1
|
Jing Z, Ye F, Liu X, Gao H. A critical review of microbial profiles in black and odorous waters. ENVIRONMENTAL RESEARCH 2025; 270:120972. [PMID: 39884529 DOI: 10.1016/j.envres.2025.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive. BOWs are characterized by high concentrations of organic compounds and limited oxygen inputs, which have facilitated the emergence of distinct microbial species. The algae, hydrolytic and fermentative bacterium, sulfate-reducing bacteria, Fe-reducing bacteria and other microorganisms play an important role in the process of blackening and odorization of waters. Studying these specific microbial taxonomies provides valuable insights into their adaptations and contributions to the overall functioning of BOWs. This study comprehensively reviews 1) the microbial community structure, assembly and succession in BOWs; 2) the key microbial profiles involved in BOWs formation; 3) the interspecies interactions process in the BOWs, which are the issues easily overlooked but deserve further research and development.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Fanjin Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| |
Collapse
|
2
|
Mills DB, Vuillemin A, Muschler K, Coskun ÖK, Orsi WD. The Rise of Algae promoted eukaryote predation in the Neoproterozoic benthos. SCIENCE ADVANCES 2025; 11:eadt2147. [PMID: 39970204 PMCID: PMC11838005 DOI: 10.1126/sciadv.adt2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
The proliferation of marine algae in the Neoproterozoic Era is thought to have stimulated the ecology of predatory microbial eukaryotes. To test this proposal, we introduced algal particulate matter (APM) to marine sediments underlying a modern marine oxygen minimum zone with bottom-water oxygen concentrations approximating those of the late Neoproterozoic water column. We found that under anoxia, APM significantly stimulated microbial eukaryote gene expression, particularly genes involved in anaerobic energy metabolism and phagocytosis, and increased the relative abundance of 18S rRNA from known predatory clades. We additionally confirmed that APM promoted the reproduction of benthic foraminifera under anoxia with higher-than-expected net growth efficiencies. Overall, our findings suggest that algal biomass exported to the Neoproterozoic benthos stimulated the ecology of benthic predatory protists under anoxia, thereby creating more modern food webs by enhancing the transfer of fixed carbon and energy to eukaryotes occupying higher trophic levels, including the earliest benthic metazoans.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
| | - Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Katharina Muschler
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Ömer K. Coskun
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - William D. Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| |
Collapse
|
3
|
Glock N, Richirt J, Woehle C, Algar C, Armstrong M, Eichner D, Firrincieli H, Makabe A, Govindankutty Menon A, Ishitani Y, Hackl T, Hubert-Huard R, Kienast M, Milker Y, Mutzberg A, Ni S, Okada S, Rakshit S, Schmiedl G, Steiner Z, Tame A, Zhang Z, Nomaki H. Widespread occurrence and relevance of phosphate storage in foraminifera. Nature 2025; 638:1000-1006. [PMID: 39814888 PMCID: PMC11864969 DOI: 10.1038/s41586-024-08431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025]
Abstract
Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate1, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water1. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea. The total amount of intracellular phosphate stored in the benthic foraminifer Ammonia confertitesta in the Wadden Sea during a bloom is as high as around 5% of the annual consumption of phosphorus (P) fertilizer in Germany. Budget calculations for the Southern North Sea and the Peruvian Oxygen Minimum Zone indicate that benthic foraminifera may buffer riverine P runoff for approximately 37 days at the Southern North Sea and for about 21 days at the Peruvian margin. This indicates that these organisms are probably relevant for marine P cycling-they potentially buffer anthropogenic eutrophication in coastal environments. Phosphate is stored as polyphosphate in cell organelles that are potentially acidocalcisomes. Their metabolic functions can range from regulation of osmotic pressure and intracellular pH to calcium and energy storage. In addition, storage of energetic P compounds, such as creatine phosphate and polyphosphate, is probably an adaptation of foraminifera to O2 depletion.
Collapse
Affiliation(s)
- Nicolaas Glock
- Institute for Geology, University of Hamburg, Hamburg, Germany.
| | - Julien Richirt
- SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Christian Woehle
- Institute of Microbiology, Kiel University, Kiel, Germany
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Christopher Algar
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maria Armstrong
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniela Eichner
- Institute for Geology, University of Hamburg, Hamburg, Germany
| | | | - Akiko Makabe
- SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | | - Yoshiyuki Ishitani
- SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Thomas Hackl
- Institute for Chemistry, Universität Hamburg, Hamburg, Germany
| | | | - Markus Kienast
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yvonne Milker
- Institute for Geology, University of Hamburg, Hamburg, Germany
- Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - André Mutzberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sha Ni
- Institute for Geology, University of Hamburg, Hamburg, Germany
| | - Satoshi Okada
- SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Subhadeep Rakshit
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gerhard Schmiedl
- Institute for Geology, University of Hamburg, Hamburg, Germany
- Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Zvi Steiner
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Akihiro Tame
- Marine Works Japan Ltd, Yokosuka, Japan
- Faculty of Medical Sciences, Life Science Research Laboratory, University of Fukui, Fukui, Japan
| | - Zhouling Zhang
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Hidetaka Nomaki
- SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
4
|
Gomaa F, Rogers DR, Utter DR, Powers C, Huang IT, Beaudoin DJ, Zhang Y, Cavanaugh C, Edgcomb VP, Bernhard JM. Array of metabolic pathways in a kleptoplastidic foraminiferan protist supports chemoautotrophy in dark, euxinic seafloor sediments. THE ISME JOURNAL 2025; 19:wrae248. [PMID: 39673188 PMCID: PMC11736642 DOI: 10.1093/ismejo/wrae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/09/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024]
Abstract
Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen. The full extent of foraminiferal physiological capabilities is not fully understood. To date, evidence for foraminiferal anaerobiosis was gleaned from specimens first subjected to stresses associated with removal from in situ conditions. Here, we report comprehensive gene expression analysis of benthic foraminiferal populations preserved in situ on the euxinic (anoxic and sulfidic) bathyal seafloor, thus avoiding environmental alterations associated with sample recovery, including pressure reduction, sunlight exposure, warming, and oxygenation. Metatranscriptomics, metagenome-assembled genomes, and measurements of substrate uptake were used to study the kleptoplastidic foraminifer Nonionella stella inhabiting sulfur-oxidizing bacterial mats of the Santa Barbara Basin, off California. We show N. stella energy generation under dark euxinia is unusual because it orchestrates complex metabolic pathways for ATP production and carbon fixation through the Calvin cycle. These pathways include extended glycolysis, anaerobic fermentation, sulfide oxidation, and the presence of a membrane-bound inorganic pyrophosphatase, an enzyme that hydrolyzes inorganic pyrophosphate to actively pump protons across the mitochondrial membrane.
Collapse
Affiliation(s)
- Fatma Gomaa
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - Daniel R Rogers
- Chemistry Department, Stonehill College, Easton, MA 02357 United States
| | - Daniel R Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, United States
| | - Christopher Powers
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - I-Ting Huang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - David J Beaudoin
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Colleen Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Joan M Bernhard
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| |
Collapse
|
5
|
Jerlström-Hultqvist J, Gallot-Lavallée L, Salas-Leiva DE, Curtis BA, Záhonová K, Čepička I, Stairs CW, Pipaliya S, Dacks JB, Archibald JM, Roger AJ. A unique symbiosome in an anaerobic single-celled eukaryote. Nat Commun 2024; 15:9726. [PMID: 39521804 PMCID: PMC11550330 DOI: 10.1038/s41467-024-54102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Symbiotic relationships between eukaryotes and prokaryotes played pivotal roles in the evolution of life and drove the emergence of specialized symbiotic structures in animals, plants and fungi. The host-evolved symbiotic structures of microbial eukaryotes - the vast majority of such hosts in nature - remain largely unstudied. Here we describe highly structured symbiosomes within three free-living anaerobic protists (Anaeramoeba spp.). We dissect this symbiosis using complete genome sequencing and transcriptomics of host and symbiont cells coupled with fluorescence in situ hybridization, and 3D reconstruction using focused-ion-beam scanning electron microscopy. The emergence of the symbiosome is underpinned by expansion of gene families encoding regulators of membrane trafficking and phagosomal maturation and extensive bacteria-to-eukaryote lateral transfer. The symbionts reside deep within a symbiosomal membrane network that enables metabolic syntrophy by precisely positioning sulfate-reducing bacteria alongside host hydrogenosomes. Importantly, the symbionts maintain connections to the Anaeramoeba plasma membrane, blurring traditional boundaries between ecto- and endosymbiosis.
Collapse
Affiliation(s)
- Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, Uppsala Universitet, Uppsala, Sweden.
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| | - Lucie Gallot-Lavallée
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Dayana E Salas-Leiva
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Bruce A Curtis
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Shweta Pipaliya
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution, & Environment, University College, London, UK
| | - John M Archibald
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
6
|
Nikolaeva OV, Rusin LY, Mikhailov KV, Aleoshin VV, De Ley P. Both-strand gene coding in a plastome-like mitogenome of an enoplid nematode. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:419-424. [PMID: 38318934 DOI: 10.1002/jez.b.23241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The phylum Nematoda remains very poorly sampled for mtDNA, with a strong bias toward parasitic, economically important or model species of the Chromadoria lineage. Most chromadorian mitogenomes share a specific order of genes encoded on one mtDNA strand. However, the few sequenced representatives of the Dorylaimia lineage exhibit a variable order of mtDNA genes encoded on both strands. While the ancestral arrangement of nematode mitogenome remains undefined, no evidence has been reported for Enoplia, the phylum's third early divergent major lineage. We describe the first mitogenome of an enoplian nematode, Campydora demonstrans, and contend that the complete 37-gene repertoire and both-strand gene encoding are ancestral states preserved in Enoplia and Dorylaimia versus the derived mitogenome arrangement in some Chromadoria. The C. demonstrans mitogenome is 17,018 bp in size and contains a noncoding perfect inverted repeat with 2013 bp-long arms, subdividing the mitogenome into two coding regions. This mtDNA arrangement is very rare among animals and instead resembles that of chloroplast genomes in land plants. Our report broadens mtDNA taxonomic sampling of the phylum Nematoda and adds support to the applicability of cox1 gene as a phylogenetic marker for establishing nematode relationships within higher taxa.
Collapse
Affiliation(s)
- Olga V Nikolaeva
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid Yu Rusin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Mikhailov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V Aleoshin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Paul De Ley
- Department of Entomology, Plant Pathology & Weed Science, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
7
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Elbon CE, Stewart FJ, Glass JB. Novel Alphaproteobacteria transcribe genes for nitric oxide transformation at high levels in a marine oxygen-deficient zone. Appl Environ Microbiol 2024; 90:e0209923. [PMID: 38445905 PMCID: PMC11022542 DOI: 10.1128/aem.02099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Marine oxygen-deficient zones (ODZs) are portions of the ocean where intense nitrogen loss occurs primarily via denitrification and anammox. Despite many decades of study, the identity of the microbes that catalyze nitrogen loss in ODZs is still being elucidated. Intriguingly, high transcription of genes in the same family as the nitric oxide dismutase (nod) gene from Methylomirabilota has been reported in the anoxic core of ODZs. Here, we show that the most abundantly transcribed nod genes in the Eastern Tropical North Pacific ODZ belong to a new order (UBA11136) of Alphaproteobacteria, rather than Methylomirabilota as previously assumed. Gammaproteobacteria and Planctomycetia also transcribe nod, but at lower relative abundance than UBA11136 in the upper ODZ. The nod-transcribing Alphaproteobacteria likely use formaldehyde and formate as a source of electrons for aerobic respiration, with additional electrons possibly from sulfide oxidation. They also transcribe multiheme cytochrome (here named ptd) genes for a putative porin-cytochrome protein complex of unknown function, potentially involved in extracellular electron transfer. Molecular oxygen for aerobic respiration may originate from nitric oxide dismutation via cryptic oxygen cycling. Our results implicate Alphaproteobacteria order UBA11136 as a significant player in marine nitrogen loss and highlight their potential in one-carbon, nitrogen, and sulfur metabolism in ODZs.IMPORTANCEIn marine oxygen-deficient zones (ODZs), microbes transform bioavailable nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern Tropical North Pacific contains the world's largest ODZ, but the identity of the microbes transforming nitric oxide remains unknown. Here, we show that highly transcribed nitric oxide dismutase (nod) genes belong to Alphaproteobacteria of the novel order UBA11136, which lacks cultivated isolates. These Alphaproteobacteria show evidence for aerobic respiration, using oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-cytochrome protein complex with unknown function. Gammaproteobacteria and Planctomycetia transcribe nod at lower levels. Our results pinpoint the microbes mediating a key step in marine nitrogen loss and reveal an unexpected predicted metabolism for marine Alphaproteobacteria.
Collapse
Affiliation(s)
- Claire E. Elbon
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Frank J. Stewart
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Jennifer B. Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Jing Z, Tu S, Yuan P, Liu X, Wang S, Dong B, Li Q, Gao H. The ecological role of microbiome at community-, taxonomic - and genome-levels in black-odorous waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133673. [PMID: 38340561 DOI: 10.1016/j.jhazmat.2024.133673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/17/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Black-odorous waters (BOWs) are heavily polluted waters where microbial information remains elusive mechanistically. Based on gene amplicon and metagenomics sequencing, a comprehensive study was conducted to investigate the microbial communities in urban and rural BOWs. The results revealed that microbial communities' assembly in urban and rural BOWs was predominantly governed by stochastic factors at the community level. At the taxonomic level, there were 62 core species (58.48%) in water and 207 core species (44.56%) in sediment across urban and rural areas. Notably, significant differences were observed in the functional genetic composition of BOWs between urban and rural areas. Specifically, rural areas exhibited an enhanced abundance of genes involved in nitrogen fixation, Fe2+ transport, and sulfate reduction. Conversely, urban areas showed higher abundances of some genes associated with carbon fixation, nitrification and denitrification. A sulfur-centered ecological model of microbial communities was constructed by integrating data from the three levels of analysis, and 14 near-complete draft genomes were generated, representing a substantial portion of the microbial community (35.04% in rural BOWs and 29.97% in urban BOWs). This research provides significant insights into the sustainable management and preservation of aquatic ecosystems affected by BOWs.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Peng Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Siyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Hongjie Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| |
Collapse
|
10
|
Pold G, Bonilla-Rosso G, Saghaï A, Strous M, Jones CM, Hallin S. Phylogenetics and environmental distribution of nitric oxide-forming nitrite reductases reveal their distinct functional and ecological roles. ISME COMMUNICATIONS 2024; 4:ycae020. [PMID: 38584645 PMCID: PMC10999283 DOI: 10.1093/ismeco/ycae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
The two evolutionarily unrelated nitric oxide-producing nitrite reductases, NirK and NirS, are best known for their redundant role in denitrification. They are also often found in organisms that do not perform denitrification. To assess the functional roles of the two enzymes and to address the sequence and structural variation within each, we reconstructed robust phylogenies of both proteins with sequences recovered from 6973 isolate and metagenome-assembled genomes and identified 32 well-supported clades of structurally distinct protein lineages. We then inferred the potential niche of each clade by considering other functional genes of the organisms carrying them as well as the relative abundances of each nir gene in 4082 environmental metagenomes across diverse aquatic, terrestrial, host-associated, and engineered biomes. We demonstrate that Nir phylogenies recapitulate ecology distinctly from the corresponding organismal phylogeny. While some clades of the nitrite reductase were equally prevalent across biomes, others had more restricted ranges. Nitrifiers make up a sizeable proportion of the nitrite-reducing community, especially for NirK in marine waters and dry soils. Furthermore, the two reductases showed distinct associations with genes involved in oxidizing and reducing other compounds, indicating that the NirS and NirK activities may be linked to different elemental cycles. Accordingly, the relative abundance and diversity of NirS versus NirK vary between biomes. Our results show the divergent ecological roles NirK and NirS-encoding organisms may play in the environment and provide a phylogenetic framework to distinguish the traits associated with organisms encoding the different lineages of nitrite reductases.
Collapse
Affiliation(s)
- Grace Pold
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Germán Bonilla-Rosso
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Marc Strous
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Christopher M Jones
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
11
|
Govindankutty Menon A, Davis CV, Nürnberg D, Nomaki H, Salonen I, Schmiedl G, Glock N. A deep-learning automated image recognition method for measuring pore patterns in closely related bolivinids and calibration for quantitative nitrate paleo-reconstructions. Sci Rep 2023; 13:19628. [PMID: 37949926 PMCID: PMC10638366 DOI: 10.1038/s41598-023-46605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Eutrophication is accelerating the recent expansion of oxygen-depleted coastal marine environments. Several bolivinid foraminifera are abundant in these oxygen-depleted settings, and take up nitrate through the pores in their shells for denitrification. This makes their pore density a possible nitrate proxy. This study documents three aspects related to the porosity of bolivinids. 1. A new automated image analysis technique to determine the number of pores in bolivinids is tested. 2. The pore patterns of Bolivina spissa from five different ocean settings are analysed. The relationship between porosity, pore density and mean pore size significantly differs between the studied locations. Their porosity is mainly controlled by the size of the pores at the Gulf of Guayaquil (Peru), but by the number of pores at other studied locations. This might be related to the presence of a different cryptic Bolivina species in the Gulf of Guayaquil. 3. The pore densities of closely related bolivinids in core-top samples are calibrated as a bottom-water nitrate proxy. Bolivina spissa and Bolivina subadvena showed the same correlation between pore density and bottom-water nitrate concentrations, while the pore density of Bolivina argentea and Bolivina subadvena accumeata is much higher.
Collapse
Affiliation(s)
- Anjaly Govindankutty Menon
- Department of Earth System Sciences, Institute for Geology, Universität Hamburg, Bundesstrasse 55, 20146, Hamburg, Germany.
| | - Catherine V Davis
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 2800 Faucette Dr, Raleigh, NC, 27695, USA
| | - Dirk Nürnberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, Geb. 8c, Raum 106, 24148, Kiel, Germany
| | - Hidetaka Nomaki
- SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Iines Salonen
- SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Hanko, Finland
| | - Gerhard Schmiedl
- Department of Earth System Sciences, Institute for Geology, Universität Hamburg, Bundesstrasse 55, 20146, Hamburg, Germany
- Center for Earth System Research and Sustainability, Institute for Geology, Universität Hamburg, Bundesstrasse 55, 20146, Hamburg, Germany
| | - Nicolaas Glock
- Department of Earth System Sciences, Institute for Geology, Universität Hamburg, Bundesstrasse 55, 20146, Hamburg, Germany
| |
Collapse
|
12
|
Macher JN, Coots NL, Poh YP, Girard EB, Langerak A, Muñoz-Gómez SA, Sinha SD, Jirsová D, Vos R, Wissels R, Gile GH, Renema W, Wideman JG. Single-Cell Genomics Reveals the Divergent Mitochondrial Genomes of Retaria (Foraminifera and Radiolaria). mBio 2023; 14:e0030223. [PMID: 36939357 PMCID: PMC10127745 DOI: 10.1128/mbio.00302-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
Mitochondria originated from an ancient bacterial endosymbiont that underwent reductive evolution by gene loss and endosymbiont gene transfer to the nuclear genome. The diversity of mitochondrial genomes published to date has revealed that gene loss and transfer processes are ongoing in many lineages. Most well-studied eukaryotic lineages are represented in mitochondrial genome databases, except for the superphylum Retaria-the lineage comprising Foraminifera and Radiolaria. Using single-cell approaches, we determined two complete mitochondrial genomes of Foraminifera and two nearly complete mitochondrial genomes of radiolarians. We report the complete coding content of an additional 14 foram species. We show that foraminiferan and radiolarian mitochondrial genomes contain a nearly fully overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. In contrast to animals and fungi, many protists encode a diverse set of proteins on their mitochondrial genomes, including several ribosomal genes; however, some aerobic eukaryotic lineages (euglenids, myzozoans, and chlamydomonas-like algae) have reduced mitochondrial gene content and lack all ribosomal genes. Similar to these reduced outliers, we show that retarian mitochondrial genomes lack ribosomal protein and tRNA genes, contain truncated and divergent small and large rRNA genes, and contain only 14 or 15 protein-coding genes, including nad1, -3, -4, -4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6, and -9, with forams and radiolarians additionally carrying nad2 and nad6, respectively. In radiolarian mitogenomes, a noncanonical genetic code was identified in which all three stop codons encode amino acids. Collectively, these results add to our understanding of mitochondrial genome evolution and fill in one of the last major gaps in mitochondrial sequence databases. IMPORTANCE We present the reduced mitochondrial genomes of Retaria, the rhizarian lineage comprising the phyla Foraminifera and Radiolaria. By applying single-cell genomic approaches, we found that foraminiferan and radiolarian mitochondrial genomes contain an overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. An alternative genetic code was identified in radiolarian mitogenomes in which all three stop codons encode amino acids. Collectively, these results shed light on the divergent nature of the mitochondrial genomes from an ecologically important group, warranting further questions into the biological underpinnings of gene content variability and genetic code variation between mitochondrial genomes.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Nicole L. Coots
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yu-Ping Poh
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Elsa B. Girard
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Anouk Langerak
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | | | - Savar D. Sinha
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Dagmar Jirsová
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Rutger Vos
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Richard Wissels
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Willem Renema
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Jeremy G. Wideman
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
13
|
Muñoz-Gómez SA. Energetics and evolution of anaerobic microbial eukaryotes. Nat Microbiol 2023; 8:197-203. [PMID: 36646908 DOI: 10.1038/s41564-022-01299-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023]
Abstract
Mitochondria and aerobic respiration have been suggested to be required for the evolution of eukaryotic cell complexity. Aerobic respiration is several times more energetically efficient than fermentation. Moreover, aerobic respiration occurs at internalized mitochondrial membranes that are not constrained by a sublinear scaling with cell volume. However, diverse and complex anaerobic eukaryotes (for example, free-living and parasitic unicellular, and even small multicellular, eukaryotes) that exclusively rely on fermentation for energy generation have evolved repeatedly from aerobic ancestors. How do fermenting eukaryotes maintain their cell volumes and complexity while relying on such a low energy-yielding process? Here I propose that reduced rates of ATP generation in fermenting versus respiring eukaryotes are compensated for by longer cell cycles that satisfy lifetime energy demands. A literature survey and growth efficiency calculations show that fermenting eukaryotes divide approximately four to six times slower than aerobically respiring counterparts with similar cell volumes. Although ecological advantages such as competition avoidance offset lower growth rates and yields in the short term, fermenting eukaryotes inevitably have fewer physiological and ecological possibilities, which ultimately constrain their long-term evolutionary trajectories.
Collapse
|
14
|
Schweizer M, Jauffrais T, Choquel C, Méléder V, Quinchard S, Geslin E. Trophic strategies of intertidal foraminifera explored with single-cell microbiome metabarcoding and morphological methods: What is on the menu? Ecol Evol 2022; 12:e9437. [PMID: 36407902 PMCID: PMC9666909 DOI: 10.1002/ece3.9437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
In mudflats, interactions and transfers of nutrients and secondary metabolites may drive ecosystems and biodiversity. Foraminifera have complex trophic strategies as they often rely on bacteria and eukaryotes or on potential symbionts for carbon and nitrogen resources. The capacity of these protists to use a wide range of adaptive mechanisms requires clarifying the relationships between them and their microbial associates. Here, we investigate the interactions of three foraminiferal species with nearby organisms in situ, by coupling molecular (cloning/Sanger and high-throughput sequencing) and direct counting and morphological identification with microscopy. This coupling allows the identification of the organisms found in or around three foraminiferal species through molecular tools combined with a direct counting of foraminifera and diatoms present in situ through microscopy methods. Depending on foraminiferal species, and in addition to diatom biomass, diatom frustule shape, size and species are key factors driving the abundance and diversity of foraminifera in mudflat habitats. Three different trophic strategies were deduced for the foraminifera investigated in this study: Ammonia sp. T6 has an opportunistic strategy and is feeding on bacteria, nematoda, fungi, and diatoms when abundant; Elphidium oceanense is feeding mainly on diatoms, mixed with other preys when they are less abundant; and Haynesina germanica is feeding almost solely on medium-large pennate diatoms. Although there are limitations due to the lack of species coverage in DNA sequence databases and to the difficulty to compare morphological and molecular data, this study highlights the relevance of combining molecular with morphological tools to study trophic interactions and microbiome communities of protists at the single-cell scale.
Collapse
Affiliation(s)
- Magali Schweizer
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| | - Thierry Jauffrais
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
- UMR 9220 ENTROPIE, Ifremer, IRD, Univ Nouvelle‐Calédonie, Univ La RéunionCNRSNoumeaNew Caledonia
| | - Constance Choquel
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
- Department of GeologyLund UniversityLundSweden
| | - Vona Méléder
- UR 2160, ISOMer, Institut des Substances et Organismes de la MerNantes UniversitéNantesFrance
| | - Sophie Quinchard
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| | - Emmanuelle Geslin
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| |
Collapse
|
15
|
Huang X, Liu X, Xue Y, Pan B, Xiao L, Wang S, Lever MA, Hinrichs KU, Inagaki F, Liu C. Methane Production by Facultative Anaerobic Wood-Rot Fungi via a New Halomethane-Dependent Pathway. Microbiol Spectr 2022; 10:e0170022. [PMID: 36102652 PMCID: PMC9604129 DOI: 10.1128/spectrum.01700-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022] Open
Abstract
The greenhouse gas methane (CH4) is of pivotal importance for Earth's climate system and as a human energy source. A significant fraction of this CH4 is produced by anaerobic Archaea. Here, we describe the first CH4 production by facultative anaerobic wood-rot fungi during growth on hydroxylated/carboxylated aromatic compounds, including lignin and lignite. The amount of CH4 produced by fungi is positively correlated with the amount of CH3Cl produced during the rapid growth period of the fungus. Biochemical, genetic, and stable isotopic tracer analyses reveal the existence of a novel halomethane-dependent fungal CH4 production pathway during the degradation of phenol and benzoic acid monomers and polymers and utilization of cyclic sugars. Even though this halomethane-dependent pathway may only play a side role in anaerobic fungal activity, it could represent a globally significant, previously overlooked source of biogenic CH4 in natural ecosystems. IMPORTANCE Here, we demonstrate that wood-rot fungi produce methane anaerobically without the involvement of methanogenic archaea via a new, halomethane-dependent pathway. These findings of an anaerobic fungal methane formation pathway open another avenue in methane research and will further assist with current efforts in the identification of the processes involved and their ecological implications.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Xiao
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu, China
| | - Shuijuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Mark A. Lever
- Department of Environmental Systems Science, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich, Switzerland
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Tchesunov AV, Nikolaeva OV, Rusin LY, Sanamyan NP, Panina EG, Miljutin DM, Gorelysheva DI, Pegova AN, Khromova MR, Mardashova MV, Mikhailov KV, Yushin VV, Petrov NB, Lyubetsky VA, Nikitin MA, Aleoshin VV. Paraphyly of Marimermithida refines primary routes of transition to parasitism in roundworms. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Parasitic life-strategies in the phylum Nematoda (roundworms) are remarkably diverse and intricate in terms of evolution and taxonomy. By analysing novel rDNA data obtained on rare host-associated groups with unusual biology, we reveal paraphyly of the last major taxon with uncertain higher-rank classification that united solely parasitic nematodes (Marimermithida) to show that primarily marine parasitism only emerged independently and repeatedly in a few free-living lineages. We report secondary seaward ingression of land-based parasites (Mermithida) via invading hosts in the subtidal zone to illustrate the host-borne scenario of oceanic fish and mammal colonization by primarily terrestrial parasites (Spiruria). We also present the first molecular data on marine nematodes from unicellular hosts (foraminiferan protozoans) to demonstrate the independent origins of exploitative nematode associations at a microscopic scale. We argue that, in contrast with primarily intestinal associations arising from saprotrophy and commensalism, non-intestinal host capture (colonization of host body cavity or internal organs) is likely to be a primary route of transition to truly exploitative parasitism in roundworms. Predispositions to host capture in nematode morphology, ecology and life cycles imply its evolution as part of innate pre-adaptations to crossing environmental boundaries to enable multiple successful transitions to parasitism in the phylum history.
Collapse
Affiliation(s)
- Alexei V Tchesunov
- Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Olga V Nikolaeva
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University , Moscow , Russia
| | - Leonid Yu Rusin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| | - Nadezda P Sanamyan
- Kamchatka Branch of Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences , Petropavlovsk-Kamchatsky , Russia
| | - Elena G Panina
- Kamchatka Branch of Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences , Petropavlovsk-Kamchatsky , Russia
| | | | - Daria I Gorelysheva
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences , Moscow , Russia
| | - Anna N Pegova
- Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Maria R Khromova
- Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Maria V Mardashova
- Marine Research Center, Lomonosov Moscow State University , Moscow , Russia
| | - Kirill V Mikhailov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University , Moscow , Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| | - Vladimir V Yushin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences , Vladivostok , Russia
| | - Nikolai B Petrov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University , Moscow , Russia
| | - Vassily A Lyubetsky
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| | - Mikhail A Nikitin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University , Moscow , Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| | - Vladimir V Aleoshin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University , Moscow , Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
17
|
Single crystal spectroscopy and multiple structures from one crystal (MSOX) define catalysis in copper nitrite reductases. Proc Natl Acad Sci U S A 2022; 119:e2205664119. [PMID: 35862453 PMCID: PMC9335323 DOI: 10.1073/pnas.2205664119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
X-rays used to collect crystallographic data can change the redox states of transition metals utilized by many biological systems including metalloproteins. This disadvantage has been harnessed to drive a complex chemical reaction requiring the delivery of an electron to the active site and recording the structural changes accompanying catalysis, providing a real-time structural movie of an enzymatic reaction, which has been a dream of enzymologists for decades. By coupling the multiple-structures from one crystal technique with single-crystal and solution optical spectroscopy, we show that the electron transfer between the electron accepting type-1 Cu and catalytic type-2 Cu redox centers is gated in a recently characterized copper nitrite reductase. This combined structural/spectroscopic approach is applicable to many complex redox biological systems. Many enzymes utilize redox-coupled centers for performing catalysis where these centers are used to control and regulate the transfer of electrons required for catalysis, whose untimely delivery can lead to a state incapable of binding the substrate, i.e., a dead-end enzyme. Copper nitrite reductases (CuNiRs), which catalyze the reduction of nitrite to nitric oxide (NO), have proven to be a good model system for studying these complex processes including proton-coupled electron transfer (ET) and their orchestration for substrate binding/utilization. Recently, a two-domain CuNiR from a Rhizobia species (Br2DNiR) has been discovered with a substantially lower enzymatic activity where the catalytic type-2 Cu (T2Cu) site is occupied by two water molecules requiring their displacement for the substrate nitrite to bind. Single crystal spectroscopy combined with MSOX (multiple structures from one crystal) for both the as-isolated and nitrite-soaked crystals clearly demonstrate that inter-Cu ET within the coupled T1Cu-T2Cu redox system is heavily gated. Laser-flash photolysis and optical spectroscopy showed rapid ET from photoexcited NADH to the T1Cu center but little or no inter-Cu ET in the absence of nitrite. Furthermore, incomplete reoxidation of the T1Cu site (∼20% electrons transferred) was observed in the presence of nitrite, consistent with a slow formation of NO species in the serial structures of the MSOX movie obtained from the nitrite-soaked crystal, which is likely to be responsible for the lower activity of this CuNiR. Our approach is of direct relevance for studying redox reactions in a wide range of biological systems including metalloproteins that make up at least 30% of all proteins.
Collapse
|
18
|
Woehle C, Roy AS, Glock N, Michels J, Wein T, Weissenbach J, Romero D, Hiebenthal C, Gorb SN, Schönfeld J, Dagan T. Denitrification in foraminifera has an ancient origin and is complemented by associated bacteria. Proc Natl Acad Sci U S A 2022; 119:e2200198119. [PMID: 35704763 PMCID: PMC9231491 DOI: 10.1073/pnas.2200198119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origin. However, the prevalence of denitrification genes in foraminifera remains unknown, and the missing denitrification pathway components are elusive. Analyzing transcriptomes and metagenomes of 10 foraminiferal species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer the last common ancestor of denitrifying foraminifera, which enables us to predict the ability to denitrify for additional foraminiferal species. Additionally, an examination of the foraminiferal microbiota reveals evidence for a stable interaction with Desulfobacteraceae, which harbor genes that complement the foraminiferal denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera-associated microbiome. The interaction of foraminifera with their resident bacteria is at the basis of foraminiferal adaptation to anaerobic environments that manifested in ecological success in oxygen depleted habitats.
Collapse
Affiliation(s)
- Christian Woehle
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| | | | - Nicolaas Glock
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Jan Michels
- Zoological Institute, Kiel University, Kiel 24118, Germany
| | - Tanita Wein
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| | - Julia Weissenbach
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| | - Dennis Romero
- Dirección General de Investigaciones Oceanográficas y Cambio Climático, Instituto del Mar del Perú, Callao 01, Peru 17
| | - Claas Hiebenthal
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | | | - Joachim Schönfeld
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| |
Collapse
|
19
|
Kleptoplast distribution, photosynthetic efficiency and sequestration mechanisms in intertidal benthic foraminifera. THE ISME JOURNAL 2022; 16:822-832. [PMID: 34635793 PMCID: PMC8857221 DOI: 10.1038/s41396-021-01128-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022]
Abstract
Foraminifera are ubiquitously distributed in marine habitats, playing a major role in marine sediment carbon sequestration and the nitrogen cycle. They exhibit a wide diversity of feeding and behavioural strategies (heterotrophy, autotrophy and mixotrophy), including species with the ability of sequestering intact functional chloroplasts from their microalgal food source (kleptoplastidy), resulting in a mixotrophic lifestyle. The mechanisms by which kleptoplasts are integrated and kept functional inside foraminiferal cytosol are poorly known. In our study, we investigated relationships between feeding strategies, kleptoplast spatial distribution and photosynthetic functionality in two shallow-water benthic foraminifera (Haynesina germanica and Elphidium williamsoni), both species feeding on benthic diatoms. We used a combination of observations of foraminiferal feeding behaviour, test morphology, cytological TEM-based observations and HPLC pigment analysis, with non-destructive, single-cell level imaging of kleptoplast spatial distribution and PSII quantum efficiency. The two species showed different feeding strategies, with H. germanica removing diatom content at the foraminifer's apertural region and E. williamsoni on the dorsal site. All E. williamsoni parameters showed that this species has higher autotrophic capacity albeit both feeding on benthic diatoms. This might represent two different stages in the evolutionary process of establishing a permanent symbiotic relationship, or may reflect different trophic strategies.
Collapse
|
20
|
Macher JN, Wideman JG, Girard EB, Langerak A, Duijm E, Jompa J, Sadekov A, Vos R, Wissels R, Renema W. First report of mitochondrial COI in foraminifera and implications for DNA barcoding. Sci Rep 2021; 11:22165. [PMID: 34772985 PMCID: PMC8589990 DOI: 10.1038/s41598-021-01589-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences ("barcodes") of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands.
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Elsa B Girard
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Anouk Langerak
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | - Elza Duijm
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | | | - Aleksey Sadekov
- ARC Centre of Excellence for Coral Reef Studies, Ocean Graduate School, The University of Western Australia, Crawley, Australia
| | - Rutger Vos
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Richard Wissels
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | - Willem Renema
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Salonen IS, Chronopoulou PM, Nomaki H, Langlet D, Tsuchiya M, Koho KA. 16S rRNA Gene Metabarcoding Indicates Species-Characteristic Microbiomes in Deep-Sea Benthic Foraminifera. Front Microbiol 2021; 12:694406. [PMID: 34385987 PMCID: PMC8353385 DOI: 10.3389/fmicb.2021.694406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Foraminifera are unicellular eukaryotes that are an integral part of benthic fauna in many marine ecosystems, including the deep sea, with direct impacts on benthic biogeochemical cycles. In these systems, different foraminiferal species are known to have a distinct vertical distribution, i.e., microhabitat preference, which is tightly linked to the physico-chemical zonation of the sediment. Hence, foraminifera are well-adapted to thrive in various conditions, even under anoxia. However, despite the ecological and biogeochemical significance of foraminifera, their ecology remains poorly understood. This is especially true in terms of the composition and diversity of their microbiome, although foraminifera are known to harbor diverse endobionts, which may have a significant meaning to each species' survival strategy. In this study, we used 16S rRNA gene metabarcoding to investigate the microbiomes of five different deep-sea benthic foraminiferal species representing differing microhabitat preferences. The microbiomes of these species were compared intra- and inter-specifically, as well as with the surrounding sediment bacterial community. Our analysis indicated that each species was characterized with a distinct, statistically different microbiome that also differed from the surrounding sediment community in terms of diversity and dominant bacterial groups. We were also able to distinguish specific bacterial groups that seemed to be strongly associated with particular foraminiferal species, such as the family Marinilabiliaceae for Chilostomella ovoidea and the family Hyphomicrobiaceae for Bulimina subornata and Bulimina striata. The presence of bacterial groups that are tightly associated to a certain foraminiferal species implies that there may exist unique, potentially symbiotic relationships between foraminifera and bacteria that have been previously overlooked. Furthermore, the foraminifera contained chloroplast reads originating from different sources, likely reflecting trophic preferences and ecological characteristics of the different species. This study demonstrates the potential of 16S rRNA gene metabarcoding in resolving the microbiome composition and diversity of eukaryotic unicellular organisms, providing unique in situ insights into enigmatic deep-sea ecosystems.
Collapse
Affiliation(s)
- Iines S Salonen
- Ecosystems and Environment Research Program, University of Helsinki, Helsinki, Finland.,SUGAR, X-star, Japan Agency of Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | | - Hidetaka Nomaki
- SUGAR, X-star, Japan Agency of Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Dewi Langlet
- SUGAR, X-star, Japan Agency of Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.,UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Université de Lille - CNRS, Université du Littoral Côte d'Opale, Station Marine de Wimereux, Lille, France.,Evolution, Cell Biology, and Symbiosis Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Masashi Tsuchiya
- Research Institute for Global Change (RIGC), Japan Agency of Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Karoliina A Koho
- Ecosystems and Environment Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
23
|
Muñoz-Gómez SA, Kreutz M, Hess S. A microbial eukaryote with a unique combination of purple bacteria and green algae as endosymbionts. SCIENCE ADVANCES 2021; 7:eabg4102. [PMID: 34117067 PMCID: PMC8195481 DOI: 10.1126/sciadv.abg4102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/27/2021] [Indexed: 05/08/2023]
Abstract
Oxygenic photosynthesizers (cyanobacteria and eukaryotic algae) have repeatedly become endosymbionts throughout evolution. In contrast, anoxygenic photosynthesizers (e.g., purple bacteria) are exceedingly rare as intracellular symbionts. Here, we report on the morphology, ultrastructure, lifestyle, and metagenome of the only "purple-green" eukaryote known. The ciliate Pseudoblepharisma tenue harbors green algae and hundreds of genetically reduced purple bacteria. The latter represent a new candidate species of the Chromatiaceae that lost known genes for sulfur dissimilation. The tripartite consortium is physiologically complex because of the versatile energy metabolism of each partner but appears to be ecologically specialized as it prefers hypoxic sediments. The emergent niche of this complex symbiosis is predicted to be a partial overlap of each partners' niches and may be largely defined by anoxygenic photosynthesis and possibly phagotrophy. This purple-green ciliate thus represents an extraordinary example of how symbiosis merges disparate physiologies and allows emergent consortia to create novel ecological niches.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- Institute for Zoology, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
- Center for Mechanism of Evolution, The Biodesign Institute, School of Life Sciences, Arizona State University, 727 E. Tyler St., Tempe, AZ 85281-5001, USA
| | - Martin Kreutz
- Private Laboratory, Am See 27, 78465 Constance, Germany
| | - Sebastian Hess
- Institute for Zoology, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
24
|
Gomaa F, Utter DR, Powers C, Beaudoin DJ, Edgcomb VP, Filipsson HL, Hansel CM, Wankel SD, Zhang Y, Bernhard JM. Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments. SCIENCE ADVANCES 2021; 7:7/22/eabf1586. [PMID: 34039603 PMCID: PMC8153729 DOI: 10.1126/sciadv.abf1586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/05/2021] [Indexed: 05/14/2023]
Abstract
Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom's plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among "typical" eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.
Collapse
Affiliation(s)
- Fatma Gomaa
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel R Utter
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Powers
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - David J Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Colleen M Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Scott D Wankel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Joan M Bernhard
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
25
|
Graf JS, Schorn S, Kitzinger K, Ahmerkamp S, Woehle C, Huettel B, Schubert CJ, Kuypers MMM, Milucka J. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature 2021; 591:445-450. [PMID: 33658719 PMCID: PMC7969357 DOI: 10.1038/s41586-021-03297-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2021] [Indexed: 11/27/2022]
Abstract
Mitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis1,2. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution3. As a result, obligate anaerobic eukaryotes with mitochondrial remnants derive their energy mostly from fermentation4. Here we describe 'Candidatus Azoamicus ciliaticola', which is an obligate endosymbiont of an anaerobic ciliate and has a dedicated role in respiration and providing energy for its eukaryotic host. 'Candidatus A. ciliaticola' contains a highly reduced 0.29-Mb genome that encodes core genes for central information processing, the electron transport chain, a truncated tricarboxylic acid cycle, ATP generation and iron-sulfur cluster biosynthesis. The genome encodes a respiratory denitrification pathway instead of aerobic terminal oxidases, which enables its host to breathe nitrate instead of oxygen. 'Candidatus A. ciliaticola' and its ciliate host represent an example of a symbiosis that is based on the transfer of energy in the form of ATP, rather than nutrition. This discovery raises the possibility that eukaryotes with mitochondrial remnants may secondarily acquire energy-providing endosymbionts to complement or replace functions of their mitochondria.
Collapse
Affiliation(s)
- Jon S Graf
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Sina Schorn
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Katharina Kitzinger
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | - Christian Woehle
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Carsten J Schubert
- Surface Waters - Research and Management, Eawag, Kastanienbaum, Switzerland
| | | | - Jana Milucka
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
26
|
Integrating morphology and metagenomics to understand taxonomic variability of Amphisorus (Foraminifera, Miliolida) from Western Australia and Indonesia. PLoS One 2021; 16:e0244616. [PMID: 33395419 PMCID: PMC7781389 DOI: 10.1371/journal.pone.0244616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Foraminifera are a group of mostly marine protists with high taxonomic diversity. Species identification is often complex, as both morphological and molecular approaches can be challenging due to a lack of unique characters and reference sequences. An integrative approach combining state of the art morphological and molecular tools is therefore promising. In this study, we analysed large benthic Foraminifera of the genus Amphisorus from Western Australia and Indonesia. Based on previous findings on high morphological variability observed in the Soritidae and the discontinuous distribution of Amphisorus along the coast of western Australia, we expected to find multiple morphologically and genetically unique Amphisorus types. In order to gain detailed insights into the diversity of Amphisorus, we applied micro CT scanning and shotgun metagenomic sequencing. We identified four distinct morphotypes of Amphisorus, two each in Australia and Indonesia, and showed that each morphotype is a distinct genotype. Furthermore, metagenomics revealed the presence of three dinoflagellate symbiont clades. The most common symbiont was Fugacium Fr5, and we could show that its genotypes were mostly specific to Amphisorus morphotypes. Finally, we assembled the microbial taxa associated with the two Western Australian morphotypes, and analysed their microbial community composition. Even though each Amphisorus morphotype harboured distinct bacterial communities, sampling location had a stronger influence on bacterial community composition, and we infer that the prokaryotic community is primarily shaped by the microhabitat rather than host identity. The integrated approach combining analyses of host morphology and genetics, dinoflagellate symbionts, and associated microbes leads to the conclusion that we identified distinct, yet undescribed taxa of Amphisorus. We argue that the combination of morphological and molecular methods provides unprecedented insights into the diversity of foraminifera, which paves the way for a deeper understanding of their biodiversity, and facilitates future taxonomic and ecological work.
Collapse
|
27
|
Nomaki H, Chen C, Oda K, Tsuchiya M, Tame A, Uematsu K, Isobe N. Abundant Chitinous Structures in Chilostomella (Foraminifera, Rhizaria) and Their Potential Functions. J Eukaryot Microbiol 2021; 68:e12828. [PMID: 33128276 PMCID: PMC7894498 DOI: 10.1111/jeu.12828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/28/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022]
Abstract
Benthic foraminifera, members of Rhizaria, inhabit a broad range of marine environments and are particularly common in hypoxic sediments. The biology of benthic foraminifera is key to understanding benthic ecosystems and relevant biogeochemical cycles, especially in hypoxic environments. Chilostomella is a foraminiferal genus commonly found in hypoxic deep-sea sediments and has poorly understood ecological characteristics. For example, the carbon isotopic compositions of their lipids are substantially different from other co-occurring genera, probably reflecting unique features of its metabolism. Here, we investigated the cytoplasmic and ultrastructural features of Chilostomella ovoidea from bathyal sediments of Sagami Bay, Japan, based on serial semi-thin sections examined using an optical microscope followed by a three-dimensional reconstruction, combined with TEM observations of ultra-thin sections. Observations by TEM revealed the presence of abundant electron-dense structures dividing the cytoplasm. Based on histochemical staining, these structures are shown to be composed of chitin. Our 3D reconstruction revealed chitinous structures in the final seven chambers. These exhibited a plate-like morphology in the final chambers but became rolled up in earlier chambers (toward the proloculus). These chitinous, plate-like structures may function to partition the cytoplasm in a chamber to increase the surface/volume ratio and/or act as a reactive site for some metabolic functions.
Collapse
Affiliation(s)
- Hidetaka Nomaki
- SUGAR, X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)2‐15 Natsushima‐choYokosukaKanagawa237‐0061Japan
| | - Chong Chen
- SUGAR, X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)2‐15 Natsushima‐choYokosukaKanagawa237‐0061Japan
| | - Kaya Oda
- SUGAR, X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)2‐15 Natsushima‐choYokosukaKanagawa237‐0061Japan
| | - Masashi Tsuchiya
- Research Institute for Global Change (RIGC)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawa
237‐0061Japan
| | - Akihiro Tame
- Marine Works Japan Ltd.3‐54‐1 Oppamahigashi‐choYokosukaKanagawa237‐0063Japan
| | - Katsuyuki Uematsu
- Marine Works Japan Ltd.3‐54‐1 Oppamahigashi‐choYokosukaKanagawa237‐0063Japan
| | - Noriyuki Isobe
- Research Institute for Marine Resources Utilization (MRU)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawa237‐0061Japan
| |
Collapse
|
28
|
Bird C, LeKieffre C, Jauffrais T, Meibom A, Geslin E, Filipsson HL, Maire O, Russell AD, Fehrenbacher JS. Heterotrophic Foraminifera Capable of Inorganic Nitrogen Assimilation. Front Microbiol 2020; 11:604979. [PMID: 33343548 PMCID: PMC7744380 DOI: 10.3389/fmicb.2020.604979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Nitrogen availability often limits biological productivity in marine systems, where inorganic nitrogen, such as ammonium is assimilated into the food web by bacteria and photoautotrophic eukaryotes. Recently, ammonium assimilation was observed in kleptoplast-containing protists of the phylum foraminifera, possibly via the glutamine synthetase/glutamate synthase (GS/GOGAT) assimilation pathway imported with the kleptoplasts. However, it is not known if the ubiquitous and diverse heterotrophic protists have an innate ability for ammonium assimilation. Using stable isotope incubations (15N-ammonium and 13C-bicarbonate) and combining transmission electron microscopy (TEM) with quantitative nanoscale secondary ion mass spectrometry (NanoSIMS) imaging, we investigated the uptake and assimilation of dissolved inorganic ammonium by two heterotrophic foraminifera; a non-kleptoplastic benthic species, Ammonia sp., and a planktonic species, Globigerina bulloides. These species are heterotrophic and not capable of photosynthesis. Accordingly, they did not assimilate 13C-bicarbonate. However, both species assimilated dissolved 15N-ammonium and incorporated it into organelles of direct importance for ontogenetic growth and development of the cell. These observations demonstrate that at least some heterotrophic protists have an innate cellular mechanism for inorganic ammonium assimilation, highlighting a newly discovered pathway for dissolved inorganic nitrogen (DIN) assimilation within the marine microbial loop.
Collapse
Affiliation(s)
- Clare Bird
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom.,School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlotte LeKieffre
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,UMR CNRS 6112 LPG, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, Angers, France
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Emmanuelle Geslin
- UMR CNRS 6112 LPG, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, Angers, France
| | | | - Olivier Maire
- Université de Bordeaux, EPOC, UMR 5805, Talence, France.,CNRS, EPOC, UMR 5805, Talence, France
| | - Ann D Russell
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, United States
| | - Jennifer S Fehrenbacher
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
29
|
Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes. Trends Parasitol 2020; 36:927-941. [DOI: 10.1016/j.pt.2020.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
30
|
Chlamydomonas reinhardtii, an Algal Model in the Nitrogen Cycle. PLANTS 2020; 9:plants9070903. [PMID: 32708782 PMCID: PMC7412212 DOI: 10.3390/plants9070903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Nitrogen (N) is an essential constituent of all living organisms and the main limiting macronutrient. Even when dinitrogen gas is the most abundant form of N, it can only be used by fixing bacteria but is inaccessible to most organisms, algae among them. Algae preferentially use ammonium (NH4+) and nitrate (NO3−) for growth, and the reactions for their conversion into amino acids (N assimilation) constitute an important part of the nitrogen cycle by primary producers. Recently, it was claimed that algae are also involved in denitrification, because of the production of nitric oxide (NO), a signal molecule, which is also a substrate of NO reductases to produce nitrous oxide (N2O), a potent greenhouse gas. This review is focused on the microalga Chlamydomonas reinhardtii as an algal model and its participation in different reactions of the N cycle. Emphasis will be paid to new actors, such as putative genes involved in NO and N2O production and their occurrence in other algae genomes. Furthermore, algae/bacteria mutualism will be considered in terms of expanding the N cycle to ammonification and N fixation, which are based on the exchange of carbon and nitrogen between the two organisms.
Collapse
|
31
|
Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME JOURNAL 2020; 14:2580-2594. [PMID: 32641728 PMCID: PMC7490399 DOI: 10.1038/s41396-020-0708-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Foraminifera are single-celled eukaryotes (protists) of large ecological importance, as well as environmental and paleoenvironmental indicators and biostratigraphic tools. In addition, they are capable of surviving in anoxic marine environments where they represent a major component of the benthic community. However, the cellular adaptations of Foraminifera to the anoxic environment remain poorly constrained. We sampled an oxic-anoxic transition zone in marine sediments from the Namibian shelf, where the genera Bolivina and Stainforthia dominated the Foraminifera community, and use metatranscriptomics to characterize Foraminifera metabolism across the different geochemical conditions. Relative Foraminifera gene expression in anoxic sediment increased an order of magnitude, which was confirmed in a 10-day incubation experiment where the development of anoxia coincided with a 20–40-fold increase in the relative abundance of Foraminifera protein encoding transcripts, attributed primarily to those involved in protein synthesis, intracellular protein trafficking, and modification of the cytoskeleton. This indicated that many Foraminifera were not only surviving but thriving, under the anoxic conditions. The anaerobic energy metabolism of these active Foraminifera was characterized by fermentation of sugars and amino acids, fumarate reduction, and potentially dissimilatory nitrate reduction. Moreover, the gene expression data indicate that under anoxia Foraminifera use the phosphogen creatine phosphate as an ATP store, allowing reserves of high-energy phosphate pool to be maintained for sudden demands of increased energy during anaerobic metabolism. This was co-expressed alongside genes involved in phagocytosis and clathrin-mediated endocytosis (CME). Foraminifera may use CME to utilize dissolved organic matter as a carbon and energy source, in addition to ingestion of prey cells via phagocytosis. These anaerobic metabolic mechanisms help to explain the ecological success of Foraminifera documented in the fossil record since the Cambrian period more than 500 million years ago.
Collapse
|
32
|
Li Q, Lei Y, Morard R, Li T, Wang B. Diversity hotspot and unique community structure of foraminifera in the world's deepest marine blue hole - Sansha Yongle Blue Hole. Sci Rep 2020; 10:10257. [PMID: 32581270 PMCID: PMC7314809 DOI: 10.1038/s41598-020-67221-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
Marine blue holes are precious geological heritages with high scientific research values. Their physical and chemical characteristics are unique because of the steep-walled structure and isolated water column which create isolated ecosystems in geographically restricted areas. The Sansha Yongle Blue Hole (SYBH) is the world's deepest marine blue hole. Here, we generated the first DNA metabarcoding dataset from SYBH sediment focusing on foraminifera, a group of protists that have colonized various marine environments. We collected sediment samples from SYBH along a depth gradient to characterize the foraminiferal diversity and compared them with the foraminiferal diversity of the costal Jiaozhou Bay (JZB) and the abyssal Northwest Pacific Ocean (NWP). We amplified the SSU rDNA of foraminifera and sequenced them with high-throughput sequencing. The results showed that the foraminiferal assemblages in SYBH were vertically structured in response to the abiotic gradients and diversity was higher than in JZB and NWP. This study illustrates the capacity of foraminifera to colonize hostile environments and shows that blue holes are natural laboratories to explore physiological innovation associated with anoxia.
Collapse
Affiliation(s)
- Qingxia Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanli Lei
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Raphaёl Morard
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Tiegang Li
- Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Baodong Wang
- Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
33
|
Zhang X, Ward BB, Sigman DM. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chem Rev 2020; 120:5308-5351. [DOI: 10.1021/acs.chemrev.9b00613] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Bess B. Ward
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel M. Sigman
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
34
|
Gooday AJ, Schoenle A, Dolan JR, Arndt H. Protist diversity and function in the dark ocean - Challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur J Protistol 2020; 75:125721. [PMID: 32575029 DOI: 10.1016/j.ejop.2020.125721] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 11/27/2022]
Abstract
The dark ocean and the underlying deep seafloor together represent the largest environment on this planet, comprising about 80% of the oceanic volume and covering more than two-thirds of the Earth's surface, as well as hosting a major part of the total biosphere. Emerging evidence suggests that these vast pelagic and benthic habitats play a major role in ocean biogeochemistry and represent an "untapped reservoir" of high genetic and metabolic microbial diversity. Due to its huge volume, the water column of the dark ocean is the largest reservoir of organic carbon in the biosphere and likely plays a major role in the global carbon budget. The dark ocean and the seafloor beneath it are also home to a largely enigmatic food web comprising little-known and sometimes spectacular organisms, mainly prokaryotes and protists. This review considers the globally important role of pelagic and benthic protists across all protistan size classes in the deep-sea realm, with a focus on their taxonomy, diversity, and physiological properties, including their role in deep microbial food webs. We argue that, given the important contribution that protists must make to deep-sea biodiversity and ecosystem processes, they should not be overlooked in biological studies of the deep ocean.
Collapse
Affiliation(s)
- Andrew J Gooday
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK; Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Alexandra Schoenle
- University of Cologne, Institute of Zoology, General Ecology, 50674 Cologne, Germany
| | - John R Dolan
- Sorbonne Université, CNRS UMR 7093, Laboratoroire d'Océanographie de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Hartmut Arndt
- University of Cologne, Institute of Zoology, General Ecology, 50674 Cologne, Germany.
| |
Collapse
|
35
|
Stein LY. The Long-Term Relationship between Microbial Metabolism and Greenhouse Gases. Trends Microbiol 2020; 28:500-511. [DOI: 10.1016/j.tim.2020.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
|
36
|
Levy Karin E, Mirdita M, Söding J. MetaEuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. MICROBIOME 2020; 8:48. [PMID: 32245390 PMCID: PMC7126354 DOI: 10.1186/s40168-020-00808-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/14/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Metagenomics is revolutionizing the study of microorganisms and their involvement in biological, biomedical, and geochemical processes, allowing us to investigate by direct sequencing a tremendous diversity of organisms without the need for prior cultivation. Unicellular eukaryotes play essential roles in most microbial communities as chief predators, decomposers, phototrophs, bacterial hosts, symbionts, and parasites to plants and animals. Investigating their roles is therefore of great interest to ecology, biotechnology, human health, and evolution. However, the generally lower sequencing coverage, their more complex gene and genome architectures, and a lack of eukaryote-specific experimental and computational procedures have kept them on the sidelines of metagenomics. RESULTS MetaEuk is a toolkit for high-throughput, reference-based discovery, and annotation of protein-coding genes in eukaryotic metagenomic contigs. It performs fast searches with 6-frame-translated fragments covering all possible exons and optimally combines matches into multi-exon proteins. We used a benchmark of seven diverse, annotated genomes to show that MetaEuk is highly sensitive even under conditions of low sequence similarity to the reference database. To demonstrate MetaEuk's power to discover novel eukaryotic proteins in large-scale metagenomic data, we assembled contigs from 912 samples of the Tara Oceans project. MetaEuk predicted >12,000,000 protein-coding genes in 8 days on ten 16-core servers. Most of the discovered proteins are highly diverged from known proteins and originate from very sparsely sampled eukaryotic supergroups. CONCLUSION The open-source (GPLv3) MetaEuk software (https://github.com/soedinglab/metaeuk) enables large-scale eukaryotic metagenomics through reference-based, sensitive taxonomic and functional annotation. Video abstract.
Collapse
Affiliation(s)
- Eli Levy Karin
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| | - Milot Mirdita
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Johannes Söding
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
37
|
Timilsina A, Zhang C, Pandey B, Bizimana F, Dong W, Hu C. Potential Pathway of Nitrous Oxide Formation in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1177. [PMID: 32849729 PMCID: PMC7412978 DOI: 10.3389/fpls.2020.01177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 05/12/2023]
Abstract
Plants can produce and emit nitrous oxide (N2O), a potent greenhouse gas, into the atmosphere, and several field-based studies have concluded that this gas is emitted at substantial amounts. However, the exact mechanisms of N2O production in plant cells are unknown. Several studies have hypothesised that plants might act as a medium to transport N2O produced by soil-inhabiting microorganisms. Contrarily, aseptically grown plants and axenic algal cells supplied with nitrate (NO3) are reported to emit N2O, indicating that it is produced inside plant cells by some unknown physiological phenomena. In this study, the possible sites, mechanisms, and enzymes involved in N2O production in plant cells are discussed. Based on the experimental evidence from various studies, we determined that N2O can be produced from nitric oxide (NO) in the mitochondria of plants. NO, a signaling molecule, is produced through oxidative and reductive pathways in eukaryotic cells. During hypoxia and anoxia, NO3 in the cytosol is metabolised to produce nitrite (NO2), which is reduced to form NO via the reductive pathway in the mitochondria. Under low oxygen condition, NO formed in the mitochondria is further reduced to N2O by the reduced form of cytochrome c oxidase (CcO). This pathway is active only when cells experience hypoxia or anoxia, and it may be involved in N2O formation in plants and soil-dwelling animals, as reported previously by several studies. NO can be toxic at a high concentration. Therefore, the reduction of NO to N2O in the mitochondria might protect the integrity of the mitochondria, and thus, protect the cell from the toxicity of NO accumulation under hypoxia and anoxia. As NO3 is a major source of nitrogen for plants and all plants may experience hypoxic and anoxic conditions owing to soil environmental factors, a significant global biogenic source of N2O may be its formation in plants via the proposed pathway.
Collapse
Affiliation(s)
- Arbindra Timilsina
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| | - Chuang Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bikram Pandey
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Mountain Ecological Restoration and Bio-resource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fiston Bizimana
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| |
Collapse
|
38
|
Zimorski V, Mentel M, Tielens AGM, Martin WF. Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radic Biol Med 2019; 140:279-294. [PMID: 30935869 PMCID: PMC6856725 DOI: 10.1016/j.freeradbiomed.2019.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Eukaryotes arose about 1.6 billion years ago, at a time when oxygen levels were still very low on Earth, both in the atmosphere and in the ocean. According to newer geochemical data, oxygen rose to approximately its present atmospheric levels very late in evolution, perhaps as late as the origin of land plants (only about 450 million years ago). It is therefore natural that many lineages of eukaryotes harbor, and use, enzymes for oxygen-independent energy metabolism. This paper provides a concise overview of anaerobic energy metabolism in eukaryotes with a focus on anaerobic energy metabolism in mitochondria. We also address the widespread assumption that oxygen improves the overall energetic state of a cell. While it is true that ATP yield from glucose or amino acids is increased in the presence of oxygen, it is also true that the synthesis of biomass costs thirteen times more energy per cell in the presence of oxygen than in anoxic conditions. This is because in the reaction of cellular biomass with O2, the equilibrium lies very far on the side of CO2. The absence of oxygen offers energetic benefits of the same magnitude as the presence of oxygen. Anaerobic and low oxygen environments are ancient. During evolution, some eukaryotes have specialized to life in permanently oxic environments (life on land), other eukaryotes have remained specialized to low oxygen habitats. We suggest that the Km of mitochondrial cytochrome c oxidase of 0.1-10 μM for O2, which corresponds to about 0.04%-4% (avg. 0.4%) of present atmospheric O2 levels, reflects environmental O2 concentrations that existed at the time that the eukaryotes arose.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 851 04, Bratislava, Slovakia.
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
39
|
Enrichment of intracellular sulphur cycle -associated bacteria in intertidal benthic foraminifera revealed by 16S and aprA gene analysis. Sci Rep 2019; 9:11692. [PMID: 31406214 PMCID: PMC6690927 DOI: 10.1038/s41598-019-48166-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Benthic foraminifera are known to play an important role in marine carbon and nitrogen cycles. Here, we report an enrichment of sulphur cycle -associated bacteria inside intertidal benthic foraminifera (Ammonia sp. (T6), Haynesina sp. (S16) and Elphidium sp. (S5)), using a metabarcoding approach targeting the 16S rRNA and aprA -genes. The most abundant intracellular bacterial groups included the genus Sulfurovum and the order Desulfobacterales. The bacterial 16S OTUs are likely to originate from the sediment bacterial communities, as the taxa found inside the foraminifera were also present in the sediment. The fact that 16S rRNA and aprA -gene derived intracellular bacterial OTUs were species-specific and significantly different from the ambient sediment community implies that bacterivory is an unlikely scenario, as benthic foraminifera are known to digest bacteria only randomly. Furthermore, these foraminiferal species are known to prefer other food sources than bacteria. The detection of sulphur-cycle related bacterial genes in this study suggests a putative role for these bacteria in the metabolism of the foraminiferal host. Future investigation into environmental conditions under which transcription of S-cycle genes are activated would enable assessment of their role and the potential foraminiferal/endobiont contribution to the sulphur-cycle.
Collapse
|
40
|
Versantvoort W, Guerrero-Castillo S, Wessels HJCT, van Niftrik L, Jetten MSM, Brandt U, Reimann J, Kartal B. Complexome analysis of the nitrite-dependent methanotroph Methylomirabilis lanthanidiphila. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:734-744. [PMID: 31376363 DOI: 10.1016/j.bbabio.2019.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 01/31/2023]
Abstract
The atmospheric concentration of the potent greenhouse gases methane and nitrous oxide (N2O) has increased drastically during the last century. Methylomirabilis bacteria can play an important role in controlling the emission of these two gases from natural ecosystems, by oxidizing methane to CO2 and reducing nitrite to N2 without producing N2O. These bacteria have an anaerobic metabolism, but are proposed to possess an oxygen-dependent pathway for methane activation. Methylomirabilis bacteria reduce nitrite to NO, and are proposed to dismutate NO into O2 and N2 by a putative NO dismutase (NO-D). The O2 produced in the cell can then be used to activate methane by a particulate methane monooxygenase. So far, the metabolic model of Methylomirabilis bacteria was based mainly on (meta)genomics and physiological experiments. Here we applied a complexome profiling approach to determine which of the proposed enzymes are actually expressed in Methylomirabilis lanthanidiphila. To validate the proposed metabolic model, we focused on enzymes involved in respiration, as well as nitrogen and carbon transformation. All complexes suggested to be involved in nitrite-dependent methane oxidation, were identified in M. lanthanidiphila, including the putative NO-D. Furthermore, several complexes involved in nitrate reduction/nitrite oxidation and NO reduction were detected, which likely play a role in detoxification and redox homeostasis. In conclusion, complexome profiling validated the expression and composition of enzymes hypothesized to be involved in the energy, methane and nitrogen metabolism of M. lanthanidiphila, thereby further corroborating their unique metabolism involved in the environmentally relevant process of nitrite-dependent methane oxidation.
Collapse
Affiliation(s)
- Wouter Versantvoort
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, the Netherlands.
| | - Sergio Guerrero-Castillo
- Molecular Bioenergetics Group, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert-Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Geert-Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Laura van Niftrik
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert-Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; KPA Aging-Associated Diseases, CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Joachim Reimann
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
41
|
Zhu B, Wang J, Bradford LM, Ettwig K, Hu B, Lueders T. Nitric Oxide Dismutase ( nod) Genes as a Functional Marker for the Diversity and Phylogeny of Methane-Driven Oxygenic Denitrifiers. Front Microbiol 2019; 10:1577. [PMID: 31354671 PMCID: PMC6636425 DOI: 10.3389/fmicb.2019.01577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
Oxygenic denitrification represents a new route in reductive nitrogen turnover which differs from canonical denitrification in how nitric oxide (NO) is transformed into dinitrogen gas. Instead of NO reduction via N2O to N2, NO is proposed to be directly disproportionated into N2 and O2 in oxygenic denitrification, catalyzed by the putative NO dismutase (Nod). Although a high diversity of nod genes has been recovered from various environments, still little is known about the niche partitioning and ecophysiology of oxygenic denitrifiers. One constraint is that nod as a functional marker for oxygenic denitrifiers is not well established. To address this issue, we compared the diversity and phylogeny of nod, 16S rRNA and pmoA gene sequences of four NC10 enrichments that are capable of methane-driven oxygenic denitrification and one environmental sample. The phylogenies of nod, 16S rRNA and pmoA genes of these cultures were generally congruent. The diversity of NC10 bacteria inferred from different genes was also similar in each sample. A new set of NC10-specific nod primers was developed and used in qPCR. The abundance of NC10 bacteria inferred from nod genes was constantly lower than via 16S rRNA genes, but the difference was within one order of magnitude. These results suggest that nod is a suitable molecular marker for studying the diversity and phylogeny of methane-driven oxygenic denitrifiers, the further investigation of which may be of value to develop enhanced strategies for sustainable nitrogen or methane removal.
Collapse
Affiliation(s)
- Baoli Zhu
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany.,Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands.,Chair of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Lauren M Bradford
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany
| | - Katharina Ettwig
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany.,Chair of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
42
|
Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. Proc Natl Acad Sci U S A 2019; 116:2860-2865. [PMID: 30728294 DOI: 10.1073/pnas.1813887116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Benthic foraminifera populate a diverse range of marine habitats. Their ability to use alternative electron acceptors-nitrate (NO3 -) or oxygen (O2)-makes them important mediators of benthic nitrogen cycling. Nevertheless, the metabolic scaling of the two alternative respiration pathways and the environmental determinants of foraminiferal denitrification rates are yet unknown. We measured denitrification and O2 respiration rates for 10 benthic foraminifer species sampled in the Peruvian oxygen minimum zone (OMZ). Denitrification and O2 respiration rates significantly scale sublinearly with the cell volume. The scaling is lower for O2 respiration than for denitrification, indicating that NO3 - metabolism during denitrification is more efficient than O2 metabolism during aerobic respiration in foraminifera from the Peruvian OMZ. The negative correlation of the O2 respiration rate with the surface/volume ratio is steeper than for the denitrification rate. This is likely explained by the presence of an intracellular NO3 - storage in denitrifying foraminifera. Furthermore, we observe an increasing mean cell volume of the Peruvian foraminifera, under higher NO3 - availability. This suggests that the cell size of denitrifying foraminifera is not limited by O2 but rather by NO3 - availability. Based on our findings, we develop a mathematical formulation of foraminiferal cell volume as a predictor of respiration and denitrification rates, which can further constrain foraminiferal biogeochemical cycling in biogeochemical models. Our findings show that NO3 - is the preferred electron acceptor in foraminifera from the OMZ, where the foraminiferal contribution to denitrification is governed by the ratio between NO3 - and O2.
Collapse
|
43
|
Eukaryotic Evolution: An Ancient Breath of Nitrate. Curr Biol 2018; 28:R875-R877. [DOI: 10.1016/j.cub.2018.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|