1
|
Afonso O, Dumoulin L, Kruse K, Gonzalez-Gaitan M. Cytoplasmic flow is a cell size sensor that scales anaphase. Nat Cell Biol 2025; 27:273-282. [PMID: 39890956 PMCID: PMC11821524 DOI: 10.1038/s41556-024-01605-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/22/2024] [Indexed: 02/03/2025]
Abstract
During early embryogenesis, fast mitotic cycles without interphase lead to a decrease in cell size, while scaling mechanisms must keep cellular structures proportional to cell size. For instance, as cells become smaller, if the position of nuclear envelope reformation (NER) did not adapt, NER would have to occur beyond the cell boundary. Here we found that NER position in anaphase scales with cell size via changes in chromosome motility, mediated by cytoplasmic flows that themselves scale with cell size. Flows are a consequence of friction between viscous cytoplasm and bulky cargo transported by dynein on astral microtubules. As an emerging property, confinement in cells of different sizes yields scaling of cytoplasmic flows. Thus, flows behave like a cell geometry sensor: astral microtubules approach the boundary causing flow velocity changes, which then affect the velocity of chromosome separation, thus scaling NER.
Collapse
Affiliation(s)
- Olga Afonso
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| | - Ludovic Dumoulin
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
- Department of Theoretical Physics, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Karsten Kruse
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
- Department of Theoretical Physics, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Mu Z, Zheng P, Liu S, Kang Y, Xie H. Plk4 regulates centriole duplication in the embryonic development of zebrafish. Dev Biol 2025; 517:148-156. [PMID: 39304174 DOI: 10.1016/j.ydbio.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
PLK4 plays a crucial role in centriole duplication, which is essential for maintaining cellular processes such as cell division, cytoskeletal stability, and cilia formation. However, the mechanisms of PLK4 remain incompletely understood, especially in the embryonic development of vertebrate species. In this study, we observed that Plk4 dysfunction led to abnormal embryonic development in zebrafish, characterized by symptoms such as dark and wrinkled skin, microphthalmia, and body axis curvature. In plk4 mutants, defects in centriole duplication led to abnormal cell division, apoptosis, and ciliogenesis defects. Moreover, overexpression of plk4 in zebrafish embryos caused excessive centrosome amplification, disrupting embryonic gastrulation through abnormal cell division and ultimately resulting in embryonic lethality. Furthermore, we identified the "cryptic" polo box (CPB) domain, consisting of two PBs (PB1 and PB2), as the critical centrosome localization domain of Plk4. Surprisingly, overexpression of these two PB domains alone was sufficient to induce embryonic lethality. Additionally, we discovered a truncated form of CPB that localizes to the centrosome without causing defects in embryonic development. Our results demonstrate that Plk4 tightly controls centriole duplication, which is essential for early embryonic development in zebrafish.
Collapse
Affiliation(s)
- Zhiyu Mu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Pengfei Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuangyu Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yunsi Kang
- Key Laboratory of Evolution and Marine Biodiversity of the Ministry of Education, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Haibo Xie
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Evolution and Marine Biodiversity of the Ministry of Education, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
4
|
Wu Y, Lan Y, Ononiwu F, Poole A, Rasmussen K, Da Silva J, Shamil AW, Jao LE, Hehnly H. Specific Mitotic Events Drive Cytoskeletal Remodeling Required for Left-Right Organizer Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593765. [PMID: 38798489 PMCID: PMC11118341 DOI: 10.1101/2024.05.12.593765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cellular proliferation is vital for tissue development, including the Left-Right Organizer (LRO), a transient organ critical for establishing the vertebrate LR body plan. This study investigates cell redistribution and the role of specific progenitor cells in LRO formation, focusing on cell lineage and behavior. Using zebrafish as a model, we mapped all mitotic events in Kupffer's Vesicle (KV), revealing an FGF-dependent, anteriorly enriched mitotic pattern. With a KV-specific fluorescent microtubule (MT) line, we observed that mitotic spindles align along the KV's longest axis until the rosette stage, spindles that form after spin, and are excluded from KV. Early aligned spindles assemble cytokinetic bridges that point MT bundles toward a tight junction where a rosette will initially form. Post-abscission, repurposed MT bundles remain targeted at the rosette center, facilitating actin recruitment. Additional cells, both cytokinetic and non-cytokinetic, are incorporated into the rosette, repurposing or assembling MT bundles before actin recruitment. These findings show that initial divisions are crucial for rosette assembly, MT patterning, and actin remodeling during KV development.
Collapse
Affiliation(s)
- Yan Wu
- Department of Biology, Syracuse University, Syracuse, 13244 USA
- BioInspired Institute, Syracuse University, Syracuse, 13244 USA
| | - Yiling Lan
- Department of Biology, Syracuse University, Syracuse, 13244 USA
- BioInspired Institute, Syracuse University, Syracuse, 13244 USA
| | - Favour Ononiwu
- Department of Biology, Syracuse University, Syracuse, 13244 USA
- BioInspired Institute, Syracuse University, Syracuse, 13244 USA
| | - Abigail Poole
- Worcester Polytechnic Institute, Worcester, 01609 MA
| | | | - Jonah Da Silva
- Department of Biology, Syracuse University, Syracuse, 13244 USA
| | | | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, 95817 USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, 13244 USA
- BioInspired Institute, Syracuse University, Syracuse, 13244 USA
| |
Collapse
|
5
|
Thomas A, Meraldi P. Centrosome age breaks spindle size symmetry even in cells thought to divide symmetrically. J Cell Biol 2024; 223:e202311153. [PMID: 39012627 PMCID: PMC11252449 DOI: 10.1083/jcb.202311153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 07/17/2024] Open
Abstract
Centrosomes are the main microtubule-organizing centers in animal cells. Due to the semiconservative nature of centrosome duplication, the two centrosomes differ in age. In asymmetric stem cell divisions, centrosome age can induce an asymmetry in half-spindle lengths. However, whether centrosome age affects the symmetry of the two half-spindles in tissue culture cells thought to divide symmetrically is unknown. Here, we show that in human epithelial and fibroblastic cell lines centrosome age imposes a mild spindle asymmetry that leads to asymmetric cell daughter sizes. At the mechanistic level, we show that this asymmetry depends on a cenexin-bound pool of the mitotic kinase Plk1, which favors the preferential accumulation on old centrosomes of the microtubule nucleation-organizing proteins pericentrin, γ-tubulin, and Cdk5Rap2, and microtubule regulators TPX2 and ch-TOG. Consistently, we find that old centrosomes have a higher microtubule nucleation capacity. We postulate that centrosome age breaks spindle size symmetry via microtubule nucleation even in cells thought to divide symmetrically.
Collapse
Affiliation(s)
- Alexandre Thomas
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Rios MU, Bagnucka MA, Ryder BD, Ferreira Gomes B, Familiari NE, Yaguchi K, Amato M, Stachera WE, Joachimiak ŁA, Woodruff JB. Multivalent coiled-coil interactions enable full-scale centrosome assembly and strength. J Cell Biol 2024; 223:e202306142. [PMID: 38456967 PMCID: PMC10921949 DOI: 10.1083/jcb.202306142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/29/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024] Open
Abstract
The outermost layer of centrosomes, called pericentriolar material (PCM), organizes microtubules for mitotic spindle assembly. The molecular interactions that enable PCM to assemble and resist external forces are poorly understood. Here, we use crosslinking mass spectrometry (XL-MS) to analyze PLK-1-potentiated multimerization of SPD-5, the main PCM scaffold protein in C. elegans. In the unassembled state, SPD-5 exhibits numerous intramolecular crosslinks that are eliminated after phosphorylation by PLK-1. Thus, phosphorylation induces a structural opening of SPD-5 that primes it for assembly. Multimerization of SPD-5 is driven by interactions between multiple dispersed coiled-coil domains. Structural analyses of a phosphorylated region (PReM) in SPD-5 revealed a helical hairpin that dimerizes to form a tetrameric coiled-coil. Mutations within this structure and other interacting regions cause PCM assembly defects that are partly rescued by eliminating microtubule-mediated forces, revealing that PCM assembly and strength are interdependent. We propose that PCM size and strength emerge from specific, multivalent coiled-coil interactions between SPD-5 proteins.
Collapse
Affiliation(s)
- Manolo U. Rios
- Department of Cell Biology, Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Małgorzata A. Bagnucka
- Department of Cell Biology, Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bryan D. Ryder
- Department of Biochemistry, Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Nicole E. Familiari
- Department of Cell Biology, Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kan Yaguchi
- Department of Cell Biology, Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Amato
- Department of Cell Biology, Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weronika E. Stachera
- Department of Cell Biology, Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Łukasz A. Joachimiak
- Department of Biochemistry, Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey B. Woodruff
- Department of Cell Biology, Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Schindler-Johnson M, Petridou NI. Collective effects of cell cleavage dynamics. Front Cell Dev Biol 2024; 12:1358971. [PMID: 38559810 PMCID: PMC10978805 DOI: 10.3389/fcell.2024.1358971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
Collapse
Affiliation(s)
- Magdalena Schindler-Johnson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicoletta I. Petridou
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
8
|
Kiyomitsu A, Nishimura T, Hwang SJ, Ansai S, Kanemaki MT, Tanaka M, Kiyomitsu T. Ran-GTP assembles a specialized spindle structure for accurate chromosome segregation in medaka early embryos. Nat Commun 2024; 15:981. [PMID: 38302485 PMCID: PMC10834446 DOI: 10.1038/s41467-024-45251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Despite drastic cellular changes during cleavage, a mitotic spindle assembles in each blastomere to accurately segregate duplicated chromosomes. Mechanisms of mitotic spindle assembly have been extensively studied using small somatic cells. However, mechanisms of spindle assembly in large vertebrate embryos remain little understood. Here, we establish functional assay systems in medaka (Oryzias latipes) embryos by combining CRISPR knock-in with auxin-inducible degron technology. Live imaging reveals several unexpected features of microtubule organization and centrosome positioning that achieve rapid, accurate cleavage. Importantly, Ran-GTP assembles a dense microtubule network at the metaphase spindle center that is essential for chromosome segregation in early embryos. This unique spindle structure is remodeled into a typical short, somatic-like spindle after blastula stages, when Ran-GTP becomes dispensable for chromosome segregation. We propose that despite the presence of centrosomes, the chromosome-derived Ran-GTP pathway has essential roles in functional spindle assembly in large, rapidly dividing vertebrate early embryos, similar to acentrosomal spindle assembly in oocytes.
Collapse
Affiliation(s)
- Ai Kiyomitsu
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Toshiya Nishimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Hokkaido University Fisheries Sciences, 3-1-1, Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Shiang Jyi Hwang
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), and Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Tomomi Kiyomitsu
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
9
|
Aljiboury A, Hehnly H. The centrosome - diverse functions in fertilization and development across species. J Cell Sci 2023; 136:jcs261387. [PMID: 38038054 PMCID: PMC10730021 DOI: 10.1242/jcs.261387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
The centrosome is a non-membrane-bound organelle that is conserved across most animal cells and serves various functions throughout the cell cycle. In dividing cells, the centrosome is known as the spindle pole and nucleates a robust microtubule spindle to separate genetic material equally into two daughter cells. In non-dividing cells, the mother centriole, a substructure of the centrosome, matures into a basal body and nucleates cilia, which acts as a signal-transducing antenna. The functions of centrosomes and their substructures are important for embryonic development and have been studied extensively using in vitro mammalian cell culture or in vivo using invertebrate models. However, there are considerable differences in the composition and functions of centrosomes during different aspects of vertebrate development, and these are less studied. In this Review, we discuss the roles played by centrosomes, highlighting conserved and divergent features across species, particularly during fertilization and embryonic development.
Collapse
Affiliation(s)
- Abrar Aljiboury
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
- Syracuse University, BioInspired Institute, Syracuse, NY 13244, USA
| | - Heidi Hehnly
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
- Syracuse University, BioInspired Institute, Syracuse, NY 13244, USA
| |
Collapse
|
10
|
Baldrighi M, Doreth C, Li Y, Zhao X, Warner E, Chenoweth H, Kishore K, Umrania Y, Minde DP, Thome S, Yu X, Lu Y, Knapton A, Harrison J, Clarke M, Latz E, de Cárcer G, Malumbres M, Ryffel B, Bryant C, Liu J, Lilley KS, Mallat Z, Li X. PLK1 inhibition dampens NLRP3 inflammasome-elicited response in inflammatory disease models. J Clin Invest 2023; 133:e162129. [PMID: 37698938 PMCID: PMC10617773 DOI: 10.1172/jci162129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1β production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Marta Baldrighi
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christian Doreth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Zhao
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emily Warner
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Chenoweth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Yagnesh Umrania
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - David-Paul Minde
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Thome
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xian Yu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuning Lu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alice Knapton
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James Harrison
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Murray Clarke
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cell Cycle and Cancer Biomarkers Group, “Alberto Sols” Biomedical Research Institute (IIBM-CSIC), Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bernhard Ryffel
- UMR7355 INEM, Experimental and Molecular Immunology and Neurogenetics CNRS and Université d’Orleans, Orleans, France
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kathryn S. Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Ziad Mallat
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Université Paris Cité, PARCC, INSERM, Paris, France
| | - Xuan Li
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Zheng H, Wen W. Protein phase separation: new insights into cell division. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1042-1051. [PMID: 37249333 PMCID: PMC10415187 DOI: 10.3724/abbs.2023093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 05/31/2023] Open
Abstract
As the foundation for the development of multicellular organisms and the self-renewal of single cells, cell division is a highly organized event which segregates cellular components into two daughter cells equally or unequally, thus producing daughters with identical or distinct fates. Liquid-liquid phase separation (LLPS), an emerging biophysical concept, provides a new perspective for us to understand the mechanisms of a wide range of cellular events, including the organization of membrane-less organelles. Recent studies have shown that several key organelles in the cell division process are assembled into membrane-free structures via LLPS of specific proteins. Here, we summarize the regulatory functions of protein phase separation in centrosome maturation, spindle assembly and polarity establishment during cell division.
Collapse
Affiliation(s)
- Hongdan Zheng
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Wenyu Wen
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
12
|
Rios MU, Ryder BD, Familiari N, Joachimiak ŁA, Woodruff JB. A central helical hairpin in SPD-5 enables centrosome strength and assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540868. [PMID: 37292920 PMCID: PMC10245767 DOI: 10.1101/2023.05.16.540868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Centrosomes organize microtubules for mitotic spindle assembly and positioning. Forces mediated by these microtubules create tensile stresses on pericentriolar material (PCM), the outermost layer of centrosomes. How PCM resists these stresses is unclear at the molecular level. Here, we use cross-linking mass spectrometry (XL-MS) to map interactions underlying multimerization of SPD-5, an essential PCM scaffold component in C. elegans . We identified an interaction hotspot in an alpha helical hairpin motif in SPD-5 (a.a. 541-677). XL-MS data, ab initio structural predictions, and mass photometry suggest that this region dimerizes to form a tetrameric coiled-coil. Mutating a helical section (a.a. 610-640) or a single residue (R592) inhibited PCM assembly in embryos. This phenotype was rescued by eliminating microtubule pulling forces, revealing that PCM assembly and material strength are interrelated. We propose that interactions mediated by the helical hairpin strongly bond SPD-5 molecules to each other, thus enabling PCM to assemble fully and withstand stresses generated by microtubules.
Collapse
|
13
|
Aljiboury AA, Ingram E, Krishnan N, Ononiwu F, Pal D, Manikas J, Taveras C, Hall NA, Da Silva J, Freshour J, Hehnly H. Rab8, Rab11, and Rab35 coordinate lumen and cilia formation during zebrafish left-right organizer development. PLoS Genet 2023; 19:e1010765. [PMID: 37186603 PMCID: PMC10212091 DOI: 10.1371/journal.pgen.1010765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/25/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
An essential process during Danio rerio's left-right organizer (Kupffer's Vesicle, KV) formation is the formation of a motile cilium by developing KV cells which extends into the KV lumen. Beating of motile cilia within the KV lumen directs fluid flow to establish the embryo's left-right axis. However, the timepoint at which KV cells start to form cilia and how cilia formation is coordinated with KV lumen formation have not been examined. We identified that nascent KV cells form cilia at their centrosomes at random intracellular positions that then move towards a forming apical membrane containing cystic fibrosis transmembrane conductance regulator (CFTR). Using optogenetic clustering approaches, we found that Rab35 positive membranes recruit Rab11 to modulate CFTR delivery to the apical membrane, which is required for lumen opening, and subsequent cilia extension into the lumen. Once the intracellular cilia reach the CFTR positive apical membrane, Arl13b-positive cilia extend and elongate in a Rab8 dependent manner into the forming lumen once the lumen reaches an area of 300 μm2. These studies demonstrate the need to acutely coordinate Rab8, Rab11, and Rab35-mediated membrane trafficking events to ensure appropriate timing in lumen and cilia formation during KV development.
Collapse
Affiliation(s)
- Abrar A. Aljiboury
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Eric Ingram
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Nikhila Krishnan
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Favour Ononiwu
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Debadrita Pal
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Julie Manikas
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Christopher Taveras
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Nicole A. Hall
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Jonah Da Silva
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Judy Freshour
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Heidi Hehnly
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
14
|
Xiao Y, Chen J, Yang S, Sun H, Xie L, Li J, Jing N, Zhu X. Maternal mRNA deadenylation and allocation via Rbm14 condensates facilitate vertebrate blastula development. EMBO J 2023; 42:e111364. [PMID: 36477743 PMCID: PMC9890236 DOI: 10.15252/embj.2022111364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Early embryonic development depends on proper utilization and clearance of maternal transcriptomes. How these processes are spatiotemporally regulated remains unclear. Here we show that nuclear RNA-binding protein Rbm14 and maternal mRNAs co-phase separate into cytoplasmic condensates to facilitate vertebrate blastula-to-gastrula development. In zebrafish, Rbm14 condensates were highly abundant in blastomeres and markedly reduced after prominent activation of zygotic transcription. They concentrated at spindle poles by associating with centrosomal γ-tubulin puncta and displayed mainly asymmetric divisions with a global symmetry across embryonic midline in 8- and 16-cell embryos. Their formation was dose-dependently stimulated by m6 A, but repressed by m5 C modification of the maternal mRNA. Furthermore, deadenylase Parn co-phase separated with these condensates, and this was required for deadenylation of the mRNAs in early blastomeres. Depletion of Rbm14 impaired embryonic cell differentiations and full activations of the zygotic genome in both zebrafish and mouse and resulted in developmental arrest at the blastula stage. Our results suggest that cytoplasmic Rbm14 condensate formation regulates early embryogenesis by facilitating deadenylation, protection, and mitotic allocation of m6 A-modified maternal mRNAs, and by releasing the poly(A)-less transcripts upon regulated disassembly to allow their re-polyadenylation and translation or clearance.
Collapse
Affiliation(s)
- Yue Xiao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Jiehui Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Honghua Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Lele Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Xueliang Zhu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| |
Collapse
|
15
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
16
|
Willekers S, Tessadori F, van der Vaart B, Henning HH, Stucchi R, Altelaar M, Roelen BAJ, Akhmanova A, Bakkers J. The centriolar satellite protein Cfap53 facilitates formation of the zygotic microtubule organizing center in the zebrafish embryo. Development 2022; 149:dev198762. [PMID: 35980365 PMCID: PMC9481976 DOI: 10.1242/dev.198762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/20/2022] [Indexed: 12/02/2023]
Abstract
In embryos of most animal species, the zygotic centrosome is assembled by the centriole derived from the sperm cell and pericentriolar proteins present in the oocyte. This zygotic centrosome acts as a microtubule organizing center (MTOC) to assemble the sperm aster and mitotic spindle. As MTOC formation has been studied mainly in adult cells, very little is known about the formation of the zygotic MTOC. Here, we show that zebrafish (Danio rerio) embryos lacking either maternal or paternal Cfap53, a centriolar satellite protein, arrest during the first cell cycle. Although Cfap53 is dispensable for sperm aster function, it aids proper formation of the mitotic spindle. During cell division, Cfap53 colocalizes with γ-tubulin and with other centrosomal and centriolar satellite proteins at the MTOC. Furthermore, we find that γ-tubulin localization at the MTOC is impaired in the absence of Cfap53. Based on these results, we propose a model in which Cfap53 deposited in the oocyte and the sperm participates in the organization of the zygotic MTOC to allow mitotic spindle formation.
Collapse
Affiliation(s)
- Sven Willekers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
| | | | - Babet van der Vaart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Heiko H. Henning
- Equine Sciences, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Bernard A. J. Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584 EA, The Netherlands
| |
Collapse
|
17
|
Aljiboury A, Mujcic A, Curtis E, Cammerino T, Magny D, Lan Y, Bates M, Freshour J, Ahmed-Braimeh YH, Hehnly H. Pericentriolar matrix (PCM) integrity relies on cenexin and polo-like kinase (PLK)1. Mol Biol Cell 2022; 33:br14. [PMID: 35609215 PMCID: PMC9582643 DOI: 10.1091/mbc.e22-01-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/11/2022] Open
Abstract
Polo-like-kinase (PLK) 1 activity is associated with maintaining the functional and physical properties of the centrosome's pericentriolar matrix (PCM). In this study, we use a multimodal approach of human cells (HeLa), zebrafish embryos, and phylogenic analysis to test the role of a PLK1 binding protein, cenexin, in regulating the PCM. Our studies identify that cenexin is required for tempering microtubule nucleation by maintaining PCM cohesion in a PLK1-dependent manner. PCM architecture in cenexin-depleted zebrafish embryos was rescued with wild-type human cenexin, but not with a C-terminal cenexin mutant (S796A) deficient in PLK1 binding. We propose a model where cenexin's C terminus acts in a conserved manner in eukaryotes, excluding nematodes and arthropods, to sequester PLK1 that limits PCM substrate phosphorylation events required for PCM cohesion.
Collapse
Affiliation(s)
- Abrar Aljiboury
- Biology Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Amra Mujcic
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Erin Curtis
- Biology Department, Syracuse University, Syracuse, NY 13244
| | | | - Denise Magny
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Yiling Lan
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Michael Bates
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Judy Freshour
- Biology Department, Syracuse University, Syracuse, NY 13244
| | | | - Heidi Hehnly
- Biology Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| |
Collapse
|
18
|
Palacios Martínez S, Greaney J, Zenker J. Beyond the centrosome: The mystery of microtubule organising centres across mammalian preimplantation embryos. Curr Opin Cell Biol 2022; 77:102114. [PMID: 35841745 DOI: 10.1016/j.ceb.2022.102114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022]
Abstract
Mammalian preimplantation embryogenesis depends on the spatio-temporal dynamics of the microtubule cytoskeleton to enable exceptionally fast changes in cell number, function, architecture, and fate. Microtubule organising centres (MTOCs), which coordinate the remodelling of microtubules, are therefore of fundamental significance during the first days of a new life. Despite its indispensable role during early mammalian embryogenesis, the origin of microtubule growth remains poorly understood. In this review, we summarise the most recent discoveries on microtubule organisation and function during early human embryogenesis and compare these to innovative studies conducted in alternative mammalian models. We emphasise the differences and analogies of centriole inheritance and their role during the first cleavage. Furthermore, we highlight the significance of non-centrosomal MTOCs for embryo viability and discuss the potential of novel in vitro models and light-inducible approaches towards unravelling microtubule formation in research and assisted reproductive technologies.
Collapse
Affiliation(s)
| | - Jessica Greaney
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
19
|
Krishnan N, Swoger M, Rathbun LI, Fioramonti PJ, Freshour J, Bates M, Patteson AE, Hehnly H. Rab11 endosomes and Pericentrin coordinate centrosome movement during pre-abscission in vivo. Life Sci Alliance 2022; 5:e202201362. [PMID: 35304423 PMCID: PMC8933627 DOI: 10.26508/lsa.202201362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
The last stage of cell division involves two daughter cells remaining interconnected by a cytokinetic bridge that is cleaved during abscission. Conserved between the zebrafish embryo and human cells, we found that the oldest centrosome moves in a Rab11-dependent manner towards the cytokinetic bridge sometimes followed by the youngest. Rab11-endosomes are organized in a Rab11-GTP dependent manner at the mother centriole during pre-abscission, with Rab11 endosomes at the oldest centrosome being more mobile compared with the youngest. The GTPase activity of Rab11 is necessary for the centrosome protein, Pericentrin, to be enriched at the centrosome. Reduction in Pericentrin expression or optogenetic disruption of Rab11-endosome function inhibited both centrosome movement towards the cytokinetic bridge and abscission, resulting in daughter cells prone to being binucleated and/or having supernumerary centrosomes. These studies suggest that Rab11-endosomes contribute to centrosome function during pre-abscission by regulating Pericentrin organization resulting in appropriate centrosome movement towards the cytokinetic bridge and subsequent abscission.
Collapse
Affiliation(s)
- Nikhila Krishnan
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Maxx Swoger
- Department of Physics, Syracuse University, Physics Building, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Lindsay I Rathbun
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Peter J Fioramonti
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Judy Freshour
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Michael Bates
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Alison E Patteson
- Department of Physics, Syracuse University, Physics Building, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
20
|
Aljiboury AA, Mujcic A, Cammerino T, Rathbun LI, Hehnly H. Imaging the early zebrafish embryo centrosomes following injection of small-molecule inhibitors to understand spindle formation. STAR Protoc 2021; 2:100293. [PMID: 33554134 PMCID: PMC7843657 DOI: 10.1016/j.xpro.2020.100293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During the earliest division stages, zebrafish embryos have large cells that divide rapidly and synchronously to create a cellular layer on top of the yolk. Here, we describe a protocol for monitoring spindle dynamics during these early embryonic divisions. We outline techniques for injecting zebrafish embryos with small-molecule inhibitors toward polo-like kinases, preparing and mounting embryos for three-dimensional imaging using confocal microscopy. These techniques are used to understand how the early zebrafish embryo's centrosome constructs the mitotic spindle. For complete details on the use and execution of this protocol, please refer to Rathbun et al. (2020).
Collapse
Affiliation(s)
- Abrar A Aljiboury
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Amra Mujcic
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Thomas Cammerino
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Lindsay I Rathbun
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Heidi Hehnly
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| |
Collapse
|