamine is a candidate for selectively stabilizing flight, but not song motor patterns.
Collapse
|
44
|
Clemens J, Coen P, Roemschied FA, Pereira TD, Mazumder D, Aldarondo DE, Pacheco DA, Murthy M. Discovery of a New Song Mode in Drosophila Reveals Hidden Structure in the Sensory and Neural Drivers of Behavior. Curr Biol 2018; 28:2400-2412.e6. [PMID: 30057309 PMCID: PMC6830513 DOI: 10.1016/j.cub.2018.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/10/2018] [Accepted: 06/07/2018] [Indexed: 11/30/2022]
Abstract
Deciphering how brains generate behavior depends critically on an accurate description of behavior. If distinct behaviors are lumped together, separate modes of brain activity can be wrongly attributed to the same behavior. Alternatively, if a single behavior is split into two, the same neural activity can appear to produce different behaviors. Here, we address this issue in the context of acoustic communication in Drosophila. During courtship, males vibrate their wings to generate time-varying songs, and females evaluate songs to inform mating decisions. For 50 years, Drosophila melanogaster song was thought to consist of only two modes, sine and pulse, but using unsupervised classification methods on large datasets of song recordings, we now establish the existence of at least three song modes: two distinct pulse types, along with a single sine mode. We show how this seemingly subtle distinction affects our interpretation of the mechanisms underlying song production and perception. Specifically, we show that visual feedback influences the probability of producing each song mode and that male song mode choice affects female responses and contributes to modulating his song amplitude with distance. At the neural level, we demonstrate how the activity of four separate neuron types within the fly's song pathway differentially affects the probability of producing each song mode. Our results highlight the importance of carefully segmenting behavior to map the underlying sensory, neural, and genetic mechanisms.
Collapse
Affiliation(s)
- Jan Clemens
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philip Coen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Talmo D Pereira
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - David Mazumder
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Diego E Aldarondo
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
45
|
Fraimout A, Jacquemart P, Villarroel B, Aponte DJ, Decamps T, Herrel A, Cornette R, Debat V. Phenotypic plasticity of Drosophila suzukii wing to developmental temperature: implications for flight. ACTA ACUST UNITED AC 2018; 221:221/13/jeb166868. [PMID: 29987053 DOI: 10.1242/jeb.166868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022]
Abstract
Phenotypic plasticity has been proposed as a mechanism that facilitates the success of biological invasions. In order to test the hypothesis of an adaptive role for plasticity in invasions, particular attention should be paid to the relationship between the focal plastic trait, the environmental stimulus and the functional importance of the trait. The Drosophila wing is particularly amenable to experimental studies of phenotypic plasticity. Wing morphology is known for its plastic variation under different experimental temperatures, but this plasticity has rarely been investigated in a functional context of flight. Here, we investigate the effect of temperature on wing morphology and flight in the invasive pest species Drosophila suzukii Although the rapid invasion of both Europe and North America was most likely facilitated by human activities, D. suzukii is also expected to disperse actively. By quantifying wing morphology and individual flight trajectories of flies raised under different temperatures, we tested whether (1) invasive populations of D. suzukii show higher phenotypic plasticity than their native counterparts, and (2) wing plasticity affects flight parameters. Developmental temperature was found to affect both wing morphology and flight parameters (in particular speed and acceleration), leaving open the possibility of an adaptive value for wing plasticity. Our results show no difference in phenotypic plasticity between invasive and native populations, rejecting a role for wing plasticity in the invasion success.
Collapse
Affiliation(s)
- Antoine Fraimout
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Pauline Jacquemart
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Bruno Villarroel
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France.,Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - David J Aponte
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France.,Department of Cell Biology & Anatomy, University of Calgary, Calgary AB, Canada
| | - Thierry Decamps
- Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| |
Collapse
|
46
|
Namiki S, Dickinson MH, Wong AM, Korff W, Card GM. The functional organization of descending sensory-motor pathways in Drosophila. eLife 2018; 7:e34272. [PMID: 29943730 PMCID: PMC6019073 DOI: 10.7554/elife.34272] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
In most animals, the brain controls the body via a set of descending neurons (DNs) that traverse the neck. DN activity activates, maintains or modulates locomotion and other behaviors. Individual DNs have been well-studied in species from insects to primates, but little is known about overall connectivity patterns across the DN population. We systematically investigated DN anatomy in Drosophila melanogaster and created over 100 transgenic lines targeting individual cell types. We identified roughly half of all Drosophila DNs and comprehensively map connectivity between sensory and motor neuropils in the brain and nerve cord, respectively. We find the nerve cord is a layered system of neuropils reflecting the fly's capability for two largely independent means of locomotion -- walking and flight -- using distinct sets of appendages. Our results reveal the basic functional map of descending pathways in flies and provide tools for systematic interrogation of neural circuits.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael H Dickinson
- Division of Biology and BioengineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Allan M Wong
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
47
|
Ferris BD, Green J, Maimon G. Abolishment of Spontaneous Flight Turns in Visually Responsive Drosophila. Curr Biol 2018; 28:170-180.e5. [PMID: 29337081 DOI: 10.1016/j.cub.2017.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/22/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022]
Abstract
Animals react rapidly to external stimuli, such as an approaching predator, but in other circumstances, they seem to act spontaneously, without any obvious external trigger. How do the neural processes mediating the execution of reflexive and spontaneous actions differ? We studied this question in tethered, flying Drosophila. We found that silencing a large but genetically defined set of non-motor neurons virtually eliminates spontaneous flight turns while preserving the tethered flies' ability to perform two types of visually evoked turns, demonstrating that, at least in flies, these two modes of action are almost completely dissociable.
Collapse
Affiliation(s)
- Bennett Drew Ferris
- Laboratory of Integrative Brain Function, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Green
- Laboratory of Integrative Brain Function, The Rockefeller University, New York, NY 10065, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
48
|
Hsu SJ, Thakur N, Cheng B. Speed control and force-vectoring of blue bottle flies in a magnetically-levitated flight mill. J Exp Biol 2018; 222:jeb.187211. [DOI: 10.1242/jeb.187211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/13/2018] [Indexed: 11/20/2022]
Abstract
Flies fly at a broad range of speeds and produce sophisticated aerial maneuvers with precisely controlled wing movements. Remarkably, only subtle changes in wing motion are used by flies to produce aerial maneuvers, resulting in little directional tilt of aerodynamic force vector relative to the body. Therefore, it is often considered that flies fly according to a helicopter model and control speed mainly via force-vectoring by body-pitch change. Here we examined the speed control of blue bottle flies using a magnetically-levitated (MAGLEV) flight mill, as they fly at different body pitch angles and with different augmented aerodynamic damping. We identified wing kinematic contributors to the changes of estimated aerodynamic force through testing and comparing two force-vectoring models: i.e., a constant force-vectoring model and a variable force-vectoring model, while using the Akaike's information criterion for the selection of best-approximating model. Results show that the best-approximating variable force-vectoring model, which includes the effects of wing kinematic changes, yields a considerably more accurate prediction of flight speed, particularly in higher velocity range, as compared with those of the constant force-vectoring model. Examining the variable force-vectoring model reveals that, in the flight-mill tethered flight, flies use a collection of wing kinematic variables to control primarily the force magnitude, while the force direction is also modulated, albeit to a smaller extent compared to those due to the changes in body pitch. The roles of these wing kinematic variables are analogous to those of throttle, and collective and cyclic pitch of helicopters.
Collapse
Affiliation(s)
- Shih-Jung Hsu
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Neel Thakur
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Bo Cheng
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
49
|
Calhoun AJ, Murthy M. Quantifying behavior to solve sensorimotor transformations: advances from worms and flies. Curr Opin Neurobiol 2017; 46:90-98. [PMID: 28850885 PMCID: PMC5765764 DOI: 10.1016/j.conb.2017.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 02/09/2023]
Abstract
The development of new computational tools has recently opened up the study of natural behaviors at a precision that was previously unachievable. These tools permit a highly quantitative analysis of behavioral dynamics at timescales that are well matched to the timescales of neural activity. Here we examine how combining these methods with established techniques for estimating an animal's sensory experience presents exciting new opportunities for dissecting the sensorimotor transformations performed by the nervous system. We focus this review primarily on examples from Caenorhabditis elegans and Drosophila melanogaster-for these model systems, computational approaches to characterize behavior, in combination with unparalleled genetic tools for neural activation, silencing, and recording, have already proven instrumental for illuminating underlying neural mechanisms.
Collapse
Affiliation(s)
- Adam J Calhoun
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
50
|
Abstract
ABSTRACT
Insects represent more than 60% of all multicellular life forms, and are easily among the most diverse and abundant organisms on earth. They evolved functional wings and the ability to fly, which enabled them to occupy diverse niches. Insects of the hyper-diverse orders show extreme miniaturization of their body size. The reduced body size, however, imposes steep constraints on flight ability, as their wings must flap faster to generate sufficient forces to stay aloft. Here, we discuss the various physiological and biomechanical adaptations of the thorax in flies which enabled them to overcome the myriad constraints of small body size, while ensuring very precise control of their wing motion. One such adaptation is the evolution of specialized myogenic or asynchronous muscles that power the high-frequency wing motion, in combination with neurogenic or synchronous steering muscles that control higher-order wing kinematic patterns. Additionally, passive cuticular linkages within the thorax coordinate fast and yet precise bilateral wing movement, in combination with an actively controlled clutch and gear system that enables flexible flight patterns. Thus, the study of thoracic biomechanics, along with the underlying sensory-motor processing, is central in understanding how the insect body form is adapted for flight.
Collapse
Affiliation(s)
- Tanvi Deora
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, Karnataka 560065, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sanjay P. Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, Karnataka 560065, India
| |
Collapse
|