1
|
Keais GL, Saad-Roy CM, Gonzalez-Sqalli E, Powell CN, Rieseberg LH, Gawryluk RMR, van den Driessche P, Wei KHC, Loppin B, Perlman SJ. A selfish supergene causes meiotic drive through both sexes in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2421185122. [PMID: 40267129 PMCID: PMC12054836 DOI: 10.1073/pnas.2421185122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/04/2025] [Indexed: 04/25/2025] Open
Abstract
Meiotic drivers are selfish genetic elements that bias their own transmission during meiosis or gamete formation. Due to the fundamental differences between male and female meiosis in animals and plants, meiotic drivers operate through distinct mechanisms in the two sexes: In females, they exploit the asymmetry of meiosis to ensure their inclusion in the egg, whereas in males, they eliminate competing gametes after symmetric meiosis. Meiotic drive is commonly reported in males, where it strongly influences the evolution of spermatogenesis, while the few known cases in females have highlighted its crucial role in centromere evolution. Despite a growing number of examples in a wide range of organisms, meiotic drive has so far only been observed in one sex or the other since its discovery nearly 100 y ago. Here, we show that a selfish X chromosome known to cause meiotic drive in male Drosophila testacea flies also causes meiotic drive in females. We find that this X chromosome has supergene architecture, harboring extensive structural rearrangements that suppress recombination between the two X chromosomes. This has contributed to a substantial expansion of its size compared to the wild-type chromosome, partly due to the accumulation of species-specific repetitive elements. Our findings suggest that female meiotic drive may play an important role in the evolutionary dynamics of polymorphic structural variants that suppress recombination, including inversions, translocations, and supergenes.
Collapse
Affiliation(s)
- Graeme L. Keais
- Department of Biology, University of Victoria, Victoria, BCV8W 3N5, Canada
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Chadi M. Saad-Roy
- Miller Institute for Basic Research in Science, University of California Berkeley, Berkeley, CA94720
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA94720
| | - Emmanuel Gonzalez-Sqalli
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France69364
| | - Candice N. Powell
- Department of Biology, University of Victoria, Victoria, BCV8W 3N5, Canada
| | - Loren H. Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | | | - P. van den Driessche
- Department of Mathematics and Statistics, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Kevin H.-C. Wei
- Department of Zoology, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France69364
| | - Steve J. Perlman
- Department of Biology, University of Victoria, Victoria, BCV8W 3N5, Canada
| |
Collapse
|
2
|
Irwin D, Bensch S, Charlebois C, David G, Geraldes A, Gupta SK, Harr B, Holt P, Irwin JH, Ivanitskii VV, Marova IM, Niu Y, Seneviratne S, Singh A, Wu Y, Zhang S, Price TD. The Distribution and Dispersal of Large Haploblocks in a Superspecies. Mol Ecol 2025:e17731. [PMID: 40091860 DOI: 10.1111/mec.17731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Haploblocks are regions of the genome that coalesce to an ancestor as a single unit. Differentiated haplotypes in these regions can result from the accumulation of mutational differences in low-recombination chromosomal regions, especially when selective sweeps occur within geographically structured populations. We introduce a method to identify large well-differentiated haploblock regions (LHBRs), based on the variance in standardised heterozygosity (ViSHet) of single nucleotide polymorphism (SNP) genotypes among individuals, calculated across a genomic region (500 SNPs in our case). We apply this method to the greenish warbler (Phylloscopus trochiloides) ring species, using a newly assembled reference genome and genotypes at more than 1 million SNPs among 257 individuals. Most chromosomes carry a single distinctive LHBR, containing 4-6 distinct haplotypes that are associated with geography, enabling detection of hybridisation events and transition zones between differentiated populations. LHBRs have exceptionally low within-haplotype nucleotide variation and moderately low between-haplotype nucleotide distance, suggesting their establishment through recurrent selective sweeps at varying geographic scales. Meiotic drive is potentially a powerful mechanism of producing such selective sweeps, and the LHBRs are likely to often represent centromeric regions where recombination is restricted. Links between populations enable introgression of favoured haplotypes and we identify one haploblock showing a highly discordant distribution compared to most of the genome, being present in two distantly separated geographic regions that are at similar latitudes in both east and central Asia. Our results set the stage for detailed studies of haploblocks, including their genomic location, gene content and contribution to reproductive isolation.
Collapse
Affiliation(s)
- Darren Irwin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Caleigh Charlebois
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabriel David
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Armando Geraldes
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Bettina Harr
- Max-Planck-Institut für Evolutionsbiologie, Germany
| | | | - Jessica H Irwin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Irina M Marova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Sampath Seneviratne
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Ashutosh Singh
- Salim Ali Centre for Ornithology and Natural History, Coimbatore, India
| | - Yongjie Wu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Shangmingyu Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Trevor D Price
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Dudka D, Nguyen AL, Boese KG, Marescal O, Akins RB, Black BE, Cheeseman IM, Lampson MA. Adaptive evolution of CENP-T modulates centromere binding. Curr Biol 2025; 35:1012-1022.e5. [PMID: 39947176 PMCID: PMC11903153 DOI: 10.1016/j.cub.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Centromeric DNA and proteins evolve rapidly despite conserved function in mediating kinetochore-microtubule attachments during cell division. This paradox is explained by selfish DNA sequences preferentially binding centromeric proteins to disrupt attachments and bias their segregation into the egg (drive) during female meiosis. Adaptive centromeric protein evolution is predicted to prevent preferential binding to these sequences and suppress drive. Here, we test this prediction by defining the impact of adaptive evolution of the DNA-binding histone fold domain of CENP-T, a major link between centromeric DNA and microtubules. We reversed adaptive changes by creating chimeric variants of mouse CENP-T with the histone fold domain from closely related species, expressed exogenously in mouse oocytes or in a transgenic mouse model. We show that adaptive evolution of mouse CENP-T reduced centromere binding, which supports robust female gametogenesis. However, this innovation is independent of the centromeric DNA sequence, as shown by comparing the binding of divergent CENP-T variants to distinct centromere satellite arrays in mouse oocytes and in somatic cells from other species. Overall, our findings support a model in which selfish sequences drive to fixation, disrupting attachments of all centromeres to the spindle. DNA sequence-specific innovations are not needed to mitigate fitness costs in this model, so centromeric proteins adapt by modulating their binding to all centromeres in the aftermath of drive.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra L Nguyen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Katelyn G Boese
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Océane Marescal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - R Brian Akins
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iain M Cheeseman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Sridhar S, Fukagawa T. Meiosis: When centromeres choose compromise over conflict. Curr Biol 2025; 35:R196-R198. [PMID: 40068619 DOI: 10.1016/j.cub.2025.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Centromeres are essential for accurate chromosome segregation, yet their DNA and proteins evolve rapidly. A new study reveals that mouse CENP-T evolved reduced centromere binding, not to counter selfish DNA, but to stabilize kinetochore dynamics and ensure successful oogenesis, reshaping ideas about centromere adaptation.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Graduate School of Frontier Biosciences, The University of Osaka, Suita, Osaka 565-0871, Japan.
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, The University of Osaka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Pan B, Bruno M, Macfarlan TS, Akera T. Meiosis-specific distal cohesion site decoupled from the kinetochore. Nat Commun 2025; 16:2116. [PMID: 40032846 PMCID: PMC11876576 DOI: 10.1038/s41467-025-57438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Primary constriction of the M-phase chromosome serves as a marker for the kinetochore position. Underlying this observation is the concept that the kinetochore is spatially linked with the pericentromere where sister-chromatids are cohered. Here, we find an unconventional chromatid-cohesion pattern in Peromyscus oocytes, with sister chromatids cohered at a chromosome end, spatially separated from the kinetochore. This distal locus enriches cohesin protectors specifically during meiosis, and chromosomes with this additional cohesion site exhibit enhanced cohesin protection at anaphase I compared to those without it, implying an adaptive evolution to ensure cohesion during meiosis. The distal locus corresponds to an additional centromeric satellite block, located far from the satellite block building the kinetochore. Analyses on three Peromyscus species reveal that the internal satellite consistently assembles the kinetochore in mitosis and meiosis, whereas the distal satellite selectively enriches cohesin protectors in meiosis to promote cohesion. Our study demonstrates that cohesion regulation is flexible, controlling chromosome segregation in a cell-type dependent manner.
Collapse
Affiliation(s)
- Bo Pan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Dudka D, Dawicki-McKenna JM, Sun X, Beeravolu K, Akera T, Lampson MA, Black BE. Satellite DNA shapes dictate pericentromere packaging in female meiosis. Nature 2025; 638:814-822. [PMID: 39779853 PMCID: PMC11880906 DOI: 10.1038/s41586-024-08374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance1-3. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1)4,5. Pericentromeric heterochromatin in two closely related mouse species, M. musculus and M. spretus, forms on divergent satellites that differ by both density of narrow DNA minor grooves and HMGA1 recruitment. HMGA1 binds preferentially to M. musculus satellites, and depletion in M. musculus oocytes causes massive stretching of pericentromeric satellites, disruption of kinetochore organization and delays in bipolar spindle assembly. In M. musculus × spretus hybrid oocytes, HMGA1 depletion disproportionately impairs M. musculus pericentromeres and microtubule attachment to their kinetochores. Thus, DNA shape affects both pericentromere packaging and the segregation machinery. We propose that rapid evolution of centromere and pericentromere DNA does not disrupt these essential processes when the satellites adopt DNA shapes recognized by conserved architectural proteins (such as HMGA1). By packaging these satellites, architectural proteins become part of the centromeric and pericentromeric chromatin, suggesting an evolutionary strategy that lowers the cost of megabase-scale satellite expansion.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xueqi Sun
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Keagan Beeravolu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
López-Cortegano E, Chebib J, Jonas A, Vock A, Künzel S, Keightley PD, Tautz D. The rate and spectrum of new mutations in mice inferred by long-read sequencing. Genome Res 2025; 35:43-54. [PMID: 39622636 PMCID: PMC11789640 DOI: 10.1101/gr.279982.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
All forms of genetic variation originate from new mutations, making it crucial to understand their rates and mechanisms. Here, we use long-read sequencing from Pacific Biosciences (PacBio) to investigate de novo mutations that accumulated in 12 inbred mouse lines derived from three commonly used inbred strains (C3H, C57BL/6, and FVB) maintained for 8 to 15 generations in a mutation accumulation (MA) experiment. We built chromosome-level genome assemblies based on the MA line founders' genomes and then employed a combination of read and assembly-based methods to call the complete spectrum of new mutations. On average, there are about 45 mutations per haploid genome per generation, about half of which (54%) are insertions and deletions shorter than 50 bp (indels). The remainder are single-nucleotide mutations (SNMs; 44%) and large structural mutations (SMs; 2%). We found that the degree of DNA repetitiveness is positively correlated with SNM and indel rates and that a substantial fraction of SMs can be explained by homology-dependent mechanisms associated with repeat sequences. Most (90%) indels can be attributed to microsatellite contractions and expansions, and there is a marked bias toward 4 bp indels. Among the different types of SMs, tandem repeat mutations have the highest mutation rate, followed by insertions of transposable elements (TEs). We uncover a rich landscape of active TEs, notable differences in their spectrum among MA lines and strains, and a high rate of gene retroposition. Our study offers novel insights into mammalian genome evolution and highlights the importance of repetitive elements in shaping genomic diversity.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Anika Jonas
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Anastasia Vock
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Sven Künzel
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Diethard Tautz
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
8
|
Plačková K, Bureš P, Lysak MA, Zedek F. Centromere drive may propel the evolution of chromosome and genome size in plants. ANNALS OF BOTANY 2024; 134:1067-1076. [PMID: 39196767 PMCID: PMC11687628 DOI: 10.1093/aob/mcae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete. If centromere drive influences chromosome size evolution, it may also impact post-polyploid diploidization, where a polyploid genome is restructured to function more like a diploid through chromosomal rearrangements, including fusions. We tested if plant lineages with asymmetric meiosis exhibit faster chromosome size evolution compared to those with only symmetric meiosis, which lack centromere drive as all four meiotic products become gametes. We also examined if positive selection on centromeric histone H3 (CENH3), a protein that can suppress centromere drive, is more frequent in these asymmetric lineages. METHODS We analysed plant groups with different meiotic modes: asymmetric in gymnosperms and angiosperms, and symmetric in bryophytes, lycophytes and ferns. We selected species based on available CENH3 gene sequences and chromosome size data. Using Ornstein-Uhlenbeck evolutionary models and phylogenetic regressions, we assessed the rates of chromosome size evolution and the frequency of positive selection on CENH3 in these clades. RESULTS Our analyses showed that clades with asymmetric meiosis have a higher frequency of positive selection on CENH3 and increased rates of chromosome size evolution compared to symmetric clades. CONCLUSIONS Our findings support the hypothesis that centromere drive accelerates chromosome and genome size evolution, potentially also influencing the process of post-polyploid diploidization. We propose a model which in a single framework helps explain the stability of chromosome size in symmetric lineages (bryophytes, lycophytes and ferns) and its variability in asymmetric lineages (gymnosperms and angiosperms), providing a foundation for future research in plant genome evolution.
Collapse
Affiliation(s)
- Klára Plačková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Martin A Lysak
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
9
|
Courret C, Hemmer LW, Wei X, Patel PD, Chabot BJ, Fuda NJ, Geng X, Chang CH, Mellone BG, Larracuente AM. Turnover of retroelements and satellite DNA drives centromere reorganization over short evolutionary timescales in Drosophila. PLoS Biol 2024; 22:e3002911. [PMID: 39570997 PMCID: PMC11620609 DOI: 10.1371/journal.pbio.3002911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/05/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Centromeres reside in rapidly evolving, repeat-rich genomic regions, despite their essential function in chromosome segregation. Across organisms, centromeres are rich in selfish genetic elements such as transposable elements and satellite DNAs that can bias their transmission through meiosis. However, these elements still need to cooperate at some level and contribute to, or avoid interfering with, centromere function. To gain insight into the balance between conflict and cooperation at centromeric DNA, we take advantage of the close evolutionary relationships within the Drosophila simulans clade-D. simulans, D. sechellia, and D. mauritiana-and their relative, D. melanogaster. Using chromatin profiling combined with high-resolution fluorescence in situ hybridization on stretched chromatin fibers, we characterize all centromeres across these species. We discovered dramatic centromere reorganization involving recurrent shifts between retroelements and satellite DNAs over short evolutionary timescales. We also reveal the recent origin (<240 Kya) of telocentric chromosomes in D. sechellia, where the X and fourth centromeres now sit on telomere-specific retroelements. Finally, the Y chromosome centromeres, which are the only chromosomes that do not experience female meiosis, do not show dynamic cycling between satDNA and TEs. The patterns of rapid centromere turnover in these species are consistent with genetic conflicts in the female germline and have implications for centromeric DNA function and karyotype evolution. Regardless of the evolutionary forces driving this turnover, the rapid reorganization of centromeric sequences over short evolutionary timescales highlights their potential as hotspots for evolutionary innovation.
Collapse
Affiliation(s)
- Cécile Courret
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Lucas W. Hemmer
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Xiaolu Wei
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Prachi D. Patel
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Bryce J. Chabot
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Nicholas J. Fuda
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Xuewen Geng
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Barbara G. Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Amanda M. Larracuente
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
10
|
Searle JB, Pardo-Manuel de Villena F. Meiotic Drive and Speciation. Annu Rev Genet 2024; 58:341-363. [PMID: 39585909 DOI: 10.1146/annurev-genet-111523-102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Meiotic drive is the biased transmission of alleles from heterozygotes, contrary to Mendel's laws, and reflects intragenomic conflict rather than organism-level Darwinian selection. Theory has been developed as to how centromeric properties can promote female meiotic drive and how conflict between the X and Y chromosomes in males can promote male meiotic drive. There are empirical data that fit both the centromere drive and sex chromosome drive models. Sex chromosome drive may have relevance to speciation through the buildup of Dobzhansky-Muller incompatibilities involving drive and suppressor systems, studied particularly in Drosophila. Centromere drive may promote fixation of chromosomal rearrangements involving the centromere, and those fixed rearrangements may contribute to reproductive isolation, studied particularly in the house mouse. Genome-wide tests suggest that meiotic drive promotes allele fixation with regularity, and those studying the genomics of speciation need to be aware of the potential impact of such fixations on reproductive isolation. New species can originate in many different ways (including multiple factors acting together), and a substantial body of work on meiotic drive point to it being one of the processes involved.
Collapse
Affiliation(s)
- Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | | |
Collapse
|
11
|
Hughes JJ, Lagunas-Robles G, Campbell P. The role of conflict in the formation and maintenance of variant sex chromosome systems in mammals. J Hered 2024; 115:601-624. [PMID: 38833450 DOI: 10.1093/jhered/esae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 06/01/2024] [Indexed: 06/06/2024] Open
Abstract
The XX/XY sex chromosome system is deeply conserved in therian mammals, as is the role of Sry in testis determination, giving the impression of stasis relative to other taxa. However, the long tradition of cytogenetic studies in mammals documents sex chromosome karyotypes that break this norm in myriad ways, ranging from fusions between sex chromosomes and autosomes to Y chromosome loss. Evolutionary conflict, in the form of sexual antagonism or meiotic drive, is the primary predicted driver of sex chromosome transformation and turnover. Yet conflict-based hypotheses are less considered in mammals, perhaps because of the perceived stability of the sex chromosome system. To address this gap, we catalog and characterize all described sex chromosome variants in mammals, test for family-specific rates of accumulation, and consider the role of conflict between the sexes or within the genome in the evolution of these systems. We identify 152 species with sex chromosomes that differ from the ancestral state and find evidence for different rates of ancestral to derived transitions among families. Sex chromosome-autosome fusions account for 79% of all variants whereas documented sex chromosome fissions are limited to three species. We propose that meiotic drive and drive suppression provide viable explanations for the evolution of many of these variant systems, particularly those involving autosomal fusions. We highlight taxa particularly worthy of further study and provide experimental predictions for testing the role of conflict and its alternatives in generating observed sex chromosome diversity.
Collapse
Affiliation(s)
- Jonathan J Hughes
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - German Lagunas-Robles
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - Polly Campbell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
12
|
Borseth AB, Kianersi HD, Galloway P, Gercken G, Stowe EL, Pizzorno M, Paliulis LV. Alignment of a Trivalent Chromosome on the Metaphase Plate Is Associated with Differences in Microtubule Density at Each Kinetochore. Int J Mol Sci 2024; 25:10719. [PMID: 39409048 PMCID: PMC11477388 DOI: 10.3390/ijms251910719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Chromosome alignment on the metaphase plate is a conserved phenomenon and is an essential function for correct chromosome segregation for many organisms. Organisms with naturally-occurring trivalent chromosomes provide a useful system for understanding how chromosome alignment is evolutionarily regulated, as they align on the spindle with one kinetochore facing one pole and two facing the opposite pole. We studied chromosome alignment in a praying mantid that has not been previously studied chromosomally, the giant shield mantis Rhombodera megaera. R. megaera has a chromosome number of 2n = 27 in males. Males have X1, X2, and Y chromosomes that combine to form a trivalent in meiosis I. Using live-cell imaging of spermatocytes in meiosis I, we document that sex trivalent Y chromosomes associate with one spindle pole and the two X chromosomes associate with the opposing spindle pole. Sex trivalents congress alongside autosomes, align with them on the metaphase I plate, and then the component chromosomes segregate alongside autosomes in anaphase I. Immunofluorescence imaging and quantification of brightness of kinetochore-microtubule bundles suggest that the X1 and X2 kinetochores are associated with fewer microtubules than the Y kinetochore, likely explaining the alignment of the sex trivalent at the spindle equator with autosomes. These observations in R. megaera support the evolutionary significance of the metaphase alignment of chromosomes and provide part of the explanation for how this alignment is achieved.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leocadia V. Paliulis
- Biology Department, Bucknell University, 1 Dent Dr., Lewisburg, PA 17837, USA (P.G.); (E.L.S.)
| |
Collapse
|
13
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
14
|
Clark FE, Greenberg NL, Silva DMZA, Trimm E, Skinner M, Walton RZ, Rosin LF, Lampson MA, Akera T. An egg-sabotaging mechanism drives non-Mendelian transmission in mice. Curr Biol 2024; 34:3845-3854.e4. [PMID: 39067449 PMCID: PMC11387149 DOI: 10.1016/j.cub.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Selfish genetic elements drive in meiosis to distort their transmission ratio and increase their representation in gametes, violating Mendel's law of segregation. The two established paradigms for meiotic drive, gamete killing and biased segregation, are fundamentally different. In gamete killing, typically observed with male meiosis, selfish elements sabotage gametes that do not contain them. By contrast, killing is predetermined in female meiosis, and selfish elements bias their segregation to the single surviving gamete (i.e., the egg in animal meiosis). Here, we show that a selfish element on mouse chromosome 2, Responder to drive 2 (R2d2), drives using a hybrid mechanism in female meiosis, incorporating elements of both killing and biased segregation. We propose that if R2d2 is destined for the polar body, it manipulates segregation to sabotage the egg by causing aneuploidy, which is subsequently lethal in the embryo, ensuring that surviving progeny preferentially contain R2d2. In heterozygous females, R2d2 orients randomly on the metaphase spindle but lags during anaphase and preferentially remains in the egg, regardless of its initial orientation. Thus, the egg genotype is either euploid with R2d2 or aneuploid with both homologs of chromosome 2, with only the former generating viable embryos. Consistent with this model, R2d2 heterozygous females produce eggs with increased aneuploidy for chromosome 2, increased embryonic lethality, and increased transmission of R2d2. In contrast to typical gamete killing of sisters produced as daughter cells in a single meiosis, R2d2 prevents production of any viable gametes from meiotic divisions in which it should have been excluded from the egg.
Collapse
Affiliation(s)
- Frances E Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Naomi L Greenberg
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Duilio M Z A Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Morgan Skinner
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - R Zaak Walton
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Leah F Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
15
|
Pan B, Bruno M, Macfarlan TS, Akera T. Meiosis-specific decoupling of the pericentromere from the kinetochore. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604490. [PMID: 39091844 PMCID: PMC11291024 DOI: 10.1101/2024.07.21.604490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The primary constriction site of the M-phase chromosome is an established marker for the kinetochore position, often used to determine the karyotype of each species. Underlying this observation is the concept that the kinetochore is spatially linked with the pericentromere where sister-chromatids are most tightly cohered. Here, we found an unconventional pericentromere specification with sister chromatids mainly cohered at a chromosome end, spatially separated from the kinetochore in Peromyscus mouse oocytes. This distal locus enriched cohesin protectors, such as the Chromosomal Passenger Complex (CPC) and PP2A, at a higher level compared to its centromere/kinetochore region, acting as the primary site for sister-chromatid cohesion. Chromosomes with the distal cohesion site exhibited enhanced cohesin protection at anaphase I compared to those without it, implying that these distal cohesion sites may have evolved to ensure sister-chromatid cohesion during meiosis. In contrast, mitotic cells enriched CPC only near the kinetochore and the distal locus was not cohered between sister chromatids, suggesting a meiosis-specific mechanism to protect cohesin at this distal locus. We found that this distal locus corresponds to an additional centromeric satellite block, located far apart from the centromeric satellite block that builds the kinetochore. Several Peromyscus species carry chromosomes with two such centromeric satellite blocks. Analyses on three Peromyscus species revealed that the internal satellite consistently assembles the kinetochore in both mitosis and meiosis, whereas the distal satellite selectively enriches cohesin protectors in meiosis to promote sister-chromatid cohesion at that site. Thus, our study demonstrates that pericentromere specification is remarkably flexible and can control chromosome segregation in a cell-type and context dependent manner.
Collapse
Affiliation(s)
- Bo Pan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| |
Collapse
|
16
|
Arora UP, Dumont BL. Molecular evolution of the mammalian kinetochore complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600994. [PMID: 38979348 PMCID: PMC11230421 DOI: 10.1101/2024.06.27.600994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mammalian centromeres are satellite-rich chromatin domains that serve as sites for kinetochore complex assembly. Centromeres are highly variable in sequence and satellite organization across species, but the processes that govern the co-evolutionary dynamics between rapidly evolving centromeres and their associated kinetochore proteins remain poorly understood. Here, we pursue a course of phylogenetic analyses to investigate the molecular evolution of the complete kinetochore complex across primate and rodent species with divergent centromere repeat sequences and features. We show that many protein components of the core centromere associated network (CCAN) harbor signals of adaptive evolution, consistent with their intimate association with centromere satellite DNA and roles in the stability and recruitment of additional kinetochore proteins. Surprisingly, CCAN and outer kinetochore proteins exhibit comparable rates of adaptive divergence, suggesting that changes in centromere DNA can ripple across the kinetochore to drive adaptive protein evolution within distant domains of the complex. Our work further identifies kinetochore proteins subject to lineage-specific adaptive evolution, including rapidly evolving proteins in species with centromere satellites characterized by higher-order repeat structure and lacking CENP-B boxes. Thus, features of centromeric chromatin beyond the linear DNA sequence may drive selection on kinetochore proteins. Overall, our work spotlights adaptively evolving proteins with diverse centromere-associated functions, including centromere chromatin structure, kinetochore protein assembly, kinetochore-microtubule association, cohesion maintenance, and DNA damage response pathways. These adaptively evolving kinetochore protein candidates present compelling opportunities for future functional investigations exploring how their concerted changes with centromere DNA ensure the maintenance of genome stability.
Collapse
Affiliation(s)
- Uma P. Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor ME 04609
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston MA 02111
| | - Beth L. Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor ME 04609
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston MA 02111
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, 04469
| |
Collapse
|
17
|
Brand CL, Oliver GT, Farkas IZ, Buszczak M, Levine MT. Recurrent Duplication and Diversification of a Vital DNA Repair Gene Family Across Drosophila. Mol Biol Evol 2024; 41:msae113. [PMID: 38865490 PMCID: PMC11210505 DOI: 10.1093/molbev/msae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Maintaining genome integrity is vital for organismal survival and reproduction. Essential, broadly conserved DNA repair pathways actively preserve genome integrity. However, many DNA repair proteins evolve adaptively. Ecological forces like UV exposure are classically cited drivers of DNA repair evolution. Intrinsic forces like repetitive DNA, which also imperil genome integrity, have received less attention. We recently reported that a Drosophila melanogaster-specific DNA satellite array triggered species-specific, adaptive evolution of a DNA repair protein called Spartan/MH. The Spartan family of proteases cleave hazardous, covalent crosslinks that form between DNA and proteins ("DNA-protein crosslink repair"). Appreciating that DNA satellites are both ubiquitous and universally fast-evolving, we hypothesized that satellite DNA turnover spurs adaptive evolution of DNA-protein crosslink repair beyond a single gene and beyond the D. melanogaster lineage. This hypothesis predicts pervasive Spartan gene family diversification across Drosophila species. To study the evolutionary history of the Drosophila Spartan gene family, we conducted population genetic, molecular evolution, phylogenomic, and tissue-specific expression analyses. We uncovered widespread signals of positive selection across multiple Spartan family genes and across multiple evolutionary timescales. We also detected recurrent Spartan family gene duplication, divergence, and gene loss. Finally, we found that ovary-enriched parent genes consistently birthed functionally diverged, testis-enriched daughter genes. To account for Spartan family diversification, we introduce a novel mechanistic model of antagonistic coevolution that links DNA satellite evolution and adaptive regulation of Spartan protease activity. This framework promises to accelerate our understanding of how DNA repeats drive recurrent evolutionary innovation to preserve genome integrity.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Genevieve T Oliver
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabella Z Farkas
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Buszczak
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Boman J, Wiklund C, Vila R, Backström N. Meiotic drive against chromosome fusions in butterfly hybrids. Chromosome Res 2024; 32:7. [PMID: 38702576 PMCID: PMC11068667 DOI: 10.1007/s10577-024-09752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Species frequently differ in the number and structure of chromosomes they harbor, but individuals that are heterozygous for chromosomal rearrangements may suffer from reduced fitness. Chromosomal rearrangements like fissions and fusions can hence serve as a mechanism for speciation between incipient lineages, but their evolution poses a paradox. How can rearrangements get fixed between populations if heterozygotes have reduced fitness? One solution is that this process predominantly occurs in small and isolated populations, where genetic drift can override natural selection. However, fixation is also more likely if a novel rearrangement is favored by a transmission bias, such as meiotic drive. Here, we investigate chromosomal transmission distortion in hybrids between two wood white (Leptidea sinapis) butterfly populations with extensive karyotype differences. Using data from two different crossing experiments, we uncover that there is a transmission bias favoring the ancestral chromosomal state for derived fusions, a result that shows that chromosome fusions actually can fix in populations despite being counteracted by meiotic drive. This means that meiotic drive not only can promote runaway chromosome number evolution and speciation, but also that it can be a conservative force acting against karyotypic change and the evolution of reproductive isolation. Based on our results, we suggest a mechanistic model for why chromosome fusion mutations may be opposed by meiotic drive and discuss factors contributing to karyotype evolution in Lepidoptera.
Collapse
Affiliation(s)
- Jesper Boman
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| | - Christer Wiklund
- Department of Zoology: Division of Ecology, Stockholm University, Stockholm, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Passeig Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
19
|
Logsdon GA, Rozanski AN, Ryabov F, Potapova T, Shepelev VA, Catacchio CR, Porubsky D, Mao Y, Yoo D, Rautiainen M, Koren S, Nurk S, Lucas JK, Hoekzema K, Munson KM, Gerton JL, Phillippy AM, Ventura M, Alexandrov IA, Eichler EE. The variation and evolution of complete human centromeres. Nature 2024; 629:136-145. [PMID: 38570684 PMCID: PMC11062924 DOI: 10.1038/s41586-024-07278-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.
Collapse
Affiliation(s)
- Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allison N Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Fedor Ryabov
- Masters Program in National Research University Higher School of Economics, Moscow, Russia
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Claudia R Catacchio
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Oxford Nanopore Technologies, Oxford, United Kingdom
| | - Julian K Lucas
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Ivan A Alexandrov
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Yurchenko A, Pšenička T, Mora P, Ortega JAM, Baca AS, Rovatsos M. Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos. Genes (Basel) 2024; 15:429. [PMID: 38674364 PMCID: PMC11049218 DOI: 10.3390/genes15040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Satellite DNA (satDNA) consists of sequences of DNA that form tandem repetitions across the genome, and it is notorious for its diversity and fast evolutionary rate. Despite its importance, satDNA has been only sporadically studied in reptile lineages. Here, we sequenced genomic DNA and PCR-amplified microdissected W chromosomes on the Illumina platform in order to characterize the monomers of satDNA from the Henkel's leaf-tailed gecko U. henkeli and to compare their topology by in situ hybridization in the karyotypes of the closely related Günther's flat-tail gecko U. guentheri and gold dust day gecko P. laticauda. We identified seventeen different satDNAs; twelve of them seem to accumulate in centromeres, telomeres and/or the W chromosome. Notably, centromeric and telomeric regions seem to share similar types of satDNAs, and we found two that seem to accumulate at both edges of all chromosomes in all three species. We speculate that the long-term stability of all-acrocentric karyotypes in geckos might be explained from the presence of specific satDNAs at the centromeric regions that are strong meiotic drivers, a hypothesis that should be further tested.
Collapse
Affiliation(s)
- Alona Yurchenko
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| | - Tomáš Pšenička
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| | - Pablo Mora
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Juan Alberto Marchal Ortega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Antonio Sánchez Baca
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| |
Collapse
|
21
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
22
|
Flynn JM, Yamashita YM. The implications of satellite DNA instability on cellular function and evolution. Semin Cell Dev Biol 2024; 156:152-159. [PMID: 37852904 DOI: 10.1016/j.semcdb.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Abundant tandemly repeated satellite DNA is present in most eukaryotic genomes. Previous limitations including a pervasive view that it was uninteresting junk DNA, combined with challenges in studying it, are starting to dissolve - and recent studies have found important functions for satellite DNAs. The observed rapid evolution and implied instability of satellite DNA now has important significance for their functions and maintenance within the genome. In this review, we discuss the processes that lead to satellite DNA copy number instability, and the importance of mechanisms to manage the potential negative effects of instability. Satellite DNA is vulnerable to challenges during replication and repair, since it forms difficult-to-process secondary structures and its homology within tandem arrays can result in various types of recombination. Satellite DNA instability may be managed by DNA or chromatin-binding proteins ensuring proper nuclear localization and repair, or by proteins that process aberrant structures that satellite DNAs tend to form. We also discuss the pattern of satellite DNA mutations from recent mutation accumulation (MA) studies that have tracked changes in satellite DNA for up to 1000 generations with minimal selection. Finally, we highlight examples of satellite evolution from studies that have characterized satellites across millions of years of Drosophila fruit fly evolution, and discuss possible ways that selection might act on the satellite DNA composition.
Collapse
Affiliation(s)
- Jullien M Flynn
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
23
|
Clark FE, Greenberg NL, Silva DM, Trimm E, Skinner M, Walton RZ, Rosin LF, Lampson MA, Akera T. An egg sabotaging mechanism drives non-Mendelian transmission in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581453. [PMID: 38903120 PMCID: PMC11188085 DOI: 10.1101/2024.02.22.581453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
During meiosis, homologous chromosomes segregate so that alleles are transmitted equally to haploid gametes, following Mendel's Law of Segregation. However, some selfish genetic elements drive in meiosis to distort the transmission ratio and increase their representation in gametes. The established paradigms for drive are fundamentally different for female vs male meiosis. In male meiosis, selfish elements typically kill gametes that do not contain them. In female meiosis, killing is predetermined, and selfish elements bias their segregation to the single surviving gamete (i.e., the egg in animal meiosis). Here we show that a selfish element on mouse chromosome 2, R2d2, drives using a hybrid mechanism in female meiosis, incorporating elements of both male and female drivers. If R2d2 is destined for the polar body, it manipulates segregation to sabotage the egg by causing aneuploidy that is subsequently lethal in the embryo, so that surviving progeny preferentially contain R2d2. In heterozygous females, R2d2 orients randomly on the metaphase spindle but lags during anaphase and preferentially remains in the egg, regardless of its initial orientation. Thus, the egg genotype is either euploid with R2d2 or aneuploid with both homologs of chromosome 2, with only the former generating viable embryos. Consistent with this model, R2d2 heterozygous females produce eggs with increased aneuploidy for chromosome 2, increased embryonic lethality, and increased transmission of R2d2. In contrast to a male meiotic driver, which kills its sister gametes produced as daughter cells in the same meiosis, R2d2 eliminates "cousins" produced from meioses in which it should have been excluded from the egg.
Collapse
Affiliation(s)
- Frances E. Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Naomi L. Greenberg
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Duilio M.Z.A. Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Morgan Skinner
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - R Zaak Walton
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Leah F. Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20894 USA
| | - Michael A. Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| |
Collapse
|
24
|
Packiaraj J, Thakur J. DNA satellite and chromatin organization at mouse centromeres and pericentromeres. Genome Biol 2024; 25:52. [PMID: 38378611 PMCID: PMC10880262 DOI: 10.1186/s13059-024-03184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Centromeres are essential for faithful chromosome segregation during mitosis and meiosis. However, the organization of satellite DNA and chromatin at mouse centromeres and pericentromeres is poorly understood due to the challenges of assembling repetitive genomic regions. RESULTS Using recently available PacBio long-read sequencing data from the C57BL/6 strain, we find that contrary to the previous reports of their homogeneous nature, both centromeric minor satellites and pericentromeric major satellites exhibit a high degree of variation in sequence and organization within and between arrays. While most arrays are continuous, a significant fraction is interspersed with non-satellite sequences, including transposable elements. Using chromatin immunoprecipitation sequencing (ChIP-seq), we find that the occupancy of CENP-A and H3K9me3 chromatin at centromeric and pericentric regions, respectively, is associated with increased sequence enrichment and homogeneity at these regions. The transposable elements at centromeric regions are not part of functional centromeres as they lack significant CENP-A enrichment. Furthermore, both CENP-A and H3K9me3 nucleosomes occupy minor and major satellites spanning centromeric-pericentric junctions and a low yet significant amount of CENP-A spreads locally at centromere junctions on both pericentric and telocentric sides. Finally, while H3K9me3 nucleosomes display a well-phased organization on major satellite arrays, CENP-A nucleosomes on minor satellite arrays are poorly phased. Interestingly, the homogeneous class of major satellites also phase CENP-A and H3K27me3 nucleosomes, indicating that the nucleosome phasing is an inherent property of homogeneous major satellites. CONCLUSIONS Our findings reveal that mouse centromeres and pericentromeres display a high diversity in satellite sequence, organization, and chromatin structure.
Collapse
Affiliation(s)
- Jenika Packiaraj
- Department of Biology, Emory University, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd, Atlanta, GA, 30322, USA.
| |
Collapse
|
25
|
Liu C, Huang Y, Guo X, Yi C, Liu Q, Zhang K, Zhu C, Liu Y, Han F. Young retrotransposons and non-B DNA structures promote the establishment of dominant rye centromere in the 1RS.1BL fused centromere. THE NEW PHYTOLOGIST 2024; 241:607-622. [PMID: 37897058 DOI: 10.1111/nph.19359] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The fine centromere structure in Robertsonian wheat-rye translocation chromosomes exhibits variation among different translocation genotypes. Within extensively employed wheat-rye 1RS.1BL translocation lines in wheat breeding, their translocated chromosomes frequently display fused centromere. Nevertheless, the mechanism governing the functionality of the fused centromere in 1RS.1BL translocated chromosomes remains to be clarified. In this study, we investigated the fine centromere structure of the 1RS.1BL translocated chromosome through a combination of cytological and genomics methods. We found that only the rye-derived centromere exhibits functional activity, whether in breeding applications or artificially synthesized translocation chromosomes. The active rye-derived centromere had higher proportion of young full-length long terminal repeat retrotransposons (flLTR-RTs) and more stable non-B DNA structures, which may be beneficial toward transcription of centromeric repeats and CENH3 loading to maintain the activity of rye centromeres. High levels of DNA methylation and H3K9me2 were found in the inactive wheat-derived centromeres, suggesting that it may play a crucial role in maintaining the inactive status of the wheat centromere. Our works elucidate the fine structure of 1RS.1BL translocations and the potential mechanism of centromere inactivation in the fused centromere, contributing knowledge to the application of fused centromere in wheat breeding formation of new wheat-rye translocation lines.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congle Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Gambogi CW, Pandey N, Dawicki-McKenna JM, Arora UP, Liskovykh MA, Ma J, Lamelza P, Larionov V, Lampson MA, Logsdon GA, Dumont BL, Black BE. Centromere innovations within a mouse species. SCIENCE ADVANCES 2023; 9:eadi5764. [PMID: 37967185 PMCID: PMC10651114 DOI: 10.1126/sciadv.adi5764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Mammalian centromeres direct faithful genetic inheritance and are typically characterized by regions of highly repetitive and rapidly evolving DNA. We focused on a mouse species, Mus pahari, that we found has evolved to house centromere-specifying centromere protein-A (CENP-A) nucleosomes at the nexus of a satellite repeat that we identified and termed π-satellite (π-sat), a small number of recruitment sites for CENP-B, and short stretches of perfect telomere repeats. One M. pahari chromosome, however, houses a radically divergent centromere harboring ~6 mega-base pairs of a homogenized π-sat-related repeat, π-satB, that contains >20,000 functional CENP-B boxes. There, CENP-B abundance promotes accumulation of microtubule-binding components of the kinetochore and a microtubule-destabilizing kinesin of the inner centromere. We propose that the balance of pro- and anti-microtubule binding by the new centromere is what permits it to segregate during cell division with high fidelity alongside the older ones whose sequence creates a markedly different molecular composition.
Collapse
Affiliation(s)
- Craig W. Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nootan Pandey
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennine M. Dawicki-McKenna
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Uma P. Arora
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Mikhail A. Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Piero Lamelza
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael A. Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Beth L. Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Barbash DA, Jin B, Wei KHC, Dion-Côté AM. Testing a candidate meiotic drive locus identified by pool sequencing. G3 (BETHESDA, MD.) 2023; 13:jkad225. [PMID: 37766472 PMCID: PMC10627268 DOI: 10.1093/g3journal/jkad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Meiotic drive biases the transmission of alleles in heterozygous individuals, such that Mendel's law of equal segregation is violated. Most examples of meiotic drive have been discovered over the past century based on causing sex ratio distortion or the biased transmission of easily scoreable genetic markers that were linked to drive alleles. More recently, several approaches have been developed that attempt to identify distortions of Mendelian segregation genome wide. Here, we test a candidate female meiotic drive locus in Drosophila melanogaster, identified previously as causing a ∼54:46 distortion ratio using sequencing of large pools of backcross progeny. We inserted fluorescent visible markers near the candidate locus and scored transmission in thousands of individual progeny. We observed a small but significant deviation from the Mendelian expectation; however, it was in the opposite direction to that predicted based on the original experiments. We discuss several possible causes of the discrepancy between the 2 approaches, noting that subtle viability effects are particularly challenging to disentangle from potential small-effect meiotic drive loci. We conclude that pool sequencing approaches remain a powerful method to identify candidate meiotic drive loci but that genotyping of individual progeny at early developmental stages may be required for robust confirmation.
Collapse
Affiliation(s)
- Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bozhou Jin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Kevin H C Wei
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Anne-Marie Dion-Côté
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Département de Biologie, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
28
|
El Yakoubi W, Akera T. Condensin dysfunction is a reproductive isolating barrier in mice. Nature 2023; 623:347-355. [PMID: 37914934 PMCID: PMC11379054 DOI: 10.1038/s41586-023-06700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.
Collapse
Affiliation(s)
- Warif El Yakoubi
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Arora UP, Sullivan BA, Dumont BL. Variation in the CENP-A sequence association landscape across diverse inbred mouse strains. Cell Rep 2023; 42:113178. [PMID: 37742188 PMCID: PMC10873113 DOI: 10.1016/j.celrep.2023.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Box 3054, Durham, NC 27710, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Room 46, Orono, ME 04469, USA.
| |
Collapse
|
30
|
Finseth F. Female meiotic drive in plants: mechanisms and dynamics. Curr Opin Genet Dev 2023; 82:102101. [PMID: 37633231 DOI: 10.1016/j.gde.2023.102101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 08/28/2023]
Abstract
Female meiosis is fundamentally asymmetric, creating an arena for genetic elements to compete for inclusion in the egg to maximize their transmission. Centromeres, as mediators of chromosomal segregation, are prime candidates to evolve via 'female meiotic drive'. According to the centromere-drive model, the asymmetry of female meiosis ignites a coevolutionary arms race between selfish centromeres and kinetochore proteins, the by-product of which is accelerated sequence divergence. Here, I describe and compare plant models that have been instrumental in uncovering the mechanistic basis of female meiotic drive (maize) and the dynamics of active selfish centromeres in nature (monkeyflowers). Then, I speculate on the mechanistic basis of drive in monkeyflowers, discuss how centromere strength influences chromosomal segregation in plants, and describe new insights into the evolution of plant centromeres.
Collapse
Affiliation(s)
- Findley Finseth
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA.
| |
Collapse
|
31
|
Ma H, Ding W, Chen Y, Zhou J, Chen W, Lan C, Mao H, Li Q, Yan W, Su H. Centromere Plasticity With Evolutionary Conservation and Divergence Uncovered by Wheat 10+ Genomes. Mol Biol Evol 2023; 40:msad176. [PMID: 37541261 PMCID: PMC10422864 DOI: 10.1093/molbev/msad176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Centromeres (CEN) are the chromosomal regions that play a crucial role in maintaining genomic stability. The underlying highly repetitive DNA sequences can evolve quickly in most eukaryotes, and promote karyotype evolution. Despite their variability, it is not fully understood how these widely variable sequences ensure the homeostasis of centromere function. In this study, we investigated the genetics and epigenetics of CEN in a population of wheat lines from global breeding programs. We captured a high degree of sequences, positioning, and epigenetic variations in the large and complex wheat CEN. We found that most CENH3-associated repeats are Cereba element of retrotransposons and exhibit phylogenetic homogenization across different wheat lines, but the less-associated repeat sequences diverge on their own way in each wheat line, implying specific mechanisms for selecting certain repeat types as functional core CEN. Furthermore, we observed that CENH3 nucleosome structures display looser wrapping of DNA termini on complex centromeric repeats, including the repositioned CEN. We also found that strict CENH3 nucleosome positioning and intrinsic DNA features play a role in determining centromere identity among different lines. Specific non-B form DNAs were substantially associated with CENH3 nucleosomes for the repositioned centromeres. These findings suggest that multiple mechanisms were involved in the adaptation of CENH3 nucleosomes that can stabilize CEN. Ultimately, we proposed a remarkable epigenetic plasticity of centromere chromatin within the diverse genomic context, and the high robustness is crucial for maintaining centromere function and genome stability in wheat 10+ lines as a result of past breeding selections.
Collapse
Affiliation(s)
- Huan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wentao Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Yiqian Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
32
|
Silva DM, Akera T. Meiotic drive of noncentromeric loci in mammalian meiosis II eggs. Curr Opin Genet Dev 2023; 81:102082. [PMID: 37406428 PMCID: PMC10527070 DOI: 10.1016/j.gde.2023.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
The germline produces haploid gametes through a specialized cell division called meiosis. In general, homologous chromosomes from each parent segregate randomly to the daughter cells during meiosis, providing parental alleles with an equal chance of transmission. Meiotic drivers are selfish elements who cheat this process to increase their transmission rate. In female meiosis, selfish centromeres and noncentromeric drivers cheat by preferentially segregating to the egg cell. Selfish centromeres cheat in meiosis I (MI), while noncentromeric drivers can cheat in both meiosis I and meiosis II (MII). Here, we highlight recent advances on our understanding of the molecular mechanisms underlying these genetic cheating strategies, especially focusing on mammalian systems, and discuss new models of how noncentromeric selfish drivers can cheat in MII eggs.
Collapse
Affiliation(s)
- Duilio Mza Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Packiaraj J, Thakur J. DNA satellite and chromatin organization at house mouse centromeres and pericentromeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549612. [PMID: 37503200 PMCID: PMC10370071 DOI: 10.1101/2023.07.18.549612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Centromeres are essential for faithful chromosome segregation during mitosis and meiosis. However, the organization of satellite DNA and chromatin at mouse centromeres and pericentromeres is poorly understood due to the challenges of sequencing and assembling repetitive genomic regions. Using recently available PacBio long-read sequencing data from the C57BL/6 strain and chromatin profiling, we found that contrary to the previous reports of their highly homogeneous nature, centromeric and pericentromeric satellites display varied sequences and organization. We find that both centromeric minor satellites and pericentromeric major satellites exhibited sequence variations within and between arrays. While most arrays are continuous, a significant fraction is interspersed with non-satellite sequences, including transposable elements. Additionally, we investigated CENP-A and H3K9me3 chromatin organization at centromeres and pericentromeres using Chromatin immunoprecipitation sequencing (ChIP-seq). We found that the occupancy of CENP-A and H3K9me3 chromatin at centromeric and pericentric regions, respectively, is associated with increased sequence abundance and homogeneity at these regions. Furthermore, the transposable elements at centromeric regions are not part of functional centromeres as they lack CENP-A enrichment. Finally, we found that while H3K9me3 nucleosomes display a well-phased organization on major satellite arrays, CENP-A nucleosomes on minor satellite arrays lack phased organization. Interestingly, the homogeneous class of major satellites phase CENP-A and H3K27me3 nucleosomes as well, indicating that the nucleosome phasing is an inherent property of homogeneous major satellites. Overall, our findings reveal that house mouse centromeres and pericentromeres, which were previously thought to be highly homogenous, display significant diversity in satellite sequence, organization, and chromatin structure.
Collapse
Affiliation(s)
- Jenika Packiaraj
- Department of Biology, Emory University, 1510 Clifton Rd, Atlanta, GA 30322
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd, Atlanta, GA 30322
| |
Collapse
|
34
|
Wolpe JB, Martins AL, Guertin MJ. Correction of transposase sequence bias in ATAC-seq data with rule ensemble modeling. NAR Genom Bioinform 2023; 5:lqad054. [PMID: 37274120 PMCID: PMC10236359 DOI: 10.1093/nargab/lqad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/02/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Chromatin accessibility assays have revolutionized the field of transcription regulation by providing single-nucleotide resolution measurements of regulatory features such as promoters and transcription factor binding sites. ATAC-seq directly measures how well the Tn5 transposase accesses chromatinized DNA. Tn5 has a complex sequence bias that is not effectively scaled with traditional bias-correction methods. We model this complex bias using a rule ensemble machine learning approach that integrates information from many input k-mers proximal to the ATAC sequence reads. We effectively characterize and correct single-nucleotide sequence biases and regional sequence biases of the Tn5 enzyme. Correction of enzymatic sequence bias is an important step in interpreting chromatin accessibility assays that aim to infer transcription factor binding and regulatory activity of elements in the genome.
Collapse
Affiliation(s)
- Jacob B Wolpe
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - André L Martins
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
35
|
Logsdon GA, Rozanski AN, Ryabov F, Potapova T, Shepelev VA, Mao Y, Rautiainen M, Koren S, Nurk S, Porubsky D, Lucas JK, Hoekzema K, Munson KM, Gerton JL, Phillippy AM, Alexandrov IA, Eichler EE. The variation and evolution of complete human centromeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542849. [PMID: 37398417 PMCID: PMC10312506 DOI: 10.1101/2023.05.30.542849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We completely sequenced and assembled all centromeres from a second human genome and used two reference sets to benchmark genetic, epigenetic, and evolutionary variation within centromeres from a diversity panel of humans and apes. We find that centromere single-nucleotide variation can increase by up to 4.1-fold relative to other genomic regions, with the caveat that up to 45.8% of centromeric sequence, on average, cannot be reliably aligned with current methods due to the emergence of new α-satellite higher-order repeat (HOR) structures and two to threefold differences in the length of the centromeres. The extent to which this occurs differs depending on the chromosome and haplotype. Comparing the two sets of complete human centromeres, we find that eight harbor distinctly different α-satellite HOR array structures and four contain novel α-satellite HOR variants in high abundance. DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by at least 500 kbp-a property not readily associated with novel α-satellite HORs. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan, and macaque genomes. Comparative analyses reveal nearly complete turnover of α-satellite HORs, but with idiosyncratic changes in structure characteristic to each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the p- and q-arms of human chromosomes and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.
Collapse
Affiliation(s)
- Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Allison N. Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Fedor Ryabov
- Masters Program in National Research University Higher School of Economics, Moscow, Russia
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Julian K. Lucas
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivan A. Alexandrov
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Gambogi CW, Pandey N, Dawicki-McKenna JM, Arora UP, Liskovykh MA, Ma J, Lamelza P, Larionov V, Lampson MA, Logsdon GA, Dumont BL, Black BE. Centromere Innovations Within a Mouse Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540353. [PMID: 37333154 PMCID: PMC10274901 DOI: 10.1101/2023.05.11.540353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Mammalian centromeres direct faithful genetic inheritance and are typically characterized by regions of highly repetitive and rapidly evolving DNA. We focused on a mouse species, Mus pahari, that we found has evolved to house centromere-specifying CENP-A nucleosomes at the nexus of a satellite repeat that we identified and term π-satellite (π-sat), a small number of recruitment sites for CENP-B, and short stretches of perfect telomere repeats. One M. pahari chromosome, however, houses a radically divergent centromere harboring ~6 Mbp of a homogenized π-sat-related repeat, π-satB, that contains >20,000 functional CENP-B boxes. There, CENP-B abundance drives accumulation of microtubule-binding components of the kinetochore, as well as a microtubule-destabilizing kinesin of the inner centromere. The balance of pro- and anti-microtubule-binding by the new centromere permits it to segregate during cell division with high fidelity alongside the older ones whose sequence creates a markedly different molecular composition.
Collapse
Affiliation(s)
- Craig W. Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
| | - Nootan Pandey
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Jennine M. Dawicki-McKenna
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Uma P. Arora
- The Jackson Laboratory, Bar Harbor, ME 04609
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Mikhail A. Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892
| | - Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Piero Lamelza
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892
| | - Michael A. Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Beth L. Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
37
|
Abstract
Super-resolution fluorescence microscopy allows the investigation of cellular structures at nanoscale resolution using light. Current developments in super-resolution microscopy have focused on reliable quantification of the underlying biological data. In this review, we first describe the basic principles of super-resolution microscopy techniques such as stimulated emission depletion (STED) microscopy and single-molecule localization microscopy (SMLM), and then give a broad overview of methodological developments to quantify super-resolution data, particularly those geared toward SMLM data. We cover commonly used techniques such as spatial point pattern analysis, colocalization, and protein copy number quantification but also describe more advanced techniques such as structural modeling, single-particle tracking, and biosensing. Finally, we provide an outlook on exciting new research directions to which quantitative super-resolution microscopy might be applied.
Collapse
Affiliation(s)
- Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
| | - P L Colosi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Akera T. Tubulin post-translational modifications in meiosis. Semin Cell Dev Biol 2023; 137:38-45. [PMID: 34836784 PMCID: PMC9124733 DOI: 10.1016/j.semcdb.2021.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022]
Abstract
Haploid gametes are produced from diploid parents through meiosis, a process inherent to all sexually reproducing eukaryotes. Faithful chromosome segregation in meiosis is essential for reproductive success, although it is less clear how the meiotic spindle achieves this compared to the mitotic spindle. It is becoming increasingly clear that tubulin post-translational modifications (PTMs) play critical roles in regulating microtubule functions in many biological processes, and meiosis is no exception. Here, I review recent advances in the understanding of tubulin PTMs in meiotic spindles, especially focusing on their roles in spindle integrity, oocyte aging, and non-Mendelian transmission.
Collapse
Affiliation(s)
- Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda 20892, MD, USA.
| |
Collapse
|
39
|
Bypassing Mendel's First Law: Transmission Ratio Distortion in Mammals. Int J Mol Sci 2023; 24:ijms24021600. [PMID: 36675116 PMCID: PMC9863905 DOI: 10.3390/ijms24021600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mendel's law of segregation states that the two alleles at a diploid locus should be transmitted equally to the progeny. A genetic segregation distortion, also referred to as transmission ratio distortion (TRD), is a statistically significant deviation from this rule. TRD has been observed in several mammal species and may be due to different biological mechanisms occurring at diverse time points ranging from gamete formation to lethality at post-natal stages. In this review, we describe examples of TRD and their possible mechanisms in mammals based on current knowledge. We first focus on the differences between TRD in male and female gametogenesis in the house mouse, in which some of the most well studied TRD systems have been characterized. We then describe known TRD in other mammals, with a special focus on the farmed species and in the peculiar common shrew species. Finally, we discuss TRD in human diseases. Thus far, to our knowledge, this is the first time that such description is proposed. This review will help better comprehend the processes involved in TRD. A better understanding of these molecular mechanisms will imply a better comprehension of their impact on fertility and on genome evolution. In turn, this should allow for better genetic counseling and lead to better care for human families.
Collapse
|
40
|
Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Res 2022; 30:309-333. [PMID: 36208359 DOI: 10.1007/s10577-022-09707-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Homomorphic sex chromosomes and their turnover are common in teleosts. We investigated the evolution of nascent sex chromosomes in several populations of two sister species of African annual killifishes, Nothobranchius furzeri and N. kadleci, focusing on their under-studied repetitive landscape. We combined bioinformatic analyses of the repeatome with molecular cytogenetic techniques, including comparative genomic hybridization, fluorescence in situ hybridization with satellite sequences, ribosomal RNA genes (rDNA) and bacterial artificial chromosomes (BACs), and immunostaining of SYCP3 and MLH1 proteins to mark lateral elements of synaptonemal complexes and recombination sites, respectively. Both species share the same heteromorphic XY sex chromosome system, which thus evolved prior to their divergence. This was corroborated by sequence analysis of a putative master sex determining (MSD) gene gdf6Y in both species. Based on their divergence, differentiation of the XY sex chromosome pair started approximately 2 million years ago. In all populations, the gdf6Y gene mapped within a region rich in satellite DNA on the Y chromosome long arms. Despite their heteromorphism, X and Y chromosomes mostly pair regularly in meiosis, implying synaptic adjustment. In N. kadleci, Y-linked paracentric inversions like those previously reported in N. furzeri were detected. An inversion involving the MSD gene may suppress occasional recombination in the region, which we otherwise evidenced in the N. furzeri population MZCS-121 of the Limpopo clade lacking this inversion. Y chromosome centromeric repeats were reduced compared with the X chromosome and autosomes, which points to a role of relaxed meiotic drive in shaping the Y chromosome repeat landscape. We speculate that the recombination rate between sex chromosomes was reduced due to heterochiasmy. The observed differences between the repeat accumulations on the X and Y chromosomes probably result from high repeat turnover and may not relate closely to the divergence inferred from earlier SNP analyses.
Collapse
|
41
|
Talbert P, Henikoff S. Centromere drive: chromatin conflict in meiosis. Curr Opin Genet Dev 2022; 77:102005. [PMID: 36372007 DOI: 10.1016/j.gde.2022.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Centromeres are essential loci in eukaryotes that are necessary for the faithful segregation of chromosomes in mitosis and meiosis. Centromeres organize the kinetochore, the protein machine that attaches sister chromatids or homologous chromosomes to spindle microtubules and regulates their disjunction. Centromeres have both genetic and epigenetic determinants, which can come into conflict in asymmetric female meiosis in seed plants and animals. The centromere drive model was proposed to describe this conflict and explain how it leads to the rapid evolution of both centromeres and kinetochores. Recent studies confirm key aspects of the centromere drive model, clarify its mechanisms, and implicate rapid centromere/kinetochore evolution in hybrid inviability between species.
Collapse
Affiliation(s)
- Paul Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| |
Collapse
|
42
|
Malik HS. Driving lessons: a brief (personal) history of centromere drive. Genetics 2022; 222:iyac155. [PMID: 39255401 PMCID: PMC9713404 DOI: 10.1093/genetics/iyac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Affiliation(s)
- Harmit S Malik
- Division of Basic Sciences & Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
43
|
Urban JA, Ranjan R, Chen X. Asymmetric Histone Inheritance: Establishment, Recognition, and Execution. Annu Rev Genet 2022; 56:113-143. [PMID: 35905975 PMCID: PMC10054593 DOI: 10.1146/annurev-genet-072920-125226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of biased histone inheritance in asymmetrically dividing Drosophila melanogaster male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.
Collapse
Affiliation(s)
- Jennifer A Urban
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA;
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| |
Collapse
|
44
|
Ayarza E, Cavada G, Arévalo T, Molina A, Berríos S. Quantitative analysis of Robertsonian chromosomes inherited by descendants from multiple Rb heterozygotes of Mus m. Domesticus. Front Cell Dev Biol 2022; 10:1050556. [PMID: 36506103 PMCID: PMC9732535 DOI: 10.3389/fcell.2022.1050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Robertsonian translocation is the most common chromosomal rearrangement in mammals, and represents the type of chromosomal change that most effectively contributes to speciation in natural populations. Rb translocations involve double-strand DNA breaks at the centromere level in two telocentric chromosomes, followed by repair ligation of the respective long arms, creating a metacentric Rb chromosome. Many different chromosomal races have been described in Mus musculus domesticus that show reduced chromosome numbers due to the presence of Rb metacentric chromosomes. The crossroads between ancestral telocentrics and the new metacentric chromosomes should be resolved in the meiotic cells of the heterozygote individuals, which form trivalents. The preferential segregation of metacentric chromosomes to the egg during female meiosis I has been proposed to favor their fixation and eventual conversion of a telocentric karyotype to a metacentric karyotype. This biased segregation, a form of meiotic drive, explains the karyotype changes in mammalian species that have accumulated Rb fusions. We studied and compared the number of Rb chromosomes inherited by the offspring of multiple Rb heterozygous of M. domesticus in reciprocal crosses. We did not find that the Rb chromosomes were inherited preferentially with respect to the telocentric chromosomes; therefore, we found no evidence for the meiotic drive, nor was there a random distribution of Rb chromosomes inherited by the descendants.
Collapse
Affiliation(s)
- Eliana Ayarza
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gabriel Cavada
- Instituto de Salud Poblacional, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tamara Arévalo
- Programa Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alam Molina
- Programa Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Soledad Berríos
- Programa Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile,*Correspondence: Soledad Berríos,
| |
Collapse
|
45
|
Zhou J, Liu Y, Guo X, Birchler JA, Han F, Su H. Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2051-2063. [PMID: 35722725 PMCID: PMC9616519 DOI: 10.1111/pbi.13875] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Centromeres are the genomic regions that organize and regulate chromosome behaviours during cell cycle, and their variations are associated with genome instability, karyotype evolution and speciation in eukaryotes. The highly repetitive and epigenetic nature of centromeres were documented during the past half century. With the aid of rapid expansion in genomic biotechnology tools, the complete sequence and structural organization of several plant and human centromeres were revealed recently. Here, we systematically summarize the current knowledge of centromere biology with regard to the DNA compositions and the histone H3 variant (CENH3)-dependent centromere establishment and identity. We discuss the roles of centromere to ensure cell division and to maintain the three-dimensional (3D) genomic architecture in different species. We further highlight the potential applications of manipulating centromeres to generate haploids or to induce polyploids offspring in plant for breeding programs, and of targeting centromeres with CRISPR/Cas for chromosome engineering and speciation. Finally, we also assess the challenges and strategies for de novo design and synthesis of centromeres in plant artificial chromosomes. The biotechnology applications of plant centromeres will be of great potential for the genetic improvement of crops and precise synthetic breeding in the future.
Collapse
Affiliation(s)
- Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xianrui Guo
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life SciencesLinyi UniversityLinyiChina
| | - James A. Birchler
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
46
|
Caro L, Raman P, Steiner FA, Ailion M, Malik HS. Recurrent but Short-Lived Duplications of Centromeric Proteins in Holocentric Caenorhabditis Species. Mol Biol Evol 2022; 39:6731087. [PMID: 36173809 PMCID: PMC9577544 DOI: 10.1093/molbev/msac206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Centromeric histones (CenH3s) are essential for chromosome inheritance during cell division in most eukaryotes. CenH3 genes have rapidly evolved and undergone repeated gene duplications and diversification in many plant and animal species. In Caenorhabditis species, two independent duplications of CenH3 (named hcp-3 for HoloCentric chromosome-binding Protein 3) were previously identified in C. elegans and C. remanei. Using phylogenomic analyses in 32 Caenorhabditis species, we find strict retention of the ancestral hcp-3 gene and 10 independent duplications. Most hcp-3L (hcp-3-like) paralogs are only found in 1-2 species, are expressed in both males and females/hermaphrodites, and encode histone fold domains with 69-100% identity to ancestral hcp-3. We identified novel N-terminal protein motifs, including putative kinetochore protein-interacting motifs and a potential separase cleavage site, which are well conserved across Caenorhabditis HCP-3 proteins. Other N-terminal motifs vary in their retention across paralogs or species, revealing potential subfunctionalization or functional loss following duplication. An N-terminal extension in the hcp-3L gene of C. afra revealed an unprecedented protein fusion, where hcp-3L fused to duplicated segments from hcp-4 (nematode CENP-C). By extending our analyses beyond CenH3, we found gene duplications of six inner and outer kinetochore genes in Caenorhabditis, which appear to have been retained independent of hcp-3 duplications. Our findings suggest that centromeric protein duplications occur frequently in Caenorhabditis nematodes, are selectively retained for short evolutionary periods, then degenerate or are lost entirely. We hypothesize that unique challenges associated with holocentricity in Caenorhabditis may lead to this rapid "revolving door" of kinetochore protein paralogs.
Collapse
Affiliation(s)
- Lews Caro
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Pravrutha Raman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Florian A Steiner
- Department of Molecular Biology and Cellular Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Michael Ailion
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
47
|
Arora UP, Dumont BL. Meiotic drive in house mice: mechanisms, consequences, and insights for human biology. Chromosome Res 2022; 30:165-186. [PMID: 35829972 PMCID: PMC9509409 DOI: 10.1007/s10577-022-09697-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Meiotic drive occurs when one allele at a heterozygous site cheats its way into a disproportionate share of functional gametes, violating Mendel's law of equal segregation. This genetic conflict typically imposes a fitness cost to individuals, often by disrupting the process of gametogenesis. The evolutionary impact of meiotic drive is substantial, and the phenomenon has been associated with infertility and reproductive isolation in a wide range of organisms. However, cases of meiotic drive in humans remain elusive, a finding that likely reflects the inherent challenges of detecting drive in our species rather than unique features of human genome biology. Here, we make the case that house mice (Mus musculus) present a powerful model system to investigate the mechanisms and consequences of meiotic drive and facilitate translational inferences about the scope and potential mechanisms of drive in humans. We first detail how different house mouse resources have been harnessed to identify cases of meiotic drive and the underlying mechanisms utilized to override Mendel's rules of inheritance. We then summarize the current state of knowledge of meiotic drive in the mouse genome. We profile known mechanisms leading to transmission bias at several established drive elements. We discuss how a detailed understanding of meiotic drive in mice can steer the search for drive elements in our own species. Lastly, we conclude with a prospective look into how new technologies and molecular tools can help resolve lingering mysteries about the prevalence and mechanisms of selfish DNA transmission in mammals.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
48
|
Kumon T, Lampson MA. Evolution of eukaryotic centromeres by drive and suppression of selfish genetic elements. Semin Cell Dev Biol 2022; 128:51-60. [PMID: 35346579 PMCID: PMC9232976 DOI: 10.1016/j.semcdb.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Despite the universal requirement for faithful chromosome segregation, eukaryotic centromeres are rapidly evolving. It is hypothesized that rapid centromere evolution represents an evolutionary arms race between selfish genetic elements that drive, or propagate at the expense of organismal fitness, and mechanisms that suppress fitness costs. Selfish centromere DNA achieves preferential inheritance in female meiosis by recruiting more effector proteins that alter spindle microtubule interaction dynamics. Parallel pathways for effector recruitment are adaptively evolved to suppress functional differences between centromeres. Opportunities to drive are not limited to female meiosis, and selfish transposons, plasmids and B chromosomes also benefit by maximizing their inheritance. Rapid evolution of selfish genetic elements can diversify suppressor mechanisms in different species that may cause hybrid incompatibility.
Collapse
Affiliation(s)
- Tomohiro Kumon
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Finseth F, Brown K, Demaree A, Fishman L. Supergene potential of a selfish centromere. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210208. [PMID: 35694746 PMCID: PMC9189507 DOI: 10.1098/rstb.2021.0208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selfishly evolving centromeres bias their transmission by exploiting the asymmetry of female meiosis and preferentially segregating to the egg. Such female meiotic drive systems have the potential to be supergenes, with multiple linked loci contributing to drive costs or enhancement. Here, we explore the supergene potential of a selfish centromere (D) in Mimulus guttatus, which was discovered in the Iron Mountain (IM) Oregon population. In the nearby Cone Peak population, D is still a large, non-recombining and costly haplotype that recently swept, but shorter haplotypes and mutational variation suggest a distinct population history. We detected D in five additional populations spanning more than 200 km; together, these findings suggest that selfish centromere dynamics are widespread in M. guttatus. Transcriptome comparisons reveal elevated differences in expression between driving and non-driving haplotypes within, but not outside, the drive region, suggesting large-scale cis effects of D's spread on gene expression. We use the expression data to refine linked candidates that may interact with drive, including Nuclear Autoantigenic Sperm Protein (NASPSIM3), which chaperones the centromere-defining histone CenH3 known to modify Mimulus drive. Together, our results show that selfishly evolving centromeres may exhibit supergene behaviour and lay the foundation for future genetic dissection of drive and its costs. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Findley Finseth
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA
| | - Keely Brown
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Andrew Demaree
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
50
|
Cappelletti E, Piras FM, Sola L, Santagostino M, Abdelgadir WA, Raimondi E, Lescai F, Nergadze SG, Giulotto E. Robertsonian fusion and centromere repositioning contributed to the formation of satellite-free centromeres during the evolution of zebras. Mol Biol Evol 2022; 39:6650076. [PMID: 35881460 PMCID: PMC9356731 DOI: 10.1093/molbev/msac162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Centromeres are epigenetically specified by the histone H3 variant CENP-A and typically associated to highly repetitive satellite DNA. We previously discovered natural satellite-free neocentromeres in Equus caballus and E. asinus. Here, through ChIP-seq with an anti-CENP-A antibody, we found an extraordinarily high number of centromeres lacking satellite DNA in the zebras E. burchelli (15 of 22) and E. grevyi (13 of 23), demonstrating that the absence of satellite DNA at the majority of centromeres is compatible with genome stability and species survival and challenging the role of satellite DNA in centromere function. Nine satellite-free centromeres are shared between the two species in agreement with their recent separation. We assembled all centromeric regions and improved the reference genome of E. burchelli. Sequence analysis of the CENP-A binding domains revealed that they are LINE-1 and AT-rich with four of them showing DNA amplification. In the two zebras, satellite-free centromeres emerged from centromere repositioning or following Robertsonian fusion. In five chromosomes, the centromeric function arose near the fusion points, which are located within regions marked by traces of ancestral pericentromeric sequences. Therefore, besides centromere repositioning, Robertsonian fusions are an important source of satellite-free centromeres during evolution. Finally, in one case, a satellite-free centromere was seeded on an inversion breakpoint. At eleven chromosomes, whose primary constrictions seemed to be associated to satellite repeats by cytogenetic analysis, satellite-free neocentromeres were instead located near the ancestral inactivated satellite-based centromeres, therefore, the centromeric function has shifted away from a satellite repeat containing locus to a satellite-free new position.
Collapse
Affiliation(s)
- Eleonora Cappelletti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesca M Piras
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Sola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marco Santagostino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Wasma A Abdelgadir
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesco Lescai
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Solomon G Nergadze
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|