1
|
Adhikary K, Kapoor S, Kotak S. A cortical pool of LIN-5 (NuMA) controls cytokinetic furrow formation and cytokinesis completion. J Cell Biol 2025; 224:e202406059. [PMID: 40304693 PMCID: PMC12042773 DOI: 10.1083/jcb.202406059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 02/26/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
In animal cells, cleavage furrow formation is controlled by localized activation of the GTPase RhoA at the equatorial membrane using cues transmitted from the spindle. Here, we explore the function of LIN-5, a well-studied protein known for its role in aster separation and spindle positioning in cleavage furrow formation. We show that the cortical pool of LIN-5, recruited by GPR-1/2 and important for cortical force generation, regulates cleavage furrow formation independently of its roles in aster separation and spindle positioning. Instead, our data suggest that enrichment of LIN-5/GPR-1/2 at the polar cortical region is essential to ensure the timely accumulation of contractile ring components-myosin II and Anillin at the equatorial cortex. We additionally define a late cytokinesis role of cortical LIN-5/GPR-1/2 in midbody stabilization and abscission. These results indicate that the cortical LIN-5/GPR-1/2 complex contributes to multiple aspects of cytokinesis independently of its roles in spindle positioning and elongation.
Collapse
Affiliation(s)
- Kuheli Adhikary
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| | - Sukriti Kapoor
- Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
2
|
Lam NT, Nguyen NUN, Elhelaly WM, Hsu CC, Menendez-Montes I, Xiao F, Ali SR, Vo N, Briard N, El-Feky L, Omari QM, Cardoso AC, Liu Y, Ahmed MS, Li S, Thet S, Xing C, Zangi L, Sadek HA. Induced Cytokinesis Generates Highly Proliferative Mononuclear Cardiomyocytes at the Expense of Contractility. Circulation 2025; 151:1009-1023. [PMID: 39912233 DOI: 10.1161/circulationaha.124.065763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025]
Abstract
BACKGROUND Cytokinesis is the last step in the eukaryotic cell cycle, which physically separates a mitotic cell into 2 daughter cells. A few days after birth in mouse cardiomyocytes, DNA synthesis occurs without cytokinesis, leading to the majority of cardiomyocytes becoming binucleated instead of generating 2 daughter cells with 1 nucleus each. This results in cell cycle arrest of cardiomyocytes, and the mouse heart is no longer able to regenerate. A longstanding unanswered question is whether binucleation of cardiomyocytes is a result of cytokinesis failure. METHODS To address this, we generated several transgenic mouse models to determine whether forced induction of cardiomyocyte cytokinesis generates mononucleated cardiomyocytes and restores the endogenous regenerative properties of the myocardium. We focused on 2 complementary regulators of cytokinesis: Plk1 (polo-like kinase 1) and Ect2 (epithelial cell-transformation sequence 2). RESULTS We found that cardiomyocyte-specific transgenic overexpression of constitutively active Plk1(T210D) promotes mitosis and cytokinesis in adult hearts, whereas overexpression of Ect2 alone promotes only cytokinesis. Cardiomyocyte-specific overexpression of both Plk1(T210D) and Ect2 concomitantly (double transgenic) prevents binucleation of cardiomyocytes postnatally and results in widespread cardiomyocyte mitosis, cardiac enlargement, contractile failure, and death before 2 weeks of age. In contrast, doxycycline-inducible cardiomyocyte-specific overexpression of both genes (inducible double transgenic) in the adult heart results in cardiomyocyte mitosis and transient contractile dysfunction. Importantly, this transient induction of cytokinesis in adult mice improves left ventricular systolic function after myocardial infarction. CONCLUSIONS These results collectively demonstrate that cytokinesis failure mediates cardiomyocyte multinucleation and cell cycle exit of postnatal cardiomyocytes, but may be a protective mechanism to preserve the contractile function of the myocardium.
Collapse
Affiliation(s)
- Nicholas T Lam
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Sarver Heart Center and Department of Medicine, Division of Cardiology, The University of Arizona, Tucson (N.T.L., W.M.E., I.M.-M., H.A.S.)
- Heart Research Institute, Sydney, Australia (N.T.L.)
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Waleed M Elhelaly
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Sarver Heart Center and Department of Medicine, Division of Cardiology, The University of Arizona, Tucson (N.T.L., W.M.E., I.M.-M., H.A.S.)
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Ivan Menendez-Montes
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Sarver Heart Center and Department of Medicine, Division of Cardiology, The University of Arizona, Tucson (N.T.L., W.M.E., I.M.-M., H.A.S.)
| | - Feng Xiao
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Shah R Ali
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Nelson Vo
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Nathan Briard
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Lobna El-Feky
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Qamar M Omari
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Alisson C Cardoso
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Yan Liu
- Eugene McDermott Center for Human Growth and Development (Y.L., C.X.), The University of Texas Southwestern Medical Center, Dallas
| | - Mahmoud Salama Ahmed
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Shujuan Li
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Suwannee Thet
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development (Y.L., C.X.), The University of Texas Southwestern Medical Center, Dallas
| | - Lior Zangi
- Cardiovascular Research Institute, Department of Genetics and Genomic Sciences, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY (L.Z.)
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Hamon Center for Regenerative Science and Medicine (H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Department of Biophysics (H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Sarver Heart Center and Department of Medicine, Division of Cardiology, The University of Arizona, Tucson (N.T.L., W.M.E., I.M.-M., H.A.S.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (H.A.S.)
| |
Collapse
|
3
|
Lacroix L, Goupil E, Smith MJ, Labbé JC. Leaving the mark: FMOs as an emerging class of cytokinetic regulators. Cell Cycle 2025:1-13. [PMID: 40200681 DOI: 10.1080/15384101.2025.2485843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Posttranslational modification of proteins plays a fundamental role in cell biology. It provides cells a means to regulate the signaling, enzymatic or structural properties of proteins without continuous cycles of synthesis and degradation, offering multiple distinct functions to individual proteins in a rapid and reversible manner. Modifications can include phosphorylation, ubiquitination or methylation, which are widespread and simple to detect using current approaches. More challenging to identify, one modification of growing significance is the direct oxidation of cysteine and methionine side chains. Protein oxidation has long been known to occur spontaneously upon the accumulation of cellular reactive oxygen species (ROS), but new data are providing insight into the targeted oxidation of proteins by flavin-containing monooxygenases (FMOs). Here, we review how oxidation of cellular proteins can modulate their activity and consider potential roles for FMOs in the targeted modification of proteins shaping cell division, with a particular focus on two families of FMOs: MICAL and OSGIN.
Collapse
Affiliation(s)
- Léa Lacroix
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Eugénie Goupil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Prifti DK, Lauzier A, Garand C, Calvo E, Devillers R, Roy S, Dos Santos A, Descombes L, Trudel B, Laplante M, Bordeleau F, Elowe S. ARHGEF17/TEM4 regulates the cell cycle through control of G1 progression. J Cell Biol 2025; 224:e202311194. [PMID: 39903211 PMCID: PMC11792891 DOI: 10.1083/jcb.202311194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
The Ras homolog (Rho) small GTPases coordinate diverse cellular functions including cell morphology, adhesion and motility, cell cycle progression, survival, and apoptosis via their role in regulating the actin cytoskeleton. The upstream regulators for many of these functions are unknown. ARHGEF17 (also known as TEM4) is a Rho family guanine nucleotide exchange factor (GEF) implicated in cell migration, cell-cell junction formation, and the mitotic checkpoint. In this study, we characterize the regulation of the cell cycle by TEM4. We demonstrate that TEM4-depleted cells exhibit multiple defects in mitotic entry and duration, spindle morphology, and spindle orientation. In addition, TEM4 insufficiency leads to excessive cortical actin polymerization and cell rounding defects. Mechanistically, we demonstrate that TEM4-depleted cells delay in G1 as a consequence of decreased expression of the proproliferative transcriptional co-activator YAP. TEM4-depleted cells that progress through to mitosis do so with decreased levels of cyclin B as a result of attenuated expression of CCNB1. Importantly, cyclin B overexpression in TEM4-depleted cells largely rescues mitotic progression and chromosome segregation defects in anaphase. Our study thus illustrates the consequences of Rho signaling imbalance on cell cycle progression and identifies TEM4 as the first GEF governing Rho GTPase-mediated regulation of G1/S.
Collapse
Affiliation(s)
- Diogjena Katerina Prifti
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Annie Lauzier
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Eva Calvo
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Romain Devillers
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - Suparba Roy
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Laurence Descombes
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Benjamin Trudel
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - François Bordeleau
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec City, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Sabine Elowe
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Département de Pédiatrie, Faculté de Médicine, Université Laval, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| |
Collapse
|
5
|
Lee SH, Kwon MS, Lee T, Hohng S, Lee H. Kinesin-like protein KIF18A is required for faithful coordination of chromosome congression with cytokinesis. FEBS J 2025. [PMID: 39954259 DOI: 10.1111/febs.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
The maintenance of genetic integrity in proliferating cells requires the coordinated regulation of DNA replication, chromosome segregation, and cytokinetic abscission. Chromosome-microtubule interactions regulate mitosis, while interactions between the actin cytoskeleton and Myosin IIA dictate cytokinetic abscission. This process, crucial for the equal distribution of the duplicated genome into two daughter cells, occurs perpendicular to the axis of chromosome segregation. However, the mechanism of how microtubule-driven mitosis and actin-associated cytokinesis are precisely coordinated remains poorly understood. This study highlights the role of KIF18A, a kinesin-like protein, in linking kinetochore-microtubule dynamics to cytokinetic axis formation. KIF18A's localization changes through the cell division cycle, from the metaphase plate during chromosome congression to the central spindle in late anaphase, and finally to the spindle midbody in telophase. KIF18A depletion leads to chromosome congression failures and anaphase onset delays. Notably, cells attempting to undergo division in the absence of KIF18A exhibited disruptions in the parallel structure of the central spindle, causing mislocalization of the centralspindlin complex, such as kinesin-like protein KIF23 (also known as MKLP1) and Rac GTPase-activating protein 1 (RACGAP1). These disruptions impair cleavage furrow establishment, causing incomplete cytokinesis and the formation of mononuclear or binucleated cells. Our findings suggest that KIF18A is crucial for coordinating chromosome congression and cytokinesis by regulating the spatial and temporal assembly of the central spindle during late anaphase.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Mi-Sun Kwon
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Taerim Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Seoul National University, Korea
| | - Hyunsook Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| |
Collapse
|
6
|
Shan S, Su M. The role of RhoA-ROCK signaling in benign prostatic hyperplasia: a review. Hum Cell 2025; 38:48. [PMID: 39891836 DOI: 10.1007/s13577-025-01179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Benign prostatic hyperplasia (BPH) is a common urological disease in middle-aged and elderly men. The main pathological mechanisms of BPH include static factors that increase prostate volume and dynamic factors that increase prostate tension. The RhoA/ROCK signaling pathway is a classical pathway that regulates cell contraction, migration, and growth. In this review, we summarize the potential role of RhoA/ROCK signaling in the development of BPH. The RhoA/ROCK signaling pathway can enhance the contraction of prostate smooth muscle through the Ca2+ sensitization pathway and increase passive tension in the prostate through tissue fibrosis. Additionally, RhoA/ROCK signaling promotes cell proliferation by regulating cell division and may influence apoptosis by affecting the actin cytoskeleton. Furthermore, risk factors, such as inflammation, metabolic syndrome, and hormonal changes, can upregulate RhoA/ROCK signaling, which in turn promotes these risk factors, eventually leading to the development of BPH. Given the role of RhoA/ROCK signaling in regulating multiple pathogenic factors of BPH, this pathway represents a promising molecular target for BPH treatment and warrants further study.
Collapse
Affiliation(s)
- Shidong Shan
- Department of Renal Transplantation, Guangdong Provincial People' Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Su
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Riparbelli MG, Migliorini M, Callaini G. Astral Microtubules Are Dispensable for Pavarotti Localization During Drosophila Spermatogonial Mitoses. Cytoskeleton (Hoboken) 2025. [PMID: 39754387 DOI: 10.1002/cm.21986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes. This unusual distribution restricts and enhances during anaphase where antiparallel cortical microtubules overlap. Additional Pav staining is also found in the inner central spindle where the microtubules overlap between the segregating chromosomes. At late telophase, Pav accumulates to the midbody and on a weak ring that surround the cytoplasmic bridges. Pav localizes in an equatorial discontinuous ring of Sas4 spermatogonia where the non-centrosomal microtubules overlap, but the motor protein is absent in the interior central spindle where the inner microtubules are lacking. However, the anastral spindles properly support cell division, suggesting that astral microtubules are dispensable for Pav localization in the Sas4 spermatogonial cell cortex. This function is presumably replaced by the antiparallel cortical microtubules extending from the acentriolar polar regions. In contrast, the majority of the meiotic spindles in Sas4 mutant testes do not progress beyond late anaphase, and only a small fraction of the primary spermatocytes experienced an abnormal division with the assembly of aberrant telophase spindles. Pav accumulates around the chromatin clusters or enhanced at the plus ends of the antiparallel non-centrosomal cortical bundles of microtubules. However, these bundles are not arranged properly in the equatorial region of the cell and cytokinesis is abnormal or fails. Therefore, the observations in Sas4 mutant testes suggest that the spermatogonial mitoses correctly occur in the absence of astral microtubules, whereas meiotic divisions fail.
Collapse
|
8
|
Liu C, Chen S, Zhang Y, Zhou X, Wang H, Wang Q, Lan X. Mechanisms of Rho GTPases in regulating tumor proliferation, migration and invasion. Cytokine Growth Factor Rev 2024; 80:168-174. [PMID: 39317522 DOI: 10.1016/j.cytogfr.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The occurrence of most cancers is due to the clonal proliferation of tumor cells, immune evasion, and the ability to spread to other body parts. Rho GTPases, a family of small GTPases, are key regulators of cytoskeleton reorganization and cell polarity. Additionally, Rho GTPases are key proteins that induce the proliferation and metastasis of tumor cells. This review focuses on the complex regulatory mechanisms of Rho GTPases, exploring their critical role in promoting tumor cell proliferation and dissemination. Regarding tumor cell proliferation, attention is given to the role of Rho GTPases in regulating the cell cycle and mitosis. In terms of tumor cell dissemination, the focus is on the role of Rho GTPases in regulating cell migration and invasion. Overall, this review elucidates the mechanisms of Rho GTPases members in the development of tumor cells, aiming to provide theoretical references for the treatment of mammalian tumor diseases and related applications.
Collapse
Affiliation(s)
- Cheng Liu
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Shutao Chen
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Yu Zhang
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Xinyi Zhou
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Haiwei Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Qigui Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Xi Lan
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Schlientz AJ, Lee KY, Sebastián Gómez-Cavazos J, Lara-González P, Desai A, Oegema K. The CYK-4 GAP domain regulates cortical targeting of centralspindlin to promote contractile ring assembly and facilitate ring dissolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620943. [PMID: 39554051 PMCID: PMC11565784 DOI: 10.1101/2024.10.29.620943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
During cytokinesis, an equatorial contractile ring partitions the cell contents. Contractile ring assembly requires an equatorial zone of active GTP-bound RhoA generated by the guanine nucleotide exchange factor ECT21,2. ECT2 is activated by centralspindlin, a complex composed of two molecules each of kinesin-6 and CYK4. During anaphase, Centralspindlin is activated at the central spindle between the separating chromosomes and diffuses to the plasma membrane, where it engages with ECT2 via its N-terminal half3,4. The C-terminal half of CYK4 contains a lipid-binding C1 domain that contributes to plasma membrane targeting5 and a GTPase-activating protein (GAP) domain that has an interaction surface for a Rho family GTPase, whose functions have remained unclear 1,3,4,6,7. Here, using the one-cell stage C. elegans embryo as a model, we show that RhoA and the Rho-binding interface of the CYK4 GAP domain drive the recruitment of centralspindlin to the equatorial cortex. By contrast, a point mutant that selectively disrupts GAP activity does not prevent cortical centralspindlin recruitment but instead substantially delays dissipation of centralspindlin from the cortex. These findings suggest that positive feedback, in which centralspindlin recruitment promotes the generation of active RhoA and active RhoA drives centralspindlin recruitment, is central to the rapid assembly of the contractile ring within a narrow time window. They also indicate that the CYK4 GAP catalytic activity contributes to release of centralspindlin from the cortex, potentially to ensure timely dissolution of the contractile ring.
Collapse
Affiliation(s)
- Aleesa J Schlientz
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Kian-Yong Lee
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - J. Sebastián Gómez-Cavazos
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Pablo Lara-González
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Arshad Desai
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Karen Oegema
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Mancini AE, Rizzo MA. A Novel Single-Color FRET Sensor for Rho-Kinase Reveals Calcium-Dependent Activation of RhoA and ROCK. SENSORS (BASEL, SWITZERLAND) 2024; 24:6869. [PMID: 39517770 PMCID: PMC11548655 DOI: 10.3390/s24216869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Ras homolog family member A (RhoA) acts as a signaling hub in many cellular processes, including cytoskeletal dynamics, division, migration, and adhesion. RhoA activity is tightly spatiotemporally controlled, but whether downstream effectors share these activation dynamics is unknown. We developed a novel single-color FRET biosensor to measure Rho-associated kinase (ROCK) activity with high spatiotemporal resolution in live cells. We report the validation of the Rho-Kinase Activity Reporter (RhoKAR) biosensor. RhoKAR activation was specific to ROCK activity and was insensitive to PKA activity. We then assessed the mechanisms of ROCK activation in mouse fibroblasts. Increasing intracellular calcium with ionomycin increased RhoKAR activity and depleting intracellular calcium with EGTA decreased RhoKAR activity. We also investigated the signaling intermediates in this process. Blocking calmodulin or CaMKII prevented calcium-dependent activation of ROCK. These results indicate that ROCK activity is increased by calcium in fibroblasts and that this activation occurs downstream of CaM/CaMKII.
Collapse
Affiliation(s)
| | - Megan A. Rizzo
- Department of Pharmacology, Physiology, and Drug Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
11
|
Craig EM, Oprea F, Alam S, Grodsky A, Miller KE. A simple active fluid model unites cytokinesis, cell crawling, and axonal outgrowth. Front Cell Dev Biol 2024; 12:1491429. [PMID: 39483337 PMCID: PMC11524947 DOI: 10.3389/fcell.2024.1491429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
While the structural organization and molecular biology of neurons are well characterized, the physical process of axonal elongation remains elusive. The classic view posited elongation occurs through the deposition of cytoskeletal elements in the growth cone at the tip of a stationary array of microtubules. Yet, recent studies reveal axonal microtubules and docked organelles flow forward in bulk in the elongating axons of Aplysia, chick sensory, rat hippocampal, and Drosophila neurons. Noting that the morphology, molecular components, and subcellular flow patterns of growth cones strongly resemble the leading edge of migrating cells and the polar regions of dividing cells, our working hypothesis is that axonal elongation utilizes the same physical mechanisms that drive cell crawling and cell division. As a test of that hypothesis, here we take experimental data sets of sub-cellular flow patterns in cells undergoing cytokinesis, mesenchymal migration, amoeboid migration, neuronal migration, and axonal elongation. We then apply active fluid theory to develop a biophysical model that describes the different sub-cellular flow profiles across these forms of motility and how this generates cell motility under low Reynolds numbers. The modeling suggests that mechanisms for generating motion are shared across these processes, and differences arise through modifications of sub-cellular adhesion patterns and the profiles of internal force generation. Collectively, this work suggests that ameboid and mesenchymal cell crawling may have arisen from processes that first developed to support cell division, that growth cone motility and cell crawling are closely related, and that neuronal migration and axonal elongation are fundamentally similar, differing primarily in the motion and strength of adhesion under the cell body.
Collapse
Affiliation(s)
- Erin M. Craig
- Central Washington University, Department of Physics, Ellensburg, WA, United States
| | - Francesca Oprea
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Sajid Alam
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Ania Grodsky
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Kyle E. Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Werner ME, Ray DD, Breen C, Staddon MF, Jug F, Banerjee S, Maddox AS. Mechanical and biochemical feedback combine to generate complex contractile oscillations in cytokinesis. Curr Biol 2024; 34:3201-3214.e5. [PMID: 38991614 PMCID: PMC11634113 DOI: 10.1016/j.cub.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.
Collapse
Affiliation(s)
- Michael E Werner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dylan D Ray
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Coleman Breen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael F Staddon
- Center for Systems Biology Dresden, Max Planck Institute for the Physics of Complex Systems, and Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Florian Jug
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Frey Y, Lungu C, Meyer F, Hauth F, Hahn D, Kersten C, Heller V, Franz-Wachtel M, Macek B, Barsukov I, Olayioye MA. Regulation of the DLC3 tumor suppressor by a novel phosphoswitch. iScience 2024; 27:110203. [PMID: 39021807 PMCID: PMC11253157 DOI: 10.1016/j.isci.2024.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Deleted in liver cancer 3 (DLC3) is a Rho GTPase-activating protein (RhoGAP) that plays a crucial role in maintaining adherens junction integrity and coordinating polarized vesicle transport by modulating Rho activity at the plasma membrane and endomembranes. By employing bioinformatical sequence analysis, in vitro experiments, and in cellulo assays we here identified a polybasic region (PBR) in DLC3 that facilitates the association of the protein with cellular membranes. Within the PBR, we mapped two serines whose phosphorylation can alter the electrostatic character of the region. Consequently, phosphomimetic mutations of these sites impaired the membrane association of DLC3. Furthermore, we found a new PBR-dependent localization of DLC3 at the midbody region, where the protein locally controlled Rho activity. Here, the phosphorylation-dependent regulation of DLC3 appeared to be required for proper cytokinesis. Our work thus provides a novel mechanism for spatiotemporal termination of Rho signaling by the RhoGAP protein DLC3.
Collapse
Affiliation(s)
- Yannick Frey
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
| | - Cristiana Lungu
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Florian Meyer
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
| | - Franziskus Hauth
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Department of Biochemistry, Cell and Systems Biology, Liverpool, UK
| | - Daniel Hahn
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
| | - Corinna Kersten
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
| | - Vivien Heller
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Igor Barsukov
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Department of Biochemistry, Cell and Systems Biology, Liverpool, UK
| | - Monilola A. Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
| |
Collapse
|
14
|
Chowdhury P, Sinha D, Poddar A, Chetluru M, Chen Q. The Mechanosensitive Pkd2 Channel Modulates the Recruitment of Myosin II and Actin to the Cytokinetic Contractile Ring. J Fungi (Basel) 2024; 10:455. [PMID: 39057340 PMCID: PMC11277609 DOI: 10.3390/jof10070455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cytokinesis, the last step in cell division, separates daughter cells through mechanical force. This is often through the force produced by an actomyosin contractile ring. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel, Pkd2, to the cleavage furrow, whose activation by membrane tension promotes calcium influx and daughter cell separation. However, it is unclear how the activities of Pkd2 may affect the actomyosin ring. Here, through both microscopic and genetic analyses of a hypomorphic pkd2 mutant, we examined the potential role of this essential gene in assembling the contractile ring. The pkd2-81KD mutation significantly increased the counts of the type II myosin heavy chain Myo2 (+18%), its regulatory light chain Rlc1 (+37%) and actin (+100%) molecules in the ring, compared to the wild type. Consistent with a regulatory role of Pkd2 in the ring assembly, we identified a strong negative genetic interaction between pkd2-81KD and the temperature-sensitive mutant myo2-E1. The pkd2-81KD myo2-E1 cells often failed to assemble a complete contractile ring. We conclude that Pkd2 modulates the recruitment of type II myosin and actin to the contractile ring, suggesting a novel calcium-dependent mechanism regulating the actin cytoskeletal structures during cytokinesis.
Collapse
Affiliation(s)
| | | | | | | | - Qian Chen
- Department of Biological Sciences, The University of Toledo, 2801 Bancroft St, Toledo, OH 43606, USA; (P.C.); (D.S.); (M.C.)
| |
Collapse
|
15
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
16
|
Choksi SP, Byrnes LE, Konjikusic MJ, Tsai BWH, Deleon R, Lu Q, Westlake CJ, Reiter JF. An alternative cell cycle coordinates multiciliated cell differentiation. Nature 2024; 630:214-221. [PMID: 38811726 PMCID: PMC11996048 DOI: 10.1038/s41586-024-07476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
The canonical mitotic cell cycle coordinates DNA replication, centriole duplication and cytokinesis to generate two cells from one1. Some cells, such as mammalian trophoblast giant cells, use cell cycle variants like the endocycle to bypass mitosis2. Differentiating multiciliated cells, found in the mammalian airway, brain ventricles and reproductive tract, are post-mitotic but generate hundreds of centrioles, each of which matures into a basal body and nucleates a motile cilium3,4. Several cell cycle regulators have previously been implicated in specific steps of multiciliated cell differentiation5,6. Here we show that differentiating multiciliated cells integrate cell cycle regulators into a new alternative cell cycle, which we refer to as the multiciliation cycle. The multiciliation cycle redeploys many canonical cell cycle regulators, including cyclin-dependent kinases (CDKs) and their cognate cyclins. For example, cyclin D1, CDK4 and CDK6, which are regulators of mitotic G1-to-S progression, are required to initiate multiciliated cell differentiation. The multiciliation cycle amplifies some aspects of the canonical cell cycle, such as centriole synthesis, and blocks others, such as DNA replication. E2F7, a transcriptional regulator of canonical S-to-G2 progression, is expressed at high levels during the multiciliation cycle. In the multiciliation cycle, E2F7 directly dampens the expression of genes encoding DNA replication machinery and terminates the S phase-like gene expression program. Loss of E2F7 causes aberrant acquisition of DNA synthesis in multiciliated cells and dysregulation of multiciliation cycle progression, which disrupts centriole maturation and ciliogenesis. We conclude that multiciliated cells use an alternative cell cycle that orchestrates differentiation instead of controlling proliferation.
Collapse
Affiliation(s)
- Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Lauren E Byrnes
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Mia J Konjikusic
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict W H Tsai
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Deleon
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Quanlong Lu
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
17
|
Craig EM, Oprea F, Alam S, Grodsky A, Miller KE. A simple active fluid model unites cytokinesis, cell crawling, and axonal outgrowth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595337. [PMID: 38826455 PMCID: PMC11142150 DOI: 10.1101/2024.05.22.595337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Axonal outgrowth, cell crawling, and cytokinesis utilize actomyosin, microtubule-based motors, cytoskeletal dynamics, and substrate adhesions to produce traction forces and bulk cellular motion. While it has long been appreciated that growth cones resemble crawling cells and that the mechanisms that drive cytokinesis help power cell crawling, they are typically viewed as unique processes. To better understand the relationship between these modes of motility, here, we developed a unified active fluid model of cytokinesis, amoeboid migration, mesenchymal migration, neuronal migration, and axonal outgrowth in terms of cytoskeletal flow, adhesions, viscosity, and force generation. Using numerical modeling, we fit subcellular velocity profiles of the motions of cytoskeletal structures and docked organelles from previously published studies to infer underlying patterns of force generation and adhesion. Our results indicate that, during cytokinesis, there is a primary converge zone at the cleavage furrow that drives flow towards it; adhesions are symmetric across the cell, and as a result, cells are stationary. In mesenchymal, amoeboid, and neuronal migration, the site of the converge zone shifts, and differences in adhesion between the front and back of the cell drive crawling. During neuronal migration and axonal outgrowth, the primary convergence zone lies within the growth cone, which drives actin retrograde flow in the P-domain and bulk anterograde flow of the axonal shaft. They differ in that during neuronal migration, the cell body is weakly attached to the substrate and thus moves forward at the same velocity as the axon. In contrast, during axonal outgrowth, the cell body strongly adheres to the substrate and remains stationary, resulting in a decrease in flow velocity away from the growth cone. The simplicity with which cytokinesis, cell crawling, and axonal outgrowth can be modeled by varying coefficients in a simple model suggests a deep connection between them.
Collapse
Affiliation(s)
- Erin M. Craig
- Central Washington University, Department of Physics, 400 E. University Way, Ellensburg, WA 98926-7422, USA
| | - Francesca Oprea
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sajid Alam
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Ania Grodsky
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kyle E. Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
18
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. Curr Biol 2024; 34:2132-2146.e5. [PMID: 38688282 PMCID: PMC11111359 DOI: 10.1016/j.cub.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.
Collapse
Affiliation(s)
- Jonathan A Jackson
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Graduate Program in Biophysics, Harvard University, 86 Brattle Street, Cambridge, MA 02138, USA
| | - Marlis Denk-Lobnig
- Department of Biophysics, University of Michigan, 1109 Geddes Ave., Ann Arbor, MI 48109, USA
| | - Katherine A Kitzinger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Chen XY, Cheng AY, Wang ZY, Jin JM, Lin JY, Wang B, Guan YY, Zhang H, Jiang YX, Luan X, Zhang LJ. Dbl family RhoGEFs in cancer: different roles and targeting strategies. Biochem Pharmacol 2024; 223:116141. [PMID: 38499108 DOI: 10.1016/j.bcp.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao-Yu Cheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zi-Ying Wang
- School of Biological Engineering, Tianjin University of Science&Technology, Tianjin 301617, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hao Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
20
|
Dopeso H, Rodrigues P, Cartón-García F, Macaya I, Bilic J, Anguita E, Jing L, Brotons B, Vivancos N, Beà L, Sánchez-Martín M, Landolfi S, Hernandez-Losa J, Ramon y Cajal S, Nieto R, Vicario M, Farre R, Schwartz S, van Ijzendoorn SC, Kobayashi K, Martinez-Barriocanal Á, Arango D. RhoA downregulation in the murine intestinal epithelium results in chronic Wnt activation and increased tumorigenesis. iScience 2024; 27:109400. [PMID: 38523777 PMCID: PMC10959657 DOI: 10.1016/j.isci.2024.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/23/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Rho GTPases are molecular switches regulating multiple cellular processes. To investigate the role of RhoA in normal intestinal physiology, we used a conditional mouse model overexpressing a dominant negative RhoA mutant (RhoAT19N) in the intestinal epithelium. Although RhoA inhibition did not cause an overt phenotype, increased levels of nuclear β-catenin were observed in the small intestinal epithelium of RhoAT19N mice, and the overexpression of multiple Wnt target genes revealed a chronic activation of Wnt signaling. Elevated Wnt signaling in RhoAT19N mice and intestinal organoids did not affect the proliferation of intestinal epithelial cells but significantly interfered with their differentiation. Importantly, 17-month-old RhoAT19N mice showed a significant increase in the number of spontaneous intestinal tumors. Altogether, our results indicate that RhoA regulates the differentiation of intestinal epithelial cells and inhibits tumor initiation, likely through the control of Wnt signaling, a key regulator of proliferation and differentiation in the intestine.
Collapse
Affiliation(s)
- Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Paulo Rodrigues
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Fernando Cartón-García
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Irati Macaya
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josipa Bilic
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Estefanía Anguita
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Li Jing
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Bruno Brotons
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Núria Vivancos
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Laia Beà
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Manuel Sánchez-Martín
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Stefania Landolfi
- Translational Molecular Pathology, Vall d'Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Javier Hernandez-Losa
- Translational Molecular Pathology, Vall d'Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Santiago Ramon y Cajal
- Translational Molecular Pathology, Vall d'Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Rocío Nieto
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - María Vicario
- Digestive System Research Unit, Vall d’Hebron University Hospital Research Institute (VHIR), 08035 Barcelona, Spain
| | - Ricard Farre
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven 3000, Belgium
| | - Simo Schwartz
- Group of Drug Delivery and Targeting, Vall d'Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Sven C.D. van Ijzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Águeda Martinez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| |
Collapse
|
21
|
Schindler-Johnson M, Petridou NI. Collective effects of cell cleavage dynamics. Front Cell Dev Biol 2024; 12:1358971. [PMID: 38559810 PMCID: PMC10978805 DOI: 10.3389/fcell.2024.1358971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
Collapse
Affiliation(s)
- Magdalena Schindler-Johnson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicoletta I. Petridou
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
22
|
Goupil E, Lacroix L, Brière J, Guga S, Saba-El-Leil MK, Meloche S, Labbé JC. OSGN-1 is a conserved flavin-containing monooxygenase required to stabilize the intercellular bridge in late cytokinesis. Proc Natl Acad Sci U S A 2024; 121:e2308570121. [PMID: 38442170 PMCID: PMC10945809 DOI: 10.1073/pnas.2308570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Cytokinesis is the last step of cell division and is regulated by the small GTPase RhoA. RhoA activity is required for all steps of cytokinesis, including prior to abscission when daughter cells are ultimately physically separated. Like germ cells in all animals, the Caenorhabditis elegans embryonic germline founder cell initiates cytokinesis but does not complete abscission, leaving a stable intercellular bridge between the two daughter cells. Here, we identify and characterize C. elegans OSGN-1 as a cytokinetic regulator that promotes RhoA activity during late cytokinesis. Sequence analyses and biochemical reconstitutions reveal that OSGN-1 is a flavin-containing monooxygenase (MO). Genetic analyses indicate that the MO activity of OSGN-1 is required to maintain active RhoA at the end of cytokinesis in the germline founder cell and to stabilize the intercellular bridge. Deletion of OSGIN1 in human cells results in an increase in binucleation as a result of cytokinetic furrow regression, and this phenotype can be rescued by expressing a catalytically active form of C. elegans OSGN-1, indicating that OSGN-1 and OSGIN1 are functional orthologs. We propose that OSGN-1 and OSGIN1 are conserved MO enzymes required to maintain RhoA activity at the intercellular bridge during late cytokinesis and thus favor its stability, enabling proper abscission in human cells and bridge stabilization in C. elegans germ cells.
Collapse
Affiliation(s)
- Eugénie Goupil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Léa Lacroix
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jonathan Brière
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Sandra Guga
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Marc K. Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QCH3C 3J7, Canada
| |
Collapse
|
23
|
Qian W, Yamaguchi N, Lis P, Cammer M, Knaut H. Pulses of RhoA signaling stimulate actin polymerization and flow in protrusions to drive collective cell migration. Curr Biol 2024; 34:245-259.e8. [PMID: 38096821 PMCID: PMC10872453 DOI: 10.1016/j.cub.2023.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network. Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin-II-dependent actin flow and protrusion retraction at the base of the protrusions and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other contexts.
Collapse
Affiliation(s)
- Weiyi Qian
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Patrycja Lis
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
24
|
Tran AT, Wisniewski EO, Mistriotis P, Stoletov K, Parlani M, Amitrano A, Ifemembi B, Lee SJ, Bera K, Zhang Y, Tuntithavornwat S, Afthinos A, Kiepas A, Jamieson JJ, Zuo Y, Habib D, Wu PH, Martin SS, Gerecht S, Gu L, Lewis JD, Kalab P, Friedl P, Konstantopoulos K. Cytoplasmic accumulation and plasma membrane association of anillin and Ect2 promote confined migration and invasion. RESEARCH SQUARE 2024:rs.3.rs-3640969. [PMID: 38260442 PMCID: PMC10802709 DOI: 10.21203/rs.3.rs-3640969/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cells migrating in confinement experience mechanical challenges whose consequences on cell migration machinery remain only partially understood. Here, we demonstrate that a pool of the cytokinesis regulatory protein anillin is retained during interphase in the cytoplasm of different cell types. Confinement induces recruitment of cytoplasmic anillin to plasma membrane at the poles of migrating cells, which is further enhanced upon nuclear envelope (NE) rupture(s). Rupture events also enable the cytoplasmic egress of predominantly nuclear RhoGEF Ect2. Anillin and Ect2 redistributions scale with microenvironmental stiffness and confinement, and are observed in confined cells in vitro and in invading tumor cells in vivo. Anillin, which binds actomyosin at the cell poles, and Ect2, which activates RhoA, cooperate additively to promote myosin II contractility, and promote efficient invasion and extravasation. Overall, our work provides a mechanistic understanding of how cytokinesis regulators mediate RhoA/ROCK/myosin II-dependent mechanoadaptation during confined migration and invasive cancer progression.
Collapse
Affiliation(s)
- Avery T. Tran
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Emily O. Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | | | - Maria Parlani
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alice Amitrano
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Brent Ifemembi
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Soontorn Tuntithavornwat
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Alexandros Afthinos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - John J. Jamieson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Yi Zuo
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Daniel Habib
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Luo Gu
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Peter Friedl
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Genitourinary Medicine, UT MD Anderson Cancer Center, Houston TX, 77030 USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Oncology, The Johns Hopkins University, Baltimore MD, 21205, USA
| |
Collapse
|
25
|
Hsu CR, Sangha G, Fan W, Zheng J, Sugioka K. Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis. Nat Commun 2023; 14:8138. [PMID: 38065974 PMCID: PMC10709429 DOI: 10.1038/s41467-023-43996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokinesis plays crucial roles in morphogenesis. Previous studies have examined how tissue mechanics influences the position and closure direction of the contractile ring. However, the mechanisms by which the ring senses tissue mechanics remain largely elusive. Here, we show the mechanism of contractile ring mechanosensation and its tuning during asymmetric ring closure of Caenorhabditis elegans embryos. Integrative analysis of ring closure and cell cortex dynamics revealed that mechanical suppression of the ring-directed cortical flow is associated with asymmetric ring closure. Consistently, artificial obstruction of ring-directed cortical flow induces asymmetric ring closure in otherwise symmetrically dividing cells. Anillin is vital for mechanosensation. Our genetic analysis suggests that the positive feedback loop among ring-directed cortical flow, myosin enrichment, and ring constriction constitutes a mechanosensitive pathway driving asymmetric ring closure. These findings and developed tools should advance the 4D mechanobiology of cytokinesis in more complex tissues.
Collapse
Affiliation(s)
- Christina Rou Hsu
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Gaganpreet Sangha
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Wayne Fan
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Joey Zheng
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
26
|
Werner ME, Ray DD, Breen C, Staddon MF, Jug F, Banerjee S, Maddox AS. Mechanical positive feedback and biochemical negative feedback combine to generate complex contractile oscillations in cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569672. [PMID: 38076901 PMCID: PMC10705528 DOI: 10.1101/2023.12.01.569672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Contractile force generation by the cortical actomyosin cytoskeleton is essential for a multitude of biological processes. The actomyosin cortex behaves as an active material that drives local and large-scale shape changes via cytoskeletal remodeling in response to biochemical cues and feedback loops. Cytokinesis is the essential cell division event during which a cortical actomyosin ring generates contractile force to change cell shape and separate two daughter cells. Our recent work with active gel theory predicts that actomyosin systems under the control of a biochemical oscillator and experiencing mechanical strain will exhibit complex spatiotemporal behavior, but cytokinetic contractility was thought to be kinetically simple. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we used 4-dimensional imaging with unprecedented temporal resolution and discovered sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Quantification of ingression speed oscillations revealed wide ranges of oscillation period and amplitude. In the cytokinetic ring, activity of the master regulator RhoA pulsed with a timescale of approximately 20 seconds, shorter than that reported for any other biological context. Contractility oscillated with 20-second periodicity and with much longer periods. A combination of in vivo and in silico approaches to modify mechanical feedback revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Effective local ring ingression is characterized by slower speed oscillations, likely due to increased local stresses and therefore mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico . We propose that downstream of initiation by pulsed RhoA activity, mechanical positive feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and therefore makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Our work demonstrates that while biochemical feedback loops afford systems responsiveness and robustness, mechanical feedback must also be considered to describe and understand the behaviors of active materials in vivo .
Collapse
|
27
|
Chow SE, Hsu CC, Yang CT, Meir YJJ. YAP co-localizes with the mitotic spindle and midbody to safeguard mitotic division in lung-cancer cells. FEBS J 2023; 290:5704-5719. [PMID: 37549045 DOI: 10.1111/febs.16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
YES-associated protein (YAP) is a part of the Hippo pathway, with pivotal roles in several developmental processes and dual functionality as both a tumor suppressor and an oncogene. In the present study, we identified YAP activity as a microtubular scaffold protein that maintains the stability of the mitotic spindle and midbody by physically interacting with α-tubulin during mitotic progression. The interaction of YAP and α-tubulin was evident in co-immunoprecipitation assays, as well as observing their co-localization in the microtubular structure of the mitotic spindle and midbody in immunostainings. With YAP depletion, levels of ECT2, MKLP-1, and Aurora B are reduced, which is consistent with YAP functioning in midbody formation during cytokinesis. The concomitant decrease in α-tubulin and increase in acetyl-α-tubulin during YAP depletion occurred at the post-transcriptional level. This suggests that YAP maintains the stability of the mitotic spindle and midbody, which ensures appropriate chromosome segregation during mitotic division. The increase in acetyl-α-tubulin during YAP depletion may provide a lesion-halting mechanism in maintaining the microtubule structure. The depletion of YAP also results in multinuclearity and aneuploidy, which supports its role in stabilizing the mitotic spindle and midbody.
Collapse
Affiliation(s)
- Shu-Er Chow
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nature Science, Center for General Studies, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Hsu
- Department of Nature Science, Center for General Studies, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Taoyuan Chang Gung Memorial Hospital, Taiwan
| | - Yaa-Jyuhn J Meir
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
28
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565883. [PMID: 37986763 PMCID: PMC10659369 DOI: 10.1101/2023.11.06.565883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. While mechanisms have been established for individual cells' dynamic behaviors, mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a RhoGEF and RhoGAP pair whose relocalization from nucleus to cortex results in actomyosin waves in egg chambers. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly and RhoGAP recruitment by ~4 seconds. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types.
Collapse
Affiliation(s)
- Jonathan A. Jackson
- Department of Biology, Massachusetts Institute of Technology
- Graduate Program in Biophysics, Harvard University
| | | | | | - Adam C. Martin
- Department of Biology, Massachusetts Institute of Technology
- Lead contact
| |
Collapse
|
29
|
Shan S, Su M, Li Y, Wang Z, Liu D, Zhou Y, Fu X, Yang S, Zhang J, Qiu J, Liu H, Zeng G, Chen P, Wang X, DiSanto ME, Guo Y, Zhang X. Mechanism of RhoA regulating benign prostatic hyperplasia: RhoA-ROCK-β-catenin signaling axis and static & dynamic dual roles. Mol Med 2023; 29:139. [PMID: 37864185 PMCID: PMC10589999 DOI: 10.1186/s10020-023-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The pathogenesis of benign prostatic hyperplasia (BPH) has not been fully elucidated. Ras homology family member A (RhoA) plays an important role in regulating cell cytoskeleton, growth and fibrosis. The role of RhoA in BPH remains unclear. METHODS This study aimed to clarify the expression, functional activity and mechanism of RhoA in BPH. Human prostate tissues, human prostate cell lines, BPH rat model were used. Cell models of RhoA knockdown and overexpression were generated. Immunofluorescence staining, quantitative real time PCR (qRT-PCR), Western blotting, cell counting kit-8 (CCK-8), flow cytometry, phalloidine staining, organ bath study, gel contraction assay, protein stability analysis, isolation and extraction of nuclear protein and cytoplasmic protein were performed. RESULTS In this study we found that RhoA was localized in prostate stroma and epithelial compartments and was up-regulated in both BPH patients and BPH rats. Functionally, RhoA knockdown induced cell apoptosis and inhibited cell proliferation, fibrosis, epithelial-mesenchymal transformation (EMT) and contraction. Consistently, overexpression of RhoA reversed all aforementioned processes. More importantly, we found that β-catenin and the downstream of Wnt/β-catenin signaling, including C-MYC, Survivin and Snail were up-regulated in BPH rats. Downregulation of RhoA significantly reduced the expression of these proteins. Rho kinase inhibitor Y-27632 also down-regulated β-catenin protein in a concentration-dependent manner. However, overexpression of β-catenin did not affect RhoA-ROCK levels, suggesting that β-catenin was the downstream of RhoA-ROCK regulation. Further data suggested that RhoA increased nuclear translocation of β-catenin and up-regulated β-catenin expression by inhibiting its proteasomal degradation, thereby activating Wnt/β-catenin signaling. Overexpression of β-catenin partially reversed the changes in cell growth, fibrosis and EMT except cell contraction caused by RhoA downregulation. Finally, Y-27632 partially reversed prostatic hyperplasia in vivo, further suggesting the potential of RhoA-ROCK signaling in BPH treatment. CONCLUSION Our novel data demonstrated that RhoA regulated both static and dynamic factors of BPH, RhoA-ROCK-β-catenin signaling axis played an important role in the development of BPH and might provide more possibilities for the formulation of subsequent clinical treatment strategies.
Collapse
Affiliation(s)
- Shidong Shan
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Min Su
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Jizhang Qiu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
30
|
Bakshi A, Iturra FE, Alamban A, Rosas-Salvans M, Dumont S, Aydogan MG. Cytoplasmic division cycles without the nucleus and mitotic CDK/cyclin complexes. Cell 2023; 186:4694-4709.e16. [PMID: 37832525 PMCID: PMC10659773 DOI: 10.1016/j.cell.2023.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.
Collapse
Affiliation(s)
- Anand Bakshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabio Echegaray Iturra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Alamban
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miquel Rosas-Salvans
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mustafa G Aydogan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Qian W, Yamaguchi N, Lis P, Cammer M, Knaut H. Pulses of RhoA Signaling Stimulate Actin Polymerization and Flow in Protrusions to Drive Collective Cell Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560679. [PMID: 37873192 PMCID: PMC10592895 DOI: 10.1101/2023.10.03.560679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network (Yamada and Sixt, 2019). Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin II-dependent actin flow and protrusion retraction at the base of the protrusions, and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other-but not all (Bastock and Strutt, 2007; Lebreton and Casanova, 2013; Matthews et al., 2008)-contexts.
Collapse
Affiliation(s)
- Weiyi Qian
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
- These authors contributed equally to this work
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
- These authors contributed equally to this work
| | - Patrycja Lis
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| | - Michael Cammer
- Microscopy laboratory, New York University Grossman School of Medicine, New York, United States
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| |
Collapse
|
32
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
33
|
Cortes DB, Maddox PS, Nédéléç FJ, Maddox AS. Contractile ring composition dictates kinetics of in silico contractility. Biophys J 2023; 122:3611-3629. [PMID: 36540027 PMCID: PMC10541479 DOI: 10.1016/j.bpj.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Constriction kinetics of the cytokinetic ring are expected to depend on dynamic adjustment of contractile ring composition, but the impact of ring component abundance dynamics on ring constriction is understudied. Computational models generally assume that contractile networks maintain constant total amounts of components, which is not always true. To test how compositional dynamics affect constriction kinetics, we first measured F-actin, non-muscle myosin II, septin, and anillin during Caenorhabditis elegans zygotic mitosis. A custom microfluidic device that positioned the cell with the division plane parallel to a light sheet allowed even illumination of the cytokinetic ring. Measured component abundances were implemented in a three-dimensional agent-based model of a membrane-associated contractile ring. With constant network component amounts, constriction completed with biologically unrealistic kinetics. However, imposing the measured changes in component quantities allowed this model to elicit realistic constriction kinetics. Simulated networks were more sensitive to changes in motor and filament amounts than those of crosslinkers and tethers. Our findings highlight the importance of network composition for actomyosin contraction kinetics.
Collapse
Affiliation(s)
- Daniel B Cortes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Francois J Nédéléç
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
34
|
Tong CS, Xǔ XJ, Wu M. Periodicity, mixed-mode oscillations, and multiple timescales in a phosphoinositide-Rho GTPase network. Cell Rep 2023; 42:112857. [PMID: 37494180 DOI: 10.1016/j.celrep.2023.112857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
While rhythmic contractile behavior is commonly observed at the cellular cortex, the primary focus has been on excitable or periodic events described by simple activator-delayed inhibitor mechanisms. We show that Rho GTPase activation in nocodazole-treated mitotic cells exhibits both simple oscillations and complex mixed-mode oscillations. Rho oscillations with a 20- to 30-s period are regulated by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) via an activator-delayed inhibitor mechanism, while a slow reaction with period of minutes is regulated by phosphatidylinositol 4-kinase via an activator-substrate depletion mechanism. Conversion from simple to complex oscillations can be induced by modulating PIP3 metabolism or altering membrane contact site protein E-Syt1. PTEN depletion results in a period-doubling intermediate, which, like mixed-mode oscillations, is an intermediate state toward chaos. In sum, this system operates at the edge of chaos. Small changes in phosphoinositide metabolism can confer cells with the flexibility to rapidly enter ordered states with different periodicities.
Collapse
Affiliation(s)
- Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Zhu C, Zhou Q, Wang Z, Zhang J, Xu C, Ruan D. Growth differentiation factor 5 inhibits lipopolysaccharide-mediated pyroptosis of nucleus pulposus mesenchymal stem cells via RhoA signaling pathway. Mol Biol Rep 2023; 50:6337-6347. [PMID: 37310547 DOI: 10.1007/s11033-023-08547-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Degenerative disc disease(DDD)is one of the most important causes of low back pain (LBP). Programmed death of human nucleus pulposus mesenchymal stem cells (NPMSCs) plays an important role in the progression of DDD. Growth differentiation factor-5 (GDF-5) is a protein that promotes chondrogenic differentiation, and has been reported to slow the expression of inflammatory factors in nucleus pulposus cells. Compared with those in normal rats, MRI T2-weighted images show hypointense in the central nucleus pulposus region of the intervertebral disc in GDF-5 knockout rats. METHODS AND RESULTS We aimed to evaluate the role of GDF-5 and Ras homolog family member A (RhoA) in NPMSCs. We used lipopolysaccharide (LPS) to simulate the inflammatory environment in degenerative disc disease, and performed related experiments on the effects of GDF-5 on NPMSCs, including the effects of pyroptosis, RhoA protein, and the expression of extracellular matrix components, and the effects of GDF-5, on NPMSCs. In addition, the effect of GDF-5 on chondroid differentiation of NPMSCs was included. The results showed that the addition of GDF-5 inhibited the LPS-induced pyroptosis of NPMSCs, and further analysis of its mechanism showed that this was achieved by activating the RhoA signaling pathway. CONCLUSION These findings suggest that GDF-5 plays an important role in inhibiting the pyroptosis of NPMSCs and GDF-5 may have potential for degenerative disc disease gene-targeted therapy in the future.
Collapse
Affiliation(s)
- Chao Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Qing Zhou
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedic Surgery, Navy Clinical College of Anhui Medical University, Beijing, 100048, China
| | - Zuqiang Wang
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Junyou Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Cheng Xu
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
36
|
Warecki B, Tao L. Centralspindlin-mediated transport of RhoGEF positions the cleavage plane for cytokinesis. Sci Signal 2023; 16:eadh0601. [PMID: 37402224 PMCID: PMC10501416 DOI: 10.1126/scisignal.adh0601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
During cytokinesis, the cell membrane furrows inward along a cleavage plane. The positioning of the cleavage plane is critical to faithful cell division and is determined by the Rho guanine nucleotide exchange factor (RhoGEF)-mediated activation of the small guanosine triphosphatase RhoA and the conserved motor protein complex centralspindlin. Here, we explored whether and how centralspindlin mediates the positioning of RhoGEF. In dividing neuroblasts from Drosophila melanogaster, we observed that immediately before cleavage, first centralspindlin and then RhoGEF localized to the sites where cleavage subsequently initiated. Using in vitro assays with purified Drosophila proteins and stabilized microtubules, we found that centralspindlin directly transported RhoGEF as cargo along single microtubules and sequestered it at microtubule plus-ends for prolonged periods of time. In addition, the binding of RhoGEF to centralspindlin appeared to stimulate centralspindlin motor activity. Thus, the motor activity and microtubule association of centralspindlin can translocate RhoGEF to areas where microtubule plus-ends are abundant, such as at overlapping astral microtubules, to locally activate RhoA and accurately position the cleavage plane during cell division.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Biology, University of Hawai’i at Hilo, HI 96720, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz; Santa Cruz, CA 95064, USA
| | - Li Tao
- Department of Biology, University of Hawai’i at Hilo, HI 96720, USA
| |
Collapse
|
37
|
Peña-Guerrero J, Fernández-Rubio C, García-Sosa AT, Nguewa PA. BRCT Domains: Structure, Functions, and Implications in Disease-New Therapeutic Targets for Innovative Drug Discovery against Infections. Pharmaceutics 2023; 15:1839. [PMID: 37514027 PMCID: PMC10386641 DOI: 10.3390/pharmaceutics15071839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The search for new therapeutic targets and their implications in drug development remains an emerging scientific topic. BRCT-bearing proteins are found in Archaea, Bacteria, Eukarya, and viruses. They are traditionally involved in DNA repair, recombination, and cell cycle control. To carry out these functions, BRCT domains are able to interact with DNA and proteins. Moreover, such domains are also implicated in several pathogenic processes and malignancies including breast, ovarian, and lung cancer. Although these domains exhibit moderately conserved folding, their sequences show very low conservation. Interestingly, sequence variations among species are considered positive traits in the search for suitable therapeutic targets, since non-specific drug interactions might be reduced. These main characteristics of BRCT, as well as its critical implications in key biological processes in the cell, have prompted the study of these domains as therapeutic targets. This review explores the possible roles of BRCT domains as therapeutic targets for drug discovery. We describe their common structural features and relevant interactions and pathways, as well as their implications in pathologic processes. Drugs commonly used to target these domains are also presented. Finally, based on their structures, we describe new drug design possibilities using modern and innovative techniques.
Collapse
Affiliation(s)
- José Peña-Guerrero
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| | - Celia Fernández-Rubio
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| | - Alfonso T García-Sosa
- Chair of Molecular Technology, Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Paul A Nguewa
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| |
Collapse
|
38
|
Carim SC, Hickson GR. The Rho1 GTPase controls anillo-septin assembly to facilitate contractile ring closure during cytokinesis. iScience 2023; 26:106903. [PMID: 37378349 PMCID: PMC10291328 DOI: 10.1016/j.isci.2023.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Animal cell cytokinesis requires activation of the GTPase RhoA (Rho1 in Drosophila), which assembles an F-actin- and myosin II-dependent contractile ring (CR) at the equatorial plasma membrane. CR closure is poorly understood, but involves the multidomain scaffold protein, Anillin. Anillin binds many CR components including F-actin and myosin II (collectively actomyosin), RhoA and the septins. Anillin recruits septins to the CR but the mechanism is unclear. Live imaging of Drosophila S2 cells and HeLa cells revealed that the Anillin N-terminus, which scaffolds actomyosin, cannot recruit septins to the CR. Rather, septin recruitment required the ability of the Anillin C-terminus to bind Rho1-GTP and the presence of the Anillin PH domain, in a sequential mechanism occurring at the plasma membrane, independently of F-actin. Anillin mutations that blocked septin recruitment, but not actomyosin scaffolding, slowed CR closure and disrupted cytokinesis. Thus, CR closure requires coordination of two Rho1-dependent networks: actomyosin and anillo-septin.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Gilles R.X. Hickson
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
39
|
Montembault E, Deduyer I, Claverie MC, Bouit L, Tourasse NJ, Dupuy D, McCusker D, Royou A. Two RhoGEF isoforms with distinct localisation control furrow position during asymmetric cell division. Nat Commun 2023; 14:3209. [PMID: 37268622 DOI: 10.1038/s41467-023-38912-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Cytokinesis partitions cellular content between daughter cells. It relies on the formation of an acto-myosin contractile ring, whose constriction induces the ingression of the cleavage furrow between the segregated chromatids. Rho1 GTPase and its RhoGEF (Pbl) are essential for this process. However, how Rho1 is regulated to sustain furrow ingression while maintaining correct furrow position remains poorly defined. Here, we show that during asymmetric division of Drosophila neuroblasts, Rho1 is controlled by two Pbl isoforms with distinct localisation. Spindle midzone- and furrow-enriched Pbl-A focuses Rho1 at the furrow to sustain efficient ingression, while Pbl-B pan-plasma membrane localization promotes the broadening of Rho1 activity and the subsequent enrichment of myosin on the entire cortex. This enlarged zone of Rho1 activity is critical to adjust furrow position, thereby preserving correct daughter cell size asymmetry. Our work highlights how the use of isoforms with distinct localisation makes an essential process more robust.
Collapse
Affiliation(s)
- Emilie Montembault
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Irène Deduyer
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Marie-Charlotte Claverie
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Lou Bouit
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5297, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France
| | - Nicolas J Tourasse
- University of Bordeaux, INSERM, U1212, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Denis Dupuy
- University of Bordeaux, INSERM, U1212, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Derek McCusker
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Anne Royou
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France.
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
| |
Collapse
|
40
|
Onwubiko UN, Kalathil D, Koory E, Pokharel S, Roberts H, Mitoubsi A, Das M. Cdc42 prevents precocious Rho1 activation during cytokinesis in a Pak1-dependent manner. J Cell Sci 2023; 136:jcs261160. [PMID: 37039135 PMCID: PMC10163358 DOI: 10.1242/jcs.261160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
During cytokinesis, a series of coordinated events partition a dividing cell. Accurate regulation of cytokinesis is essential for proliferation and genome integrity. In fission yeast, these coordinated events ensure that the actomyosin ring and septum start ingressing only after chromosome segregation. How cytokinetic events are coordinated remains unclear. The GTPase Cdc42 promotes recruitment of certain cell wall-building enzymes whereas the GTPase Rho1 activates these enzymes. We show that Cdc42 prevents early Rho1 activation during fission yeast cytokinesis. Using an active Rho probe, we find that although the Rho1 activators Rgf1 and Rgf3 localize to the division site in early anaphase, Rho1 is not activated until late anaphase, just before the onset of ring constriction. We find that loss of Cdc42 activation enables precocious Rho1 activation in early anaphase. Furthermore, we provide functional and genetic evidence that Cdc42-dependent Rho1 inhibition is mediated by the Cdc42 target Pak1 kinase. Our work proposes a mechanism of Rho1 regulation by active Cdc42 to coordinate timely septum formation and cytokinesis fidelity.
Collapse
Affiliation(s)
- Udo N. Onwubiko
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Dhanya Kalathil
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - Emma Koory
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sahara Pokharel
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hayden Roberts
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ahmad Mitoubsi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maitreyi Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
41
|
Yuen WS, Zhang QH, Bourdais A, Adhikari D, Halet G, Carroll J. Polo-like kinase 1 promotes Cdc42-induced actin polymerization for asymmetric division in oocytes. Open Biol 2023; 13:220326. [PMID: 36883283 PMCID: PMC9993042 DOI: 10.1098/rsob.220326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Polo-like kinase I (Plk1) is a highly conserved seronine/threonine kinase essential in meiosis and mitosis for spindle formation and cytokinesis. Here, through temporal application of Plk1 inhibitors, we identify a new role for Plk1 in the establishment of cortical polarity essential for highly asymmetric cell divisions of oocyte meiosis. Application of Plk1 inhibitors in late metaphase I abolishes pPlk1 from spindle poles and prevents the induction of actin polymerization at the cortex through inhibition of local recruitment of Cdc42 and Neuronal Wiskott-Aldrich Syndrome protein (N-WASP). By contrast, an already established polar actin cortex is insensitive to Plk1 inhibitors, but if the polar cortex is first depolymerized, Plk1 inhibitors completely prevent its restoration. Thus, Plk1 is essential for establishment but not maintenance of cortical actin polarity. These findings indicate that Plk1 regulates recruitment of Cdc42 and N-Wasp to coordinate cortical polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Wai Shan Yuen
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qing Hua Zhang
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anne Bourdais
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - John Carroll
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
42
|
Sambandam A, Storm E, Tauc H, Hackney JA, Garfield D, Caplazi P, Liu J, Zhang J, Zhang H, Duggan J, Jeet S, Gierke S, Chang P, Wu X, Newman R, Tam L, Alcantar T, Wang L, Roose-Girma M, Modrusan Z, Lee WP, Jasper H, de Sauvage F, Pappu R. Obligate role for Rock1 and Rock2 in adult stem cell viability and function. Heliyon 2023; 9:e14238. [PMID: 36950615 PMCID: PMC10025895 DOI: 10.1016/j.heliyon.2023.e14238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The ability of stem cells to rapidly proliferate and differentiate is integral to the steady-state maintenance of tissues with high turnover such as the blood and intestine. Mutations that alter these processes can cause primary immunodeficiencies, malignancies and defects in barrier function. The Rho-kinases, Rock1 and Rock2, regulate cell shape and cytoskeletal rearrangement, activities essential to mitosis. Here, we use inducible gene targeting to ablate Rock1 and Rock2 in adult mice, and identify an obligate requirement for these enzymes in the preservation of the hematopoietic and gastrointestinal systems. Hematopoietic cell progenitors devoid of Rho-kinases display cell cycle arrest, blocking the differentiation to mature blood lineages. Similarly, these mice exhibit impaired epithelial cell renewal in the small intestine, which is ultimately fatal. Our data reveal a novel role for these kinases in the proliferation and viability of stem cells and their progenitors, which is vital to maintaining the steady-state integrity of these organ systems.
Collapse
Affiliation(s)
| | - Elaine Storm
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Helen Tauc
- Department of Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Jason A. Hackney
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - David Garfield
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Patrick Caplazi
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, USA
| | - John Liu
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Juan Zhang
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Jeff Duggan
- Department of Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Sarah Gierke
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, USA
| | - Patrick Chang
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, USA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Robert Newman
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Tuija Alcantar
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Lifen Wang
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Meron Roose-Girma
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Wyne P. Lee
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Heinrich Jasper
- Department of Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Frederic de Sauvage
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Rajita Pappu
- Department of Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
- Corresponding author.
| |
Collapse
|
43
|
Rezig IM, Yaduma WG, Gould GW, McInerny CJ. The role of anillin/Mid1p during medial division and cytokinesis: from fission yeast to cancer cells. Cell Cycle 2023; 22:633-644. [PMID: 36426865 PMCID: PMC9980708 DOI: 10.1080/15384101.2022.2147655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cytokinesis is the final stage of cell division cycle when cellular constituents are separated to produce two daughter cells. This process is driven by the formation and constriction of a contractile ring. Progression of these events is controlled by mechanisms and proteins that are evolutionary conserved in eukaryotes from fungi to humans. Genetic and molecular studies in different model organisms identified essential cytokinesis genes, with several conserved proteins, including the anillin/Mid1p proteins, constituting the core cytokinetic machinery. The fission yeast Schizosaccharomyces pombe represents a well-established model organism to study eukaryotic cell cycle regulation. Cytokinesis in fission yeast and mammalian cells depends on the placement, assembly, maturation, and constriction of a medially located actin-myosin contractile ring (ACR). Here, we review aspects of the ACR assembly and cytokinesis process in fission yeast and consider the regulation of such events in mammalian cells. First, we briefly describe the role of anillin during mammalian ACR assembly and cytokinesis. Second, we describe different aspects of the anillin-like protein Mid1p regulation during the S. pombe cell cycle, including its structure, function, and phospho-regulation. Third, we briefly discuss Mid1pindependent ACR assembly in S. pombe. Fourth, we highlight emerging studies demonstrating the roles of anillin in human tumourigenesis introducing anillin as a potential drug target for cancer treatment. Collectively, we provide an overview of the current understanding of medial division and cytokinesis in S. pombe and suggest the implications of these observations in other eukaryotic organisms, including humans.
Collapse
Affiliation(s)
- Imane M. Rezig
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, UK
| | - Wandiahyel G. Yaduma
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, UK,Department of Chemistry, School of Sciences, Adamawa State College of Education Hong, Nigeria
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Christopher J. McInerny
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, UK,CONTACT Christopher J. McInerny School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, GlasgowG12 8QQ, UK
| |
Collapse
|
44
|
Law RA, Kiepas A, Desta HE, Perez Ipiña E, Parlani M, Lee SJ, Yankaskas CL, Zhao R, Mistriotis P, Wang N, Gu Z, Kalab P, Friedl P, Camley BA, Konstantopoulos K. Cytokinesis machinery promotes cell dissociation from collectively migrating strands in confinement. SCIENCE ADVANCES 2023; 9:eabq6480. [PMID: 36630496 PMCID: PMC9833664 DOI: 10.1126/sciadv.abq6480] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/07/2022] [Indexed: 05/10/2023]
Abstract
Cells tune adherens junction dynamics to regulate epithelial integrity in diverse (patho)physiological processes, including cancer metastasis. We hypothesized that the spatially confining architecture of peritumor stroma promotes metastatic cell dissemination by remodeling cell-cell adhesive interactions. By combining microfluidics with live-cell imaging, FLIM/FRET biosensors, and optogenetic tools, we show that confinement induces leader cell dissociation from cohesive ensembles. Cell dissociation is triggered by myosin IIA (MIIA) dismantling of E-cadherin cell-cell junctions, as recapitulated by a mathematical model. Elevated MIIA contractility is controlled by RhoA/ROCK activation, which requires distinct guanine nucleotide exchange factors (GEFs). Confinement activates RhoA via nucleocytoplasmic shuttling of the cytokinesis-regulatory proteins RacGAP1 and Ect2 and increased microtubule dynamics, which results in the release of active GEF-H1. Thus, confining microenvironments are sufficient to induce cell dissemination from primary tumors by remodeling E-cadherin cell junctions via the interplay of microtubules, nuclear trafficking, and RhoA/ROCK/MIIA pathway and not by down-regulating E-cadherin expression.
Collapse
Affiliation(s)
- Robert A. Law
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Habben E. Desta
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emiliano Perez Ipiña
- William H. Miller III Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maria Parlani
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher L. Yankaskas
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nianchao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhizhan Gu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter Friedl
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Cancer Genomics Center, 3584 Utrecht, Netherlands
| | - Brian A. Camley
- William H. Miller III Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
45
|
Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells? Curr Top Dev Biol 2023; 154:131-167. [PMID: 37100516 DOI: 10.1016/bs.ctdb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.
Collapse
|
46
|
Rani B, Gupta DK, Johansson S, Kamranvar SA. Contribution of integrin adhesion to cytokinetic abscission and genomic integrity. Front Cell Dev Biol 2022; 10:1048717. [PMID: 36578785 PMCID: PMC9791049 DOI: 10.3389/fcell.2022.1048717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Recent research shows that integrin-mediated adhesion contributes to the regulation of cell division at two key steps: the formation of the mitotic spindle at the mitotic entry and the final cytokinetic abscission at the mitotic exit. Failure in either of these processes will have a direct impact on the other in each round of the cell cycle and on the genomic integrity. This review aims to present how integrin signals are involved at these cell cycle stages under normal conditions and some safety mechanisms that may counteract the generation of aneuploid cells in cases of defective integrin signals.
Collapse
Affiliation(s)
- Bhavna Rani
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Deepesh K. Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden,*Correspondence: Staffan Johansson, ; Siamak A. Kamranvar,
| | - Siamak A. Kamranvar
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden,*Correspondence: Staffan Johansson, ; Siamak A. Kamranvar,
| |
Collapse
|
47
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
48
|
High-Content RNAi Phenotypic Screening Unveils the Involvement of Human Ubiquitin-Related Enzymes in Late Cytokinesis. Cells 2022; 11:cells11233862. [PMID: 36497121 PMCID: PMC9737832 DOI: 10.3390/cells11233862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
CEP55 is a central regulator of late cytokinesis and is overexpressed in numerous cancers. Its post-translationally controlled recruitment to the midbody is crucial to the structural coordination of the abscission sequence. Our recent evidence that CEP55 contains two ubiquitin-binding domains was the first structural and functional link between ubiquitin signaling and ESCRT-mediated severing of the intercellular bridge. So far, high-content screens focusing on cytokinesis have used multinucleation as the endpoint readout. Here, we report an automated image-based detection method of intercellular bridges, which we applied to further our understanding of late cytokinetic signaling by performing an RNAi screen of ubiquitin ligases and deubiquitinases. A secondary validation confirmed four candidate genes, i.e., LNX2, NEURL, UCHL1 and RNF157, whose downregulation variably affects interconnected phenotypes related to CEP55 and its UBDs, as follows: decreased recruitment of CEP55 to the midbody, increased number of midbody remnants per cell, and increased frequency of intercellular bridges or multinucleation events. This brings into question the Notch-dependent or independent contributions of LNX2 and NEURL proteins to late cytokinesis. Similarly, the role of UCHL1 in autophagy could link its function with the fate of midbody remnants. Beyond the biological interest, this high-content screening approach could also be used to isolate anticancer drugs that act by impairing cytokinesis and CEP55 functions.
Collapse
|
49
|
Ozugergin I, Piekny A. Diversity is the spice of life: An overview of how cytokinesis regulation varies with cell type. Front Cell Dev Biol 2022; 10:1007614. [PMID: 36420142 PMCID: PMC9676254 DOI: 10.3389/fcell.2022.1007614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Cytokinesis is required to physically cleave a cell into two daughters at the end of mitosis. Decades of research have led to a comprehensive understanding of the core cytokinesis machinery and how it is regulated in animal cells, however this knowledge was generated using single cells cultured in vitro, or in early embryos before tissues develop. This raises the question of how cytokinesis is regulated in diverse animal cell types and developmental contexts. Recent studies of distinct cell types in the same organism or in similar cell types from different organisms have revealed striking differences in how cytokinesis is regulated, which includes different threshold requirements for the structural components and the mechanisms that regulate them. In this review, we highlight these differences with an emphasis on pathways that are independent of the mitotic spindle, and operate through signals associated with the cortex, kinetochores, or chromatin.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
50
|
Tanzhu G, Chen L, Xiao G, Shi W, Peng H, Chen D, Zhou R. The schemes, mechanisms and molecular pathway changes of Tumor Treating Fields (TTFields) alone or in combination with radiotherapy and chemotherapy. Cell Death Discov 2022; 8:416. [PMID: 36220835 PMCID: PMC9553876 DOI: 10.1038/s41420-022-01206-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor Treating Fields (TTFields) is a physical therapy that uses moderate frequency (100-300 kHz) and low-intensity (1-3 V/cm) alternating electric fields to inhibit tumors. Currently, the Food and Drug Administration approves TTFields for treating recurrent or newly diagnosed glioblastoma (GBM) and malignant pleural mesothelioma (MPM). The classical mechanism of TTFields is mitotic inhibition by hindering the formation of tubulin and spindle. In addition, TTFields inhibits cell proliferation, invasion, migration and induces cell death, such as apoptosis, autophagy, pyroptosis, and cell cycle arrest. Meanwhile, it regulates immune function and changes the permeability of the nuclear membrane, cell membrane, and blood-brain barrier. Based on the current researches on TTFields in various tumors, this review comprehensively summarizes the in-vitro effects, changes in pathways and molecules corresponding to relevant parameters of TTFields (frequency, intensity, and duration). In addition, radiotherapy and chemotherapy are common tumor treatments. Thus, we also pay attention to the sequence and dose when TTFields combined with radiotherapy or chemotherapy. TTFields has inhibitory effects in a variety of tumors. The study of TTFields mechanism is conducive to subsequent research. How to combine common tumor therapy such as radiotherapy and chemotherapy to obtain the maximum benefit is also a problem that's worthy of our attention.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Ltd, Changsha, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P.R. China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 410008, Changsha, China.
| |
Collapse
|