1
|
Rigney N, Hong W. Prosocial Helping Behavior: Conceptual Issues and Neural Mechanisms. Biol Psychiatry 2025; 97:961-970. [PMID: 40090565 DOI: 10.1016/j.biopsych.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Prosocial helping behavior, characterized by voluntary actions taken to benefit others, plays a vital role in promoting cooperation and maintaining social bonds across human and animal social groups. In this review, we examine key conceptual issues surrounding prosocial behavior, focusing specifically on targeted helping and comforting actions. We outline the behavioral paradigms used to study these two types of prosocial behaviors and summarize recent insights into their underlying neural mechanisms. Drawing on findings across species and with an emphasis on rodent models, we discuss how these behaviors are regulated by molecularly and anatomically defined neural systems and how distinct neuronal populations and circuits may differentially regulate targeted helping and comforting behaviors. Lastly, we discuss the clinical relevance of this research by addressing the implications of prosocial deficits in psychiatric disorders.
Collapse
Affiliation(s)
- Nicole Rigney
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Weizhe Hong
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
2
|
Carter GG, Ripperger SP, Girbino V, Dixon MM, Razik I, Page RA, Hobson EA. Long-term cooperative relationships among vampire bats are not strongly predicted by their initial interactions. Ann N Y Acad Sci 2024; 1541:129-139. [PMID: 39462880 PMCID: PMC11580772 DOI: 10.1111/nyas.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In many group-living animals, survival and reproductive success depend on the formation of long-term social bonds, yet it remains largely unclear why particular pairs of groupmates form social bonds and not others. Can social bond formation be reliably predicted from each individual's immediately observable traits and behaviors at first encounter? Or is social bond formation hard to predict due to the impacts of shifting social preferences on social network dynamics? To begin to address these questions, we asked how well long-term cooperative relationships among vampire bats were predicted by how they interacted during their first encounter as introduced strangers. In Study 1, we found that the first 6 h of observed interactions among unfamiliar bats co-housed in small cages did not clearly predict the formation of allogrooming or food-sharing relationships over the next 10 months. In Study 2, we found that biologger-tracked first contacts during the first 4-24 h together in a flight cage did not strongly predict allogrooming rates over the next 4 months. These results corroborate past evidence that social bonding in vampire bats is not reducible to the individual traits or behaviors observed at first encounter. Put simply, first impressions are overshadowed by future social interactions.
Collapse
Affiliation(s)
- Gerald G. Carter
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
- Smithsonian Tropical Research InstituteBalboaAncónPanamá
| | - Simon P. Ripperger
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Vi Girbino
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - M. May Dixon
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
- Smithsonian Tropical Research InstituteBalboaAncónPanamá
| | - Imran Razik
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
- Smithsonian Tropical Research InstituteBalboaAncónPanamá
| | - Rachel A. Page
- Smithsonian Tropical Research InstituteBalboaAncónPanamá
| | | |
Collapse
|
3
|
McGetrick J, Fux L, Schullern-Schrattenhofen J, Rault JL, Range F. Do pet dogs reciprocate the receipt of food from familiar and unfamiliar conspecifics? Ethology 2024; 130:eth.13430. [PMID: 39100737 PMCID: PMC7616333 DOI: 10.1111/eth.13430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/24/2023] [Indexed: 08/06/2024]
Abstract
Reciprocity is one of the most prominent explanations for the evolution of stable cooperation. Although reciprocity has been studied for decades in numerous animal species and behavioural contexts, its underlying proximate mechanisms remain unclear. Domestic dogs provide a useful model species for the study of proximate mechanisms, though there are currently inconsistent findings regarding dogs' propensity to reciprocate. Here, we investigated whether, after minimal training, pet dogs would press a button, which remotely controlled a food dispenser, to deliver food to an enclosure occupied by a helpful conspecific that had provided them with food or an unhelpful conspecific that had not provided them with food. We included an asocial control condition in which the enclosure was unoccupied and a social facilitation control in which the food delivery mechanism was non-functional. Whether subjects were familiar with the helpful and unhelpful conspecifics was also varied. In addition, to investigate potential mechanisms underlying reciprocity, we measured subjects salivary oxytocin concentration before and after they experienced the helpful and unhelpful acts. There was no effect of the previous helpfulness or the familiarity of the partner on the number of times subjects pressed the button. However, there was also no effect of the presence of a partner or the operationality of the food delivery mechanism on the number of button presses, indicating that subjects were not pressing the button to provision the partner. Moreover, the experience of the helpful or unhelpful act did not influence subjects' salivary oxytocin concentration. Variation in findings of reciprocity across studies appears to correspond with differing training protocols. Subjects' understanding of the task in the current study may have been constrained by the limited training received. Additional tests to verify subjects' understanding of such tasks are warranted in future studies.
Collapse
Affiliation(s)
- Jim McGetrick
- Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Leona Fux
- Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | | | - Jean-Loup Rault
- Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Vienna, Austria
| | - Friederike Range
- Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
4
|
Leimar O, Bshary R. Social bond dynamics and the evolution of helping. Proc Natl Acad Sci U S A 2024; 121:e2317736121. [PMID: 38451941 PMCID: PMC10945786 DOI: 10.1073/pnas.2317736121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Empiricists often struggle to apply game theory models to real-life cases of animal cooperation. One reason is that many examples of cooperation occur in stable groups, where individuals form social bonds that influence exchanges of help in ways that are not well described by previous models, including the extent of reciprocity and how relationships are initiated. We present a game theory model exploring the conditions under which social bonds between group members promote cooperation. In the model, bonds build up from exchanges of help in a similar way as the strength of association increases in learning, as in the Rescorla-Wagner rule. The bonds in turn affect partner choice and influence helping amounts. The model has a mechanism of reciprocity for bonded pairs, which can evolve toward either loose or strict reciprocation. Several aspects of the model are inspired by observations of food sharing in vampire bats. We find that small social neighborhoods are required for the evolutionary stability of helping, either as small group sizes, or if bonded members of larger groups can form temporary (daily) smaller groupings. The costs of helping need to be fairly low, while the benefits can be substantial. The form of reciprocity that evolves is neither immediate nor very strict. Individuals in need request help based on bond strength, but there is also an evolved preference for initiating bonds with new group members. In contrast, if different groups come into temporary contact, the evolved tendency is to avoid forming bonds between groups.
Collapse
Affiliation(s)
- Olof Leimar
- Department of Zoology, Stockholm University, Stockholm106 91, Sweden
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Neuchâtel2000, Switzerland
| |
Collapse
|
5
|
Maeda T, Yamamoto S. Drone Observation for the Quantitative Study of Complex Multilevel Societies. Animals (Basel) 2023; 13:1911. [PMID: 37370421 DOI: 10.3390/ani13121911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Unmanned aerial vehicles (drones) have recently been used in various behavioral ecology studies. However, their application has been limited to single groups, and most studies have not implemented individual identification. A multilevel society refers to a social structure in which small stable "core units" gather and make a larger, multiple-unit group. Here, we introduce recent applications of drone technology and individual identification to complex social structures involving multiple groups, such as multilevel societies. Drones made it possible to obtain the identification, accurate positioning, or movement of more than a hundred individuals in a multilevel social group. In addition, in multilevel social groups, drones facilitate the observation of heterogeneous spatial positioning patterns and mechanisms of behavioral propagation, which are different from those in a single-level group. Such findings may contribute to the quantitative definition and assessment of multilevel societies and enhance our understanding of mechanisms of multiple group aggregation. The application of drones to various species may resolve various questions related to multilevel societies.
Collapse
Affiliation(s)
- Tamao Maeda
- Wildlife Research Center, Kyoto University, Kyoto 606-8203, Japan
- Research Center for Integrative Evolutionary Science, The Graduate University of Advanced Science (SOKENDAI), Hayama 240-0193, Japan
| | - Shinya Yamamoto
- Institute of Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Kaňuch P, Kasanický T, Ružinská R, Zelenka J. The effect of logging on fission-fusion behaviour of tree-dwelling bats explored by an agent-based model. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Wu YE, Hong W. Neural basis of prosocial behavior. Trends Neurosci 2022; 45:749-762. [PMID: 35853793 PMCID: PMC10039809 DOI: 10.1016/j.tins.2022.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
The ability to behave in ways that benefit other individuals' well-being is among the most celebrated human characteristics crucial for social cohesiveness. Across mammalian species, animals display various forms of prosocial behaviors - comforting, helping, and resource sharing - to support others' emotions, goals, and/or material needs. In this review, we provide a cross-species view of the behavioral manifestations, proximate and ultimate drives, and neural mechanisms of prosocial behaviors. We summarize key findings from recent studies in humans and rodents that have shed light on the neural mechanisms underlying different processes essential for prosocial interactions, from perception and empathic sharing of others' states to prosocial decisions and actions.
Collapse
Affiliation(s)
- Ye Emily Wu
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Sawyers E, Cox TE, Fleming PJS, Leung LKP, Morris S. Social interactions of juvenile rabbits (Oryctolagus cuniculus) and their potential role in lagovirus transmission. PLoS One 2022; 17:e0271272. [PMID: 35901018 PMCID: PMC9333329 DOI: 10.1371/journal.pone.0271272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Rabbit Haemorrhagic Disease Virus (RHDV), which is a calicivirus, is used as a biocontrol agent to suppress European wild rabbit populations in Australia. The transmission of RHDV can be influenced by social interactions of rabbits; however, there is a paucity of this knowledge about juvenile rabbits and the roles they may play in the transmission of RHDV. We aimed to quantify the social interactions of juvenile (< 900 g) and adult (> 1200 g) rabbits in a locally abundant population in the Central Tablelands of New South Wales, Australia. Twenty-six juvenile and 16 adult rabbits were fitted with VHF proximity loggers to monitor intra- and inter-group pairings. Use of multiple warrens by these rabbits was investigated using VHF base stations at nine warrens and on foot with a hand-held Yagi antenna. Juvenile rabbits were strongly interconnected with both juveniles and adults within and outside their warren of capture, and almost all juveniles were well-connected to other individuals within their own social group. Inter-group pairings were infrequent and fleeting between adults. Both juvenile and adult rabbits used multiple warrens. However, visits to warrens outside their warren of capture, particularly those within 50 m, were more common and longer in duration in juveniles than in adults. The high connectivity of juveniles within and between warrens in close proximity increases potential pathogen exchange between warrens. Therefore, juvenile rabbits could be of greater importance in lagovirus transmission than adult rabbits. The strength of juvenile rabbit inter- and intra-group pairings, and their tendency to use multiple warrens, highlight their potential to act as ‘superspreaders’ of both infection and immunity for lagoviruses and other pathogens with similar lifecycles. Confirmation of this potential is required through examination of disease progress and rabbit age-related immune responses during outbreaks.
Collapse
Affiliation(s)
- Emma Sawyers
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, New South Wales, Australia
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
- * E-mail:
| | - Tarnya E. Cox
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, New South Wales, Australia
| | - Peter J. S. Fleming
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, New South Wales, Australia
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Luke K. P. Leung
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
| | - Stephen Morris
- Fisheries Research, New South Wales Department of Primary Industries, Wollongbar, New South Wales, Australia
| |
Collapse
|
9
|
Perony N, Kerth G, Schweitzer F. Data-driven modelling of group formation in the fission-fusion dynamics of Bechstein's bats. J R Soc Interface 2022; 19:20220170. [PMID: 35506214 PMCID: PMC9065967 DOI: 10.1098/rsif.2022.0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Communal roosting in Bechstein’s bat colonies is characterized by the formation of several groups that use different day roosts and that regularly dissolve and re-merge (fission–fusion dynamics). Analysing data from two colonies of different sizes over many years, we find that (i) the number of days that bats stay in the same roost before changing follows an exponential distribution that is independent of the colony size and (ii) the number and size of groups that bats formed for roosting depend on the size of the colony, such that above a critical colony size two to six groups of different sizes are formed. To model these two observations, we propose an agent-based model in which agents make their decisions about roosts based on both random and social influences. For the latter, they copy the roost preference of another agent which models the transfer of the respective information. Our model is able to reproduce both the distribution of stay length in the same roost and the emergence of groups of different sizes dependent on the colony size. Moreover, we are able to predict the critical system size at which the formation of different groups emerges without global coordination. We further comment on dynamics that bridge the roosting decisions on short time scales (less than 1 day) with the social structures observed at long time scales (more than 1 year).
Collapse
Affiliation(s)
- Nicolas Perony
- Chair of Systems Design, ETH Zurich, Weinbergstrasse 56/58, 8092 Zurich, Switzerland
| | - Gerald Kerth
- Applied Zoology and Nature Conservation, University of Greifswald, Loitzer Strasse 26, 17489 Greifswald, Germany
| | - Frank Schweitzer
- Chair of Systems Design, ETH Zurich, Weinbergstrasse 56/58, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Razik I, Brown BKG, Carter GG. Forced proximity promotes the formation of enduring cooperative relationships in vampire bats. Biol Lett 2022; 18:20220056. [PMID: 35382586 PMCID: PMC8984352 DOI: 10.1098/rsbl.2022.0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 11/14/2022] Open
Abstract
Spatial assortment can be both a cause and a consequence of cooperation. Proximity promotes cooperation when individuals preferentially help nearby partners, and conversely, cooperation drives proximity when individuals move towards more cooperative partners. However, these two causal directions are difficult to distinguish with observational data. Here, we experimentally test if forcing randomly selected pairs of equally familiar female common vampire bats (Desmodus rotundus) into close spatial proximity promotes the formation of enduring cooperative relationships. Over 114 days, we sampled 682 h of interactions among 21 females captured from three distant sites to track daily allogrooming rates over time. We compared these rates before, during and after a one-week period, during which we caged random triads of previously unfamiliar and unrelated vampire bats in proximity. After the week of proximity when all bats could again freely associate, the allogrooming rates of pairs forced into proximity increased more than those of the 126 control pairs. This work is the first to experimentally demonstrate the causal effect of repeated interactions on cooperative investments in vampire bats. Future work should determine the relative importance of mere association versus interactions (e.g. reciprocal allogrooming) in shaping social preferences.
Collapse
Affiliation(s)
- Imran Razik
- The Ohio State University, Columbus, OH 43210, USA
- Smithsonian Tropical Research Institute, Balboa Ancón, Panama
| | | | - Gerald G. Carter
- The Ohio State University, Columbus, OH 43210, USA
- Smithsonian Tropical Research Institute, Balboa Ancón, Panama
| |
Collapse
|
11
|
Blumer M, Brown T, Freitas MB, Destro AL, Oliveira JA, Morales AE, Schell T, Greve C, Pippel M, Jebb D, Hecker N, Ahmed AW, Kirilenko BM, Foote M, Janke A, Lim BK, Hiller M. Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. SCIENCE ADVANCES 2022; 8:eabm6494. [PMID: 35333583 PMCID: PMC8956264 DOI: 10.1126/sciadv.abm6494] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/03/2022] [Indexed: 05/06/2023]
Abstract
Vampire bats are the only mammals that feed exclusively on blood. To uncover genomic changes associated with this dietary adaptation, we generated a haplotype-resolved genome of the common vampire bat and screened 27 bat species for genes that were specifically lost in the vampire bat lineage. We found previously unknown gene losses that relate to reduced insulin secretion (FFAR1 and SLC30A8), limited glycogen stores (PPP1R3E), and a unique gastric physiology (CTSE). Other gene losses likely reflect the biased nutrient composition (ERN2 and CTRL) and distinct pathogen diversity of blood (RNASE7) and predict the complete lack of cone-based vision in these strictly nocturnal bats (PDE6H and PDE6C). Notably, REP15 loss likely helped vampire bats adapt to high dietary iron levels by enhancing iron excretion, and the loss of CYP39A1 could have contributed to their exceptional cognitive abilities. These findings enhance our understanding of vampire bat biology and the genomic underpinnings of adaptations to blood feeding.
Collapse
Affiliation(s)
- Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Tom Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Ana Luiza Destro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Juraci A. Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Ariadna E. Morales
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alexis-Walid Ahmed
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Bogdan M. Kirilenko
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Maddy Foote
- Native Bat Conservation Program, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario M1B 5K7, Canada
| | - Axel Janke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Burton K. Lim
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
12
|
Papastamatiou YP, Mourier J, TinHan T, Luongo S, Hosoki S, Santana-Morales O, Hoyos-Padilla M. Social dynamics and individual hunting tactics of white sharks revealed by biologging. Biol Lett 2022; 18:20210599. [PMID: 35317626 PMCID: PMC8941395 DOI: 10.1098/rsbl.2021.0599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Social foraging, where animals forage in groups, takes many forms but is less studied in marine predators as measuring social associations in the wild is challenging. We used biologging (activity, cameras and telemetry receivers) sensors to measure social associations and simultaneous behaviour, in white sharks (Carcharodon carcharias) off Guadalupe Island, Mexico. Animal-borne telemetry receivers revealed that sharks varied in the number of associations they formed and occurred most often when sharks were swimming in straight paths or when they were turning frequently. While many associations were likely random, there was evidence of some stronger associations. Sharks varied in the depths they used and their activity, with some individuals more active in shallow water while others were more active 200-300 m deep. We propose that white sharks associate with other individuals so they can inadvertently share information on the location or remains of large prey. However, there may be a wide range of individual variability in both behaviour and sociality. Biologging now enables social associations of animals to be measured, concurrent with measures of their behaviour, so that social foraging of large marine predators can be quantified in the wild.
Collapse
Affiliation(s)
- Yannis P. Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Johann Mourier
- UMS 3514 Plateforme Marine Stella Mare, Université de Corse Pasquale Paoli, 20620 Biguglia, France
| | - Thomas TinHan
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
- Cooperative Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, HI, USA
| | - Sarah Luongo
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Seiko Hosoki
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | | | - Mauricio Hoyos-Padilla
- Pelagios Kakunjá A.C., La Paz, Mexico
- Fins Attached Marine Research and Conservation, Colorado Springs, CO, USA
| |
Collapse
|
13
|
Farine DR, Carter GG. Permutation tests for hypothesis testing with animal social network data: Problems and potential solutions. Methods Ecol Evol 2022; 13:144-156. [PMID: 35873757 PMCID: PMC9297917 DOI: 10.1111/2041-210x.13741] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022]
Abstract
Permutation tests are widely used to test null hypotheses with animal social network data, but suffer from high rates of type I and II error when the permutations do not properly simulate the intended null hypothesis.Two common types of permutations each have limitations. Pre-network (or datastream) permutations can be used to control 'nuisance effects' like spatial, temporal or sampling biases, but only when the null hypothesis assumes random social structure. Node (or node-label) permutation tests can test null hypotheses that include nonrandom social structure, but only when nuisance effects do not shape the observed network.We demonstrate one possible solution addressing these limitations: using pre-network permutations to adjust the values for each node or edge before conducting a node permutation test. We conduct a range of simulations to estimate error rates caused by confounding effects of social or non-social structure in the raw data.Regressions on simulated datasets suggest that this 'double permutation' approach is less likely to produce elevated error rates relative to using only node permutations, pre-network permutations or node permutations with simple covariates, which all exhibit elevated type I errors under at least one set of simulated conditions. For example, in scenarios where type I error rates from pre-network permutation tests exceed 30%, the error rates from double permutation remain at 5%.The double permutation procedure provides one potential solution to issues arising from elevated type I and type II error rates when testing null hypotheses with social network data. We also discuss alternative approaches that can provide robust inference, including fitting mixed effects models, restricted node permutations, testing multiple null hypotheses and splitting large datasets to generate replicated networks. Finally, we highlight ways that uncertainty can be explicitly considered and carried through the analysis.
Collapse
Affiliation(s)
- Damien R. Farine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Collective BehaviorMax Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Animal BehaviourUniversity of KonstanzKonstanzGermany
| | - Gerald G. Carter
- Department of Ecology, Evolution, and Organismal BiologyThe Ohio State UniversityColumbusOHUSA
- Smithsonian Tropical Research InstituteBalboa, AnçonPanama
| |
Collapse
|
14
|
Jezovit JA, Alwash N, Levine JD. Using Flies to Understand Social Networks. Front Neural Circuits 2021; 15:755093. [PMID: 34924963 PMCID: PMC8683092 DOI: 10.3389/fncir.2021.755093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Many animals live in groups and interact with each other, creating an organized collective structure. Social network analysis (SNA) is a statistical tool that aids in revealing and understanding the organized patterns of shared social connections between individuals in groups. Surprisingly, the application of SNA revealed that Drosophila melanogaster, previously considered a solitary organism, displays group dynamics and that the structure of group life is inherited. Although the number of studies investigating Drosophila social networks is currently limited, they address a wide array of questions that have only begun to capture the details of group level behavior in this insect. Here, we aim to review these studies, comparing their respective scopes and the methods used, to draw parallels between them and the broader body of knowledge available. For example, we highlight how despite methodological differences, there are similarities across studies investigating the effects of social isolation on social network dynamics. Finally, this review aims to generate hypotheses and predictions that inspire future research in the emerging field of Drosophila social networks.
Collapse
Affiliation(s)
- Jacob A. Jezovit
- Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nawar Alwash
- Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Joel D. Levine
- Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- International Research Centre for Neurointelligence, University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Kline E, Ripperger SP, Carter GG. Habituation of common vampire bats to biologgers. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211249. [PMID: 34966554 PMCID: PMC8633775 DOI: 10.1098/rsos.211249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/26/2021] [Indexed: 05/12/2023]
Abstract
Rapid advancements in biologging technology have led to unprecedented insights into animal behaviour, but testing the effects of biologgers on tagged animals is necessary for both scientific and ethical reasons. Here, we measured how quickly 13 wild-caught and captively isolated common vampire bats (Desmodus rotundus) habituated to mock proximity sensors glued to their dorsal fur. To assess habituation, we scored video-recorded behaviours every minute from 18.00 to 06.00 for 3 days, then compared the rates of grooming directed to the sensor tag versus to their own body. During the first hour, the mean tag-grooming rate declined dramatically from 53% of sampled time (95% CI = 36-65%, n = 6) to 16% (8-24%, n = 9), and down to 4% by hour 5 (1-6%, n = 13), while grooming of the bat's own body did not decline. When tags are firmly attached, isolated individual vampire bats mostly habituate within an hour of tag attachment. In two cases, however, tags became loose before falling off causing the bats to dishabituate. For tags glued to fur, behavioural data are likely to be impacted immediately after the tag is attached and when it is loose before it falls off.
Collapse
Affiliation(s)
- Emma Kline
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210, USA
| | - Simon P. Ripperger
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210, USA
- Museum für Naturkunde–Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Gerald G. Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210, USA
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| |
Collapse
|
16
|
|
17
|
Goldshtein A, Harten L, Yovel Y. Mother bats facilitate pup navigation learning. Curr Biol 2021; 32:350-360.e4. [PMID: 34822768 DOI: 10.1016/j.cub.2021.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Learning where to forage and how to navigate to foraging sites are among the most essential skills that infants must acquire. How they do so is poorly understood. Numerous bat species carry their young in flight while foraging. This behavior is costly, and the benefits for the offspring are not fully clear. Using GPS tracking of both mothers and bat pups, we documented the pups' ontogeny from being non-volant to foraging independently. Our results suggest that mothers facilitate learning of navigation, assisting their pups with future foraging, by repeatedly placing them on specific trees and by behaving in a manner that seemed to encourage learning. Once independent, pups first flew alone to the same sites that they were carried to by their mothers, following similar routes used by their mothers, after which they began exploring new sites. Notably, in our observations, pups never independently followed their mothers in flight but were always carried by them, suggesting that learning occurred while passively being transported upside down.
Collapse
Affiliation(s)
- Aya Goldshtein
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lee Harten
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Wissenschaftskolleg zu Berlin, Berlin 14193, Germany.
| |
Collapse
|
18
|
Affiliation(s)
- Gerald G. Carter
- Department of Evolution, Ecology, and Organismal Biology The Ohio State University Columbus OH USA
| |
Collapse
|
19
|
Ripperger SP, Carter GG. Social foraging in vampire bats is predicted by long-term cooperative relationships. PLoS Biol 2021; 19:e3001366. [PMID: 34555014 PMCID: PMC8460024 DOI: 10.1371/journal.pbio.3001366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Stable social bonds in group-living animals can provide greater access to food. A striking example is that female vampire bats often regurgitate blood to socially bonded kin and nonkin that failed in their nightly hunt. Food-sharing relationships form via preferred associations and social grooming within roosts. However, it remains unclear whether these cooperative relationships extend beyond the roost. To evaluate if long-term cooperative relationships in vampire bats play a role in foraging, we tested if foraging encounters measured by proximity sensors could be explained by wild roosting proximity, kinship, or rates of co-feeding, social grooming, and food sharing during 21 months in captivity. We assessed evidence for 6 hypothetical scenarios of social foraging, ranging from individual to collective hunting. We found that closely bonded female vampire bats departed their roost separately, but often reunited far outside the roost. Repeating foraging encounters were predicted by within-roost association and histories of cooperation in captivity, even when accounting for kinship. Foraging bats demonstrated both affiliative and competitive interactions with different social calls linked to each interaction type. We suggest that social foraging could have implications for social evolution if "local" within-roost cooperation and "global" outside-roost competition enhances fitness interdependence between frequent roostmates.
Collapse
Affiliation(s)
- Simon P. Ripperger
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Gerald G. Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá
| |
Collapse
|
20
|
Hobson EA, Silk MJ, Fefferman NH, Larremore DB, Rombach P, Shai S, Pinter-Wollman N. A guide to choosing and implementing reference models for social network analysis. Biol Rev Camb Philos Soc 2021; 96:2716-2734. [PMID: 34216192 PMCID: PMC9292850 DOI: 10.1111/brv.12775] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Analysing social networks is challenging. Key features of relational data require the use of non-standard statistical methods such as developing system-specific null, or reference, models that randomize one or more components of the observed data. Here we review a variety of randomization procedures that generate reference models for social network analysis. Reference models provide an expectation for hypothesis testing when analysing network data. We outline the key stages in producing an effective reference model and detail four approaches for generating reference distributions: permutation, resampling, sampling from a distribution, and generative models. We highlight when each type of approach would be appropriate and note potential pitfalls for researchers to avoid. Throughout, we illustrate our points with examples from a simulated social system. Our aim is to provide social network researchers with a deeper understanding of analytical approaches to enhance their confidence when tailoring reference models to specific research questions.
Collapse
Affiliation(s)
- Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Matthew J Silk
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Treliever Road, Penryn, Cornwall, TR10 9FE, U.K
| | - Nina H Fefferman
- Departments of Ecology and Evolutionary Biology & Mathematics, University of Tennessee, 569 Dabney Hall, Knoxville, TN, 37996, U.S.A
| | - Daniel B Larremore
- Department of Computer Science, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309, U.S.A.,BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave,, Boulder, CO, 80303, U.S.A
| | - Puck Rombach
- Department of Mathematics & Statistics, University of Vermont, 82 University Place, Burlington, VT, 05405, U.S.A
| | - Saray Shai
- Department of Mathematics and Computer Science, Wesleyan University, Science Tower 655, 265 Church Street, Middletown, CT, 06459, U.S.A
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Drive South, Los Angeles, CA, 90095, U.S.A
| |
Collapse
|
21
|
Crisp RJ, Brent LJN, Carter GG. Social dominance and cooperation in female vampire bats. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210266. [PMID: 34295524 PMCID: PMC8261227 DOI: 10.1098/rsos.210266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
When group-living animals develop individualized social relationships, they often regulate cooperation and conflict through a dominance hierarchy. Female common vampire bats have been an experimental system for studying cooperative relationships, yet surprisingly little is known about female conflict. Here, we recorded the outcomes of 1023 competitive interactions over food provided ad libitum in a captive colony of 33 vampire bats (24 adult females and their young). We found a weakly linear dominance hierarchy using three common metrics (Landau's h' measure of linearity, triangle transitivity and directional consistency). However, patterns of female dominance were less structured than in many other group-living mammals. Female social rank was not clearly predicted by body size, age, nor reproductive status, and competitive interactions were not correlated with kinship, grooming nor food sharing. We therefore found no evidence that females groomed or shared food up a hierarchy or that differences in rank explained asymmetries in grooming or food sharing. A possible explanation for such apparently egalitarian relationships among female vampire bats is the scale of competition. Female vampire bats that are frequent roostmates might not often directly compete for food in the wild.
Collapse
Affiliation(s)
- Rachel J. Crisp
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - Gerald G. Carter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Gokcekus S, Cole EF, Sheldon BC, Firth JA. Exploring the causes and consequences of cooperative behaviour in wild animal populations using a social network approach. Biol Rev Camb Philos Soc 2021; 96:2355-2372. [DOI: 10.1111/brv.12757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Samin Gokcekus
- Department of Zoology, Edward Grey Institute University of Oxford 11a Mansfield Road Oxford OX1 3SZ U.K
| | - Ella F. Cole
- Department of Zoology, Edward Grey Institute University of Oxford 11a Mansfield Road Oxford OX1 3SZ U.K
| | - Ben C. Sheldon
- Department of Zoology, Edward Grey Institute University of Oxford 11a Mansfield Road Oxford OX1 3SZ U.K
| | - Josh A. Firth
- Department of Zoology, Edward Grey Institute University of Oxford 11a Mansfield Road Oxford OX1 3SZ U.K
| |
Collapse
|
23
|
Neely BA, Janech MG, Fenton MB, Simmons NB, Bland AM, Becker DJ. Surveying the Vampire Bat ( Desmodus rotundus) Serum Proteome: A Resource for Identifying Immunological Proteins and Detecting Pathogens. J Proteome Res 2021; 20:2547-2559. [PMID: 33840197 PMCID: PMC9812275 DOI: 10.1021/acs.jproteome.0c00995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bats are increasingly studied as model systems for longevity and as natural hosts for some virulent viruses. Yet the ability to characterize immune mechanisms of viral tolerance and to quantify infection dynamics in wild bats is often limited by small sample volumes and few species-specific reagents. Here, we demonstrate how proteomics can overcome these limitations by using data-independent acquisition-based shotgun proteomics to survey the serum proteome of 17 vampire bats (Desmodus rotundus) from Belize. Using just 2 μL of sample and relatively short separations of undepleted serum digests, we identified 361 proteins across 5 orders of magnitude. Levels of immunological proteins in vampire bat serum were then compared to human plasma via published databases. Of particular interest were antiviral and antibacterial components, circulating 20S proteasome complex and proteins involved in redox activity. Lastly, we used known virus proteomes to putatively identify Rh186 from Macacine herpesvirus 3 and ORF1a from Middle East respiratory syndrome-related coronavirus, indicating that mass spectrometry-based techniques show promise for pathogen detection. Overall, these results can be used to design targeted mass-spectrometry assays to quantify immunological markers and detect pathogens. More broadly, our findings also highlight the application of proteomics in advancing wildlife immunology and pathogen surveillance.
Collapse
Affiliation(s)
- Benjamin A Neely
- Chemical Sciences Division, National Institute of Standards and Technology, NIST Charleston, Charleston, South Carolina 29412, United States
| | - Michael G Janech
- Hollings Marine Laboratory, Charleston, South Carolina 29412, United States
- Department of Biology, College of Charleston, Charleston, South Carolina 29424, United States
| | - M Brock Fenton
- Department of Biology, Western University, London, Ontario N6A 3K7, Canada
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York 10024, United States
| | - Alison M Bland
- Hollings Marine Laboratory, Charleston, South Carolina 29412, United States
- Department of Biology, College of Charleston, Charleston, South Carolina 29424, United States
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
24
|
Silk MJ, Hodgson DJ. Differentiated Social Relationships and the Pace-of-Life-History. Trends Ecol Evol 2021; 36:498-506. [PMID: 33810865 DOI: 10.1016/j.tree.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
When selection is imposed by both social and ecological environments, the costs and benefits of social relationships can depend on life-history strategy. We argue that the formation and maintenance of differentiated social relationships will prevail in species and individuals with slow life histories. Social behaviours that benefit survival can promote slower life histories. Meanwhile, longer lifespan promotes the development of strong and stable social bonds by allowing fitness payoffs to be postponed. Differentiated social behaviours should be favoured for fast life histories only when they promote the rate of reproduction. Finally, associations between life-history strategies and other traits (e.g., personality) provide a mechanism to drive inter-individual variation in social relationships, making life-history important for sociality across taxonomic scales.
Collapse
Affiliation(s)
- Matthew J Silk
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, Cornwall, UK; Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn, Cornwall, UK.
| | - David J Hodgson
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, Cornwall, UK
| |
Collapse
|
25
|
Razik I, Brown BKG, Page RA, Carter GG. Non-kin adoption in the common vampire bat. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201927. [PMID: 33972872 PMCID: PMC8074576 DOI: 10.1098/rsos.201927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/25/2021] [Indexed: 05/22/2023]
Abstract
Individual animals across many different species occasionally 'adopt' unrelated, orphaned offspring. Although adoption may be best explained as a by-product of adaptive traits that enhance parental care or promote the development of parental skills, one factor that is possibly important for the likelihood of adoption is the history of cooperative interactions between the mother, adopted offspring and adopter. Using 652 h of behavioural samples collected over four months, we describe patterns of allogrooming and food sharing before and after an instance of non-kin adoption between two adult female common vampire bats (Desmodus rotundus) that were captured from distant sites (340 km apart) and introduced to one another in captivity. The first female died from an illness 19 days after giving birth. The second female groomed and regurgitated food to the mother more often than any other group member, then groomed, nursed and regurgitated food to the orphaned, female pup. The substantial increase in alloparental care by this female after the mother's death was not observed among the 20 other adult females that were present in the colony. Our findings corroborate previous reports of non-kin adoption in common vampire bats and are consistent with the hypothesis that non-kin adoption can be motivated, in part, by a history of cooperative interactions.
Collapse
Affiliation(s)
- Imran Razik
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Ave, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá
| | - Bridget K. G. Brown
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Ave, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá
| | - Rachel A. Page
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá
| | - Gerald G. Carter
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Ave, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá
| |
Collapse
|
26
|
Abstract
The field of comparative behavioural economics investigates decisions about the acquisition and exchange of goods and services. It does so in both humans and other species on the assumption that the cognition and emotions involved have a shared evolutionary background. This preface roughly defines the field and reviews a few selected early studies and concepts to offer a taste of what economic behaviour means in relation to species other than our own. This article is part of the theme issue 'Existence and prevalence of economic behaviours among non-human primates'.
Collapse
|
27
|
Burchill AT. Long-term, active suspension of larvae by adult Leptomyrmex ants. Ecology 2020; 102:e03267. [PMID: 33332597 DOI: 10.1002/ecy.3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Andrew T Burchill
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287-4501, USA
| |
Collapse
|
28
|
Ripperger SP, Stockmaier S, Carter GG. Tracking sickness effects on social encounters via continuous proximity sensing in wild vampire bats. Behav Ecol 2020. [DOI: 10.1093/beheco/araa111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Sickness behaviors can slow the spread of pathogens across a social network. We conducted a field experiment to investigate how sickness behavior affects individual connectedness over time using a dynamic social network created from high-resolution proximity data. After capturing adult female vampire bats (Desmodus rotundus) from a roost, we created “sick” bats by injecting a random half of bats with the immune-challenging substance, lipopolysaccharide, while the control group received saline injections. Over the next 3 days, we used proximity sensors to continuously track dyadic associations between 16 “sick” bats and 15 control bats under natural conditions. Compared to control bats, “sick” bats associated with fewer bats, spent less time near others, and were less socially connected to more well-connected individuals (sick bats had on average a lower degree, strength, and eigenvector centrality). High-resolution proximity data allow researchers to flexibly define network connections (association rates) based on how a particular pathogen is transmitted (e.g., contact duration of >1 vs. >60 min, contact proximity of <1 vs. <10 m). Therefore, we inspected how different ways of measuring association rates changed the observed effect of LPS. How researchers define association rates influences the magnitude and detectability of sickness effects on network centrality. When animals are sick, they often encounter fewer individuals. We tracked this unintentional “social distancing” effect hour-by-hour in a wild colony of vampire bats. Using bat-borne proximity sensors, we compared changes in the social network connectedness of immune-challenged “sick” bats versus “control” bats over time. “Sick” bats had fewer encounters with others and spent less time near others. Associations changed dramatically by time of day, and different measures of association influenced the sickness effect estimates.
Collapse
Affiliation(s)
- Simon P Ripperger
- Department of Ecology, Evolution, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Sebastian Stockmaier
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Gerald G Carter
- Department of Ecology, Evolution, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| |
Collapse
|
29
|
Plaza M, Burke T, Cox T, Flynn‐Carroll A, Girndt A, Halford G, Martin DA, Sanchez‐Fortún M, Sánchez‐Tójar A, Somerville J, Schroeder J. Repeatable social network node‐based metrics across populations and contexts in a passerine. J Evol Biol 2020; 33:1634-1642. [DOI: 10.1111/jeb.13703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Mireia Plaza
- Department of Life Sciences Imperial College London Ascot UK
- Department of Evolutionary Ecology National Museum of Natural Sciences (CSIC) Madrid Spain
| | - Terry Burke
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Tara Cox
- Department of Life Sciences Imperial College London Ascot UK
| | | | - Antje Girndt
- Max Planck Institute for Ornithology Seewiesen Germany
- International Max‐Planck Research School (IMPRS) for Organismal Biology University of Konstanz Konstanz Germany
| | | | | | - Moises Sanchez‐Fortún
- Department of Zoology and Anthropology Faculty of Biology University of Barcelona Barcelona Spain
| | - Alfredo Sánchez‐Tójar
- Department of Life Sciences Imperial College London Ascot UK
- International Max‐Planck Research School (IMPRS) for Organismal Biology University of Konstanz Konstanz Germany
- Department of Evolutionary Biology Bielefeld University Bielefeld Germany
| | | | - Julia Schroeder
- Department of Life Sciences Imperial College London Ascot UK
| |
Collapse
|
30
|
Zelenka J, Kasanický T, Budinská I, Kaňuch P. An agent-based algorithm resembles behaviour of tree-dwelling bats under fission-fusion dynamics. Sci Rep 2020; 10:16793. [PMID: 33033280 PMCID: PMC7545098 DOI: 10.1038/s41598-020-72999-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/09/2020] [Indexed: 11/08/2022] Open
Abstract
Utilization of computational approach in the study of social behaviour of animals is increasing and we attempted such an approach in our study of tree-dwelling bats. These bats live in highly dynamic fission-fusion societies that share multiple roosts in a common home range. The key behavioural component associated with complex and non-centralized decision-making processes in roost switching is swarming around potential locations in order to recruit members to the new roost. To understand roost switching dynamics of bat groups in their natural environment, we employed a computational model, the SkyBat, which is based on swarm algorithm, to model this process. In a simulated environment of this agent-based model, we replicated natural fission-fusion dynamics of the Leisler's bat, Nyctalus leisleri, groups according to predefined species and habitat parameters. Spatiotemporal patterns of swarming activity of agents were similar to bats. The number of simulated groups formed prior to sunrise, the mean number of individuals in groups and the roost height did not differ significantly from data on a local population of bats collected in the field. Thus, the swarm algorithm gave a basic framework of roost-switching, suggesting possible applications in the study of bat behaviour in rapidly changing environments as well as in the field of computer science.
Collapse
Affiliation(s)
- Ján Zelenka
- Institute of Informatics, Slovak Academy of Sciences, 845 07, Bratislava, Slovakia
| | - Tomáš Kasanický
- Institute of Informatics, Slovak Academy of Sciences, 845 07, Bratislava, Slovakia
| | - Ivana Budinská
- Institute of Informatics, Slovak Academy of Sciences, 845 07, Bratislava, Slovakia
| | - Peter Kaňuch
- Institute of Forest Ecology, Slovak Academy of Sciences, 960 53, Zvolen, Slovakia.
| |
Collapse
|
31
|
Wilkinson GS. Vampire bats. Curr Biol 2020; 29:R1216-R1217. [PMID: 31794749 DOI: 10.1016/j.cub.2019.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gerald Wilkinson introduces the blood-drinking vampire bats.
Collapse
Affiliation(s)
- Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
32
|
Abstract
Tagging and tracking systems reveal the way-finding strategies of fruit bats
Collapse
Affiliation(s)
- M Brock Fenton
- Department of Biology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
33
|
Ripperger SP, Carter GG, Page RA, Duda N, Koelpin A, Weigel R, Hartmann M, Nowak T, Thielecke J, Schadhauser M, Robert J, Herbst S, Meyer-Wegener K, Wägemann P, Schröder-Preikschat W, Cassens B, Kapitza R, Dressler F, Mayer F. Thinking small: Next-generation sensor networks close the size gap in vertebrate biologging. PLoS Biol 2020; 18:e3000655. [PMID: 32240158 PMCID: PMC7117662 DOI: 10.1371/journal.pbio.3000655] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Recent advances in animal tracking technology have ushered in a new era in biologging. However, the considerable size of many sophisticated biologging devices restricts their application to larger animals, whereas older techniques often still represent the state-of-the-art for studying small vertebrates. In industrial applications, low-power wireless sensor networks (WSNs) fulfill requirements similar to those needed to monitor animal behavior at high resolution and at low tag mass. We developed a wireless biologging network (WBN), which enables simultaneous direct proximity sensing, high-resolution tracking, and long-range remote data download at tag masses of 1 to 2 g. Deployments to study wild bats created social networks and flight trajectories of unprecedented quality. Our developments highlight the vast capabilities of WBNs and their potential to close an important gap in biologging: fully automated tracking and proximity sensing of small animals, even in closed habitats, at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Simon P. Ripperger
- Museum für Naturkunde–Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Gerald G. Carter
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Rachel A. Page
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Niklas Duda
- Institute for Electronics Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexander Koelpin
- Chair for Electronics and Sensor Systems, Brandenburg University of Technology, Cottbus, Germany
| | - Robert Weigel
- Institute for Electronics Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus Hartmann
- Institute of Information Technology (Communication Electronics) LIKE, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen-Tennenlohe, Germany
| | - Thorsten Nowak
- Institute of Information Technology (Communication Electronics) LIKE, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen-Tennenlohe, Germany
| | - Jörn Thielecke
- Institute of Information Technology (Communication Electronics) LIKE, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen-Tennenlohe, Germany
| | - Michael Schadhauser
- Institute of Information Technology (Communication Electronics) LIKE, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen-Tennenlohe, Germany
| | - Jörg Robert
- Institute of Information Technology (Communication Electronics) LIKE, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen-Tennenlohe, Germany
| | - Sebastian Herbst
- Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Klaus Meyer-Wegener
- Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Wägemann
- Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Björn Cassens
- Carl-Friedrich-Gauß-Fakultät, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rüdiger Kapitza
- Carl-Friedrich-Gauß-Fakultät, Technische Universität Braunschweig, Braunschweig, Germany
| | - Falko Dressler
- Heinz Nixdorf Institute and Dept. of Computer Science, Paderborn University, Paderborn, Germany
| | - Frieder Mayer
- Museum für Naturkunde–Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| |
Collapse
|
34
|
Carter GG, Farine DR, Crisp RJ, Vrtilek JK, Ripperger SP, Page RA. Development of New Food-Sharing Relationships in Vampire Bats. Curr Biol 2020; 30:1275-1279.e3. [PMID: 32197089 DOI: 10.1016/j.cub.2020.01.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/02/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
Some nonhuman animals form adaptive long-term cooperative relationships with nonkin that seem analogous in form and function to human friendship [1-4]. However, it remains unclear how these bonds initially form, especially when they entail investments of time and energy. Theory suggests individuals can reduce the risk of exploitation by initially spreading out smaller cooperative investments across time [e.g., 5] or partners [6], then gradually escalating investments in more cooperative partnerships [7]. Despite its intuitive appeal, this raising-the-stakes model [7] has gained surprisingly scarce empirical support. Although human strangers do "raise the stakes" when making bids in cooperation games [8], there has been no clear evidence for raising the stakes during formation of social bonds in nature. Existing studies are limited to cooperative interactions with severe power asymmetries (e.g., the cleaner-client fish mutualism [9]) or snapshots of a single behavior within established relationships (grooming in primates [10-13]). Raising the stakes during relationship formation might involve escalating to more costly behaviors. For example, individuals could "test the waters" by first clustering for warmth (no cost), then conditionally grooming (low cost), and eventually providing coalitionary support (high cost). Detecting such a pattern requires introducing random strangers and measuring the emergence of natural helping behaviors that vary in costs. We performed this test by tracking the emergence of social grooming and regurgitated food donations among previously unfamiliar captive vampire bats (Desmodus rotundus) over 15 months. We found compelling evidence that vampire bats selectively escalate low-cost grooming before developing higher-cost food-sharing relationships.
Collapse
Affiliation(s)
- Gerald G Carter
- Department of Ecology, Evolution, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA; Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panamá.
| | - Damien R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz 78457, Germany; Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, Konstanz, Germany; Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78457, Germany
| | - Rachel J Crisp
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panamá
| | - Julia K Vrtilek
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panamá
| | - Simon P Ripperger
- Department of Ecology, Evolution, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA; Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panamá; Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin 10115, Germany
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panamá
| |
Collapse
|
35
|
Decision making in foraging bats. Curr Opin Neurobiol 2020; 60:169-175. [PMID: 31927435 DOI: 10.1016/j.conb.2019.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022]
Abstract
Foraging is a complex and cognitively demanding behavior. Although it is often regarded as a mundane task, foraging requires the continuous weighting and integration of many sources of information with varying levels of credence. Bats are extremely diverse in their ecology and behavior, and thus demonstrate a wide variety of foraging strategies. In this review, we examine the different factors influencing the decision process of bats during foraging. Technological developments of recent years will soon enable real-time tracking of environmental conditions, of the position and quality of food items, the location of conspecifics, and the bat's movement history. Monitoring these variables alongside the continuous movement of the bat will facilitate the testing of different decision-making theories such as the use of reinforcement learning in wild free ranging bats and other animals.
Collapse
|