1
|
Bousfield CG, Edwards DP. The pan-tropical age distribution of regenerating tropical moist forest. Nat Ecol Evol 2025:10.1038/s41559-025-02721-8. [PMID: 40394200 DOI: 10.1038/s41559-025-02721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/14/2025] [Indexed: 05/22/2025]
Abstract
Natural forest regeneration in the tropics is a key element of restoration pledges. Protecting older regenerating forests that already hold substantial carbon and biodiversity value, while promoting natural regeneration in young secondary forests in regions where forests are likely to persist long term, is vital for effective forest restoration. Key questions therefore include understanding the age distribution of naturally regenerating forests pan-tropically and which environmental or socio-economic conditions predict increased longevity in regenerating forests. Here, using a time series of forest cover data (1990-2023) to map the age of regenerating tropical moist forests, we identify 51 Mha of regenerating tropical moist forest, of which >50% is ≤5 years old and under high deforestation pressure, whereas only 6% (3 Mha) is ≥20 years old and located predominantly in the tropical Americas. Location and forest characteristics in the surrounding landscape best predict the age of regenerating forests, with older forests located in areas with high forest integrity and extent, and low forest loss. Realizing the environmental and social values of naturally regenerating forests requires urgent financial, political and societal mechanisms to facilitate the long-term persistence of restoration.
Collapse
Affiliation(s)
- Christopher G Bousfield
- Department of Plant Sciences and Centre for Global Wood Security, University of Cambridge, Cambridge, UK.
- Conservation Research Institute, University of Cambridge, Cambridge, UK.
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - David P Edwards
- Department of Plant Sciences and Centre for Global Wood Security, University of Cambridge, Cambridge, UK
- Conservation Research Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Wang Q, Luo S, Yang Y, Bai Y, Wei J, Xu KW, Yang Y, Li M, Yang X, Duan Y, Guo Z. WP-MOD: A multi-omics and taxonomy database for woody plants. PLANT COMMUNICATIONS 2025; 6:101290. [PMID: 39987466 PMCID: PMC12010388 DOI: 10.1016/j.xplc.2025.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/30/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Woody plants, including trees, shrubs, and woody vines, are vital components of terrestrial ecosystems and are critical for maintaining biodiversity, regulating climate, and supporting human livelihoods. Over the past decade, the accumulation of high-throughput sequencing data, multi-omics data, and taxonomic information on woody plants has increased significantly, highlighting the need for an integrative database. Here, we present the Woody Plant Multi-Omics Database (WP-MOD, https://www.woodyplant.com), a comprehensive and user-friendly platform designed to meet the growing need for specialized resources in woody plant research. The WP-MOD integrates extensive taxonomic information and multi-omics data from 373 species across 35 orders and provides a centralized resource for the analysis and exploration of woody plant biology. The database includes high-quality reference genomes and reanalyzed data from RNA sequencing, small RNA sequencing, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and bisulfite sequencing, along with 17 tools for sequence and omics analysis. The WP-MOD supports both genetic and molecular research and contributes to the conservation and sustainable management of woody plants. We believe that the WP-MOD will be an essential tool for plant science researchers.
Collapse
Affiliation(s)
- Qi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shaoxuan Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yixiang Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yawen Bai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Junrong Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaozeng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Sapkota DP, Edwards DP, Massam MR, Evans KL. A Pantropical Analysis of Fire Impacts and Post-Fire Species Recovery of Plant Life Forms. Ecol Evol 2025; 15:e71018. [PMID: 39967759 PMCID: PMC11832907 DOI: 10.1002/ece3.71018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/19/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Fires are a key environmental driver that modify ecosystems and global biodiversity. Fires can negatively and positively impact biodiversity and ecosystem functioning, depending on how frequently fire occurs in the focal ecosystem, but factors influencing biodiversity responses to fire are inadequately understood. We conduct a pan-tropical analysis of systematically collated data spanning 5257 observations of 1705 plant species (trees and shrubs, forbs, graminoids and climbers) in burnt and unburnt plots from 28 studies. We use model averaging of mixed effect models assessing how plant species richness and turnover (comparing burnt and unburnt communities) vary with time since fire, fire type, protected area status and biome type (fire sensitive or fire adaptive). Our analyses bring three key findings. First, prescribed and non-prescribed burns have contrasting impacts on plant species richness (trees/shrubs and climbers); prescribed fire favours increased species richness compared to non-prescribed burns. Second, the effect of time since fire on the recovery of species composition varies across all life form groups; forb's species composition recovered faster over all life forms. Third, protection status alters fire impacts on the species richness of trees/shrubs and climbers and species recovery of graminoids. Non-protected areas exhibit higher species richness compared to protected areas in trees/shrubs, and climbers. Graminoid species composition recovered quicker in protected sites compared to unprotected ones. Since fire intervals are decreasing in fire-sensitive biomes and increasing in fire-adaptive biomes, plant communities across much of the tropics are likely to change in response to exposure to fire in the future.
Collapse
Affiliation(s)
- Dharma P. Sapkota
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - David P. Edwards
- Department of Plant Sciences and Centre for Global Wood SecurityUniversity of CambridgeCambridgeUK
- Conservation Research Institute, University of CambridgeCambridgeUK
| | - Mike R. Massam
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Karl L. Evans
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
4
|
Brodie JF, Mohd-Azlan J, Chen C, Wearn OR, Deith MCM, Ball JGC, Slade EM, Burslem DFRP, Teoh SW, Williams PJ, Nguyen A, Moore JH, Goetz SJ, Burns P, Jantz P, Hakkenberg CR, Kaszta Z, Cushman S, Coomes D, Helmy OE, Reynolds G, Rodríguez JP, Jetz W, Luskin MS. Reply to: Causal claims, causal assumptions and protected area impact. Nature 2025; 638:E42-E44. [PMID: 40011724 DOI: 10.1038/s41586-024-08513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/10/2024] [Indexed: 02/28/2025]
Affiliation(s)
- Jedediah F Brodie
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
- Wildlife Biology Program, University of Montana, Missoula, MT, USA.
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia.
| | - Jayasilan Mohd-Azlan
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Cheng Chen
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oliver R Wearn
- Fauna and Flora International-Vietnam Programme, Tay Ho, Hanoi, Vietnam
| | - Mairin C M Deith
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - James G C Ball
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | - Eleanor M Slade
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, Scotland, UK
| | - Shu Woan Teoh
- Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Peter J Williams
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - An Nguyen
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Jonathan H Moore
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Scott J Goetz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Patrick Burns
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Patrick Jantz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Christopher R Hakkenberg
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Zaneta Kaszta
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Wildlife Conservation Research Unit (WildCRU), Department of Biology, University of Oxford, Oxford, UK
| | - Sam Cushman
- Wildlife Conservation Research Unit (WildCRU), Department of Biology, University of Oxford, Oxford, UK
- Northern Arizona University, School of Forestry, Flagstaff, AZ, USA
| | - David Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | - Olga E Helmy
- Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Glen Reynolds
- The South East Asia Rainforest Research Partnership (SEARRP), Danum Valley Field Centre, Kota Kinabalu, Malaysia
| | - Jon Paul Rodríguez
- IUCN Species Survival Commission, Venezuelan Institute for Scientific Investigation (IVIC) and Provita, Caracas, Venezuela
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Matthew Scott Luskin
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Barillaro J, Soto da Costa L, Gómez-Corea WN, García FJ, Pereira de Souza A, Bovendorp R. Landscape degradation drives metal bioaccumulation in bats from Atlantic Forest cacao region, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63819-63833. [PMID: 39508940 PMCID: PMC11602838 DOI: 10.1007/s11356-024-35478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Agricultural landscapes worldwide are heavily sprayed with agrochemicals to increase crop productivity. These agrochemicals release bio-accumulative pollutants such as heavy metals that often persist in the environment with harmful impacts on biota. In a prime endangered Atlantic Forest biome, in Bahia, Brazil, agroforestry of cacao (Theobroma cacao) provides a livelihood for small farmers and suitable habitats for forest species. However, landscape transformation to pasture and monoculture expose vulnerable communities to scarcely evaluated pollutants with unknown effects on the health of humans and animals. We assessed the bioaccumulation of manganese (Mn), lead (Pb), and copper (Cu) by analyzing hair samples of 326 bats representing 28 species across 15 cacao agroforestry and 2 forest remnants. Bats from regions heavily disturbed by pastures and monocultures showed higher levels of Pb (41.20 µg/g) and Mn (0.44 µg/g) compared to those from areas where forest or cacao agroforestry dominates the landscape. Local grassland covers increased Pb bioaccumulation, while forest cover reduced it. Cacao agroforestry appeared to increase Cu exposure, likely due to fungicide use. This study pioneers the evaluation of heavy metal accumulation in bats inhabiting cacao agroforestry and Atlantic Forest remnants, highlighting the need for sustainable agricultural practices to protect wildlife and ecosystem health.
Collapse
Affiliation(s)
- Julián Barillaro
- Programa de Pós-Graduação Em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil.
| | - Leticia Soto da Costa
- Programa de Pós-Graduação Em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Wilson Noel Gómez-Corea
- Programa de Pós-Graduação Em Zoologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Franger J García
- Programa de Pós-Graduação Em Zoologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Adailson Pereira de Souza
- Programa de Pós-Graduação Em Ciência Do Solo, Departamento de Solos E Engenharia Rural, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | - Ricardo Bovendorp
- Programa de Pós-Graduação Em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| |
Collapse
|
6
|
Conceição TA, Santos AS, Fernandes AKC, Meireles GN, de Oliveira FA, Barbosa RM, Gaiotto FA. Guiding seed movement: environmental heterogeneity drives genetic differentiation in Plathymenia reticulata, providing insights for restoration. AOB PLANTS 2024; 16:plae032. [PMID: 38883565 PMCID: PMC11176975 DOI: 10.1093/aobpla/plae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Forest and landscape restoration is one of the main strategies for overcoming the environmental crisis. This activity is particularly relevant for biodiversity-rich areas threatened by deforestation, such as tropical forests. Efficient long-term restoration requires understanding the composition and genetic structure of native populations, as well as the factors that influence these genetic components. This is because these populations serve as the seed sources and, therefore, the gene reservoirs for areas under restoration. In the present study, we investigated the influence of environmental, climatic and spatial distance factors on the genetic patterns of Plathymenia reticulata, aiming to support seed translocation strategies for restoration areas. We collected plant samples from nine populations of P. reticulata in the state of Bahia, Brazil, located in areas of Atlantic Forest and Savanna, across four climatic types, and genotyped them using nine nuclear and three chloroplast microsatellite markers. The populations of P. reticulata evaluated generally showed low to moderate genotypic variability and low haplotypic diversity. The populations within the Savanna phytophysiognomy showed values above average for six of the eight evaluated genetic diversity parameters. Using this classification based on phytophysiognomy demonstrated a high predictive power for genetic differentiation in P. reticulata. Furthermore, the interplay of climate, soil and geographic distance influenced the spread of alleles across the landscape. Based on our findings, we propose seed translocation, taking into account the biome, with restricted use of seed sources acquired or collected from the same environment as the areas to be restored (Savanna or Atlantic Forest).
Collapse
Affiliation(s)
- Taise Almeida Conceição
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
| | - Alesandro Souza Santos
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Ane Karoline Campos Fernandes
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gabriela Nascimento Meireles
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Ancelmo de Oliveira
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-875, Brazil
| | - Rafael Marani Barbosa
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Amato Gaiotto
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| |
Collapse
|
7
|
Sanjeewani N, Samarasinghe D, Jayasinghe H, Ukuwela K, Wijetunga A, Wahala S, De Costa J. Variation of floristic diversity, community composition, endemism, and conservation status of tree species in tropical rainforests of Sri Lanka across a wide altitudinal gradient. Sci Rep 2024; 14:2090. [PMID: 38267529 PMCID: PMC10808289 DOI: 10.1038/s41598-024-52594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024] Open
Abstract
Tropical rainforests in Sri Lanka are biodiversity hotspots, which are sensitive to anthropogenic disturbance and long-term climate change. We assessed the diversity, endemism and conservation status of these rainforests across a wide altitudinal range (100-2200 m above sea level) via a complete census of all trees having ≥ 10 cm diameter at breast height in ten one-hectare permanent sampling plots. The numbers of tree families, genera and species and community-scale tree diversity decreased with increasing altitude. Tree diversity, species richness and total basal area per ha across the altitudinal range were positively associated with long-term means of maximum temperature, annual rainfall and solar irradiance. Percentage of endangered species increased with increasing altitude and was positively associated with cumulative maximum soil water deficit, day-night temperature difference and high anthropogenic disturbance. Percentage of endemic species was greater in the lowland rainforests than in high-altitude montane forests. Nearly 85% of the species were recorded in three or less plots, which indicated substantial altitudinal differentiation in their distributions. Less than 10 individuals were recorded in 41% of the endemic species and 45% of the native species, which underlined the need for urgent conservation efforts across the whole altitudinal range.
Collapse
Affiliation(s)
- Nimalka Sanjeewani
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Dilum Samarasinghe
- Postgraduate Institute of Archaeology, University of Kelaniya, Colombo, Sri Lanka
| | | | - Kanishka Ukuwela
- Department of Biological Science, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Asanga Wijetunga
- Department of Biological Science, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Sampath Wahala
- Department of Tourism Management, Faculty of Management Studies, Sabaragamuwa University of Sri Lanka, Belihul Oya, Sri Lanka
| | - Janendra De Costa
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
8
|
Dias TDC, Silveira LF, Francisco MR. Spatiotemporal dynamics reveals forest rejuvenation, fragmentation, and edge effects in an Atlantic Forest hotspot, the Pernambuco Endemism Center, northeastern Brazil. PLoS One 2023; 18:e0291234. [PMID: 37682943 PMCID: PMC10490850 DOI: 10.1371/journal.pone.0291234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Large forested tracts are increasingly rare in the tropics, where conservation managers are often presented with the challenge of preserving biodiversity in small and isolated fragments. The Atlantic Forest is one of the world's most important biodiversity hotspots, jeopardized by habitat loss and fragmentation. The Pernambuco Endemism Center (PEC) is the most degraded of the Atlantic Forest regions and because of the dramatic levels of deforestation, fragmentation, and ongoing species losses, studies on the distribution and configuration of the PEC's forest cover are necessary. However, across dynamic tropical landscapes, investigating changes over time is essential because it may reveal trends in forest quality attributes. Here, we used Google Earth Engine to assess land use and land cover data from MapBiomas ranging from 1985 to 2020 to calculate current landscape metrics and to reveal for the first time the spatiotemporal dynamics of the PEC's forests. We identified a forest cover area that ranged from 571,661 ha in 1985 to 539,877 ha in 2020, and about 90% of the fragments were smaller than 10 ha. The average fragment size was about 11 ha, and only four fragments had more than 5,000 ha. Deforestation was mostly concentrated in northern Alagoas, southern Pernambuco, and non-coastal Paraíba and Rio Grande do Norte. On average, borders represented 53.6% of the forests from 1985 to 2020, and younger forests covered 52.3% of the area in 2017, revealing a vegetation rejuvenation process 2.5 times higher than in total Atlantic Forest. In 2017, older forest cores in fragments larger than 1000 ha (i.e., higher-quality habitats) represented only 12% of the remaining forests. We recommend that the amount of forest cover alone may poorly assist conservation managers, and our results indicate that ensuring legal protection and increasing surveillance of the PEC's few last higher-quality habitats is urgently needed.
Collapse
Affiliation(s)
- Thiago da Costa Dias
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Luís Fábio Silveira
- Seção de Aves, Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil
| | - Mercival Roberto Francisco
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, Campus de Sorocaba, Sorocaba, São Paulo, Brazil
| |
Collapse
|
9
|
Rivera JD, de Los Monteros AE, Saldaña-Vázquez RA, Favila ME. Beyond species loss: How anthropogenic disturbances drive functional and phylogenetic homogenization of Neotropical dung beetles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161663. [PMID: 36682564 DOI: 10.1016/j.scitotenv.2023.161663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Anthropogenic activities drive tropical forest loss and biodiversity decay. However, few studies have addressed how the biodiversity response varies between disturbance-adapted species (i.e., winners) and those highly susceptible to disturbance (i.e., losers), or whether such responses differ between the taxonomic, functional, or phylogenetic dimensions of diversity. Understanding these dynamics can help prevent or buffer biotic homogenization processes. Using a meta-analytical approach with dung beetles as model organisms, we evaluated how anthropogenic habitat disturbances influence the multiple diversity dimensions of winner and loser species relative to conserved forest sites in the Neotropics. Habitats were organized according to a disturbance gradient ranging from second-growth forests, shaded agroforestry, lowly-shaded agroforestry, living fences, and pastures. Our database included 30 studies, from which we calculated nine metrics divided into three alfa diversity aspects: richness, evenness, and divergence. We also evaluated the beta-diversity response to disturbance and forest protection. All dimensions of dung beetle diversity decreased significantly with increasing disturbance levels, with phylogenetic diversity showing the highest losses, whereas evenness metrics increased in second-growth forests and agroforestry systems. Loser dung beetles showed high diversity loss as well as functional and phylogenetic clustering, reflecting a pervasive biotic homogenization in the most severely disturbed habitats, whereas winner species were insensitive to anthropogenic disturbances. Beta diversity increased significantly with disturbance and forest protection. Our study showed that heavy disturbances erode and homogenized all diversity dimensions of loser dung beetles. However, second-growth forests and agroforestry systems mitigated diversity loss and homogenization processes by favoring the coexistence between functional and phylogenetically distant species and maintaining assemblages compositionally similar to those in conserved forests, highlighting their importance for conservation. We encourage natural resource managers to consider protection of disturbed off-reserve forests in management schemes as these are essential for maintaining biodiversity in an increasingly anthropized world.
Collapse
Affiliation(s)
- Jose D Rivera
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa, Veracruz, México; Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, México.
| | | | - Romeo A Saldaña-Vázquez
- Instituto de Investigaciones en Medio Ambiente Xabier Gorostiaga S.J, Universidad Iberoamericana Puebla, Blvd. del Niño Poblano No. 2901, Colonia Reserva Territorial Atlixcáyotl, San Andrés Cholula, Pue C. P. 72820, Mexico
| | - Mario E Favila
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| |
Collapse
|
10
|
Depecker J, Verleysen L, Asimonyio JA, Hatangi Y, Kambale JL, Mwanga Mwanga I, Ebele T, Dhed'a B, Bawin Y, Staelens A, Stoffelen P, Ruttink T, Vandelook F, Honnay O. Genetic diversity and structure in wild Robusta coffee (Coffea canephora A. Froehner) populations in Yangambi (DR Congo) and their relation to forest disturbance. Heredity (Edinb) 2023; 130:145-153. [PMID: 36596880 PMCID: PMC9981769 DOI: 10.1038/s41437-022-00588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Degradation and regeneration of tropical forests can strongly affect gene flow in understorey species, resulting in genetic erosion and changes in genetic structure. Yet, these processes remain poorly studied in tropical Africa. Coffea canephora is an economically important species, found in the understorey of tropical rainforests of Central and West Africa, and the genetic diversity harboured in its wild populations is vital for sustainable coffee production worldwide. Here, we aimed to quantify genetic diversity, genetic structure, and pedigree relations in wild C. canephora populations, and we investigated associations between these descriptors and forest disturbance and regeneration. Therefore, we sampled 256 C. canephora individuals within 24 plots across three forest categories in Yangambi (DR Congo), and used genotyping-by-sequencing to identify 18,894 SNPs. Overall, we found high genetic diversity, and no evidence of genetic erosion in C. canephora in disturbed old-growth forest, as compared to undisturbed old-growth forest. In addition, an overall heterozygosity excess was found in all populations, which was expected for a self-incompatible species. Genetic structure was mainly a result of isolation-by-distance, reflecting geographical location, with low to moderate relatedness at finer scales. Populations in regrowth forest had lower allelic richness than populations in old-growth forest and were characterised by a lower inter-individual relatedness and a lack of isolation-by-distance, suggesting that they originated from different neighbouring populations and were subject to founder effects. Wild Robusta coffee populations in the study area still harbour high levels of genetic diversity, yet careful monitoring of their response to ongoing forest degradation remains required.
Collapse
Affiliation(s)
- Jonas Depecker
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium.
- Meise Botanic Garden, Meise, Belgium.
- KU Leuven Plant Institute, Leuven, Belgium.
| | - Lauren Verleysen
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium.
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium.
| | - Justin A Asimonyio
- Centre de Surveillance de la Biodiversité et Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Yves Hatangi
- Meise Botanic Garden, Meise, Belgium
- Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Jean-Léon Kambale
- Centre de Surveillance de la Biodiversité et Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Ithe Mwanga Mwanga
- Centre de Recherche en Science Naturelles, Lwiro, Democratic Republic of the Congo
| | - Tshimi Ebele
- Institut National des Etudes et Recherches, Agronomique, Democratic Republic of the Congo
| | - Benoit Dhed'a
- Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Yves Bawin
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Ariane Staelens
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | | | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Filip Vandelook
- Meise Botanic Garden, Meise, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| | - Olivier Honnay
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| |
Collapse
|
11
|
Matos FAR, Edwards DP, S. Magnago LF, Heringer G, Viana Neri A, Buttschardt T, Dudeque Zenni R, Tavares de Menezes LF, Zamborlini Saiter F, Reynaud Schaefer CEG, Vieira Hissa Safar N, Pacheco Da Silva M, Simonelli M, Martins SV, Brancalion PHS, A. Meira-Neto JA. Invasive alien acacias rapidly stock carbon, but threaten biodiversity recovery in young second-growth forests. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210072. [PMID: 36373928 PMCID: PMC9661951 DOI: 10.1098/rstb.2021.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Under the UN-Decade of Ecosystem Restoration and Bonn Challenge, second-growth forest is promoted as a global solution to climate change, degradation and associated losses of biodiversity and ecosystem services. Second growth is often invaded by alien tree species and understanding how this impacts carbon stock and biodiversity recovery is key for restoration planning. We assessed carbon stock and tree diversity recovery in second growth invaded by two Acacia species and non-invaded second growth, with associated edge effects, in the Brazilian Atlantic Forest. Carbon stock recovery in non-invaded forests was threefold lower than in invaded forests. Increasingly isolated, fragmented and deforested areas had low carbon stocks when non-invaded, whereas the opposite was true when invaded. Non-invaded forests recovered threefold to sixfold higher taxonomic, phylogenetic and functional diversity than invaded forest. Higher species turnover and lower nestedness in non-invaded than invaded forests underpinned higher abundance of threatened and endemic species in non-invaded forest. Non-invaded forests presented positive relationships between carbon and biodiversity, whereas in the invaded forests we did not detect any relationship, indicating that more carbon does not equal more biodiversity in landscapes with high vulnerability to invasive acacias. To deliver on combined climate change and biodiversity goals, restoration planning and management must consider biological invasion risk. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Fabio A. R. Matos
- Laboratory of Ecology and Evolution of Plants (LEEP), Botany graduate program (PPGBot), Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, CEP: 36.570-000, Brazil
- Federal University of Espírito Santo (CEUNES/DCAB), BR 101 Norte, Km 60 - Bairro Litorâneo, São Mateus, Espírito Santo, CEP: 29.932-900, Brazil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - David P. Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Luiz Fernando S. Magnago
- Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, CEP: 37.200-900, Lavras, MG, Brazil
| | - Gustavo Heringer
- Laboratory of Ecology and Evolution of Plants (LEEP), Botany graduate program (PPGBot), Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, CEP: 36.570-000, Brazil
- Institute of Landscape Ecology—ILÖK, University of Münster, D-48149 Münster, Germany
| | - Andreza Viana Neri
- Laboratory of Ecology and Evolution of Plants (LEEP), Botany graduate program (PPGBot), Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, CEP: 36.570-000, Brazil
| | - Tillmann Buttschardt
- Instituto Federal do Espírito Santo, campus Cariacica, Cariacica-ES, CEP: 29.150-410, Brazil
| | - Rafael Dudeque Zenni
- Institute of Landscape Ecology—ILÖK, University of Münster, D-48149 Münster, Germany
| | - Luis Fernando Tavares de Menezes
- Federal University of Espírito Santo (CEUNES/DCAB), BR 101 Norte, Km 60 - Bairro Litorâneo, São Mateus, Espírito Santo, CEP: 29.932-900, Brazil
| | - Felipe Zamborlini Saiter
- Instituto Nacional da Mata Atlântica (INMA). Av. José Ruschi, Santa Teresa, Espírito Santo, CEP: 29.650-000, Brazil
- Department of Soil Science, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, CEP: 36.570-900, Brazil
| | | | - Nathália Vieira Hissa Safar
- Programa de Pós-Graduação em Botânica, Department of Plant Biology, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, CEP: 36.570-900, Brazil
| | - Mônica Pacheco Da Silva
- Instituto Federal do Norte de Minas Gerais, Departamento de Biologia Geral, Januária, MG, CEP: 39.480-000, Brazil
| | - Marcelo Simonelli
- Instituto Federal do Espírito Santo, campus Vitória, Vitória - ES, CEP: 29.056-264, Brazil
| | - Sebastião V. Martins
- Department of Forest Engineering, Universidade Federal de Viçosa, Viçosa, CEP: 36.570-900 Brazil
| | - Pedro Henrique Santin Brancalion
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, CEP: 13.418-900, Brazil
| | - João Augusto A. Meira-Neto
- Laboratory of Ecology and Evolution of Plants (LEEP), Botany graduate program (PPGBot), Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, CEP: 36.570-000, Brazil
| |
Collapse
|
12
|
Correlates of plant β-diversity in Atlantic Forest patches in the Pernambuco Endemism Centre, Northeastern Brazil. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467422000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Understanding how vegetation structure and floristic composition vary across landscapes is fundamental to understand ecological patterns and for designing conservation actions. In a patch-landscape approach, we assessed the β-diversity (q0 order – rare species, q1 order – common species, and q2 order – dominant species) of plants between forest patches and surveyed plots in Atlantic Forest patches located in the Pernambuco Endemism Centre, northeastern Brazil. Furthermore, we tested the influence of predictor variables linked to landscape (forest cover and edge density) and habitat (basal area), as well as the geographical distance between forest patches and plots on the β-diversity in each forest patch and plot. We measured and identified a total of 1,682 individuals (trees and lianas), corresponding to 248 species, 116 genera, and 56 families in 10 plots (50 × 2 m) from each forest patch. The β-diversity presented lower values for the Mata de Água Azul patch at a landscape scale (i.e., between forest patches) and Mata dos Macacos patch at a site scale (i.e., between plots) for all orders. Geographical distance positively influenced the β-diversity at the landscape scale, and higher turnover between plots (e.g., within forest patches) was positively associated with differences in geographical distance, edge density, forest cover, and basal area. Our results indicate the need to conserve forest patches distributed across a wide area (distant sites) that encompass different landscape contexts with different vegetation structures, in order to conserve greater floristic diversity.
Collapse
|
13
|
Carvalho JS, Stewart FA, Marques TA, Bonnin N, Pintea L, Chitayat A, Ingram R, Moore RJ, Piel AK. Spatio-temporal changes in chimpanzee density and abundance in the Greater Mahale Ecosystem, Tanzania. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2715. [PMID: 36178009 PMCID: PMC10078593 DOI: 10.1002/eap.2715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/23/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
Species conservation and management require reliable information about animal distribution and population size. Better management actions within a species' range can be achieved by identifying the location and timing of population changes. In the Greater Mahale Ecosystem (GME), western Tanzania, deforestation due to the expansion of human settlements and agriculture, annual burning, and logging are known threats to wildlife. For one of the most charismatic species, the endangered eastern chimpanzee (Pan troglodytes schweinfurthii), approximately 75% of the individuals are distributed outside national park boundaries, requiring monitoring and protection efforts over a vast landscape of various protection statuses. These efforts are especially challenging when we lack data on trends in density and population size. To predict spatio-temporal chimpanzee density and abundance across the GME, we used density surface modeling, fitting a generalized additive model to a 10-year time-series data set of nest counts based on line-transect surveys. The chimpanzee population declined at an annual rate of 2.41%, including declines of 1.72% in riparian forests (from this point forward, forests), 2.05% in miombo woodlands (from this point forward, woodlands) and 3.45% in nonforests. These population declines were accompanied by ecosystem-wide declines in vegetation types of 1.36% and 0.32% per year for forests and woodlands, respectively; we estimated an annual increase of 1.35% for nonforests. Our model predicted the highest chimpanzee density in forests (0.86 chimpanzees/km2 , 95% confidence intervals (CIs) 0.60-1.23; as of 2020), followed by woodlands (0.19, 95% CI 0.12-0.30) and nonforests (0.18, 95% CI 0.10-1.33). Although forests represent only 6% of the landscape, they support nearly one-quarter of the chimpanzee population (769 chimpanzees, 95% CI 536-1103). Woodlands dominate the landscape (71%) and therefore support more than a half of the chimpanzee population (2294; 95% CI 1420-3707). The remaining quarter of the landscape is represented by nonforests and supports another quarter of the chimpanzee population (750; 95% CI 408-1381). Given the pressures on the remaining suitable habitat in Tanzania, and the need of chimpanzees to access both forest and woodland vegetation to survive, we urge future management actions to increase resources and expand the efforts to protect critical forest and woodland habitat and promote strategies and policies that more effectively prevent irreversible losses. We suggest that regular monitoring programs implement a systematic random design to effectively inform and allocate conservation actions and facilitate interannual comparisons for trend monitoring, measuring conservation success, and guiding adaptive management.
Collapse
Affiliation(s)
- Joana S. Carvalho
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
- School of Built and Natural SciencesUniversity of DerbyDerbyUK
| | - Fiona A. Stewart
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
- Greater Mahale Ecosystem Research and Conservation ProjectDar es SalaamTanzania
- Department of AnthropologyUniversity College LondonLondonUK
| | - Tiago A. Marques
- School of Mathematics and StatisticsUniversity of St. AndrewsSt. AndrewsUK
- Department of Animal BiologyFaculdade de Ciencias da Universidade de LisboaLisbonPortugal
| | - Noemie Bonnin
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Lilian Pintea
- Department of Conservation ScienceThe Jane Goodall InstituteWashingtonDistrict of ColumbiaUSA
| | - Adrienne Chitayat
- Institute of Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamNetherlands
| | - Rebecca Ingram
- Greater Mahale Ecosystem Research and Conservation ProjectDar es SalaamTanzania
| | - Richard J. Moore
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Alex K. Piel
- Greater Mahale Ecosystem Research and Conservation ProjectDar es SalaamTanzania
- Department of AnthropologyUniversity College LondonLondonUK
| |
Collapse
|
14
|
Mateo RG, Arellano G, Gómez-Rubio V, Tello JS, Fuentes AF, Cayola L, Loza MI, Cala V, Macía MJ. Insights on biodiversity drivers to predict species richness in tropical forests at the local scale. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Flores BM, Staal A. Feedback in tropical forests of the Anthropocene. GLOBAL CHANGE BIOLOGY 2022; 28:5041-5061. [PMID: 35770837 PMCID: PMC9542052 DOI: 10.1111/gcb.16293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 05/27/2023]
Abstract
Tropical forests are complex systems containing myriad interactions and feedbacks with their biotic and abiotic environments, but as the world changes fast, the future of these ecosystems becomes increasingly uncertain. In particular, global stressors may unbalance the feedbacks that stabilize tropical forests, allowing other feedbacks to propel undesired changes in the whole ecosystem. Here, we review the scientific literature across various fields, compiling known interactions of tropical forests with their environment, including the global climate, rainfall, aerosols, fire, soils, fauna, and human activities. We identify 170 individual interactions among 32 elements that we present as a global tropical forest network, including countless feedback loops that may emerge from different combinations of interactions. We illustrate our findings with three cases involving urgent sustainability issues: (1) wildfires in wetlands of South America; (2) forest encroachment in African savanna landscapes; and (3) synergistic threats to the peatland forests of Borneo. Our findings reveal an unexplored world of feedbacks that shape the dynamics of tropical forests. The interactions and feedbacks identified here can guide future qualitative and quantitative research on the complexities of tropical forests, allowing societies to manage the nonlinear responses of these ecosystems in the Anthropocene.
Collapse
Affiliation(s)
- Bernardo M. Flores
- Graduate Program in EcologyFederal University of Santa CatarinaFlorianopolisBrazil
| | - Arie Staal
- Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
16
|
Shifting Importance of Abiotic versus Biotic Filtering from Intact Mature Forests to Post-Clearcut Secondary Forests. FORESTS 2022. [DOI: 10.3390/f13050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Although ecologists often emphasize the roles of environmental- versus biotic-filtering in structuring forest communities, the relative importance of these processes could vary among undisturbed versus disturbed forests. To test this assumption, we gathered leaf traits and site conditions data from intact mature forests (control), moderately disturbed shrublands, and severely disturbed plantations from subtropical China. We found that plantations had higher leaf area, specific leaf area, leaf nitrogen and phosphorus concentrations but lower leaf thickness, dry matter content, and C:N than the shrubland or mature forest, suggesting the dominance of resource acquisition strategy in plantations versus conservation strategy in the mature forests. Plantations also had significantly lower trait ranges than mature forest or shrubland, suggesting the play of stringent environmental filtering in the plantation. However, intraspecific trait variations in leaf dry matter content and C:N were substantial in plantation, while interspecific variation in leaf thickness was high in mature forests, suggesting the importance of intra- versus inter-specific competition in plantation versus mature forests. Results from our species-level analysis were consistent with the community-level results mentioned above. Overall, our study demonstrates the shifting importance of environmental and biotic filtering from disturbed to undisturbed forests.
Collapse
|
17
|
Combining Sentinel-1 and Landsat 8 Does Not Improve Classification Accuracy of Tropical Selective Logging. REMOTE SENSING 2022. [DOI: 10.3390/rs14010179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tropical forests play a key role in the global carbon and hydrological cycles, maintaining biological diversity, slowing climate change, and supporting the global economy and local livelihoods. Yet, rapidly growing populations are driving continued degradation of tropical forests to supply wood products. The United Nations (UN) has developed the Reducing Emissions from Deforestation and Forest Degradation (REDD+) programme to mitigate climate impacts and biodiversity losses through improved forest management. Consistent and reliable systems are still needed to monitor tropical forests at large scales, however, degradation has largely been left out of most REDD+ reporting given the lack of effective monitoring and countries mainly focus on deforestation. Recent advances in combining optical data and Synthetic Aperture Radar (SAR) data have shown promise for improved ability to monitor forest losses, but it remains unclear if similar improvements could be made in detecting and mapping forest degradation. We used detailed selective logging records from three lowland tropical forest regions in the Brazilian Amazon to test the effectiveness of combining Landsat 8 and Sentinel-1 for selective logging detection. We built Random Forest models to classify pixel-based differences in logged and unlogged regions to understand if combining optical and SAR improved the detection capabilities over optical data alone. We found that the classification accuracy of models utilizing optical data from Landsat 8 alone were slightly higher than models that combined Sentinel-1 and Landsat 8. In general, detection of selective logging was high with both optical only and optical-SAR combined models, but our results show that the optical data was dominating the predictive performance and adding SAR data introduced noise, lowering the detection of selective logging. While we have shown limited capabilities with C-band SAR, the anticipated opening of the ALOS-PALSAR archives and the anticipated launch of NISAR and BIOMASS in 2023 should stimulate research investigating similar methods to understand if longer wavelength SAR might improve classification of areas affected by selective logging when combined with optical data.
Collapse
|
18
|
BakwoFils EM, Mongombe MA, Manfothang DE, Gomeh-Djame A, Takuo JM, Bilong BCF. Patterns of Bat Diversity in an Undisturbed Forest and Forest Mosaic Habitats of the Afromontane Forest Biome of Western Cameroon. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.761969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities continue to degrade natural montane ecosystems globally. Bats communities are altered by these changes. We analyzed how bats are affected by human-induced habitat changes by comparing the bat species diversity and functional diversity in undisturbed forest habitats and disturbed forest habitats of the Afromontane biome of Cameroon. We recorded 244 individuals from 13 species in the undisturbed forest, while 233 individuals from 16 species were recorded in the disturbed forest. Bat diversity was higher in disturbed habitats (D = 0.84) than undisturbed habitats (D = 0.67). Jackknife 1 species richness estimator suggests 21.53 species for the disturbed forest and 19.30 in the undisturbed forest. Closed-space forager insectivorous bats made up nearly half of the species in the undisturbed forest, but this dropped to 25% in the disturbed forest, meanwhile, edge-space foragers increased in the disturbed forest. Bat community analyses by ordination revealed a distinct bat community composition between the two forest types, demonstrated as a significant difference in diversity between the two forest types. The distribution of Rousettus aegyptiacus, Myonycteris angolensis, Hipposideros cf. ruber, and Micropteropus pusillus contribute the most to the difference in bat community composition between the two forest types. Edge and open-space species were likely to benefit from additional resources provided by the disturbed area, by expanding their range and distribution. However, this may not compensate for the decline in the population of forest species caused by the loss of pristine forests, thus measures to conserve montane forest remnants should be of utmost significance.
Collapse
|
19
|
Liang D, Pan X, Luo X, Wenda C, Zhao Y, Hu Y, Robinson SK, Liu Y. Seasonal variation in community composition and distributional ranges of birds along a subtropical elevation gradient in China. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Dan Liang
- State Key Laboratory of Biocontrol School of Life Sciences & School of Ecology Sun Yat‐sen University Guangzhou Guangdong China
- Faculty of Biodiversity and Conservation Southwest Forestry University Kunming China
- Princeton School of Public and International Affairs Princeton University Princeton NJ USA
| | - Xinyuan Pan
- State Key Laboratory of Biocontrol School of Life Sciences & School of Ecology Sun Yat‐sen University Guangzhou Guangdong China
| | - Xu Luo
- Faculty of Biodiversity and Conservation Southwest Forestry University Kunming China
| | - Cheng Wenda
- Division for Ecology & Biodiversity School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Yanyan Zhao
- State Key Laboratory of Biocontrol School of Life Sciences & School of Ecology Sun Yat‐sen University Guangzhou Guangdong China
| | - Yiming Hu
- School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China
| | - Scott K. Robinson
- Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Yang Liu
- State Key Laboratory of Biocontrol School of Life Sciences & School of Ecology Sun Yat‐sen University Guangzhou Guangdong China
| |
Collapse
|
20
|
Fletcher MS, Hamilton R, Dressler W, Palmer L. Indigenous knowledge and the shackles of wilderness. Proc Natl Acad Sci U S A 2021; 118:e2022218118. [PMID: 34580210 PMCID: PMC8501882 DOI: 10.1073/pnas.2022218118] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
The environmental crises currently gripping the Earth have been codified in a new proposed geological epoch: the Anthropocene. This epoch, according to the Anthropocene Working Group, began in the mid-20th century and reflects the "great acceleration" that began with industrialization in Europe [J. Zalasiewicz et al., Anthropocene 19, 55-60 (2017)]. Ironically, European ideals of protecting a pristine "wilderness," free from the damaging role of humans, is still often heralded as the antidote to this human-induced crisis [J. E. M. Watson et al., Nature, 563, 27-30 (2018)]. Despite decades of critical engagement by Indigenous and non-Indigenous observers, large international nongovernmental organizations, philanthropists, global institutions, and nation-states continue to uphold the notion of pristine landscapes as wilderness in conservation ideals and practices. In doing so, dominant global conservation policy and public perceptions still fail to recognize that Indigenous and local peoples have long valued, used, and shaped "high-value" biodiverse landscapes. Moreover, the exclusion of people from many of these places under the guise of wilderness protection has degraded their ecological condition and is hastening the demise of a number of highly valued systems. Rather than denying Indigenous and local peoples' agency, access rights, and knowledge in conserving their territories, we draw upon a series of case studies to argue that wilderness is an inappropriate and dehumanizing construct, and that Indigenous and community conservation areas must be legally recognized and supported to enable socially just, empowering, and sustainable conservation across scale.
Collapse
Affiliation(s)
- Michael-Shawn Fletcher
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Indigenous Knowledge Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Canberra, ACT 2601, Australia
| | - Rebecca Hamilton
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Canberra, ACT 2601, Australia
- Department of Archaeology, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Wolfram Dressler
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lisa Palmer
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
21
|
Souza-Alves JP, Chagas Alves RR, Hilário RR, Barnett AA, Bezerra BM. Species-specific resource availability as potential correlates of foraging strategy in Atlantic Forest edge-living common marmosets. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1949751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- João P. Souza-Alves
- Postgraduate Program in Animal Biology, Department of Zoology, Federal University of Pernambuco, Recife, Brazil
- Laboratório de Ecologia, Comportamento e Conservação (LECC), Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Renata R.D. Chagas Alves
- Postgraduate Program in Biological Science (Zoology), Department of Systematics and Ecology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Renato R. Hilário
- Department of Environment and Development, Federal University of Amapá, Macapá, Brazil
| | - Adrian A. Barnett
- Postgraduate Program in Animal Biology, Department of Zoology, Federal University of Pernambuco, Recife, Brazil
- Laboratório de Ecologia, Comportamento e Conservação (LECC), Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Bruna M. Bezerra
- Postgraduate Program in Animal Biology, Department of Zoology, Federal University of Pernambuco, Recife, Brazil
- Laboratório de Ecologia, Comportamento e Conservação (LECC), Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
22
|
Potapov A, Schaefer I, Jochum M, Widyastuti R, Eisenhauer N, Scheu S. Oil palm and rubber expansion facilitates earthworm invasion in Indonesia. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02539-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractDeforestation, plantation expansion and other human activities in tropical ecosystems are often associated with biological invasions. These processes have been studied for above-ground organisms, but associated changes below the ground have received little attention. We surveyed rainforest and plantation systems in Jambi province, Sumatra, Indonesia, to investigate effects of land-use change on the diversity and abundance of earthworms—a major group of soil-ecosystem engineers that often is associated with human activities. Density and biomass of earthworms increased 4—30-fold in oil palm and rubber monoculture plantations compared to rainforest. Despite much higher abundance, earthworm communities in plantations were less diverse and dominated by the peregrine morphospecies Pontoscolex corethrurus, often recorded as invasive. Considering the high deforestation rate in Indonesia, invasive earthworms are expected to dominate soil communities across the region in the near future, in lieu of native soil biodiversity. Ecologically-friendly management approaches, increasing structural habitat complexity and plant diversity, may foster beneficial effects of invasive earthworms on plant growth while mitigating negative effects on below-ground biodiversity and the functioning of the native soil animal community.
Collapse
|
23
|
The underestimated role of small fragments for carnivore dispersal in the Atlantic Forest. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
González-Del-Pliego P, Scheffers BR, Freckleton RP, Basham EW, Araújo MB, Acosta-Galvis AR, Medina Uribe CA, Haugaasen T, Edwards DP. Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change. J Anim Ecol 2020; 89:2451-2460. [PMID: 32745275 DOI: 10.1111/1365-2656.13309] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 07/06/2020] [Indexed: 11/30/2022]
Abstract
Global warming is having impacts across the Tree of Life. Understanding species' physiological sensitivity to temperature change and how they relate to local temperature variation in their habitats is crucial to determining vulnerability to global warming. We ask how species' vulnerability varies across habitats and elevations, and how climatically buffered microhabitats can contribute to reduce their vulnerability. We measured thermal sensitivity (critical thermal maximum-CTmax ) of 14 species of Pristimantis frogs inhabiting young and old secondary, and primary forests in the Colombian Andes. Exposure to temperature stress was measured by recording temperature in the understorey and across five microhabitats. We determined frogs' current vulnerability across habitats, elevations and microhabitats accounting for phylogeny and then ask how vulnerability varies under four warming scenarios: +1.5, +2, +3 and +5°C. We found that CTmax was constant across species regardless of habitat and elevation. However, species in young secondary forests are expected to become more vulnerable because of increased exposure to higher temperatures. Microhabitat variation could enable species to persist within their thermal temperature range as long as regional temperatures do not surpass +2°C. The effectiveness of microhabitat buffering decreases with a 2-3°C increase, and is almost null under a 5°C temperature increase. Microhabitats will provide thermal protection to Andean frog communities from climate change by enabling tracking of suitable climates through short distance movement. Conservation strategies, such as managing landscapes by preserving primary forests and allowing regrowth and reconnection of secondary forest would offer thermally buffered microhabitats and aid in the survival of this group.
Collapse
Affiliation(s)
- Pamela González-Del-Pliego
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Rui Nabeiro Biodiversity Chair, MED Institute, Universidade de Évora, Évora, Portugal
| | - Brett R Scheffers
- Department of Wildlife Ecology & Conservation, University of Florida/IFAS, Gainesville, FL, USA
| | - Robert P Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Edmund W Basham
- Department of Geography, University of Sheffield, Sheffield, UK
| | - Miguel B Araújo
- Rui Nabeiro Biodiversity Chair, MED Institute, Universidade de Évora, Évora, Portugal.,Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Andrés R Acosta-Galvis
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogota, Colombia
| | - Claudia A Medina Uribe
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogota, Colombia
| | - Torbjørn Haugaasen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - David P Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
25
|
Rija AA, Critchlow R, Thomas CD, Beale CM. Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. PLoS One 2020; 15:e0227163. [PMID: 32822346 PMCID: PMC7446782 DOI: 10.1371/journal.pone.0227163] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
Illegal hunting is a persistent problem in many protected areas, but an overview of the extent of this problem and its impact on wildlife is lacking. We reviewed 40 years (1980-2020) of global research to examine the spatial distribution of research and socio-ecological factors influencing population decline within protected areas under illegal hunting pressure. From 81 papers reporting 988 species/site combinations, 294 mammal species were reported to have been illegally hunted from 155 protected areas across 48 countries. Research in illegal hunting has increased substantially during the review period and showed biases towards strictly protected areas and the African continent. Population declines were most frequent in countries with a low human development index, particularly in strict protected areas and for species with a body mass over 100 kg. Our results provide evidence that illegal hunting is most likely to cause declines of large-bodied species in protected areas of resource-poor countries regardless of protected area conservation status. Given the growing pressures of illegal hunting, increased investments in people's development and additional conservation efforts such as improving anti-poaching strategies and conservation resources in terms of improving funding and personnel directed at this problem are a growing priority.
Collapse
Affiliation(s)
- Alfan A. Rija
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rob Critchlow
- Department of Biology, University of York, York, United Kingdom
| | - Chris D. Thomas
- Department of Biology, University of York, York, United Kingdom
| | - Colin M. Beale
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
26
|
Arroyo-Rodríguez V, Fahrig L, Tabarelli M, Watling JI, Tischendorf L, Benchimol M, Cazetta E, Faria D, Leal IR, Melo FPL, Morante-Filho JC, Santos BA, Arasa-Gisbert R, Arce-Peña N, Cervantes-López MJ, Cudney-Valenzuela S, Galán-Acedo C, San-José M, Vieira ICG, Slik JWF, Nowakowski AJ, Tscharntke T. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol Lett 2020; 23:1404-1420. [PMID: 32537896 DOI: 10.1111/ele.13535] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
Agriculture and development transform forest ecosystems to human-modified landscapes. Decades of research in ecology have generated myriad concepts for the appropriate management of these landscapes. Yet, these concepts are often contradictory and apply at different spatial scales, making the design of biodiversity-friendly landscapes challenging. Here, we combine concepts with empirical support to design optimal landscape scenarios for forest-dwelling species. The supported concepts indicate that appropriately sized landscapes should contain ≥ 40% forest cover, although higher percentages are likely needed in the tropics. Forest cover should be configured with c. 10% in a very large forest patch, and the remaining 30% in many evenly dispersed smaller patches and semi-natural treed elements (e.g. vegetation corridors). Importantly, the patches should be embedded in a high-quality matrix. The proposed landscape scenarios represent an optimal compromise between delivery of goods and services to humans and preserving most forest wildlife, and can therefore guide forest preservation and restoration strategies.
Collapse
Affiliation(s)
- Víctor Arroyo-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Lenore Fahrig
- Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | - Marcelo Tabarelli
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | | | - Lutz Tischendorf
- ELUTIS Modelling and Consulting Inc, Ottawa, ON, K2A 1X4, Canada
| | - Maíra Benchimol
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Eliana Cazetta
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Deborah Faria
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Inara R Leal
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Felipe P L Melo
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Jose C Morante-Filho
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Bráulio A Santos
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraiba, Campus I, João Pessoa, Paraiba, 58051-900, Brazil
| | - Ricard Arasa-Gisbert
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Norma Arce-Peña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Martín J Cervantes-López
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Sabine Cudney-Valenzuela
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Carmen Galán-Acedo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Miriam San-José
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Ima C G Vieira
- Coordenação de Botânica, Museu Paraense Emilio Goeldi, CP 399, Belém, Pará, 66040-170, Brazil
| | - J W Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei, Darussalam
| | - A Justin Nowakowski
- Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada.,Working Land and Seascapes, Conservation Commons, Smithsonian Institution, Washington, DC, 20013, USA
| | - Teja Tscharntke
- Agroecology, Dept. of Crop Sciences, Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
| |
Collapse
|
27
|
Messina S, Edwards DP, AbdElgawad H, Beemster GTS, Tomassi S, Benedick S, Eens M, Costantini D. Impacts of selective logging on the oxidative status of tropical understorey birds. J Anim Ecol 2020; 89:2222-2234. [PMID: 32535926 DOI: 10.1111/1365-2656.13280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/27/2020] [Indexed: 11/27/2022]
Abstract
Selective logging is the dominant form of human disturbance in tropical forests, driving changes in the abundance of vertebrate and invertebrate populations relative to undisturbed old-growth forests. A key unresolved question is understanding which physiological mechanisms underlie different responses of species and functional groups to selective logging. Regulation of oxidative status is thought to be one major physiological mechanism underlying the capability of species to cope with environmental changes. Using a correlational cross-sectional approach, we compared a number of oxidative status markers among 15 understorey bird species in unlogged and selectively logged forest in Borneo in relation to their feeding guild. We then tested how variation of markers between forest types was associated with that in population abundance. Birds living in logged forests had a higher activity of the antioxidant enzyme superoxide dismutase and a different regulation of the glutathione cycle compared to conspecific birds in unlogged forest. However, neither oxidative damage nor oxidized glutathione differed between forest types. We also found that omnivores and insectivores differed significantly in all markers related to the key cellular antioxidant glutathione irrespective of the forest type. Species with higher levels of certain antioxidant markers in a given type of forest were less abundant in that forest type compared to the other. Our results suggest that there was little long-term effect of logging (last logging rotation occurred ~15 years prior to the study) on the oxidative status of understorey bird species. However, it is unclear if this was owing to plasticity or evolutionary change. Our correlative results also point to a potential negative association between some antioxidants and population abundance irrespective of the forest type.
Collapse
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - David P Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium.,Botany and Microbiology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Suzanne Tomassi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Suzan Benedick
- School of Sustainable Agriculture, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
28
|
Davies RW, Edwards DP, Edwards FA. Secondary tropical forests recover dung beetle functional diversity and trait composition. Anim Conserv 2020. [DOI: 10.1111/acv.12584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- R. W. Davies
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - D. P. Edwards
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - F. A. Edwards
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| |
Collapse
|
29
|
|