1
|
Batovska D, Chakarova M, Dines M, Dincheva I, Badjakov I, Inbar M. Association Between Gall Structural and Metabolic Complexity: Evidence from Pistacia palaestina. PLANTS (BASEL, SWITZERLAND) 2025; 14:721. [PMID: 40094633 PMCID: PMC11901957 DOI: 10.3390/plants14050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Pistacia palaestina hosts several Fordini gall-forming aphid species, which manipulate its anatomy and metabolism, creating galls that provide nutrients and protection. This study compared the extended metabolic profiles of P. palaestina leaves and galls induced by Baizongia pistaciae, Paracletus cimiciformis, and Geoica spp. GC-MS analysis of ethyl acetate (EtOAc) and methanol (MeOH) extracts revealed a high abundance of shikimic acid and quinic acid isomers, along with diverse hydrocarbons, lipids, terpenoids, phenolics, and carbohydrates, each showing distinct distributions across gall types. Paracletus cimiciformis galls closely resembled intact leaves, exhibiting limited metabolic disruption. In contrast, the larger, more complex galls of Baizongia and Geoica underwent profound metabolic modifications. These aphids manipulate host metabolism, leading to triterpenoid and phenolics accumulation, which likely fortifies gall structure and enhances chemical defense. The considerable variation among individual trees suggests that specific host plant templates significantly influence the metabolic profile of the galls.
Collapse
Affiliation(s)
- Daniela Batovska
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 103, 1113 Sofia, Bulgaria;
| | - Mirena Chakarova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 103, 1113 Sofia, Bulgaria;
| | - Monica Dines
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel;
| | - Ivayla Dincheva
- Department of Agrobiotechnologies, Agrobioinstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (I.D.); (I.B.)
| | - Ilian Badjakov
- Department of Agrobiotechnologies, Agrobioinstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (I.D.); (I.B.)
| | - Moshe Inbar
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel;
| |
Collapse
|
2
|
Novoplansky A, Souza G, Brenner E, Bhatla S, Van Volkenburgh E. Exploring the complex information processes underlying plant behavior. PLANT SIGNALING & BEHAVIOR 2024; 19:2411913. [PMID: 39381978 PMCID: PMC11469436 DOI: 10.1080/15592324.2024.2411913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
Newly discovered plant behaviors, linked to historical observations, contemporary technologies, and emerging knowledge of signaling mechanisms, argue that plants utilize complex information processing systems. Plants are goal-oriented in an evolutionary and physiological sense; they demonstrate agency and learning. While most studies on plant plasticity, learning, and memory deal with the responsiveness of individual plants to resource availability and biotic stresses, adaptive information is often perceived from and coordinated with neighboring plants, while competition occurs for limited resources. Based on existing knowledge, technologies, and sustainability principles, climate-smart agricultural practices are now being adopted to enhance crop resilience and productivity. A deeper understanding of the dynamics of plant behavior offers a rich palette of potential amelioration strategies for improving the productivity and health of natural and agricultural ecosystems.
Collapse
Affiliation(s)
- A. Novoplansky
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - G.M. Souza
- Department of Botany, Institute of Biology – Section of Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - E.D. Brenner
- Department of Biology, Pace University, New York, New York, USA
| | - S.C. Bhatla
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | | |
Collapse
|
3
|
Yadav P, Simbassa SB, Sloan R, Newmark PA, Lee J. Schistosome esophageal gland factor MEG-8.2 drives host cell lysis and interacts with host immune proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623777. [PMID: 39605737 PMCID: PMC11601278 DOI: 10.1101/2024.11.15.623777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Schistosomes are blood flukes that ingest large amounts of host blood during their intra-mammalian stage. The ingested blood contains leukocytes that can be harmful, yet the parasites survive inside the host for decades, reflecting superb immune evasion mechanisms that remain poorly understood. Our previous work discovered that FoxA, a forkhead transcription factor, drives the production of the esophageal gland, an anterior digestive organ essential for degrading the ingested leukocytes and for in vivo survival. However, a comprehensive molecular makeup of the esophageal gland remains unclear. Importantly, which of the esophageal gland factors are responsible for degrading the ingested leukocytes, their mechanism of action, and how such a function relates to parasite survival and immune evasion remains unknown. Here, we identify additional esophageal gland genes by taking a comparative transcriptomics approach to identify transcripts altered in foxA knockdown adult schistosomes. A targeted RNAi screen coupled with biochemistry reveals that specific domains of the micro-exon gene MEG-8.2, can drive host cell lysis in a concentration-dependent manner. Using pull-down assays coupled with mass spectrometry, we discover that MEG-8.2 interacts with several host membrane and extracellular proteins that play important roles in activating innate and/or adaptive immunity. Together, our findings suggest a dual role for MEG-8.2 in effectively lysing the ingested cells in the esophageal lumen and interacting with specific host proteins to neutralize or suppress the host immunity. These findings lay an important foundation for exploiting esophageal gland factors to treat schistosomiasis.
Collapse
Affiliation(s)
- Pallavi Yadav
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Sabona B. Simbassa
- Microbiology and Infectious Diseases Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Ryan Sloan
- Microbiology and Infectious Diseases Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Phillip A. Newmark
- Howard Hughes Medical Institute, Morgridge Institute for Research, Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53715
| | - Jayhun Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
- Microbiology and Infectious Diseases Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030
| |
Collapse
|
4
|
Arriola ÍA, Guedes LM, Moreira ASFP, Aguilera N, Dos Santos Isaias RM, Oliveira DCD. Iron metabolism acts as a bridge between photosynthesis and red coloration of bud galls induced on Nothofagus obliqua (Nothofagaceae). PHYSIOLOGIA PLANTARUM 2024; 176:e14651. [PMID: 39641146 DOI: 10.1111/ppl.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Color and morphology are some of the most intriguing traits of plant galls, whose patterns resemble fruits and flowers. Many hypotheses were proposed to explain the involvement of anthocyanin accumulation with the development of red gall hues, whose mechanisms seem idiosyncratic. Anthocyanins are related to photoprotective strategies in green tissues and metal accumulation in some flowers. Despite that, the combination of such physiological phenomena has been neglected for galls, which are photosynthetic neoplasms genetically similar to reproductive organs. Here, we integrated different perspectives by measuring photosynthetic pigment and anthocyanin concentration combined with fluorescence quenching analysis, antioxidant activity assays, and histochemical elemental mapping in red and green galls induced by Espinosa nothofagi (Hymenoptera) on Nothofagus obliqua (Nothofagaceae). We found no relationship between high anthocyanin concentrations, light exposure, and red coloration in galls as anthocyanin concentrations were higher in the outermost tissues of green galls than in red galls. Red galls presented higher concentrations of total chlorophyll and lower carotenoid concentrations than green galls and leaves, which correlated with their highest photosynthetic activity and iron accumulation. The red color coincides with the accumulation of aluminum and Fe3+ and the lowest antioxidant capacity in the gall outer tissue. The high antioxidant capacity of N. obliqua galls and the Fe2+ and Fe3+ distribution are related to high photosynthesis, Fe-use efficiency in galls, and the supply of Fe to the inducer diet. Overall, iron metabolism connects the high photosynthesis activity to the red gall color in the presence of low anthocyanin concentrations, like some flowers.
Collapse
Affiliation(s)
- Ígor Abba Arriola
- Department of Botany, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lubia Maria Guedes
- Departament of Forestry, Laboratorio de Semioquímica Aplicada, Faculty of Forestry Sciences, Universidad de Concepción, Concepción, CP, Chile
| | | | - Narciso Aguilera
- Departament of Forestry, Laboratorio de Semioquímica Aplicada, Faculty of Forestry Sciences, Universidad de Concepción, Concepción, CP, Chile
| | - Rosy Mary Dos Santos Isaias
- Department of Botany, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis Coelho de Oliveira
- Institute of Biology, Universidade Federal de Uberlândia, Campus Umuarama, Rua Ceará s/n, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
5
|
Bellows E, Heatley M, Shah N, Archer N, Giles T, Fray R. Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:798-810. [PMID: 38864838 DOI: 10.1111/plb.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Oak gall wasps have evolved strategies to manipulate the developmental pathways of their host to induce gall formation. This provides shelter and nutrients for the developing larva. Galls are entirely host tissue; however, the initiation, development, and physical appearance are controlled by the inducer. The underlying molecular mechanisms of gall formation, by which one or a small number of cells are reprogrammed and commit to a novel developmental path, are poorly understood. In this study, we sought a deeper insight into the molecular underpinnings of this process. Oak gall wasps have two generations each year, one sexual, and one asexual. Galls formed by these two generations exhibit a markedly different appearance. We sequenced transcriptomes of both the asexual and sexual generations of Neuroterus quercusbaccarum and Neuroterus numismalis. We then deployed Nanopore sequencing to generate long-read sequences to test the hypothesis that gall wasps introduce DNA insertions to determine gall development. We detected potential genome rearrangements but did not uncover any non-host DNA insertions. Transcriptome analysis revealed that transcriptomes of the sexual generations of distinct species of wasp are more similar than inter-generational comparisons from the same species of wasp. Our results highlight the intricate interplay between the host leaves and gall development, suggesting that season and requirements of the gall structure play a larger role than species in controlling gall development and structure.
Collapse
Affiliation(s)
- E Bellows
- School of Biosciences, The University of Nottingham, Nottingham, UK
| | - M Heatley
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - N Shah
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - N Archer
- School of Veterinary Medicine and Science, The University of Nottingham, Nottingham, UK
| | - T Giles
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - R Fray
- School of Biosciences, The University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Mizuki M, Kaneko Y, Yukie Y, Suyama Y, Hirota SK, Sawa S, Kubo M, Yamawo A, Sasabe M, Ikeda H. Evolution of secondary metabolites, morphological structures and associated gene expression patterns in galls induced by four closely related aphid species on a host plant species. Mol Ecol 2024; 33:e17466. [PMID: 39022998 DOI: 10.1111/mec.17466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 07/20/2024]
Abstract
Gall-forming insects induce various types of galls on their host plants by altering gene expression in host plant organs, and recent studies have been conducted for gene expression in galls. However, the evolutionary trajectories of gene expression patterns and the resulting phenotypes have not yet been studied using multiple related species. We investigated the speciation and the diversification process of galls induced by four closely related aphid species (Hormaphidini) on a host plant species (Hamamelis japonica) by examining the phylogenetic congruence between the geographical divergences of aphids and the host plant, and by comparing their gene expression patterns and resulting phenotypes. Phylogenetic analysis of aphids and the host plant showed that geographical isolation among host plant populations has interrupted gene flow in aphids and accelerated the speciation process. The concentration of phenolics and the complexity of the internal structure of galls were correlated with the expression levels of genes for the biosynthesis of phenolics and morphogenesis respectively. These results suggest that the expression levels of genes for the biosynthesis of phenolics and morphogenesis have evolutionarily increased in galls accelerated by the speciation process of aphids due to the distribution change of the host plant, leading to the related phenotypic evolution. Our study showed the evolutionary process of phenotypic traits in galls in the wild from both gene expression and actual phenotype levels.
Collapse
Affiliation(s)
- Mayu Mizuki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
- Ina Research Inc., Ina, Nagano, Japan
| | - Yohei Kaneko
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Fukuoka, Japan
| | | | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
- Botanical Gardens, Osaka Metropolitan University, Katano City, Osaka, Japan
| | - Shinichiro Sawa
- International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto Universrity | International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Minoru Kubo
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, Nara, Japan
| | - Akira Yamawo
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Michiko Sasabe
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Hiroshi Ikeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Xu S, Jiang L, Zou Z, Zou M, Qiao G, Chen J. Two chromosome-level genome assemblies of galling aphids Slavum lentiscoides and Chaetogeoica ovagalla. Sci Data 2024; 11:803. [PMID: 39033163 PMCID: PMC11271456 DOI: 10.1038/s41597-024-03653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Slavum lentiscoides and Chaetogeoica ovagalla are two aphid species from the subtribe Fordina of Fordini within the subfamily Eriosomatinae, and they produce galls on their primary host plants Pistacia. We assembled chromosome-level genomes of these two species using Nanopore long-read sequencing and Hi-C technology. A 332 Mb genome assembly of S. lentiscoides with a scaffold N50 of 19.77 Mb, including 11,747 genes, and a 289 Mb genome assembly of C. ovagalla with a scaffold N50 of 11.85 Mb, containing 14,492 genes, were obtained. The Benchmarking Universal Single-Copy Orthologs (BUSCO) benchmark of the two genome assemblies reached 93.7% (91.9% single-copy) and 97.0% (95.3% single-copy), respectively. The high-quality genome assemblies in our study provide valuable resources for future genomic research of galling aphids.
Collapse
Affiliation(s)
- Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhengting Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ming Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Mori BA, Coutu C, Erlandson MA, Hegedus DD. Exploring the contribution of the salivary gland and midgut to digestion in the swede midge (Contarinia nasturtii) through a genomics-guided approach. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22135. [PMID: 39038196 DOI: 10.1002/arch.22135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The larvae of Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), the swede midge, targets the meristem of brassica crops where they induce the formation of galls and disrupt seed and vegetable production. Previously, we examined the salivary gland transcriptome of newly-hatched first instar larvae as they penetrated the host and initiated gall formation. Here we examine the salivary gland and midgut transcriptome of third instar larvae and provide evidence for cooperative nutrient acquisition beginning with secretion of enzymes and feeding facilitators followed by gastrointestinal digestion. Sucrose, presumably obtained from the phloem, appeared to be a major nutrient source as several α-glucosidases (sucrases, maltases) and β-fructofuranosidases (invertases) were identified. Genes encoding β-fructofuranosidases/invertases were among the most highly expressed in both tissues and represented two distinct gene families that may have originated via horizontal gene transfer from bacteria. The importance of the phloem as a nutrient source is underscored by the expression of genes encoding regucalcin and ARMET (arginine-rich mutated in early stages of tumor) which interfere with calcium signalling and prevent sieve tube occlusion. Lipids, proteins, and starch appear to serve as a secondary nutrient sources. Genes encoding enzymes involved in the detoxification of glucosinolates (myrosinases, arylsulfatases, and glutathione-S-transferases) were expressed indicative of Brassicaceae host specialization. The midgut expressed simple peritrophins and mucins typical of those found in Type II peritrophic matrices, the first such description for a gall midge.
Collapse
Affiliation(s)
- Boyd A Mori
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| | - Martin A Erlandson
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
9
|
Ni BB, Liu H, Wang ZS, Zhang GY, Sang ZY, Liu JJ, He CY, Zhang JG. A chromosome-scale genome of Rhus chinensis Mill. provides new insights into plant-insect interaction and gallotannins biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:766-786. [PMID: 38271098 DOI: 10.1111/tpj.16631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal-level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase-like (SCPL) and their homologs involved in HT production were determined as specific to HT-rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia-lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co-expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant-galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites.
Collapse
Affiliation(s)
- Bing-Bing Ni
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hong Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhao-Shan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Guo-Yun Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zi-Yang Sang
- Forest Enterprise of Wufeng County in Hubei Province, Wufeng, 443400, Hubei, China
| | - Juan-Juan Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Cai-Yun He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jian-Guo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
10
|
Markel K, Novak V, Bowen BP, Tian Y, Chen YC, Sirirungruang S, Zhou A, Louie KB, Northen TR, Eudes A, Scheller HV, Shih PM. Cynipid wasps systematically reprogram host metabolism and restructure cell walls in developing galls. PLANT PHYSIOLOGY 2024; 195:698-712. [PMID: 38236304 PMCID: PMC11181936 DOI: 10.1093/plphys/kiae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024]
Abstract
Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.
Collapse
Affiliation(s)
- Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Vlastimil Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yang Tian
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Yi-Chun Chen
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Andy Zhou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Katherine B Louie
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aymerick Eudes
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Chen J. It's gall relative: metabolic profiling of two morphologically distinct oak leaf galls induced by cynipid wasps. PLANT PHYSIOLOGY 2024; 195:248-250. [PMID: 38252919 PMCID: PMC11060654 DOI: 10.1093/plphys/kiae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Affiliation(s)
- Jiawen Chen
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
12
|
Mandrioli M, Tonetti L, Beltrame T, Canadelli E. From Galls to Cecidological Herbaria: The Role of Gall Collections in Modern Life Sciences. Life (Basel) 2024; 14:452. [PMID: 38672724 PMCID: PMC11051133 DOI: 10.3390/life14040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Galls (also known as cecidia) have been studied by botanists, zoologists and microbiologists over the last century. Indeed, galls can be induced by different animals, bacteria, viruses and fungi, so that their presence simultaneously attested the presence of specific host plants and gall-inducing species. Consequently, gall collections, also known as cecidological herbaria or cecidological collections, can be interesting to study biodiversity changes over time. This review describes the main cecidological collections currently available in different European museums in order to stimulate their future study. The present analysis suggests that well-organized and preserved cecidological collections have great potential to guide research in taxonomy and systematics. Furthermore, this review aims to encourage future research on the conservation and digitisation standards of gall specimens in order to make cecidological data more accessible to researchers.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Luca Tonetti
- Dipartimento di Scienze Storiche, Geografiche e dell’Antichità, Università di Padova, Via del Vescovado 30, 35141 Padova, Italy; (L.T.); (T.B.); (E.C.)
| | - Tiziana Beltrame
- Dipartimento di Scienze Storiche, Geografiche e dell’Antichità, Università di Padova, Via del Vescovado 30, 35141 Padova, Italy; (L.T.); (T.B.); (E.C.)
| | - Elena Canadelli
- Dipartimento di Scienze Storiche, Geografiche e dell’Antichità, Università di Padova, Via del Vescovado 30, 35141 Padova, Italy; (L.T.); (T.B.); (E.C.)
| |
Collapse
|
13
|
Bleau JR, Gaur N, Fu Y, Bos JIB. Unveiling the Slippery Secrets of Saliva: Effector Proteins of Phloem-Feeding Insects. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:211-219. [PMID: 38148271 DOI: 10.1094/mpmi-10-23-0167-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Phloem-feeding insects include many important agricultural pests that cause crop damage globally, either through feeding-related damage or upon transmission of viruses and microbes that cause plant diseases. With genetic crop resistances being limited to most of these pests, control relies on insecticides, which are costly and damaging to the environment and to which insects can develop resistance. Like other plant parasites, phloem-feeding insects deliver effectors inside their host plants to promote susceptibility, most likely by a combination of suppressing immunity and promoting nutrient availability. The recent emergence of the effector paradigm in plant-insect interactions is highlighted by increasing availability of effector repertoires for a range of species and a broadening of our knowledge concerning effector functions. Here, we focus on recent progress made toward identification of effector repertoires from phloem-feeding insects and developments in effector biology that will advance functional characterization studies. Importantly, identification of effector activities from herbivorous insects promises to provide new avenues toward development of crop protection strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jade R Bleau
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Namami Gaur
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Yao Fu
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, U.K
| |
Collapse
|
14
|
Wang Z, Zhou J, Pan J, Cheng W, Fang J, Lv Q, Lin X, Cheng W, Zhang L, Cheng K. Insights into the Superrosids phylogeny and flavonoid synthesis from the telomere-to-telomere gap-free genome assembly of Penthorum chinense Pursh. HORTICULTURE RESEARCH 2024; 11:uhad274. [PMID: 38344651 PMCID: PMC10857932 DOI: 10.1093/hr/uhad274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/11/2023] [Indexed: 10/28/2024]
Abstract
The completion of the first telomere-to-telomere (T2T) genome assembly of Penthorum chinense Pursh (PC), a prominent medicinal plant in China, represents a significant achievement. This assembly spans a length of 257.5 Mb and consists of nine chromosomes. PC's notably smaller genome size in Saxifragales, compared to that of Paeonia ostii, can be attributed to the low abundance of transposable elements. By utilizing single-copy genes from 30 species, including 28 other Superrosids species, we successfully resolved a previously debated Superrosids phylogeny. Our findings unveiled Saxifragales as the sister group to the core rosids, with both being the sister group to Vitales. Utilizing previously characterized cytochrome P450 (CYP) genes, we predicted the compound classes that most CYP genes of PC are involved in synthesizing, providing insight into PC's potential metabolic diversity. Metabolomic and transcriptomic data revealed that the richest sources of the three most noteworthy medicinal components in PC are young leaves and flowers. We also observed higher activity of upstream genes in the flavonoid synthesis pathway in these plant parts. Additionally, through weighted gene co-expression network analysis, we identified gene regulatory networks associated with the three medicinal components. Overall, these findings deepen our understanding of PC, opening new avenues for further research and exploration.
Collapse
Affiliation(s)
- Zhoutao Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 311300, China
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
- Product Development Department, Zhejiang Shaowei Yuanzhi Science and Technology Development Co., Ltd, Lishui 323000, China
| | - Junmei Zhou
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Junjie Pan
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Wei Cheng
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 311300, China
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Jie Fang
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Qundan Lv
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Xiaodan Lin
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wenliang Cheng
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 311300, China
| | - Kejun Cheng
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
- Product Development Department, Zhejiang Shaowei Yuanzhi Science and Technology Development Co., Ltd, Lishui 323000, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
15
|
Ushima R, Sugimoto R, Sano Y, Ogi H, Ino R, Hayakawa H, Shimada K, Tsuchida T. New Gall-Forming Insect Model, Smicronyx madaranus: Critical Stages for Gall Formation, Phylogeny, and Effectiveness of Gene Functional Analysis. INSECTS 2024; 15:63. [PMID: 38249069 PMCID: PMC10816246 DOI: 10.3390/insects15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The molecular mechanisms underlying insect gall formation remain unclear. A major reason for the inability to identify the responsible genes is that only a few systems can be experimentally validated in the laboratory. To overcome these problems, we established a new galling insect model, Smicronyx madaranus. Our manipulation experiments using nail polish sealing and insecticide treatment revealed an age-dependent change in gall formation by S. madaranus; adult females and larvae are responsible for gall induction and enlargement, respectively. Furthermore, it has been suggested that substances released during oviposition and larval feeding are involved in each process. Phylogenetic analysis showed that gall-forming weevils, including S. madaranus, belong to two distinct lineages that utilize different host plants. This may indicate that gall-forming traits evolved independently in these Smicronyx lineages. The efficacy of RNA interference (RNAi) in S. madaranus was confirmed by targeting the multicopper oxidase 2 gene. It is expected that the mechanisms of gall formation will be elucidated by a comprehensive functional analysis of candidate genes using RNAi and the S. madaranus galling system in the near future.
Collapse
Affiliation(s)
- Ryo Ushima
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama City 930-8555, Toyama, Japan
| | - Ryoma Sugimoto
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama City 930-8555, Toyama, Japan
| | - Yota Sano
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama City 930-8555, Toyama, Japan
| | - Hinako Ogi
- School of Science, University of Toyama, Toyama City 930-8555, Toyama, Japan
| | - Ryuichiro Ino
- School of Science, University of Toyama, Toyama City 930-8555, Toyama, Japan
| | - Hiroshi Hayakawa
- Museum of Natural and Environmental History, Shizuoka, Shizuoka City 422-8017, Shizuoka, Japan
| | - Keisuke Shimada
- Ishikawa Museum of Natural History, Ri-441, Choshi-Machi, Kanazawa City 920-1147, Ishikawa, Japan
| | - Tsutomu Tsuchida
- Faculty of Science, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama City 930-8555, Toyama, Japan
| |
Collapse
|
16
|
Cheatle Jarvela AM, Wexler JR. Advances in genome sequencing reveal changes in gene content that contribute to arthropod macroevolution. Dev Genes Evol 2023; 233:59-76. [PMID: 37982820 DOI: 10.1007/s00427-023-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
Current sequencing technology allows for the relatively affordable generation of highly contiguous genomes. Technological advances have made it possible for researchers to investigate the consequences of diverse sorts of genomic variants, such as gene gain and loss. With the extraordinary number of high-quality genomes now available, we take stock of how these genomic variants impact phenotypic evolution. We take care to point out that the identification of genomic variants of interest is only the first step in understanding their impact. Painstaking lab or fieldwork is still required to establish causal relationships between genomic variants and phenotypic evolution. We focus mostly on arthropod research, as this phylum has an impressive degree of phenotypic diversity and is also the subject of much evolutionary genetics research. This article is intended to both highlight recent advances in the field and also to be a primer for learning about evolutionary genetics and genomics.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Entomology, University of Maryland, College Park, MD, USA.
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| | - Judith R Wexler
- Department of Ecology, Evolution, and Behavior, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
17
|
Gätjens-Boniche O, Jiménez-Madrigal JP, Whetten RW, Valenzuela-Diaz S, Alemán-Gutiérrez A, Hanson PE, Pinto-Tomás AA. Microbiome and plant cell transformation trigger insect gall induction in cassava. FRONTIERS IN PLANT SCIENCE 2023; 14:1237966. [PMID: 38126017 PMCID: PMC10731979 DOI: 10.3389/fpls.2023.1237966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
Several specialised insects can manipulate normal plant development to induce a highly organised structure known as a gall, which represents one of the most complex interactions between insects and plants. Thus far, the mechanism for insect-induced plant galls has remained elusive. To study the induction mechanism of insect galls, we selected the gall induced by Iatrophobia brasiliensis (Diptera: Cecidomyiidae) in cassava (Euphorbiaceae: Manihot esculenta Crantz) as our model. PCR-based molecular markers and deep metagenomic sequencing data were employed to analyse the gall microbiome and to test the hypothesis that gall cells are genetically transformed by insect vectored bacteria. A shotgun sequencing discrimination approach was implemented to selectively discriminate between foreign DNA and the reference host plant genome. Several known candidate insertion sequences were identified, the most significant being DNA sequences found in bacterial genes related to the transcription regulatory factor CadR, cadmium-transporting ATPase encoded by the cadA gene, nitrate transport permease protein (nrtB gene), and arsenical pump ATPase (arsA gene). In addition, a DNA fragment associated with ubiquitin-like gene E2 was identified as a potential accessory genetic element involved in gall induction mechanism. Furthermore, our results suggest that the increased quality and rapid development of gall tissue are mostly driven by microbiome enrichment and the acquisition of critical endophytes. An initial gall-like structure was experimentally obtained in M. esculenta cultured tissues through inoculation assays using a Rhodococcus bacterial strain that originated from the inducing insect, which we related to the gall induction process. We provide evidence that the modification of the endophytic microbiome and the genetic transformation of plant cells in M. esculenta are two essential requirements for insect-induced gall formation. Based on these findings and having observed the same potential DNA marker in galls from other plant species (ubiquitin-like gene E2), we speculate that bacterially mediated genetic transformation of plant cells may represent a more widespread gall induction mechanism found in nature.
Collapse
Affiliation(s)
- Omar Gätjens-Boniche
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
| | - Jose Pablo Jiménez-Madrigal
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
| | - Ross W. Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Sandro Valenzuela-Diaz
- Human Microbiome Research Program, Faculty of Medicine, The Helsinki University, Helsinki, Finland
| | - Alvaro Alemán-Gutiérrez
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
- Laboratorio de Genómica y Biodiversidad, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Paul E. Hanson
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Adrián A. Pinto-Tomás
- Center for Research in Microscopic Structures and Department of Biochemistry, School of Medicine, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
18
|
Liu L, Chen M, Folk RA, Wang M, Zhao T, Shang F, Soltis DE, Li P. Phylogenomic and syntenic data demonstrate complex evolutionary processes in early radiation of the rosids. Mol Ecol Resour 2023; 23:1673-1688. [PMID: 37449554 DOI: 10.1111/1755-0998.13833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Some of the most vexing problems of deep level relationship that remain in angiosperms involve the superrosids. The superrosid clade contains a quarter of all angiosperm species, with 18 orders in three subclades (Vitales, Saxifragales and core rosids) exhibiting remarkable morphological and ecological diversity. To help resolve deep-level relationships, we constructed a high-quality chromosome-level genome assembly for Tiarella polyphylla (Saxifragaceae) thus providing broader genomic representation of Saxifragales. Whole genome microsynteny analysis of superrosids showed that Saxifragales shared more synteny clusters with core rosids than Vitales, further supporting Saxifragales as more closely related with core rosids. To resolve the ordinal phylogeny of superrosids, we screened 122 single copy nuclear genes from genomes of 36 species, representing all 18 superrosid orders. Vitales were recovered as sister to all other superrosids (Saxifragales + core rosids). Our data suggest dramatic differences in relationships compared to earlier studies within core rosids. Fabids should be restricted to the nitrogen-fixing clade, while Picramniales, the Celastrales-Malpighiales (CM) clade, Huerteales, Oxalidales, Sapindales, Malvales and Brassicales formed an "expanded" malvid clade. The Celastrales-Oxalidales-Malpighiales (COM) clade (sensu APG IV) was not monophyletic. Crossosomatales, Geraniales, Myrtales and Zygophyllales did not belong to either of our well-supported malvids or fabids. There is strong discordance between nuclear and plastid phylogenetic hypotheses for superrosid relationships; we show that this is best explained by a combination of incomplete lineage sorting and ancient reticulation.
Collapse
Affiliation(s)
- Luxian Liu
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengzhen Chen
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA
| | - Meizhen Wang
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fude Shang
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, Henan, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Holland PWH, Langdale JA, Patel NH, Stone GN. Discovery of the bicycle gene family provides new insights into insect manipulation of plant development during gall induction. Fac Rev 2023; 12:16. [PMID: 37449009 PMCID: PMC10337661 DOI: 10.12703/r-01-0000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Galls are complex structures that develop from plant tissue, providing protection and food for gall-forming organisms, such as insects or mites. However, the molecules used by insects or mites to manipulate plant development have proved elusive. A landmark study has tracked down a gene in a gall-forming aphid that controls whether galls on witch hazel are green or red. The 'green allele' is strongly expressed in aphid salivary glands and represses plant genes used for red color formation. Excitingly, the gene product is part of a large suite of proteins that aphids may use to interact with plant biology.
Collapse
|
20
|
Desnitskiy AG, Chetverikov PE, Ivanova LA, Kuzmin IV, Ozman-Sullivan SK, Sukhareva SI. Molecular Aspects of Gall Formation Induced by Mites and Insects. Life (Basel) 2023; 13:1347. [PMID: 37374129 DOI: 10.3390/life13061347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recent publications on gall formation induced on the leaves of dicotyledonous flowering plants by eriophyoid mites (Eriophyoidea) and representatives of four insect orders (Diptera, Hemiptera, Hymenoptera, Lepidoptera) are analyzed. Cellular and molecular level data on the stimuli that induce and sustain the development of both mite and insect galls, the expression of host plant genes during gallogenesis, and the effects of these galling arthropods on photosynthesis are considered. A hypothesis is proposed for the relationship between the size of galls and the volume of secretions injected by a parasite. Multistep, varying patterns of plant gene expression and accompanying histo-morphological changes in the transformed gall tissues are apparent. The main obstacle to better elucidating the nature of the induction of gallogenesis is the impossibility of collecting a sufficient amount of saliva for analysis, which is especially important in the case of microscopic eriophyoids. The use of modern omics technologies at the organismal level has revealed a spectrum of genetic mechanisms of gall formation at the molecular level but has not yet answered the questions regarding the nature of gall-inducing agents and the features of events occurring in plant cells at the very beginning of gall growth.
Collapse
Affiliation(s)
- Alexey G Desnitskiy
- Department of Embryology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Philipp E Chetverikov
- Zoological Institute, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
- Department of Invertebrate Zoology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | | | - Igor V Kuzmin
- X-BIO Institute, Tyumen State University, 625003 Tyumen, Russia
| | - Sebahat K Ozman-Sullivan
- Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Sogdiana I Sukhareva
- Department of Invertebrate Zoology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| |
Collapse
|
21
|
Fiutek N, Couger MB, Pirro S, Roy SW, de la Torre JR, Connor EF. Genomic Assessment of the Contribution of the Wolbachia Endosymbiont of Eurosta solidaginis to Gall Induction. Int J Mol Sci 2023; 24:ijms24119613. [PMID: 37298563 DOI: 10.3390/ijms24119613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
We explored the genome of the Wolbachia strain, wEsol, symbiotic with the plant-gall-inducing fly Eurosta solidaginis with the goal of determining if wEsol contributes to gall induction by its insect host. Gall induction by insects has been hypothesized to involve the secretion of the phytohormones cytokinin and auxin and/or proteinaceous effectors to stimulate cell division and growth in the host plant. We sequenced the metagenome of E. solidaginis and wEsol and assembled and annotated the genome of wEsol. The wEsol genome has an assembled length of 1.66 Mbp and contains 1878 protein-coding genes. The wEsol genome is replete with proteins encoded by mobile genetic elements and shows evidence of seven different prophages. We also detected evidence of multiple small insertions of wEsol genes into the genome of the host insect. Our characterization of the genome of wEsol indicates that it is compromised in the synthesis of dimethylallyl pyrophosphate (DMAPP) and S-adenosyl L-methionine (SAM), which are precursors required for the synthesis of cytokinins and methylthiolated cytokinins. wEsol is also incapable of synthesizing tryptophan, and its genome contains no enzymes in any of the known pathways for the synthesis of indole-3-acetic acid (IAA) from tryptophan. wEsol must steal DMAPP and L-methionine from its host and therefore is unlikely to provide cytokinin and auxin to its insect host for use in gall induction. Furthermore, in spite of its large repertoire of predicted Type IV secreted effector proteins, these effectors are more likely to contribute to the acquisition of nutrients and the manipulation of the host's cellular environment to contribute to growth and reproduction of wEsol than to aid E. solidaginis in manipulating its host plant. Combined with earlier work that shows that wEsol is absent from the salivary glands of E. solidaginis, our results suggest that wEsol does not contribute to gall induction by its host.
Collapse
Affiliation(s)
- Natalie Fiutek
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - Matthew B Couger
- Department of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stacy Pirro
- Iridian Genomes Inc., Bethesda, MD 20817, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - José R de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - Edward F Connor
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| |
Collapse
|
22
|
Shao C, Tao S, Liang Y. Comparative transcriptome analysis of juniper branches infected by Gymnosporangium spp. highlights their different infection strategies associated with cytokinins. BMC Genomics 2023; 24:173. [PMID: 37020280 PMCID: PMC10077639 DOI: 10.1186/s12864-023-09276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Gymnosporangium asiaticum and G. yamadae can share Juniperus chinensis as the telial host, but the symptoms are completely different. The infection of G. yamadae causes the enlargement of the phloem and cortex of young branches as a gall, but not for G. asiaticum, suggesting that different molecular interaction mechanisms exist the two Gymnosporangium species with junipers. RESULTS Comparative transcriptome analysis was performed to investigate genes regulation of juniper in responses to the infections of G. asiaticum and G. yamadae at different stages. Functional enrichment analysis showed that genes related to transport, catabolism and transcription pathways were up-regulated, while genes related to energy metabolism and photosynthesis were down-regulated in juniper branch tissues after infection with G. asiaticum and G. yamadae. The transcript profiling of G. yamadae-induced gall tissues revealed that more genes involved in photosynthesis, sugar metabolism, plant hormones and defense-related pathways were up-regulated in the vigorous development stage of gall compared to the initial stage, and were eventually repressed overall. Furthermore, the concentration of cytokinins (CKs) in the galls tissue and the telia of G. yamadae was significantly higher than in healthy branch tissues of juniper. As well, tRNA-isopentenyltransferase (tRNA-IPT) was identified in G. yamadae with highly expression levels during the gall development stages. CONCLUSIONS In general, our study provided new insights into the host-specific mechanisms by which G. asiaticum and G. yamadae differentially utilize CKs and specific adaptations on juniper during their co-evolution.
Collapse
Affiliation(s)
- Chenxi Shao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, No. 35, Qinghua Eastern Road, Beijing, 100083, China.
| |
Collapse
|
23
|
Sperling AL, Glover DM. Parthenogenesis in dipterans: a genetic perspective. Proc Biol Sci 2023; 290:20230261. [PMID: 36946111 PMCID: PMC10031431 DOI: 10.1098/rspb.2023.0261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Parthenogenesis has been documented in almost every phylum of animals, and yet this phenomenon is largely understudied. It has particular importance in dipterans since some parthenogenetic species are also disease vectors and agricultural pests. Here, we present a catalogue of parthenogenetic dipterans, although it is likely that many more remain to be identified, and we discuss how their developmental biology and interactions with diverse environments may be linked to different types of parthenogenetic reproduction. We discuss how the advances in genetics and genomics have identified chromosomal loci associated with parthenogenesis. In particular, a polygenic cause of facultative parthenogenesis has been uncovered in Drosophila mercatorum, allowing the corresponding genetic variants to be tested for their ability to promote parthenogenesis in another species, Drosophila melanogaster. This study probably identifies just one of many routes that could be followed in the evolution of parthenogenesis. We attempt to account for why the phenomenon has evolved so many times in the dipteran order and why facultative parthenogenesis appears particularly prevalent. We also discuss the significance of coarse genomic changes, including non-disjunction, aneuploidy, and polyploidy and how, together with changes to specific genes, these might relate to both facultative and obligate parthenogenesis in dipterans and other parthenogenetic animals.
Collapse
Affiliation(s)
- A. L. Sperling
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - D. M. Glover
- Department of Genetics, University of Cambridge, Cambridge, UK
- California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
24
|
Cardoso JCF, Gonçalves PHP, Oliveira DC, Rezende UC. Host plant intraspecific variation determines gall traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:208-214. [PMID: 36184888 DOI: 10.1111/plb.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Galls display a multiplicity of traits, including colours, which are driven by pigment accumulation. Their conspicuousness has attracted researchers' attention and several hypotheses have been raised. However, plants themselves vary intra-specifically, including in their pigment concentrations. As galls are a result of host tissue development, colours may be a by-product of the host's own traits, being more conspicuous simply because the sites where galls develop already have the predisposition to accumulate more pigment. Here, we call this the host variation hypothesis. We test this hypothesis using the system of galls induced by Palaeomystella oligophaga on Macairea radula host plant. Using spectrophotometry, we calculated the Anthocyanin Reflectance Index (ARI) of gall projections, which are responsible for their characteristic colours. We tested the influence of occupant identity (galling insect or any natural enemy), gall volume, parenchyma thickness, height from the ground, ARI of leaf, ARI of gall surface and ARI of the respective stem. We corroborated the host variation hypothesis since the anthocyanin content in stems and in galls' projections were positively related. Moreover, anthocyanin in galls' projections was positively related to anthocyanin in the gall surface and negatively related to gall volume and parenchyma thickness. This shows that, besides the host specificities, galls' own traits may also be responsible for pigment accumulation, influencing their colours. In this study, using colour as an example, we show that although galls tend to be considered complex expressions of galling insects' stimuli, their traits may be simply influenced by previous and specific attributes of the host organs.
Collapse
Affiliation(s)
- J C F Cardoso
- Institute of Biology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - P H P Gonçalves
- Institute of Biology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - D C Oliveira
- Institute of Biology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - U C Rezende
- Institute of Biology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
25
|
Meyer-Rochow VB. Can Molecularly Engineered Plant Galls Help to Ease the Problem of World Food Shortage (and Our Dependence on Pollinating Insects)? Foods 2022; 11:foods11244014. [PMID: 36553755 PMCID: PMC9777877 DOI: 10.3390/foods11244014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The world faces numerous problems and two of them are global food shortages and the dwindling number of pollinating insects. Plant products that do not arise from pollination are plant galls, which as in the case of oak apples, can resemble fruits and be the size of a cherry. It is suggested that once research has understood how chemical signals from gall-inducing insects program a plant to produce a gall, it should be possible to mimic and to improve nature and "bioengineer" designer galls of different sizes, colorations and specific contents to serve as food or a source of medicinally useful compounds. To achieve this objective, the genes involved in the formation of the galls need to be identified by RNA-sequencing and confirmed by gene expression analyses and gene slicing. Ultimately the relevant genes need to be transferred to naïve plants, possibly with the aid of plasmids or viruses as practiced in crop productivity increases. There is then even the prospect of engineered plant galls to be produced by plant tissue culture via genetic manipulation without the involvement of insects altogether.
Collapse
|
26
|
Minelli A. Two-way exchanges between animal and plant biology, with focus on evo-devo. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1057355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
By definition, biology is the science of all living beings. However, horizons restricted to either plants or animals have characterized the development of life sciences well beyond the emergence of unified perspectives applying to all forms of life, such as the cell theory or the theory of evolution. Separation between botanical and zoological traditions is not destined to go extinct easily, or shortly. Disciplinary isolation is emphasized by institutional contexts such as scientific societies and their congresses, specialist journals, disciplines recognized as teaching subjects and legitimate and fundable research fields. By shaping the personal agendas of individual scientists, this has a strong impact on the development of biology. In some fields, botanical and zoological contributions have long being effectively intertwined, but in many others plant and animal biology have failed to progress beyond a marginal dialogue. Characteristically, the so-called “general biology” and the philosophy of biology are still zoocentric (and often vertebrato- or even anthropocentric). In this article, I discuss legitimacy and fruitfulness of some old lexical and conceptual exchanges between the two traditions (cell, tissue, and embryo). Finally, moving to recent developments, I compare the contributions of plant vs. animal biology to the establishment of evolutionary developmental biology. We cannot expect that stronger integration between the different strands of life sciences will soon emerge by self-organization, but highlighting this persisting imbalance between plant and animal biology will arguably foster progress.
Collapse
|
27
|
Pacheco ID, Walling LL, Atkinson PW. Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives. Front Bioeng Biotechnol 2022; 10:900785. [PMID: 35747496 PMCID: PMC9209771 DOI: 10.3389/fbioe.2022.900785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
The origin of the order Hemiptera can be traced to the late Permian Period more than 230 MYA, well before the origin of flowering plants 100 MY later in during the Cretaceous period. Hemipteran species consume their liquid diets using a sucking proboscis; for phytophagous hemipterans their mouthparts (stylets) are elegant structures that enable voracious feeding from plant xylem or phloem. This adaptation has resulted in some hemipteran species becoming globally significant pests of agriculture resulting in significant annual crop losses. Due to the reliance on chemical insecticides for the control of insect pests in agricultural settings, many hemipteran pests have evolved resistance to insecticides resulting in an urgent need to develop new, species-specific and environmentally friendly methods of pest control. The rapid advances in CRISPR/Cas9 technologies in model insects such as Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and Aedes aegypti has spurred a new round of innovative genetic control strategies in the Diptera and Lepidoptera and an increased interest in assessing genetic control technologies for the Hemiptera. Genetic control approaches in the Hemiptera have, to date, been largely overlooked due to the problems of introducing genetic material into the germline of these insects. The high frequency of CRISPR-mediated mutagenesis in model insect species suggest that, if the delivery problem for Hemiptera could be solved, then gene editing in the Hemiptera might be quickly achieved. Significant advances in CRISPR/Cas9 editing have been realized in nine species of Hemiptera over the past 4 years. Here we review progress in the Hemiptera and discuss the challenges and opportunities for extending contemporary genetic control strategies into species in this agriculturally important insect orderr.
Collapse
Affiliation(s)
- Inaiara D. Pacheco
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Peter W. Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Peter W. Atkinson,
| |
Collapse
|
28
|
Smith TE, Li Y, Perreau J, Moran NA. Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera. PLoS Genet 2022; 18:e1010195. [PMID: 35522718 PMCID: PMC9116674 DOI: 10.1371/journal.pgen.1010195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/18/2022] [Accepted: 04/09/2022] [Indexed: 11/23/2022] Open
Abstract
Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.
Collapse
Affiliation(s)
- Thomas E. Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Julie Perreau
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
29
|
Klimov PB, Chetverikov PE, Dodueva IE, Vishnyakov AE, Bolton SJ, Paponova SS, Lutova LA, Tolstikov AV. Symbiotic bacteria of the gall-inducing mite Fragariocoptes setiger (Eriophyoidea) and phylogenomic resolution of the eriophyoid position among Acari. Sci Rep 2022; 12:3811. [PMID: 35264574 PMCID: PMC8907322 DOI: 10.1038/s41598-022-07535-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Eriophyoid mites represent a hyperdiverse, phytophagous lineage with an unclear phylogenetic position. These mites have succeeded in colonizing nearly every seed plant species, and this evolutionary success was in part due to the mites' ability to induce galls in plants. A gall is a unique niche that provides the inducer of this modification with vital resources. The exact mechanism of gall formation is still not understood, even as to whether it is endogenic (mites directly cause galls) or exogenic (symbiotic microorganisms are involved). Here we (i) investigate the phylogenetic affinities of eriophyoids and (ii) use comparative metagenomics to test the hypothesis that the endosymbionts of eriophyoid mites are involved in gall formation. Our phylogenomic analysis robustly inferred eriophyoids as closely related to Nematalycidae, a group of deep-soil mites belonging to Endeostigmata. Our comparative metagenomics, fluorescence in situ hybridization, and electron microscopy experiments identified two candidate endosymbiotic bacteria shared across samples, however, it is unlikely that they are gall inducers (morphotype1: novel Wolbachia, morphotype2: possibly Agrobacterium tumefaciens). We also detected an array of plant pathogens associated with galls that may be vectored by the mites, and we determined a mite pathogenic virus (Betabaculovirus) that could be tested for using in biocontrol of agricultural pest mites.
Collapse
Affiliation(s)
- Pavel B Klimov
- X-BIO Institute, Tyumen State University, Tyumen, Russia, 625003.
| | | | - Irina E Dodueva
- Saint-Petersburg State University, St. Petersburg, Russia, 199034
| | | | - Samuel J Bolton
- Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
| | | | | | | |
Collapse
|
30
|
Zhu C, Wang W, Chen Y, Zhao Y, Zhang S, Shi F, Khalil-Ur-Rehman M, Nieuwenhuizen NJ. Transcriptomics and Antioxidant Analysis of Two Chinese Chestnut ( Castanea mollissima BL.) Varieties Provides New Insights Into the Mechanisms of Resistance to Gall Wasp Dryocosmus kuriphilus Infestation. FRONTIERS IN PLANT SCIENCE 2022; 13:874434. [PMID: 35498685 PMCID: PMC9051522 DOI: 10.3389/fpls.2022.874434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 05/08/2023]
Abstract
Chinese chestnut is a popular fruit tree with a high nutritional value of its nuts, which can suffer from infestation by the chestnut gall wasp Dryocosmus kuriphilus (GWDK) that results in gall formation and resultant loss of production and profitability. The physiological and molecular mechanisms of GWDK resistance found in certain genotypes currently remains elusive. To gain new insights into this phenomenon, a series of RNA-Seq integrated with metabolomic profiling experiments were executed to investigate the chemical and transcriptional differences in response to GWDK infestation in two contrasting chestnut varieties grown in China (the susceptible "HongLi," HL and the partially resistant "Shuhe_Wuyingli," SW). Three time points were selected for comparison: The initiation stage (A), growth stage (B), and maturation stage (C). Results showed that concentrations of hydrogen peroxide (H2O2) and the activities of peroxidase (POD) and superoxide dismutase (SOD) enzyme were elevated in the resistant SW leaves compared with those in HL leaves at all three developmental stages, while catalase (CAT) and polyphenol oxidase (PPO) activities were mostly higher in HL leaves. RNA-Seq transcriptomic analyses of HL and SW leaves revealed that various metabolic pathways involved in GWDK stress responses, such as plant hormone signal transduction, MAPK signaling, and the peroxisome pathway, were enriched in the contrasting samples. Moreover, the weighted gene co-expression network analysis (WGCNA) of differentially expressed genes in the POD pathway combined with transcription factors (TFs) indicated that the expression of TF members of bHLH, WRKY, NAC, and MYB family positively correlated with POD pathway gene expression. The TFs CmbHLH130 (EVM0032437), CmWRKY31 (EVM0017000), CmNAC50 (EVM0000033), and CmPHL12 (EVM0007330) were identified as putative TFs that participate in the regulation of insect-induced plant enzyme activities in chestnut, which may contribute to GWDK resistance in SW. Expression levels of 8 random differentially expressed genes (DEGs) were furthermore selected to perform quantitative reverse transcription PCR (qRT-PCR) to validate the accuracy of the RNA-Seq-derived expression patterns. This study guides the functional analyses of further candidate genes and mechanisms important for GWDK resistance in chestnuts in the future as well as can help in identifying the master transcriptional regulators and important enzyme steps that support major insect defense pathways in chestnut.
Collapse
Affiliation(s)
- Cancan Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Wu Wang,
| | - Yu Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shijie Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Fenghou Shi
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | | | | |
Collapse
|
31
|
Stern DL, Han C. OUP accepted manuscript. Genome Biol Evol 2022; 14:6602283. [PMID: 35660862 PMCID: PMC9168663 DOI: 10.1093/gbe/evac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/09/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
Homology of highly divergent genes often cannot be determined from sequence similarity alone. For example, we recently identified in the aphid Hormaphis cornu a family of rapidly evolving bicycle genes, which encode novel proteins implicated as plant gall effectors, and sequence similarity search methods yielded few putative bicycle homologs in other species. Coding sequence-independent features of genes, such as intron-exon boundaries, often evolve more slowly than coding sequences, however, and can provide complementary evidence for homology. We found that a linear logistic regression classifier using only structural features of bicycle genes identified many putative bicycle homologs in other species. Independent evidence from sequence features and intron locations supported homology assignments. To test the potential roles of bicycle genes in other aphids, we sequenced the genome of a second gall-forming aphid, Tetraneura nigriabdominalis and found that many bicycle genes are strongly expressed in the salivary glands of the gall forming foundress. In addition, bicycle genes are strongly overexpressed in the salivary glands of a non-gall forming aphid, Acyrthosiphon pisum, and in the non-gall forming generations of H. cornu. These observations suggest that Bicycle proteins may be used by multiple aphid species to manipulate plants in diverse ways. Incorporation of gene structural features into sequence search algorithms may aid identification of deeply divergent homologs, especially of rapidly evolving genes involved in host-parasite interactions.
Collapse
Affiliation(s)
| | - Clair Han
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
32
|
Martinson EO, Werren JH, Egan SP. Tissue-specific gene expression shows a cynipid wasp repurposes oak host gene networks to create a complex and novel parasite-specific organ. Mol Ecol 2021; 31:3228-3240. [PMID: 34510608 DOI: 10.1111/mec.16159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/13/2021] [Indexed: 01/12/2023]
Abstract
Every organism on Earth depends on interactions with other organisms to survive. In each of these interactions, an organism must utilize the limited toolbox of genes and proteins it possesses to successfully manipulate or cooperate with another species, but it can also co-opt the genome machinery of its partner to expand its available tools. Insect-induced plant galls are an extreme example of this, wherein an insect hijacks the plant's genome to direct the initiation and development of galls consisting of plant tissue. However, previous transcriptomic studies have not evaluated individual tissues within a gall to determine the full extent to which a galling insect manipulates its host plant. Here we demonstrate that the cynipid wasp Dryocosmus quercuspalustris creates a complex parasite-specific organ from red oak tissue via massive changes in host gene expression. Our results show that the gall wasp is not merely modifying oak leaf tissue but creating extensive changes in gene expression between galled and ungalled tissue (differential expression in 28% of genes) and distinct gall tissue types (20% of genes). The outer gall tissue shows increases in various plant defence systems, which is consistent with its predicted functional role of protecting the wasp larva. The inner larval capsule shows suppression of large parts of the plant innate immune system and evidence for the wasp utilizing the plant's RNA interference mechanisms, which may be a potential mechanism for the wasp's control on gall growth.
Collapse
Affiliation(s)
- Ellen O Martinson
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Biology Department, University of Rochester, Rochester, New York, USA
| | - John H Werren
- Biology Department, University of Rochester, Rochester, New York, USA
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
33
|
Takeda S, Hirano T, Ohshima I, Sato MH. Recent Progress Regarding the Molecular Aspects of Insect Gall Formation. Int J Mol Sci 2021; 22:9424. [PMID: 34502330 PMCID: PMC8430891 DOI: 10.3390/ijms22179424] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Galls are characteristic plant structures formed by cell size enlargement and/or cell proliferation induced by parasitic or pathogenic organisms. Insects are a major inducer of galls, and insect galls can occur on plant leaves, stems, floral buds, flowers, fruits, or roots. Many of these exhibit unique shapes, providing shelter and nutrients to insects. To form unique gall structures, gall-inducing insects are believed to secrete certain effector molecules and hijack host developmental programs. However, the molecular mechanisms of insect gall induction and development remain largely unknown due to the difficulties associated with the study of non-model plants in the wild. Recent advances in next-generation sequencing have allowed us to determine the biological processes in non-model organisms, including gall-inducing insects and their host plants. In this review, we first summarize the adaptive significance of galls for insects and plants. Thereafter, we summarize recent progress regarding the molecular aspects of insect gall formation.
Collapse
Affiliation(s)
- Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan; (S.T.); (T.H.); (I.O.)
- Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology Center, Kitainayazuma Oji 74, Seika, Kyoto 619-0244, Japan
- Center for Frontier Natural History, Kyoto Prefectural University, Shimogamo-Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Tomoko Hirano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan; (S.T.); (T.H.); (I.O.)
- Center for Frontier Natural History, Kyoto Prefectural University, Shimogamo-Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Issei Ohshima
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan; (S.T.); (T.H.); (I.O.)
- Center for Frontier Natural History, Kyoto Prefectural University, Shimogamo-Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masa H. Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan; (S.T.); (T.H.); (I.O.)
- Center for Frontier Natural History, Kyoto Prefectural University, Shimogamo-Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
34
|
Maderspacher F. Cecidology: Anatomy of a biohack. Curr Biol 2021; 31:R430-R433. [PMID: 33974866 DOI: 10.1016/j.cub.2021.03.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Galls are abnormal plant growths induced by animals, especially insects, to foster their own developing offspring. Which molecular malware gall-inducers use to hack into the plant's genetic programs is unclear. In an aphid, a gene affecting gall color has been discovered, part of a large family of putative effectors.
Collapse
|
35
|
Michell C, Wutke S, Aranda M, Nyman T. Genomes of the willow-galling sawflies Euura lappo and Eupontania aestiva (Hymenoptera: Tenthredinidae): a resource for research on ecological speciation, adaptation, and gall induction. G3 (BETHESDA, MD.) 2021; 11:jkab094. [PMID: 33788947 PMCID: PMC8104934 DOI: 10.1093/g3journal/jkab094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Hymenoptera is a hyperdiverse insect order represented by over 153,000 different species. As many hymenopteran species perform various crucial roles for our environments, such as pollination, herbivory, and parasitism, they are of high economic and ecological importance. There are 99 hymenopteran genomes in the NCBI database, yet only five are representative of the paraphyletic suborder Symphyta (sawflies, woodwasps, and horntails), while the rest represent the suborder Apocrita (bees, wasps, and ants). Here, using a combination of 10X Genomics linked-read sequencing, Oxford Nanopore long-read technology, and Illumina short-read data, we assembled the genomes of two willow-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae: Euurina): the bud-galling species Euura lappo and the leaf-galling species Eupontania aestiva. The final assembly for E. lappo is 259.85 Mbp in size, with a contig N50 of 209.0 kbp and a BUSCO score of 93.5%. The E. aestiva genome is 222.23 Mbp in size, with a contig N50 of 49.7 kbp and a 90.2% complete BUSCO score. De novo annotation of repetitive elements showed that 27.45% of the genome was composed of repetitive elements in E. lappo and 16.89% in E. aestiva, which is a marked increase compared to previously published hymenopteran genomes. The genomes presented here provide a resource for inferring phylogenetic relationships among basal hymenopterans, comparative studies on host-related genomic adaptation in plant-feeding insects, and research on the mechanisms of plant manipulation by gall-inducing insects.
Collapse
Affiliation(s)
- Craig Michell
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, 80100, Finland
| | - Saskia Wutke
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, 80100, Finland
| | - Manuel Aranda
- Biological and Environmental Sciences & Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, 9925, Norway
| |
Collapse
|