1
|
Dehaene S, Sablé-Meyer M, Ciccione L. Origins of numbers: a shared language-of-thought for arithmetic and geometry? Trends Cogn Sci 2025:S1364-6613(25)00059-2. [PMID: 40234140 DOI: 10.1016/j.tics.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 02/07/2025] [Accepted: 03/06/2025] [Indexed: 04/17/2025]
Abstract
Concepts of exact number are often thought to originate from counting and the successor function, or from a refinement of the approximate number system (ANS). We argue here for a third origin: a shared language-of-thought (LoT) for geometry and arithmetic that involves primitives of repetition, concatenation, and recursive embedding. Applied to sets, those primitives engender concepts of exact integers through recursive applications of additions and multiplications. Links between geometry and arithmetic also explain the emergence of higher-level notions (squares, primes, etc.). Under our hypothesis, understanding a number means having one or several mental expressions for it, and their minimal description length (MDL) determines how easily they can be mentally manipulated. Several historical, developmental, linguistic, and brain imaging phenomena provide preliminary support for our proposal.
Collapse
Affiliation(s)
- Stanislas Dehaene
- Cognitive Neuroimaging Unit, Commissariat à l'Energie Atomique (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Mathias Sablé-Meyer
- Cognitive Neuroimaging Unit, Commissariat à l'Energie Atomique (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Lorenzo Ciccione
- Cognitive Neuroimaging Unit, Commissariat à l'Energie Atomique (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
2
|
Hahn LA, Fongaro E, Rose J. Neuronal correlates of endogenous selective attention in the endbrain of crows. Commun Biol 2025; 8:470. [PMID: 40119198 PMCID: PMC11928645 DOI: 10.1038/s42003-025-07914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
The ability to direct attention and select important information is a cornerstone of adaptive behavior. Directed attention supports adaptive cognitive operations underlying flexible behavior, for example in extinction learning, and was demonstrated behaviorally in both mammals and in birds. The neural foundation of such endogenous attention, however, has been thoroughly investigated only in mammals and is still poorly understood in birds. And despite the similarities at the behavioral level, cognition of birds and mammals evolved in parallel for over 300 million years, resulting in different architectures of the endbrain, most notably the absence of cortical layering in birds. We recorded neuronal signals from the nidopallium caudolaterale, the avian equivalent to mammalian pre-frontal cortex, while crows employed endogenous attention to perform change detection in a working memory task. The neuronal activity profile clearly reflected attentional enhancement of information maintained by working memory. Our results show that top-down endogenous attention is possible without the layered configuration of the mammalian cortex.
Collapse
Affiliation(s)
- Lukas Alexander Hahn
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Erica Fongaro
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Lingstädt F, Apostel A, Rose J. "Distribution of dominant wavelengths predicts jackdaw ( Corvus monedula) color discrimination performance". Front Physiol 2025; 16:1543469. [PMID: 40052146 PMCID: PMC11882508 DOI: 10.3389/fphys.2025.1543469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025] Open
Abstract
Color vision is an important perceptual ability in most species and a crucial capacity underlying any cognitive task working with color stimuli. Birds are known for their outstanding vision and tetrachromacy. Two jackdaws were trained to indicate whether they perceive two colors as same or different. The dominant wavelengths of the experimental colors were assessed to relate the birds' performance to the physical qualities of the stimuli. The results indicate that the differences or similarities in dominant wavelengths of the colors had a strong influence on the behavioral data. Colors related to a reduced discriminatory performance were colors of particularly close wavelengths, whereas differences in saturation or brightness were less relevant. Overall, jackdaws mostly relied on hue to discriminate color pairs, and their behavior strongly reflected the physical composition of the color set. These findings show that when working with color stimuli, not only the perceptual abilities of the particular species, but also the technical aspects concerning the color presentation have to be considered carefully.
Collapse
Affiliation(s)
- Farina Lingstädt
- Neural Basis of Learning, Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | | | - Jonas Rose
- Neural Basis of Learning, Department of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Lorenzi E, Kobylkov D, Vallortigara G. Is there an innate sense of number in the brain? Cereb Cortex 2025; 35:bhaf004. [PMID: 39932126 DOI: 10.1093/cercor/bhaf004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 05/08/2025] Open
Abstract
The approximate number system or «sense of number» is a crucial, presymbolic mechanism enabling animals to estimate quantities, which is essential for survival in various contexts (eg estimating numerosities of social companions, prey, predators, and so on). Behavioral studies indicate that a sense of number is widespread across vertebrates and invertebrates. Specific brain regions such as the intraparietal sulcus and prefrontal cortex in primates, or equivalent areas in birds and fish, are involved in numerical estimation, and their activity is modulated by the ratio of quantities. Data gathered across species strongly suggest similar evolutionary pressures for number estimation pointing to a likely common origin, at least across vertebrates. On the other hand, few studies have investigated the origins of the sense of number. Recent findings, however, have shown that numerosity-selective neurons exist in newborn animals, such as domestic chicks and zebrafish, supporting the hypothesis of an innateness of the approximate number system. Control-rearing experiments on visually naïve animals further support the notion that the sense of number is innate and does not need any specific instructive experience in order to be triggered.
Collapse
Affiliation(s)
- Elena Lorenzi
- Centre for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | - Dmitry Kobylkov
- Centre for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | - Giorgio Vallortigara
- Centre for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, TN 30868, Italy
| |
Collapse
|
5
|
Caponi C, Castaldi E, Grasso PA, Arrighi R. Feature-selective adaptation of numerosity perception. Proc Biol Sci 2025; 292:20241841. [PMID: 39876730 PMCID: PMC11775598 DOI: 10.1098/rspb.2024.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/03/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Perceptual adaptation has been widely used to infer the existence of numerosity detectors, enabling animals to quickly estimate the number of objects in a scene. Here, we investigated, in humans, whether numerosity adaptation is influenced by stimulus feature changes as previous research suggested that adaptation is reduced when the colour of adapting and test stimuli did not match. We tested whether such adaptation reduction is due to unspecific novelty effects or changes of stimuli identity. Numerosity adaptation was measured for stimuli matched or unmatched for low-level (colour, luminance, shape and motion) or high-level (letters' identity and face emotions) features. Robust numerosity adaptation occurred in all conditions, but it was reduced when adapting and test stimuli differed for colour, luminance and shape. However, no reduction was observed between moving and still stimuli, a readable change that did not affect the item's identity. Similarly, changes in letters' spatial rotations or face features did not affect adaptation magnitude. Overall, changes in stimulus identity defined by low-level features, rather than novelty in general, determined the strength of the adaptation effects, provided these changes were readily noticeable. These findings suggest that numerosity mechanisms operate on categorized items in addition to the total quantity of the set.
Collapse
Affiliation(s)
- Camilla Caponi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | | | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Alluri RK, Rose GJ, McDowell J, Mukhopadhyay A, Leary CJ, Graham JA, Vasquez-Opazo GA. How auditory neurons count temporal intervals and decode information. Proc Natl Acad Sci U S A 2024; 121:e2404157121. [PMID: 39159380 PMCID: PMC11363261 DOI: 10.1073/pnas.2404157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
The numerical sense of animals includes identifying the numerosity of a sequence of events that occur with specific intervals, e.g., notes in a call or bar of music. Across nervous systems, the temporal patterning of spikes can code these events, but how this information is decoded (counted) remains elusive. In the anuran auditory system, temporal information of this type is decoded in the midbrain, where "interval-counting" neurons spike only after at least a threshold number of sound pulses have occurred with specific timing. We show that this decoding process, i.e., interval counting, arises from integrating phasic, onset-type and offset inhibition with excitation that augments across successive intervals, possibly due to a progressive decrease in "shunting" effects of inhibition. Because these physiological properties are ubiquitous within and across central nervous systems, interval counting may be a general mechanism for decoding diverse information coded/encoded in temporal patterns of spikes, including "bursts," and estimating elapsed time.
Collapse
Affiliation(s)
- Rishi K. Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Gary J. Rose
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Jamie McDowell
- Department of Psychology, University of California, Los Angeles, CA90095
| | | | | | - Jalina A. Graham
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | | |
Collapse
|
8
|
Apostel A, Hahn LA, Rose J. Jackdaws form categorical prototypes based on experience with category exemplars. Brain Struct Funct 2024; 229:593-608. [PMID: 37261488 PMCID: PMC10978630 DOI: 10.1007/s00429-023-02651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Categorization represents one cognitive ability fundamental to animal behavior. Grouping of elements based on perceptual or semantic features helps to reduce processing resources and facilitates appropriate behavior. Corvids master complex categorization, yet the detailed categorization learning strategies are less well understood. We trained two jackdaws on a delayed match to category paradigm using a novel, artificial stimulus type, RUBubbles. Both birds learned to differentiate between two session-unique categories following two distinct learning protocols. Categories were either introduced via central category prototypes (low variability approach) or using a subset of diverse category exemplars from which diagnostic features had to be identified (high variability approach). In both versions, the stimulus similarity relative to a central category prototype explained categorization performance best. Jackdaws consistently used a central prototype to judge category membership, regardless of whether this prototype was used to introduce distinct categories or had to be inferred from multiple exemplars. Reliance on a category prototype occurred already after experiencing only a few trials with different category exemplars. High stimulus set variability prolonged initial learning but showed no consistent beneficial effect on later generalization performance. High numbers of stimuli, their perceptual similarity, and coherent category structure resulted in a prototype-based strategy, reflecting the most adaptive, efficient, and parsimonious way to represent RUBubble categories. Thus, our birds represent a valuable comparative animal model that permits further study of category representations throughout learning in different regions of a brain producing highly cognitive behavior.
Collapse
Affiliation(s)
- Aylin Apostel
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lukas Alexander Hahn
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany.
| |
Collapse
|
9
|
Caponi C, Castaldi E, Burr DC, Binda P. Adaptation to numerosity affects the pupillary light response. Sci Rep 2024; 14:6097. [PMID: 38480839 PMCID: PMC10938002 DOI: 10.1038/s41598-024-55646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
We recently showed that the gain of the pupillary light response depends on numerosity, with weaker responses to fewer items. Here we show that this effect holds when the stimuli are physically identical but are perceived as less numerous due to numerosity adaptation. Twenty-eight participants adapted to low (10 dots) or high (160 dots) numerosities and subsequently watched arrays of 10-40 dots, with variable or homogeneous dot size. Luminance was constant across all stimuli. Pupil size was measured with passive viewing, and the effects of adaptation were checked in a separate psychophysical session. We found that perceived numerosity was systematically lower, and pupillary light responses correspondingly smaller, following adaptation to high rather than low numerosities. This is consistent with numerosity being a primary visual feature, spontaneously encoded even when task irrelevant, and affecting automatic and unconscious behaviours like the pupillary light response.
Collapse
Affiliation(s)
- Camilla Caponi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
| | - David Charles Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Visibelli E, Vigna G, Nascimben C, Benavides-Varela S. Neurobiology of numerical learning. Neurosci Biobehav Rev 2024; 158:105545. [PMID: 38220032 DOI: 10.1016/j.neubiorev.2024.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Numerical abilities are complex cognitive skills essential for dealing with requirements of the modern world. Although the brain structures and functions underlying numerical cognition in different species have long been appreciated, genetic and molecular techniques have more recently expanded the knowledge about the mechanisms underlying numerical learning. In this review, we discuss the status of the research related to the neurobiological bases of numerical abilities. We consider how genetic factors have been associated with mathematical capacities and how these link to the current knowledge of brain regions underlying these capacities in human and non-human animals. We further discuss the extent to which significant variations in the levels of specific neurotransmitters may be used as potential markers of individual performance and learning difficulties and take into consideration the therapeutic potential of brain stimulation methods to modulate learning and improve interventional outcomes. The implications of this research for formulating a more comprehensive view of the neural basis of mathematical learning are discussed.
Collapse
Affiliation(s)
- Emma Visibelli
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giulia Vigna
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Chiara Nascimben
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
11
|
Nieder A. Convergent Circuit Computation for Categorization in the Brains of Primates and Songbirds. Cold Spring Harb Perspect Biol 2023; 15:a041526. [PMID: 38040453 PMCID: PMC10691494 DOI: 10.1101/cshperspect.a041526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Categorization is crucial for behavioral flexibility because it enables animals to group stimuli into meaningful classes that can easily be generalized to new circumstances. A most abstract quantitative category is set size, the number of elements in a set. This review explores how categorical number representations are realized by the operations of excitatory and inhibitory neurons in associative telencephalic microcircuits in primates and songbirds. Despite the independent evolution of the primate prefrontal cortex and the avian nidopallium caudolaterale, the neuronal computations of these associative pallial circuits show surprising correspondence. Comparing cellular functions in distantly related taxa can inform about the evolutionary principles of circuit computations for cognition in distinctly but convergently realized brain structures.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Kirschhock ME, Nieder A. Association neurons in the crow telencephalon link visual signs to numerical values. Proc Natl Acad Sci U S A 2023; 120:e2313923120. [PMID: 37903264 PMCID: PMC10636302 DOI: 10.1073/pnas.2313923120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023] Open
Abstract
Many animals can associate signs with numerical values and use these signs in a goal-directed way during task performance. However, the neuronal basis of this semantic association has only rarely been investigated, and so far only in primates. How mechanisms of number associations are implemented in the distinctly evolved brains of other animal taxa such as birds is currently unknown. Here, we explored this semantic number-sign mapping by recording single-neuron activity in the crows' nidopallium caudolaterale (NCL), a brain structure critically involved in avian numerical cognition. Crows were trained to associate visual shapes with varying numbers of items in a number production task. The responses of many NCL neurons during stimulus presentation reflected the numerical values associated with visual shapes in a behaviorally relevant way. Consistent with the crow's better behavioral performance with signs, neuronal representations of numerical values extracted from shapes were more selective compared to those from dot arrays. The existence of number association neurons in crows points to a phylogenetic preadaptation of the brains of cognitively advanced vertebrates to link visual shapes with numerical meaning.
Collapse
Affiliation(s)
- Maximilian E. Kirschhock
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen72076, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen72076, Germany
| |
Collapse
|
13
|
Kobylkov D, Zanon M, Perrino M, Vallortigara G. Neural coding of numerousness. Biosystems 2023; 232:104999. [PMID: 37574182 DOI: 10.1016/j.biosystems.2023.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Perception of numerousness, i.e. number of items in a set, is an important cognitive ability, which is present in several animal taxa. In spite of obvious differences in neuroanatomy, insects, fishes, reptiles, birds, and mammals all possess a "number sense". Furthermore, information regarding numbers can belong to different sensory modalities: animals can estimate a number of visual items, a number of tones, or a number of their own movements. Given both the heterogeneity of stimuli and of the brains processing these stimuli, it is hard to imagine that number cognition can be traced back to the same evolutionary conserved neural pathway. However, neurons that selectively respond to the number of stimuli have been described in higher-order integration brain centres both in primates and in birds, two evolutionary distant groups. Although most probably not of the same evolutionary origin, these number neurons share remarkable similarities in their response properties. Instead of homology, this similarity might result from computational advantages of the underlying coding mechanism. This means that one might expect numerousness information to undergo similar steps of neural processing even in evolutionary distant neural pathways. Following this logic, in this review we summarize our current knowledge of how numerousness is processed in the brain from sensory input to coding of abstract information in the higher-order integration centres. We also propose a list of key open questions that might promote future research on number cognition.
Collapse
Affiliation(s)
- Dmitry Kobylkov
- Centre for Mind/Brain Science, CIMeC, University of Trento, Rovereto, Italy
| | - Mirko Zanon
- Centre for Mind/Brain Science, CIMeC, University of Trento, Rovereto, Italy
| | - Matilde Perrino
- Centre for Mind/Brain Science, CIMeC, University of Trento, Rovereto, Italy
| | | |
Collapse
|
14
|
Wagener L, Nieder A. Categorical representation of abstract spatial magnitudes in the executive telencephalon of crows. Curr Biol 2023; 33:2151-2162.e5. [PMID: 37137309 DOI: 10.1016/j.cub.2023.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
The ability to group abstract continuous magnitudes into meaningful categories is cognitively demanding but key to intelligent behavior. To explore its neuronal mechanisms, we trained carrion crows to categorize lines of variable lengths into arbitrary "short" and "long" categories. Single-neuron activity in the nidopallium caudolaterale (NCL) of behaving crows reflected the learned length categories of visual stimuli. The length categories could be reliably decoded from neuronal population activity to predict the crows' conceptual decisions. NCL activity changed with learning when a crow was retrained with the same stimuli assigned to more categories with new boundaries ("short", "medium," and "long"). Categorical neuronal representations emerged dynamically so that sensory length information at the beginning of the trial was transformed into behaviorally relevant categorical representations shortly before the crows' decision making. Our data show malleable categorization capabilities for abstract spatial magnitudes mediated by the flexible networks of the crow NCL.
Collapse
Affiliation(s)
- Lysann Wagener
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Bengochea M, Hassan B. Numerosity as a visual property: Evidence from two highly evolutionary distant species. Front Physiol 2023; 14:1086213. [PMID: 36846325 PMCID: PMC9949967 DOI: 10.3389/fphys.2023.1086213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Most animals, from humans to invertebrates, possess an ability to estimate numbers. This evolutionary advantage facilitates animals' choice of environments with more food sources, more conspecifics to increase mating success, and/or reduced predation risk among others. However, how the brain processes numerical information remains largely unknown. There are currently two lines of research interested in how numerosity of visual objects is perceived and analyzed in the brain. The first argues that numerosity is an advanced cognitive ability processed in high-order brain areas, while the second proposes that "numbers" are attributes of the visual scene and thus numerosity is processed in the visual sensory system. Recent evidence points to a sensory involvement in estimating magnitudes. In this Perspective, we highlight this evidence in two highly evolutionary distant species: humans and flies. We also discuss the advantages of studying numerical processing in fruit flies in order to dissect the neural circuits involved in and required for numerical processing. Based on experimental manipulation and the fly connectome, we propose a plausible neural network for number sense in invertebrates.
Collapse
Affiliation(s)
- Mercedes Bengochea
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bassem Hassan
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
16
|
Pusch R, Clark W, Rose J, Güntürkün O. Visual categories and concepts in the avian brain. Anim Cogn 2023; 26:153-173. [PMID: 36352174 PMCID: PMC9877096 DOI: 10.1007/s10071-022-01711-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Birds are excellent model organisms to study perceptual categorization and concept formation. The renewed focus on avian neuroscience has sparked an explosion of new data in the field. At the same time, our understanding of sensory and particularly visual structures in the avian brain has shifted fundamentally. These recent discoveries have revealed how categorization is mediated in the avian brain and has generated a theoretical framework that goes beyond the realm of birds. We review the contribution of avian categorization research-at the methodical, behavioral, and neurobiological levels. To this end, we first introduce avian categorization from a behavioral perspective and the common elements model of categorization. Second, we describe the functional and structural organization of the avian visual system, followed by an overview of recent anatomical discoveries and the new perspective on the avian 'visual cortex'. Third, we focus on the neurocomputational basis of perceptual categorization in the bird's visual system. Fourth, an overview of the avian prefrontal cortex and the prefrontal contribution to perceptual categorization is provided. The fifth section outlines how asymmetries of the visual system contribute to categorization. Finally, we present a mechanistic view of the neural principles of avian visual categorization and its putative extension to concept learning.
Collapse
Affiliation(s)
- Roland Pusch
- Biopsychology, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - William Clark
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
17
|
Kirschhock ME, Nieder A. Number selective sensorimotor neurons in the crow translate perceived numerosity into number of actions. Nat Commun 2022; 13:6913. [PMID: 36376297 PMCID: PMC9663431 DOI: 10.1038/s41467-022-34457-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Translating a perceived number into a matching number of self-generated actions is a hallmark of numerical reasoning in humans and animals alike. To explore this sensorimotor transformation, we trained crows to judge numerical values in displays and to flexibly plan and perform a matching number of pecks. We report number selective sensorimotor neurons in the crow telencephalon that signaled the impending number of self-generated actions. Neuronal population activity during the sensorimotor transformation period predicted whether the crows mistakenly planned fewer or more pecks than instructed. During sensorimotor transformation, both a static neuronal code characterized by persistently number-selective neurons and a dynamic code originating from neurons carrying rapidly changing numerical information emerged. The findings indicate there are distinct functions of abstract neuronal codes supporting the sensorimotor number system.
Collapse
Affiliation(s)
- Maximilian E. Kirschhock
- grid.10392.390000 0001 2190 1447Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Andreas Nieder
- grid.10392.390000 0001 2190 1447Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Abstract
Numerosity, that is, the number of items in a set, is a significant aspect in the perception of the environment. Behavioral and in silico experiments suggest that number sense belongs to a core knowledge system and can be present already at birth. However, neurons sensitive to the number of visual items have been so far described only in the brain of adult animals. Therefore, it remained unknown to what extent their selectivity would depend on visual learning and experience. We found number neurons in the caudal nidopallium (a higher associative area functionally similar to the mammalian prefrontal cortex) of very young, numerically naïve domestic chicks. This result suggests that numerosity perception is possibly an inborn feature of the vertebrate brain. Numerical cognition is ubiquitous in the animal kingdom. Domestic chicks are a widely used developmental model for studying numerical cognition. Soon after hatching, chicks can perform sophisticated numerical tasks. Nevertheless, the neural basis of their numerical abilities has remained unknown. Here, we describe number neurons in the caudal nidopallium (functionally equivalent to the mammalian prefrontal cortex) of young domestic chicks. Number neurons that we found in young chicks showed remarkable similarities to those in the prefrontal cortex and caudal nidopallium of adult animals. Thus, our results suggest that numerosity perception based on number neurons might be an inborn feature of the vertebrate brain.
Collapse
|
19
|
Cell-type specific pallial circuits shape categorical tuning responses in the crow telencephalon. Commun Biol 2022; 5:269. [PMID: 35338240 PMCID: PMC8956685 DOI: 10.1038/s42003-022-03208-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/28/2022] [Indexed: 01/26/2023] Open
Abstract
The nidopallium caudolaterale (NCL), an integration centre in the telencephalon of birds, plays a crucial role in representing and maintaining abstract categories and concepts. However, the computational principles allowing pallial microcircuits consisting of excitatory and inhibitory neurons to shape the tuning to abstract categories remain elusive. Here we identified the major pallial cell types, putative excitatory projection cells and inhibitory interneurons, by characterizing the waveforms of action potentials recorded in crows performing a cognitively demanding numerical categorization task. Both cell types showed clear differences in their capacity to encode categorical information. Nearby and functionally coupled putative projection neurons generally exhibited similar tuning, whereas putative interneurons showed mainly opposite tuning. The results favour feedforward mechanisms for the shaping of categorical tuning in microcircuits of the NCL. Our findings help to decipher the workings of pallial microcircuits in birds during complex cognition and to compare them vis-a-vis neocortical processes in mammals. Neural recordings from the caudolateral nidopallium in crows during a numerosity task suggest there are two subsets of projection neurons and inhibitory interneurons involved in complex cognition.
Collapse
|
20
|
Zhou L, Yang A, Meng M, Zhou K. Emerged human-like facial expression representation in a deep convolutional neural network. SCIENCE ADVANCES 2022; 8:eabj4383. [PMID: 35319988 PMCID: PMC8942361 DOI: 10.1126/sciadv.abj4383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Recent studies found that the deep convolutional neural networks (DCNNs) trained to recognize facial identities spontaneously learned features that support facial expression recognition, and vice versa. Here, we showed that the self-emerged expression-selective units in a VGG-Face trained for facial identification were tuned to distinct basic expressions and, importantly, exhibited hallmarks of human expression recognition (i.e., facial expression confusion and categorical perception). We then investigated whether the emergence of expression-selective units is attributed to either face-specific experience or domain-general processing by conducting the same analysis on a VGG-16 trained for object classification and an untrained VGG-Face without any visual experience, both having the identical architecture with the pretrained VGG-Face. Although similar expression-selective units were found in both DCNNs, they did not exhibit reliable human-like characteristics of facial expression perception. Together, these findings revealed the necessity of domain-specific visual experience of face identity for the development of facial expression perception, highlighting the contribution of nurture to form human-like facial expression perception.
Collapse
Affiliation(s)
- Liqin Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Anmin Yang
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Ming Meng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Bisazza A, Santacà M. Zebrafish excel in number discrimination under an operant conditioning paradigm. Anim Cogn 2022; 25:917-933. [PMID: 35179665 PMCID: PMC9334370 DOI: 10.1007/s10071-022-01602-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/23/2022] [Indexed: 12/26/2022]
Abstract
Numerical discrimination is widespread in vertebrates, but this capacity varies enormously between the different species examined. The guppy (Poecilia reticulata), the only teleost examined following procedures that allow a comparison with the other vertebrates, outperforms amphibians, reptiles and many warm-blooded vertebrates, but it is unclear whether this is a feature shared with the other teleosts or represents a peculiarity of this species. We trained zebrafish (Danio rerio) to discriminate between numbers differing by one unit, varying task difficulty from 2 versus 3 to 5 versus 6 items. Non-numerical variables that covary with number, such as density or area, did not affect performance. Most fish reached learning criterion on all tasks up to 4 versus 5 discrimination with no sex difference in accuracy. Although no individual reached learning criterion in the 5 versus 6 task, performance was significant at the group level, suggesting that this may represent the discrimination threshold for zebrafish. Numerosity discrimination abilities of zebrafish compare to those of guppy, being higher than in some warm-blooded vertebrates, such as dogs, horses and domestic fowl, though lower than in parrots, corvids and primates. Learning rate was similar in a control group trained to discriminate between different-sized shapes, but zebrafish were slightly more accurate when discriminating areas than numbers and males were more accurate than females. At the end of the experiment, fish trained on numbers and controls trained on areas generalized to the reciprocal set of stimuli, indicating they had used a relational strategy to solve these tasks.
Collapse
Affiliation(s)
- Angelo Bisazza
- Department of General Psychology, University of Padova, Padua, Italy.,Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Maria Santacà
- Department of Biology, University of Padova, Viale Giuseppe Colombo 3-Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
22
|
Sainburg T, Gentner TQ. Toward a Computational Neuroethology of Vocal Communication: From Bioacoustics to Neurophysiology, Emerging Tools and Future Directions. Front Behav Neurosci 2021; 15:811737. [PMID: 34987365 PMCID: PMC8721140 DOI: 10.3389/fnbeh.2021.811737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
Recently developed methods in computational neuroethology have enabled increasingly detailed and comprehensive quantification of animal movements and behavioral kinematics. Vocal communication behavior is well poised for application of similar large-scale quantification methods in the service of physiological and ethological studies. This review describes emerging techniques that can be applied to acoustic and vocal communication signals with the goal of enabling study beyond a small number of model species. We review a range of modern computational methods for bioacoustics, signal processing, and brain-behavior mapping. Along with a discussion of recent advances and techniques, we include challenges and broader goals in establishing a framework for the computational neuroethology of vocal communication.
Collapse
Affiliation(s)
- Tim Sainburg
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
- Center for Academic Research & Training in Anthropogeny, University of California, San Diego, La Jolla, CA, United States
| | - Timothy Q. Gentner
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
23
|
Nasr K, Nieder A. Spontaneous representation of numerosity zero in a deep neural network for visual object recognition. iScience 2021; 24:103301. [PMID: 34765921 PMCID: PMC8571726 DOI: 10.1016/j.isci.2021.103301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Conceiving "nothing" as a numerical value zero is considered a sophisticated numerical capability that humans share with cognitively advanced animals. We demonstrate that representation of zero spontaneously emerges in a deep learning neural network without any number training. As a signature of numerical quantity representation, and similar to real neurons from animals, numerosity zero network units show maximum activity to empty sets and a gradual decrease in activity with increasing countable numerosities. This indicates that the network spontaneously ordered numerosity zero as the smallest numerical value along the number line. Removal of empty-set network units caused specific deficits in the network's judgment of numerosity zero, thus reflecting these units' functional relevance. These findings suggest that processing visual information is sufficient for a visual number sense that includes zero to emerge and explains why cognitively advanced animals with whom we share a nonverbal number system exhibit rudiments of numerosity zero.
Collapse
Affiliation(s)
- Khaled Nasr
- Animal Physiology Unit, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Messina A, Potrich D, Schiona I, Sovrano VA, Vallortigara G. The Sense of Number in Fish, with Particular Reference to Its Neurobiological Bases. Animals (Basel) 2021; 11:ani11113072. [PMID: 34827804 PMCID: PMC8614421 DOI: 10.3390/ani11113072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary The ability to deal with quantity, both discrete (numerosities) and continuous (spatial or temporal extent) developed from an evolutionarily conserved system for approximating numerical magnitude. Non-symbolic number cognition based on an approximate sense of magnitude has been documented in a variety of vertebrate species, including fish. Fish, in particular zebrafish, are widely used as models for the investigation of the genetics and molecular mechanisms of behavior, and thus may be instrumental to development of a neurobiology of number cognition. We review here the behavioural studies that have permitted to identify numerical abilities in fish, and the current status of the research related to the neurobiological bases of these abilities with special reference to zebrafish. Combining behavioural tasks with molecular genetics, molecular biology and confocal microscopy, a role of the retina and optic tectum in the encoding of continuous magnitude in larval zebrafish has been reported, while the thalamus and the dorso-central subdivision of pallium in the encoding of discrete magnitude (number) has been documented in adult zebrafish. Research in fish, in particular zebrafish, may reveal instrumental for identifying and characterizing the molecular signature of neurons involved in quantity discrimination processes of all vertebrates, including humans. Abstract It is widely acknowledged that vertebrates can discriminate non-symbolic numerosity using an evolutionarily conserved system dubbed Approximate Number System (ANS). Two main approaches have been used to assess behaviourally numerosity in fish: spontaneous choice tests and operant training procedures. In the first, animals spontaneously choose between sets of biologically-relevant stimuli (e.g., conspecifics, food) differing in quantities (smaller or larger). In the second, animals are trained to associate a numerosity with a reward. Although the ability of fish to discriminate numerosity has been widely documented with these methods, the molecular bases of quantities estimation and ANS are largely unknown. Recently, we combined behavioral tasks with molecular biology assays (e.g c-fos and egr1 and other early genes expression) showing that the thalamus and the caudal region of dorso-central part of the telencephalon seem to be activated upon change in numerousness in visual stimuli. In contrast, the retina and the optic tectum mainly responded to changes in continuous magnitude such as stimulus size. We here provide a review and synthesis of these findings.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Ilaria Schiona
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Giorgio Vallortigara
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| |
Collapse
|
25
|
Castaldi E, Pomè A, Cicchini GM, Burr D, Binda P. The pupil responds spontaneously to perceived numerosity. Nat Commun 2021; 12:5944. [PMID: 34642335 PMCID: PMC8511033 DOI: 10.1038/s41467-021-26261-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023] Open
Abstract
Although luminance is the main determinant of pupil size, the amplitude of the pupillary light response is also modulated by stimulus appearance and attention. Here we ask whether perceived numerosity modulates the pupillary light response. Participants passively observed arrays of black or white dots of matched physical luminance but different physical or illusory numerosity. In half the patterns, pairs of dots were connected by lines to create dumbbell-like shapes, inducing an illusory underestimation of perceived numerosity; in the other half, connectors were either displaced or removed. Constriction to white arrays and dilation to black were stronger for patterns with higher perceived numerosity, either physical or illusory, with the strength of the pupillary light response scaling with the perceived numerosity of the arrays. Our results show that even without an explicit task, numerosity modulates a simple automatic reflex, suggesting that numerosity is a spontaneously encoded visual feature.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Antonella Pomè
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | | | - David Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
- School of Psychology, University of Sydney, Camperdown, NSW, Australia.
| | - Paola Binda
- Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Güntürkün O, von Eugen K, Packheiser J, Pusch R. Avian pallial circuits and cognition: A comparison to mammals. Curr Opin Neurobiol 2021; 71:29-36. [PMID: 34562800 DOI: 10.1016/j.conb.2021.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022]
Abstract
Cognitive functions are similar in birds and mammals. So, are therefore pallial cellular circuits and neuronal computations also alike? In search of answers, we move in from bird's pallial connectomes, to cortex-like sensory canonical circuits and connections, to forebrain micro-circuitries and finally to the avian "prefrontal" area. This voyage from macro- to micro-scale networks and areas reveals that both birds and mammals evolved similar neural and computational properties in either convergent or parallel manner, based upon circuitries inherited from common ancestry. Thus, these two vertebrate classes evolved separately within 315 million years with highly similar pallial architectures that produce comparable cognitive functions.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Kaya von Eugen
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julian Packheiser
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Roland Pusch
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
27
|
Towards a standardization of non-symbolic numerical experiments: GeNEsIS, a flexible and user-friendly tool to generate controlled stimuli. Behav Res Methods 2021; 54:146-157. [PMID: 34117632 PMCID: PMC8863760 DOI: 10.3758/s13428-021-01580-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Several studies have suggested that vertebrate and invertebrate species may possess a number sense, i.e. an ability to process in a non-symbolic and non-verbal way the numerousness of a set of items. However, this hypothesis has been challenged by the presence of other non-numerical continuous physical variables, which vary along with numerosity (i.e., any change in the number of visual physical elements in a set naturally involves a related change in visual features such as area, density, contour length and convex hull of the stimulus). It is therefore necessary to control and manipulate the continuous physical information when investigating the ability of humans and other animals to perceive numerousness. During decades of research, different methods have been implemented in order to address this issue, which has implications for experiment replicability and inter-species comparisons, since no general standardized procedure is currently being used. Here we present the ‘Generation of Numerical Elements Images Software’ (GeNEsIS) for the creation of non-symbolic numerical arrays in a standardized and user-friendly environment. The main aim of this tool is to provide researchers in the field of numerical cognition a manageable and precise instrument to produce visual numerical arrays controlled for all the continuous variables. Additionally, we implemented the ability to actively guide stimuli presentation during habituation/dishabituation and dual-choice comparison tasks used in human and comparative research.
Collapse
|
28
|
Kirschhock ME, Ditz HM, Nieder A. Behavioral and Neuronal Representation of Numerosity Zero in the Crow. J Neurosci 2021; 41:4889-4896. [PMID: 33875573 PMCID: PMC8260164 DOI: 10.1523/jneurosci.0090-21.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/17/2023] Open
Abstract
Different species of animals can discriminate numerosity, the countable number of objects in a set. The representations of countable numerosities have been deciphered down to the level of single neurons. However, despite its importance for human number theory, a special numerical quantity, the empty set (numerosity zero), has remained largely unexplored. We explored the behavioral and neuronal representation of the empty set in carrion crows. Crows were trained to discriminate small numerosities including the empty set. Performance data showed a numerical distance effect for the empty set in one crow, suggesting that the empty set and countable numerosities are represented along the crows' "mental number line." Single-cell recordings in the endbrain region nidopallium caudolaterale (NCL) showed a considerable proportion of NCL neurons tuned to the preferred numerosity zero. As evidenced by neuronal distance and size effects, NCL neurons integrated the empty set in the neural number line. A subsequent neuronal population analysis using a statistical classifier approach showed that the neuronal numerical representations were predictive of the crows' success in the task. These behavioral and neuronal data suggests that the conception of the empty set as a cognitive precursor of a zero-like number concept is not an exclusive property of the cerebral cortex of primates. Zero as a quantitative category cannot only be implemented in the layered neocortex of primates, but also in the anatomically distinct endbrain circuitries of birds that evolved based on convergent evolution.SIGNIFICANCE STATEMENT The conception of "nothing" as number "zero" is celebrated as one of the greatest achievements in mathematics. To explore whether precursors of zero-like concepts can be found in vertebrates with a cerebrum that anatomically differs starkly from our primate brain, we investigated this in carrion crows. We show that crows can grasp the empty set as a null numerical quantity that is mentally represented next to number one. Moreover, we show that single neurons in an associative avian cerebral region specifically respond to the empty set and show the same physiological characteristics as for countable quantities. This suggests that zero as a quantitative category can also be implemented in the anatomically distinct endbrain circuitries of birds that evolved based on convergent evolution.
Collapse
Affiliation(s)
- Maximilian E Kirschhock
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Helen M Ditz
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
29
|
The Evolutionary History of Brains for Numbers. Trends Cogn Sci 2021; 25:608-621. [PMID: 33926813 DOI: 10.1016/j.tics.2021.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Humans and other animals share a number sense', an intuitive understanding of countable quantities. Having evolved independent from one another for hundreds of millions of years, the brains of these diverse species, including monkeys, crows, zebrafishes, bees, and squids, differ radically. However, in all vertebrates investigated, the pallium of the telencephalon has been implicated in number processing. This suggests that properties of the telencephalon make it ideally suited to host number representations that evolved by convergent evolution as a result of common selection pressures. In addition, promising candidate regions in the brains of invertebrates, such as insects, spiders, and cephalopods, can be identified, opening the possibility of even deeper commonalities for number sense.
Collapse
|
30
|
Lorenzi E, Perrino M, Vallortigara G. Numerosities and Other Magnitudes in the Brains: A Comparative View. Front Psychol 2021; 12:641994. [PMID: 33935896 PMCID: PMC8082025 DOI: 10.3389/fpsyg.2021.641994] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 01/29/2023] Open
Abstract
The ability to represent, discriminate, and perform arithmetic operations on discrete quantities (numerosities) has been documented in a variety of species of different taxonomic groups, both vertebrates and invertebrates. We do not know, however, to what extent similarity in behavioral data corresponds to basic similarity in underlying neural mechanisms. Here, we review evidence for magnitude representation, both discrete (countable) and continuous, following the sensory input path from primary sensory systems to associative pallial territories in the vertebrate brains. We also speculate on possible underlying mechanisms in invertebrate brains and on the role played by modeling with artificial neural networks. This may provide a general overview on the nervous system involvement in approximating quantity in different animal species, and a general theoretical framework to future comparative studies on the neurobiology of number cognition.
Collapse
Affiliation(s)
- Elena Lorenzi
- Centre for Mind/Brain Science, CIMeC, University of Trento, Rovereto, Italy
| | | | | |
Collapse
|
31
|
Abstract
Many species from diverse and often distantly related animal groups (e.g. monkeys, crows, fish and bees) have a sense of number. This means that they can assess the number of items in a set - its 'numerosity'. The brains of these phylogenetically distant species are markedly diverse. This Review examines the fundamentally different types of brains and neural mechanisms that give rise to numerical competence across the animal tree of life. Neural correlates of the number sense so far exist only for specific vertebrate species: the richest data concerning explicit and abstract number representations have been collected from the cerebral cortex of mammals, most notably human and nonhuman primates, but also from the pallium of corvid songbirds, which evolved independently of the mammalian cortex. In contrast, the neural data relating to implicit and reflexive numerical representations in amphibians and fish is limited. The neural basis of a number sense has not been explored in any protostome so far. However, promising candidate regions in the brains of insects, spiders and cephalopods - all of which are known to have number skills - are identified in this Review. A comparative neuroscientific approach will be indispensable for identifying evolutionarily stable neuronal circuits and deciphering codes that give rise to a sense of number across phylogeny.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
32
|
MaBouDi H, Barron AB, Li S, Honkanen M, Loukola OJ, Peng F, Li W, Marshall JAR, Cope A, Vasilaki E, Solvi C. Non-numerical strategies used by bees to solve numerical cognition tasks. Proc Biol Sci 2021; 288:20202711. [PMID: 33593192 PMCID: PMC7934903 DOI: 10.1098/rspb.2020.2711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We examined how bees solve a visual discrimination task with stimuli commonly used in numerical cognition studies. Bees performed well on the task, but additional tests showed that they had learned continuous (non-numerical) cues. A network model using biologically plausible visual feature filtering and a simple associative rule was capable of learning the task using only continuous cues inherent in the training stimuli, with no numerical processing. This model was also able to reproduce behaviours that have been considered in other studies indicative of numerical cognition. Our results support the idea that a sense of magnitude may be more primitive and basic than a sense of number. Our findings highlight how problematic inadvertent continuous cues can be for studies of numerical cognition. This remains a deep issue within the field that requires increased vigilance and cleverness from the experimenter. We suggest ways of better assessing numerical cognition in non-speaking animals, including assessing the use of all alternative cues in one test, using cross-modal cues, analysing behavioural responses to detect underlying strategies, and finding the neural substrate.
Collapse
Affiliation(s)
- HaDi MaBouDi
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
| | - Andrew B Barron
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK.,Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Sun Li
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Maria Honkanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Olli J Loukola
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Fei Peng
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Wenfeng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, People's Republic of China
| | - James A R Marshall
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
| | - Alex Cope
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
| | - Cwyn Solvi
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia.,School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
33
|
Adaptation to visual numerosity changes neural numerosity selectivity. Neuroimage 2021; 229:117794. [PMID: 33497778 DOI: 10.1016/j.neuroimage.2021.117794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
Perceiving numerosity, i.e. the set size of a group of items, is an evolutionarily preserved ability found in humans and animals. A useful method to infer the neural underpinnings of a given perceptual property is sensory adaptation. Like other primary perceptual attributes, numerosity is susceptible to adaptation. Recently, we have shown numerosity-selective neural populations with a topographic organization in the human brain. Here, we investigated whether numerosity adaptation can affect the numerosity selectivity of these populations using ultra-high field (7 Tesla) functional magnetic resonance imaging (fMRI). Participants viewed stimuli of changing numerosity (1 to 7 dots), which allowed the mapping of numerosity selectivity. We interleaved a low or high numerosity adapter stimulus with these mapping stimuli, repeatedly presenting 1 or 20 dots respectively to adapt the numerosity-selective neural populations. We analyzed the responses using custom-build population receptive field neural models of numerosity encoding and compared estimated numerosity preferences between adaptation conditions. We replicated our previous studies where we found several topographic maps of numerosity-selective responses. We found that overall, numerosity adaptation altered the preferred numerosities within the numerosity maps, resulting in predominantly attractive biases towards the numerosity of the adapter. The differential biases could be explained by the difference between the unadapted preferred numerosity and the numerosity of the adapter, with attractive biases being observed with higher difference. The results could link perceptual numerosity adaptation effects to changes in neural numerosity selectivity.
Collapse
|
34
|
Kim G, Jang J, Baek S, Song M, Paik SB. Visual number sense in untrained deep neural networks. SCIENCE ADVANCES 2021; 7:7/1/eabd6127. [PMID: 33523851 PMCID: PMC7775775 DOI: 10.1126/sciadv.abd6127] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/03/2020] [Indexed: 05/25/2023]
Abstract
Number sense, the ability to estimate numerosity, is observed in naïve animals, but how this cognitive function emerges in the brain remains unclear. Here, using an artificial deep neural network that models the ventral visual stream of the brain, we show that number-selective neurons can arise spontaneously, even in the complete absence of learning. We also show that the responses of these neurons can induce the abstract number sense, the ability to discriminate numerosity independent of low-level visual cues. We found number tuning in a randomly initialized network originating from a combination of monotonically decreasing and increasing neuronal activities, which emerges spontaneously from the statistical properties of bottom-up projections. We confirmed that the responses of these number-selective neurons show the single- and multineuron characteristics observed in the brain and enable the network to perform number comparison tasks. These findings provide insight into the origin of innate cognitive functions.
Collapse
Affiliation(s)
- Gwangsu Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaeson Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seungdae Baek
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min Song
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
35
|
Wagener L, Nieder A. Categorical Auditory Working Memory in Crows. iScience 2020; 23:101737. [PMID: 33225245 PMCID: PMC7662871 DOI: 10.1016/j.isci.2020.101737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/10/2020] [Accepted: 10/23/2020] [Indexed: 12/03/2022] Open
Abstract
The ability to group sensory data into behaviorally meaningful classes and to maintain these perceptual categories active in working memory is key to intelligent behavior. Here, we show that carrion crows, highly vocal and cognitively advanced corvid songbirds, possess categorical auditory working memory. The crows were trained in a delayed match-to-category task that required them to flexibly match remembered sounds based on the upward or downward shift of the sounds' frequency modulation. After training, the crows instantaneously classified novel sounds into the correct auditory categories. The crows showed sharp category boundaries as a function of the relative frequency interval of the modulation. In addition, the crows generalized frequency-modulated sounds within a category and correctly classified novel sounds kept in working memory irrespective of other acoustic features of the sound. This suggests that crows can form and actively memorize auditory perceptual categories in the service of cognitive control of their goal-directed behaviors. Crows performed a delayed match-to-category task with frequency modulated sounds Crows classified novel sounds into upward or downward modulated sound categories Crows showed sharp category boundaries and within-category generalization Crows can actively memorize auditory perceptual categories for cognitive control
Collapse
Affiliation(s)
- Lysann Wagener
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Nieder A. The Adaptive Value of Numerical Competence. Trends Ecol Evol 2020; 35:605-617. [DOI: 10.1016/j.tree.2020.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 01/25/2023]
|
37
|
Messina A, Potrich D, Schiona I, Sovrano VA, Fraser SE, Brennan CH, Vallortigara G. Response to change in the number of visual stimuli in zebrafish:A behavioural and molecular study. Sci Rep 2020; 10:5769. [PMID: 32238844 PMCID: PMC7113307 DOI: 10.1038/s41598-020-62608-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/13/2020] [Indexed: 11/29/2022] Open
Abstract
Evidence has shown that a variety of vertebrates, including fish, can discriminate collections of visual items on the basis of their numerousness using an evolutionarily conserved system for approximating numerical magnitude (the so-called Approximate Number System, ANS). Here we combine a habituation/dishabituation behavioural task with molecular biology assays to start investigating the neural bases of the ANS in zebrafish. Separate groups of zebrafish underwent a habituation phase with a set of 3 or 9 small red dots, associated with a food reward. The dots changed in size, position and density from trial to trial but maintained their numerousness, and the overall areas of the stimuli was kept constant. During the subsequent dishabituation test, zebrafish faced a change (i) in number (from 3 to 9 or vice versa with the same overall surface), or (ii) in shape (with the same overall surface and number), or (iii) in size (with the same shape and number). A control group of zebrafish was shown the same stimuli as during the habituation. RT-qPCR revealed that the telencephalon and thalamus were characterized by the most consistent modulation of the expression of the immediate early genes c-fos and egr-1 upon change in numerousness; in contrast, the retina and optic tectum responded mainly to changes in stimulus size.
Collapse
Affiliation(s)
- Andrea Messina
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| | - Davide Potrich
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Ilaria Schiona
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Scott E Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, USA
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University, London, UK
| | | |
Collapse
|
38
|
Format-dependent and format-independent representation of sequential and simultaneous numerosity in the crow endbrain. Nat Commun 2020; 11:686. [PMID: 32019934 PMCID: PMC7000399 DOI: 10.1038/s41467-020-14519-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
Humans’ symbolic counting skills are built on a primordial ability to approximately estimate the number of items, or numerosity. To date it is debated whether numerosities presented in categorically different formats, that is as temporal sequences versus spatial arrays, are represented abstractly in the brain. To address this issue, we identified the behavioral characteristics and neuronal codes for sequential and simultaneous number formats in crows. We find a format-dependent representation by distinct groups of selective neurons during the sensory encoding stage. However, an abstract and format-independent numerosity code emerges once the encoding phase is completed and numerosities needed to be memorized. These results suggest a successive two-stage code for categorically different number formats and help to reconcile conflicting findings observed in psychophysics and brain imaging. Numbers are processed as abstract categories, despite considerable variations in presentation formats. By recording single-neuron activity in behaving crows, the authors show successive format-dependent and format-independent numerosity codes in the avian endbrain.
Collapse
|
39
|
Aulet LS, Chiu VC, Prichard A, Spivak M, Lourenco SF, Berns GS. Canine sense of quantity: evidence for numerical ratio-dependent activation in parietotemporal cortex. Biol Lett 2019; 15:20190666. [PMID: 31847744 PMCID: PMC6936025 DOI: 10.1098/rsbl.2019.0666] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The approximate number system (ANS), which supports the rapid estimation of quantity, emerges early in human development and is widespread across species. Neural evidence from both human and non-human primates suggests the parietal cortex as a primary locus of numerical estimation, but it is unclear whether the numerical competencies observed across non-primate species are subserved by similar neural mechanisms. Moreover, because studies with non-human animals typically involve extensive training, little is known about the spontaneous numerical capacities of non-human animals. To address these questions, we examined the neural underpinnings of number perception using awake canine functional magnetic resonance imaging. Dogs passively viewed dot arrays that varied in ratio and, critically, received no task-relevant training or exposure prior to testing. We found evidence of ratio-dependent activation, which is a key feature of the ANS, in canine parietotemporal cortex in the majority of dogs tested. This finding is suggestive of a neural mechanism for quantity perception that has been conserved across mammalian evolution.
Collapse
Affiliation(s)
- Lauren S Aulet
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Veronica C Chiu
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Ashley Prichard
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Mark Spivak
- Comprehensive Pet Therapy, Atlanta, GA 30328, USA
| | | | - Gregory S Berns
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
40
|
Nieder A. Neural constraints on human number concepts. Curr Opin Neurobiol 2019; 60:28-36. [PMID: 31810008 DOI: 10.1016/j.conb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
Abstract
True counting and arithmetic abilities are unique to humans and are inextricably linked to symbolic competence. However, our unprecedented numerical skills are deeply rooted in our neuronal heritage as primates and vertebrates. In this article, I argue that numerical competence in humans is the result of three neural constraints. First, I propose that the neuronal mechanisms of quantity estimation are part of our evolutionary heritage and can be witnessed across primate and vertebrate phylogeny. Second, I suggest that a basic understanding of number, what numerical quantity means, is innately wired into the brain and gives rise to an intuitive number sense, or number instinct. Third and finally, I argue that symbolic counting and arithmetic in humans is rooted in an evolutionarily and ontogenetically primeval neural system for non-symbolic number representations. These three neural constraints jointly determine the basic processing of number concepts in the human mind.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
41
|
Neuronal Correlates of Spatial Working Memory in the Endbrain of Crows. Curr Biol 2019; 29:2616-2624.e4. [DOI: 10.1016/j.cub.2019.06.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 01/20/2023]
|
42
|
Tsouli A, van der Smagt MJ, Dumoulin SO, Pas SFT. Distinct temporal mechanisms modulate numerosity perception. J Vis 2019; 19:19. [DOI: 10.1167/19.6.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Andromachi Tsouli
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | | | - Serge O. Dumoulin
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands
- Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Susan F. te Pas
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
43
|
Bortot M, Agrillo C, Avarguès-Weber A, Bisazza A, Miletto Petrazzini ME, Giurfa M. Honeybees use absolute rather than relative numerosity in number discrimination. Biol Lett 2019; 15:20190138. [PMID: 31213140 DOI: 10.1098/rsbl.2019.0138] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Various vertebrate species use relative numerosity judgements in comparative assessments of quantities for which they use larger/smaller relationships rather than absolute number. The numerical ability of honeybees shares basic properties with that of vertebrates but their use of absolute or relative numerosity has not been explored. We trained free-flying bees to choose variable images containing three dots; one group ('larger') was trained to discriminate 3 from 2, while another group ('smaller') was trained to discriminate 3 from 4. In both cases, numbers were kept constant but stimulus characteristics and position were varied from trial to trial. Bees were then tested with novel stimuli displaying the previously trained numerosity (3) versus a novel numerosity (4 for 'larger' and 2 for 'smaller'). Both groups preferred the three-item stimulus, consistent with absolute numerosity. They also exhibited ratio-dependent discrimination of numbers, a property shared by vertebrates, as performance after 2 versus 3 was better than after 3 versus 4 training. Thus, bees differ from vertebrates in their use of absolute rather than of relative numerosity but they also have some numeric properties in common.
Collapse
Affiliation(s)
- Maria Bortot
- 1 Center for Mind/Brain Sciences, University of Trento , 38068 Rovereto , Italy.,2 Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse , 31062 Toulouse Cedex 09 , France
| | - Christian Agrillo
- 3 Department of General Psychology, University of Padova , 35131 Padova , Italy
| | - Aurore Avarguès-Weber
- 2 Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse , 31062 Toulouse Cedex 09 , France
| | - Angelo Bisazza
- 3 Department of General Psychology, University of Padova , 35131 Padova , Italy
| | | | - Martin Giurfa
- 2 Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse , 31062 Toulouse Cedex 09 , France.,5 College of Bee Science, Fujian Agriculture and Forestry University , Fuzhou 350002 , People's Republic of China
| |
Collapse
|
44
|
Nasr K, Viswanathan P, Nieder A. Number detectors spontaneously emerge in a deep neural network designed for visual object recognition. SCIENCE ADVANCES 2019; 5:eaav7903. [PMID: 31086820 PMCID: PMC6506249 DOI: 10.1126/sciadv.aav7903] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/26/2019] [Indexed: 05/18/2023]
Abstract
Humans and animals have a "number sense," an innate capability to intuitively assess the number of visual items in a set, its numerosity. This capability implies that mechanisms to extract numerosity indwell the brain's visual system, which is primarily concerned with visual object recognition. Here, we show that network units tuned to abstract numerosity, and therefore reminiscent of real number neurons, spontaneously emerge in a biologically inspired deep neural network that was merely trained on visual object recognition. These numerosity-tuned units underlay the network's number discrimination performance that showed all the characteristics of human and animal number discriminations as predicted by the Weber-Fechner law. These findings explain the spontaneous emergence of the number sense based on mechanisms inherent to the visual system.
Collapse
|
45
|
Ditz HM, Kupferman JK, Nieder A. Neurons in the Hippocampus of Crows Lack Responses to Non-spatial Abstract Categories. Front Syst Neurosci 2018; 12:33. [PMID: 30072877 PMCID: PMC6060446 DOI: 10.3389/fnsys.2018.00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023] Open
Abstract
Lesion studies suggest a role of the avian hippocampus in spatial and episodic memory. However, whether the avian hippocampus is also involved in processing categorical information and non-spatial working memory contents remains unknown. To address this question, we trained two crows in a delayed-match-to-sample test to assess and briefly memorize the number of items in dot displays, i.e., their numerosity. We recorded neuronal activity in hippocampus while crows solved this task. Hardly any hippocampal neurons responded to the category 'numerosity,' during neither sample presentation, nor during the memory delay. This was in striking contrast to previous recordings in the telencephalic association area 'nidopallium caudolaterale' (NCL) of the same crows, in which we previously reported an abundance of numerosity-selective and working memory-selective neurons. Our data suggest that categorical information is not processed in the avian hippocampus.
Collapse
Affiliation(s)
- Helen M Ditz
- Department of Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jennifer K Kupferman
- Department of Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | - Andreas Nieder
- Department of Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|