1
|
Dimakou A, Pezzulo G, Zangrossi A, Corbetta M. The predictive nature of spontaneous brain activity across scales and species. Neuron 2025; 113:1310-1332. [PMID: 40101720 DOI: 10.1016/j.neuron.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025]
Abstract
Emerging research suggests the brain operates as a "prediction machine," continuously anticipating sensory, motor, and cognitive outcomes. Central to this capability is the brain's spontaneous activity-ongoing internal processes independent of external stimuli. Neuroimaging and computational studies support that this activity is integral to maintaining and refining mental models of our environment, body, and behaviors, akin to generative models in computation. During rest, spontaneous activity expands the variability of potential representations, enhancing the accuracy and adaptability of these models. When performing tasks, internal models direct brain regions to anticipate sensory and motor states, optimizing performance. This review synthesizes evidence from various species, from C. elegans to humans, highlighting three key aspects of spontaneous brain activity's role in prediction: the similarity between spontaneous and task-related activity, the encoding of behavioral and interoceptive priors, and the high metabolic cost of this activity, underscoring prediction as a fundamental function of brains across species.
Collapse
Affiliation(s)
- Anastasia Dimakou
- Padova Neuroscience Center, Padova, Italy; Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Andrea Zangrossi
- Padova Neuroscience Center, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, Padova, Italy; Veneto Institute of Molecular Medicine, VIMM, Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Bzdok D, Owen AM, Naci L, Stamatakis EA, Amico E, Misic B. General anaesthesia decreases the uniqueness of brain functional connectivity across individuals and species. Nat Hum Behav 2025; 9:987-1004. [PMID: 40128306 PMCID: PMC12106074 DOI: 10.1038/s41562-025-02121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/16/2025] [Indexed: 03/26/2025]
Abstract
The human brain is characterized by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI scans acquired under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain, both with respect to the brains of other individuals and the brains of another species. Using functional connectivity, we report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organized: it co-localizes with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol and reversed upon recovery. Providing convergent evidence, we show that anaesthesia shifts the functional connectivity of the human brain closer to the functional connectivity of the macaque brain in a low-dimensional space. Finally, anaesthesia diminishes the match between spontaneous brain activity and cognitive brain patterns aggregated from the Neurosynth meta-analytic engine. Collectively, the present results reveal that anaesthetized human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Daniel Golkowski
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tölz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
- Mila, Quebec Artificial Intelligence Institute, Montréal, Québec, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Enrico Amico
- School of Mathematics, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Ma M, Fan H, Zhang H, Yin Y, Wang Y, Gao Y. Epitranscriptomic Analysis of the Ventral Hippocampus in a Mouse Model of Post-Traumatic Stress Disorder Following Deep Brain Stimulation Treatment of the Basolateral Amygdala. Brain Sci 2025; 15:473. [PMID: 40426644 PMCID: PMC12109718 DOI: 10.3390/brainsci15050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Basolateral amygdala (BLA) deep brain stimulation (DBS) has been shown to alleviate the symptoms of post-traumatic stress disorder (PTSD), but the specific mechanisms remain incompletely understood. The hippocampus, a brain region closely connected to the amygdala, plays a key role in the pathological processes of PTSD. The N6-methyladenosine (m6A) methylation of RNAs in the hippocampus is known to play a significant role in regulating the brain's response to stress and emotional disorders. METHODS This study aimed to comprehensively analyze the roles of transcriptome-wide m6A modifications of the hippocampus in the BLA DBS treatment of a PTSD mouse model using m6A sequencing. RESULTS Significant alterations in functional connectivity between the ventral hippocampus (vHPC) and BLA were observed in foot shock (FS) mice through functional magnetic resonance imaging (fMRI) analysis. Furthermore, we observed that the expression of the key m6A methyltransferase enzyme, METTL3, in the FS and BLA DBS groups was higher than that in the control group. At the same time, both FS and BLA DBS induced the widespread m6A methylation of RNAs in the vHPC. Gene ontology (GO) enrichment analysis revealed that FS altered methylation in metabolic, developmental, and cytoskeletal pathways, while BLA DBS targeted metabolic, cell cycle, and neuroplasticity-related genes. Additionally, BLA DBS reversed the aberrant methylation of genes associated with multiple functional pathways induced by FS, including those related to cholinergic transmission, sodium and calcium ion homeostasis, and stress hormone responsiveness. We identified a set of RNAs with methylation changes that were reversed by BLA DBS in the FS vs. Ctrl (control) comparison, including those associated with cholinergic transmission, sodium and calcium ion balance, and stress hormone response. Additionally, we detected several specific BLA DBS-related genes through MeRIP-qPCR, indicating that DBS influences crucial genes linked to calcium signaling and synaptic plasticity. CONCLUSIONS We draw two conclusions from these findings: BLA DBS may alleviate PTSD-like symptoms by reversing FS-induced methylation changes and by altering the methylation levels of crucial genes. These findings indicate that epigenetic m6A modifications in the vHPC may play an important role in the amelioration of PTSD using BLA DBS.
Collapse
Affiliation(s)
- Mingxi Ma
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (M.M.); (H.F.); (Y.Y.); (Y.W.)
| | - Hao Fan
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (M.M.); (H.F.); (Y.Y.); (Y.W.)
| | - Hui Zhang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Yao Yin
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (M.M.); (H.F.); (Y.Y.); (Y.W.)
| | - Yizheng Wang
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (M.M.); (H.F.); (Y.Y.); (Y.W.)
| | - Yan Gao
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (M.M.); (H.F.); (Y.Y.); (Y.W.)
| |
Collapse
|
4
|
Hsu LM, Shih YYI. Neuromodulation in Small Animal fMRI. J Magn Reson Imaging 2025; 61:1597-1617. [PMID: 39279265 PMCID: PMC11903207 DOI: 10.1002/jmri.29575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
The integration of functional magnetic resonance imaging (fMRI) with advanced neuroscience technologies in experimental small animal models offers a unique path to interrogate the causal relationships between regional brain activity and brain-wide network measures-a goal challenging to accomplish in human subjects. This review traces the historical development of the neuromodulation techniques commonly used in rodents, such as electrical deep brain stimulation, optogenetics, and chemogenetics, and focuses on their application with fMRI. We discuss their advantageousness roles in uncovering the signaling architecture within the brain and the methodological considerations necessary when conducting these experiments. By presenting several rodent-based case studies, we aim to demonstrate the potential of the multimodal neuromodulation approach in shedding light on neurovascular coupling, the neural basis of brain network functions, and their connections to behaviors. Key findings highlight the cell-type and circuit-specific modulation of brain-wide activity patterns and their behavioral correlates. We also discuss several future directions and feature the use of mediation and moderation analytical models beyond the intuitive evoked response mapping, to better leverage the rich information available in fMRI data with neuromodulation. Using fMRI alongside neuromodulation techniques provide insights into the mesoscopic (relating to the intermediate scale between single neurons and large-scale brain networks) and macroscopic fMRI measures that correlate with specific neuronal events. This integration bridges the gap between different scales of neuroscience research, facilitating the exploration and testing of novel therapeutic strategies aimed at altering network-mediated behaviors. In conclusion, the combination of fMRI with neuromodulation techniques provides crucial insights into mesoscopic and macroscopic brain dynamics, advancing our understanding of brain function in health and disease. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill
- Departments of Radiology, The University of North Carolina at Chapel Hill
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill
- Departments of Neurology, The University of North Carolina at Chapel Hill
| |
Collapse
|
5
|
Luppi AI, Uhrig L, Tasserie J, Shafiei G, Muta K, Hata J, Okano H, Golkowski D, Ranft A, Ilg R, Jordan D, Gini S, Liu ZQ, Yee Y, Signorelli CM, Cofre R, Destexhe A, Menon DK, Stamatakis EA, Connor CW, Gozzi A, Fulcher BD, Jarraya B, Misic B. Comprehensive profiling of anaesthetised brain dynamics across phylogeny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644729. [PMID: 40196621 PMCID: PMC11974681 DOI: 10.1101/2025.03.22.644729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The intrinsic dynamics of neuronal circuits shape information processing and cognitive function. Combining non-invasive neuroimaging with anaesthetic-induced suppression of information processing provides a unique opportunity to understand how local dynamics mediate the link between neurobiology and the organism's functional repertoire. To address this question, we compile a unique dataset of multi-scale neural activity during wakefulness and anesthesia encompassing human, macaque, marmoset, mouse and nematode. We then apply massive feature extraction to comprehensively characterize local neural dynamics across > 6 000 time-series features. Using dynamics as a common space for comparison across species, we identify a phylogenetically conserved dynamical profile of anaesthesia that encompasses multiple features, including reductions in intrinsic timescales. This dynamical signature has an evolutionarily conserved spatial layout, covarying with transcriptional profiles of excitatory and inhibitory neurotransmission across human, macaque and mouse cortex. At the network level, anesthetic-induced changes in local dynamics manifest as reductions in inter-regional synchrony. This relationship between local dynamics and global connectivity can be recapitulated in silico using a connectome-based computational model. Finally, this dynamical regime of anaesthesia is experimentally reversed in vivo by deep-brain stimulation of the centromedian thalamus in the macaque, resulting in restored arousal and behavioural responsiveness. Altogether, comprehensive dynamical phenotyping reveals that spatiotemporal isolation of local neural activity during anesthesia is conserved across species and anesthetics.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK
- St John’s College, University of Cambridge, Cambridge, UK
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Golia Shafiei
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanako Muta
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tolz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Silvia Gini
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | - Zhen-Qi Liu
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Yohan Yee
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Camilo M. Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Philosophy of Artificial Intelligence, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Cofre
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - Alain Destexhe
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Christopher W. Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biomedical Engineering, Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Alessandro Gozzi
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Sydney, Australia
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Neurology, Foch Hospital, Suresnes, France
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
6
|
MacKinnon MJ, Song S, Chao THH, Hsu LM, Albert ST, Ma Y, Shnitko TA, Wang TWW, Nonneman RJ, Freeman CD, Ozarkar SS, Emir UE, Shen MD, Philpot BD, Hantman AW, Lee SH, Chang WT, Shih YYI. SORDINO for Silent, Sensitive, Specific, and Artifact-Resisting fMRI in awake behaving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642406. [PMID: 40161795 PMCID: PMC11952411 DOI: 10.1101/2025.03.10.642406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has revolutionized our understanding of the brain activity landscape, bridging circuit neuroscience in animal models with noninvasive brain mapping in humans. This immensely utilized technique, however, faces challenges such as acoustic noise, electromagnetic interference, motion artifacts, magnetic-field inhomogeneity, and limitations in sensitivity and specificity. Here, we introduce Steady-state On-the-Ramp Detection of INduction-decay with Oversampling (SORDINO), a transformative fMRI technique that addresses these challenges by maintaining a constant total gradient amplitude while acquiring data during continuously changing gradient direction. When benchmarked against conventional fMRI on a 9.4T system, SORDINO is silent, sensitive, specific, and resistant to motion and susceptibility artifacts. SORDINO offers superior compatibility with multimodal experiments and carries novel contrast mechanisms distinct from BOLD. It also enables brain-wide activity and connectivity mapping in awake, behaving mice, overcoming stress- and motion-related confounds that are among the most challenging barriers in current animal fMRI studies.
Collapse
Affiliation(s)
- Martin J. MacKinnon
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sheng Song
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott T. Albert
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuncong Ma
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tatiana A. Shnitko
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randy J. Nonneman
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Corey D. Freeman
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Siddhi S. Ozarkar
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Uzay E. Emir
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark D. Shen
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin D. Philpot
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam W. Hantman
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei-Tang Chang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Raut RV, Rosenthal ZP, Wang X, Miao H, Zhang Z, Lee JM, Raichle ME, Bauer AQ, Brunton SL, Brunton BW, Kutz JN. Arousal as a universal embedding for spatiotemporal brain dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.06.565918. [PMID: 38187528 PMCID: PMC10769245 DOI: 10.1101/2023.11.06.565918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Neural activity in awake organisms shows widespread and spatiotemporally diverse correlations with behavioral and physiological measurements. We propose that this covariation reflects in part the dynamics of a unified, multidimensional arousal-related process that regulates brain-wide physiology on the timescale of seconds. By framing this interpretation within dynamical systems theory, we arrive at a surprising prediction: that a single, scalar measurement of arousal (e.g., pupil diameter) should suffice to reconstruct the continuous evolution of multidimensional, spatiotemporal measurements of large-scale brain physiology. To test this hypothesis, we perform multimodal, cortex-wide optical imaging and behavioral monitoring in awake mice. We demonstrate that spatiotemporal measurements of neuronal calcium, metabolism, and brain blood-oxygen can be accurately and parsimoniously modeled from a low-dimensional state-space reconstructed from the time history of pupil diameter. Extending this framework to behavioral and electrophysiological measurements from the Allen Brain Observatory, we demonstrate the ability to integrate diverse experimental data into a unified generative model via mappings from an intrinsic arousal manifold. Our results support the hypothesis that spontaneous, spatially structured fluctuations in brain-wide physiology-widely interpreted to reflect regionally-specific neural communication-are in large part reflections of an arousal-related process. This enriched view of arousal dynamics has broad implications for interpreting observations of brain, body, and behavior as measured across modalities, contexts, and scales.
Collapse
Affiliation(s)
- Ryan V. Raut
- Allen Institute, Seattle, WA, USA
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, USA
| | - Zachary P. Rosenthal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaodan Wang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hanyang Miao
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Zhanqi Zhang
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Marcus E. Raichle
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam Q. Bauer
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven L. Brunton
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | | | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Gaudreault F, Desjardins M. Microvascular structure variability explains variance in fMRI functional connectivity. Brain Struct Funct 2025; 230:39. [PMID: 39921726 DOI: 10.1007/s00429-025-02899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
The influence of regional brain vasculature on resting-state fMRI BOLD signals is well documented. However, the role of brain vasculature is often overlooked in functional connectivity research. In the present report, utilizing publicly available whole-brain vasculature data in the mouse, we investigate the relationship between functional connectivity and brain vasculature. This is done by assessing interregional variations in vasculature through a novel metric termed vascular similarity. First, we identify features to describe the regional vasculature. Then, we employ multiple linear regression models to predict functional connectivity, incorporating vascular similarity alongside metrics from structural connectivity and spatial topology. Our findings reveal a significant correlation between functional connectivity strength and regional vasculature similarity, especially in anesthetized mice. We also show that multiple linear regression models of functional connectivity using standard predictors are improved by including vascular similarity. We perform this analysis at the cerebrum and whole-brain levels using data from both male and female mice. Our findings regarding the relation between functional connectivity and the underlying vascular anatomy may enhance our understanding of functional connectivity based on fMRI and provide insights into its disruption in neurological disorders.
Collapse
Affiliation(s)
- François Gaudreault
- Département de physique, de génie physique et d'optique, Université Laval, 2325 Rue de l'Université, Quebec, QC, G1V 0A6, Canada
- Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, 2705 Bd Laurier, Quebec, QC, G1V 4G2, Canada
| | - Michèle Desjardins
- Département de physique, de génie physique et d'optique, Université Laval, 2325 Rue de l'Université, Quebec, QC, G1V 0A6, Canada.
- Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, 2705 Bd Laurier, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
9
|
Byeon K, Park H, Park S, Cluce J, Mehta K, Cieslak M, Cui Z, Hong SJ, Chang C, Smallwood J, Satterthwaite TD, Milham MP, Xu T. Developmental Variations in Recurrent Spatiotemporal Brain Propagations from Childhood to Adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.635765. [PMID: 39975397 PMCID: PMC11838599 DOI: 10.1101/2025.02.04.635765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The brain undergoes profound structural and functional transformations from childhood to adolescence. Convergent evidence suggests that neurodevelopment proceeds in a hierarchical manner, characterized by heterogeneous maturation patterns across brain regions and networks. However, the maturation of the intrinsic spatiotemporal propagations of brain activity remains largely unexplored. This study aims to bridge this gap by delineating spatiotemporal propagations from childhood to early adulthood. By leveraging a recently developed approach that captures time-lag dynamic propagations, we characterized intrinsic dynamic propagations along three axes: sensory-association (S-A), 'task-positive' to default networks (TP-D), and somatomotor-visual (SM-V) networks, which progress towards adult-like brain dynamics from childhood to early adulthood. Importantly, we demonstrated that as participants mature, there is a prolonged occurrence of the S-A and TP-D propagation states, indicating that they spend more time in these states. Conversely, the prevalence of SM-V propagation states declines during development. Notably, top-down propagations along the S-A axis exhibited an age-dependent increase in occurrence, serving as a superior predictor of cognitive scores compared to bottom-up S-A propagation. These findings were replicated across two independent cohorts (N = 677 in total), emphasizing the robustness and generalizability of these findings. Our results provide new insights into the emergence of adult-like functional dynamics during youth and their role in supporting cognition.
Collapse
Affiliation(s)
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
- IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, South Korea
| | - Shinwon Park
- Child Mind Institute, New York, NY, United States
| | - Jon Cluce
- Child Mind Institute, New York, NY, United States
| | - Kahini Mehta
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn-CHOP Lifespan Brain Institute, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn-CHOP Lifespan Brain Institute, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zaixu Cui
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Seok-Jun Hong
- Child Mind Institute, New York, NY, United States
- IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Catie Chang
- Departments of Electrical and Computer Engineering, Computer Science, and Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | | | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn-CHOP Lifespan Brain Institute, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Milham
- Child Mind Institute, New York, NY, United States
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Ting Xu
- Child Mind Institute, New York, NY, United States
| |
Collapse
|
10
|
Meyer-Baese L, Jaeger D, Keilholz S. Neurovascular coupling: a review of spontaneous neocortical dynamics linking neuronal activity to hemodynamics and what we have learned from the rodent brain. J Neurophysiol 2025; 133:644-660. [PMID: 39819035 DOI: 10.1152/jn.00418.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
The brain is a complex neural network whose functional dynamics offer valuable insights into behavioral performance and health. Advances in fMRI have provided a unique window into studying human brain networks, providing us with a powerful tool for clinical research. Yet many questions about the underlying correlates between spontaneous fMRI and neural activity remain poorly understood, limiting the impact of this research. Cross-species studies have proven essential in deepening our understanding of how neuronal activity is coupled to increases in local cerebral blood flow, changes in blood oxygenation, and the measured fMRI signal. In this article, we review some fundamental mechanisms implicated in neurovascular coupling. We then examine neurovascular coupling within the context of spontaneous cortical functional networks and their dynamics, summarizing key findings from mechanistic studies in rodents. In doing so, we highlight the nuances of the neurovascular coupling that ultimately influences the interpretation of derived hemodynamic functional networks, their dynamics, and the neural underpinnings they represent.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Biology, Emory University, Atlanta, Georgia, United States
| | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, Georgia, United States
| | - Shella Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| |
Collapse
|
11
|
Hancock F, Rosas FE, Luppi AI, Zhang M, Mediano PAM, Cabral J, Deco G, Kringelbach ML, Breakspear M, Kelso JAS, Turkheimer FE. Metastability demystified - the foundational past, the pragmatic present and the promising future. Nat Rev Neurosci 2025; 26:82-100. [PMID: 39663408 DOI: 10.1038/s41583-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Healthy brain function depends on balancing stable integration between brain areas for effective coordinated functioning, with coexisting segregation that allows subsystems to express their functional specialization. Metastability, a concept from the dynamical systems literature, has been proposed as a key signature that characterizes this balance. Building on this principle, the neuroscience literature has leveraged the phenomenon of metastability to investigate various aspects of brain function in health and disease. However, this body of work often uses the notion of metastability heuristically, and sometimes inaccurately, making it difficult to navigate the vast literature, interpret findings and foster further development of theoretical and experimental methodologies. Here, we provide a comprehensive review of metastability and its applications in neuroscience, covering its scientific and historical foundations and the practical measures used to assess it in empirical data. We also provide a critical analysis of recent theoretical developments, clarifying common misconceptions and paving the road for future developments.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK.
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, UK.
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK.
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
- Sussex AI, University of Sussex, Brighton, UK.
- Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK.
| | - Andrea I Luppi
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- St John's College, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Mengsen Zhang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Life and Health Sciences Research Institute School of Medicine, University of Minho, Braga, Portugal
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institución Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University Clayton, Melbourne, Victoria, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Newcastle, New South Wales, Australia
| | - J A Scott Kelso
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland
- The Bath Institute for the Augmented Human, University of Bath, Bath, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- The Institute for Human and Synthetic Minds, King's College London, London, UK
| |
Collapse
|
12
|
Hike D, Liu X, Xie Z, Zhang B, Choi S, Zhou XA, Liu A, Murstein A, Jiang Y, Devor A, Yu X. High-resolution awake mouse fMRI at 14 tesla. eLife 2025; 13:RP95528. [PMID: 39786364 PMCID: PMC11717365 DOI: 10.7554/elife.95528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts. Using a 14 T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100 µm×100 µm×200 µm resolution with a 2 s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust blood oxygen level-dependent (BOLD) responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 s prior to the air-puff in awake mice with repetitive stimulation, which was not detected using a randomized stimulation paradigm. This early BC activation indicated a learned anticipation through the vibrissa system and association cortices in awake mice under continuous exposure of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.
Collapse
Affiliation(s)
- David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Zeping Xie
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Bei Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Andy Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
- Graduate Program in Neuroscience, Boston UniversityBostonUnited States
| | - Alyssa Murstein
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
- Graduate Program in Neuroscience, Boston UniversityBostonUnited States
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| |
Collapse
|
13
|
Bricault S, Dawson M, Lee J, Desai M, Schwalm M, Chung KS, DeTienne E, Fagan E, Li N, Becker A, Muthupalani S, Fränken JP, Pinotsis DA, Jasanoff A. Peripheral contributions to resting state brain dynamics. Nat Commun 2024; 15:10820. [PMID: 39737991 PMCID: PMC11685439 DOI: 10.1038/s41467-024-55064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements. Resting state effects are mediated by the same peripheral and thalamic structures that relay responses to overt sensory stimuli. The impact of basal peripheral input is reduced in a rat model of autism, which displays both lower somatosensory functional connectivity and insensitivity to vibrissa inactivation. These results demonstrate the influence of extrinsic influences on resting state brain phenotypes in health and disease.
Collapse
Affiliation(s)
- Sarah Bricault
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
- Department of Biology, Massachusetts Institute of Technology, Cambridge, US
| | - Miranda Dawson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Jiyoung Lee
- Department of Neurobiology, Wellesley College, Wellesley, US
| | - Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Kevin Sunho Chung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Elizabeth DeTienne
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, US
| | - Erinn Fagan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Andrew Becker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | | | - Jan-Philipp Fränken
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Dimitris A Pinotsis
- Center for Mathematical Neuroscience and Psychology, Department of Psychology, City, University of London, London, United Kingdom
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, US
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US.
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, US.
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, Cambridge, US.
| |
Collapse
|
14
|
Wang Y, Lowerison MR, Huang Z, You Q, Lin BZ, Llano DA, Song P. Longitudinal Awake Imaging of Mouse Deep Brain Microvasculature with Super-resolution Ultrasound Localization Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.01.555789. [PMID: 37732191 PMCID: PMC10508721 DOI: 10.1101/2023.09.01.555789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Ultrasound localization microscopy (ULM) is an emerging imaging modality that resolves microvasculature in deep tissues with high spatial resolution. However, existing preclinical ULM applications are largely constrained to anesthetized animals, introducing confounding vascular effects such as vasodilation and altered hemodynamics. As such, ULM quantifications (e.g., vessel diameter, density, and flow velocity) may be confounded by the use of anesthesia, undermining the usefulness of ULM in practice. Here we introduce a method to address this limitation and achieve ULM imaging in awake mouse brain. Pupillary monitoring was used to support the presence of the awake state during ULM imaging. Vasodilation induced by isoflurane was observed by ULM. Upon recovery to the awake state, reductions in vessel density and flow velocity were observed across different brain regions. In the cortex, the effects induced by isoflurane are more pronounced on venous flow than on arterial flow. In addition, serial in vivo imaging of the same animal brain at weekly intervals demonstrated the highly robust longitudinal imaging capability of the proposed technique. The consistency was further verified through quantitative analysis on individual vessels, cortical regions of arteries and veins, and subcortical regions. This study demonstrates longitudinal ULM imaging in the awake mouse brain, which is crucial for many ULM brain applications that require awake and behaving animals.
Collapse
|
15
|
Luppi AI, Sanz Perl Y, Vohryzek J, Mediano PAM, Rosas FE, Milisav F, Suarez LE, Gini S, Gutierrez-Barragan D, Gozzi A, Misic B, Deco G, Kringelbach ML. Competitive interactions shape brain dynamics and computation across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619194. [PMID: 39484469 PMCID: PMC11526968 DOI: 10.1101/2024.10.19.619194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling to examine the dynamical and computational relevance of cooperative and competitive interactions in the mammalian connectome. Across human, macaque, and mouse we show that the architecture of the models that most faithfully reproduce brain activity, consistently combines modular cooperative interactions with diffuse, long-range competitive interactions. The model with competitive interactions consistently outperforms the cooperative-only model, with excellent fit to both spatial and dynamical properties of the living brain, which were not explicitly optimised but rather emerge spontaneously. Competitive interactions in the effective connectivity produce greater levels of synergistic information and local-global hierarchy, and lead to superior computational capacity when used for neuromorphic computing. Altogether, this work provides a mechanistic link between network architecture, dynamical properties, and computation in the mammalian brain.
Collapse
Affiliation(s)
- Andrea I. Luppi
- University of Oxford, Oxford, UK
- St John’s College, Cambridge, UK
- Montreal Neurological Institute, Montreal, Canada
| | | | | | | | | | | | | | - Silvia Gini
- Italian Institute of Technology, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Gutierrez-Barragan D, Ramirez JSB, Panzeri S, Xu T, Gozzi A. Evolutionarily conserved fMRI network dynamics in the mouse, macaque, and human brain. Nat Commun 2024; 15:8518. [PMID: 39353895 PMCID: PMC11445567 DOI: 10.1038/s41467-024-52721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Evolutionarily relevant networks have been previously described in several mammalian species using time-averaged analyses of fMRI time-series. However, fMRI network activity is highly dynamic and continually evolves over timescales of seconds. Whether the dynamic organization of resting-state fMRI network activity is conserved across mammalian species remains unclear. Using frame-wise clustering of fMRI time-series, we find that intrinsic fMRI network dynamics in awake male macaques and humans is characterized by recurrent transitions between a set of 4 dominant, neuroanatomically homologous fMRI coactivation modes (C-modes), three of which are also plausibly represented in the male rodent brain. Importantly, in all species C-modes exhibit species-invariant dynamic features, including preferred occurrence at specific phases of fMRI global signal fluctuations, and a state transition structure compatible with infraslow coupled oscillator dynamics. Moreover, dominant C-mode occurrence reconstitutes the static organization of the fMRI connectome in all species, and is predictive of ranking of corresponding fMRI connectivity gradients. These results reveal a set of species-invariant principles underlying the dynamic organization of fMRI networks in mammalian species, and offer novel opportunities to relate fMRI network findings across the phylogenetic tree.
Collapse
Affiliation(s)
- Daniel Gutierrez-Barragan
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Julian S B Ramirez
- Center for the Developing Brain. Child Mind Institute, New York, NY, USA
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ting Xu
- Center for the Developing Brain. Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
| |
Collapse
|
17
|
Chan RW, Hamilton-Fletcher G, Edelman BJ, Faiq MA, Sajitha TA, Moeller S, Chan KC. NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis improves brain activity detection across rodent and human functional MRI contexts. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-18. [PMID: 39463889 PMCID: PMC11506209 DOI: 10.1162/imag_a_00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024]
Abstract
NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis (PCA) has been shown to selectively suppress thermal noise and improve the temporal signal-to-noise ratio (tSNR) in human functional magnetic resonance imaging (fMRI). However, the feasibility to improve data quality for rodent fMRI using NORDIC PCA remains uncertain. NORDIC PCA may also be particularly beneficial for improving topological brain mapping, as conventional mapping requires precise spatiotemporal signals from large datasets (ideally ~1 hour acquisition) for individual representations. In this study, we evaluated the effects of NORDIC PCA compared with "Standard" processing in various rodent fMRI contexts that range from task-evoked optogenetic fMRI to resting-state fMRI. We also evaluated the effects of NORDIC PCA on human resting-state and retinotopic mapping fMRI via population receptive field (pRF) modeling. In rodent optogenetic fMRI, apart from doubling the tSNR, NORDIC PCA resulted in a larger number of activated voxels and a significant decrease in the variance of evoked brain responses without altering brain morphology. In rodent resting-state fMRI, we found that NORDIC PCA induced a nearly threefold increase in tSNR and preserved task-free relative cerebrovascular reactivity (rCVR) across cortical depth. NORDIC PCA further improved the detection of TGN020-induced aquaporin-4 inhibition on rCVR compared with Standard processing without NORDIC PCA. NORDIC PCA also increased the tSNR for both human resting-state and pRF fMRI, and for the latter also increased activation cluster sizes while retaining retinotopic organization. This suggests that NORDIC PCA preserves the spatiotemporal precision of fMRI signals needed for pRF analysis, and effectively captures small activity changes with high sensitivity. Taken together, these results broadly demonstrate the value of NORDIC PCA for the enhanced detection of neural dynamics across various rodent and human fMRI contexts. This can in turn play an important role in improving fMRI image quality and sensitivity for translational and preclinical neuroimaging research.
Collapse
Affiliation(s)
- Russell W. Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
- E-SENSE Innovation & Technology, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Giles Hamilton-Fletcher
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bradley J. Edelman
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Biological Intelligence, Planegg, Germany
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Muneeb A. Faiq
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Thajunnisa A. Sajitha
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Kevin C. Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Benozzo D, Baggio G, Baron G, Chiuso A, Zampieri S, Bertoldo A. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. Netw Neurosci 2024; 8:965-988. [PMID: 39355437 PMCID: PMC11424037 DOI: 10.1162/netn_a_00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 10/03/2024] Open
Abstract
This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.
Collapse
Affiliation(s)
- Danilo Benozzo
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giacomo Baggio
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giorgia Baron
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandro Chiuso
- Information Engineering Department, University of Padova, Padova, Italy
| | - Sandro Zampieri
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Information Engineering Department, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Hike D, Liu X, Xie Z, Zhang B, Choi S, Zhou XA, Liu A, Murstein A, Jiang Y, Devor A, Yu X. High-resolution awake mouse fMRI at 14 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570803. [PMID: 38106227 PMCID: PMC10723470 DOI: 10.1101/2023.12.08.570803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
High-resolution awake mouse fMRI remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radiofrequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion induced artifacts. Using a 14T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100×100×200μm resolution with a 2s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust BOLD responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 seconds prior to the air-puff in awake mice with repetitive stimulation, which was not detected using a randomized stimulation paradigm. This early BC activation indicated a learned anticipation through the vibrissa system and association cortices in awake mice under continuous training of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.
Collapse
Affiliation(s)
- David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Zeping Xie
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Bei Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Andy Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Graduate program in Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Alyssa Murstein
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Graduate program in Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Department of Biomedical Engineering, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| |
Collapse
|
20
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
21
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Foster M, Scheinost D. Brain states as wave-like motifs. Trends Cogn Sci 2024; 28:492-503. [PMID: 38582654 DOI: 10.1016/j.tics.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
There is ample evidence of wave-like activity in the brain at multiple scales and levels. This emerging literature supports the broader adoption of a wave perspective of brain activity. Specifically, a brain state can be described as a set of recurring, sequential patterns of propagating brain activity, namely a wave. We examine a collective body of experimental work investigating wave-like properties. Based on these works, we consider brain states as waves using a scale-agnostic framework across time and space. Emphasis is placed on the sequentiality and periodicity associated with brain activity. We conclude by discussing the implications, prospects, and experimental opportunities of this framework.
Collapse
Affiliation(s)
- Maya Foster
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Affiliation(s)
- Andrea I Luppi
- Department of Psychiatry and Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
- St John's College, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Nghiem TAE, Lee B, Chao THH, Branigan NK, Mistry PK, Shih YYI, Menon V. Space wandering in the rodent default mode network. Proc Natl Acad Sci U S A 2024; 121:e2315167121. [PMID: 38557177 PMCID: PMC11009630 DOI: 10.1073/pnas.2315167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/17/2024] [Indexed: 04/04/2024] Open
Abstract
The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here, we use multisite GCaMP (a genetically encoded calcium indicator) fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes-the retrosplenial cortex, cingulate cortex, and prelimbic cortex-as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and found that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.
Collapse
Affiliation(s)
| | - Byeongwook Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nicholas K. Branigan
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
| | - Percy K. Mistry
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
| | - Yen-Yu Ian Shih
- Center for Animal MRI, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC27514
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA94304
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
| |
Collapse
|
25
|
De Waegenaere S, van den Berg M, Keliris GA, Adhikari MH, Verhoye M. Early altered directionality of resting brain network state transitions in the TgF344-AD rat model of Alzheimer's disease. Front Hum Neurosci 2024; 18:1379923. [PMID: 38646161 PMCID: PMC11026683 DOI: 10.3389/fnhum.2024.1379923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in memory loss and cognitive decline. Synaptic dysfunction is an early hallmark of the disease whose effects on whole-brain functional architecture can be identified using resting-state functional MRI (rsfMRI). Insights into mechanisms of early, whole-brain network alterations can help our understanding of the functional impact of AD's pathophysiology. Methods Here, we obtained rsfMRI data in the TgF344-AD rat model at the pre- and early-plaque stages. This model recapitulates the major pathological and behavioral hallmarks of AD. We used co-activation pattern (CAP) analysis to investigate if and how the dynamic organization of intrinsic brain functional networks states, undetectable by earlier methods, is altered at these early stages. Results We identified and characterized six intrinsic brain states as CAPs, their spatial and temporal features, and the transitions between the different states. At the pre-plaque stage, the TgF344-AD rats showed reduced co-activation of hub regions in the CAPs corresponding to the default mode-like and lateral cortical network. Default mode-like network activity segregated into two distinct brain states, with one state characterized by high co-activation of the basal forebrain. This basal forebrain co-activation was reduced in TgF344-AD animals mainly at the pre-plaque stage. Brain state transition probabilities were altered at the pre-plaque stage between states involving the default mode-like network, lateral cortical network, and basal forebrain regions. Additionally, while the directionality preference in the network-state transitions observed in the wild-type animals at the pre-plaque stage had diminished at the early-plaque stage, TgF344-AD animals continued to show directionality preference at both stages. Discussion Our study enhances the understanding of intrinsic brain state dynamics and how they are impacted at the early stages of AD, providing a nuanced characterization of the early, functional impact of the disease's neurodegenerative process.
Collapse
Affiliation(s)
- Sam De Waegenaere
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Monica van den Berg
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | - Mohit H. Adhikari
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
26
|
Shi L, Fu X, Gui S, Wan T, Zhuo J, Lu J, Li P. Global spatiotemporal synchronizing structures of spontaneous neural activities in different cell types. Nat Commun 2024; 15:2884. [PMID: 38570488 PMCID: PMC10991327 DOI: 10.1038/s41467-024-46975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Increasing evidence has revealed the large-scale nonstationary synchronizations as traveling waves in spontaneous neural activity. However, the interplay of various cell types in fine-tuning these spatiotemporal patters remains unclear. Here, we performed comprehensive exploration of spatiotemporal synchronizing structures across different cell types, states (awake, anesthesia, motion) and developmental axis in male mice. We found traveling waves in glutamatergic neurons exhibited greater variety than those in GABAergic neurons. Moreover, the synchronizing structures of GABAergic neurons converged toward those of glutamatergic neurons during development, but the evolution of waves exhibited varying timelines for different sub-type interneurons. Functional connectivity arises from both standing and traveling waves, and negative connections can be elucidated by the spatial propagation of waves. In addition, some traveling waves were correlated with the spatial distribution of gene expression. Our findings offer further insights into the neural underpinnings of traveling waves, functional connectivity, and resting-state networks, with cell-type specificity and developmental perspectives.
Collapse
Affiliation(s)
- Liang Shi
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215100, China
| | - Xiaoxi Fu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215100, China
| | - Shen Gui
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215100, China
| | - Tong Wan
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Junjie Zhuo
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215100, China.
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215100, China.
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
| |
Collapse
|
27
|
MacDowell CJ, Briones BA, Lenzi MJ, Gustison ML, Buschman TJ. Differences in the expression of cortex-wide neural dynamics are related to behavioral phenotype. Curr Biol 2024; 34:1333-1340.e6. [PMID: 38417445 PMCID: PMC10965364 DOI: 10.1016/j.cub.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/12/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
Behavior differs across individuals, ranging from typical to atypical phenotypes.1 Understanding how differences in behavior relate to differences in neural activity is critical for developing treatments of neuropsychiatric and neurodevelopmental disorders. One hypothesis is that differences in behavior reflect individual differences in the dynamics of how information flows through the brain. In support of this, the correlation of neural activity between brain areas, termed "functional connectivity," varies across individuals2 and is disrupted in autism,3 schizophrenia,4 and depression.5 However, the changes in neural activity that underlie altered behavior and functional connectivity remain unclear. Here, we show that individual differences in the expression of different patterns of cortical neural dynamics explain variability in both functional connectivity and behavior. Using mesoscale imaging, we recorded neural activity across the dorsal cortex of behaviorally "typical" and "atypical" mice. All mice shared the same recurring cortex-wide spatiotemporal motifs of neural activity, and these motifs explained the large majority of variance in cortical activity (>75%). However, individuals differed in how frequently different motifs were expressed. These differences in motif expression explained differences in functional connectivity and behavior across both typical and atypical mice. Our results suggest that differences in behavior and functional connectivity are due to changes in the processes that select which pattern of neural activity is expressed at each moment in time.
Collapse
Affiliation(s)
- Camden J MacDowell
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, New Brunswick, NJ 08901, USA
| | - Brandy A Briones
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Department of Psychology, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Anesthesiology and Pain Medicine at University of Washington, Seattle, WA 98105, USA
| | - Michael J Lenzi
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA
| | - Morgan L Gustison
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, Western University, London, ON N6A 3K7, Canada
| | - Timothy J Buschman
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Department of Psychology, Princeton University, Washington Road, Princeton, NJ 08540, USA.
| |
Collapse
|
28
|
Zhao L, Dai H, Wu Z, Jiang X, Zhu D, Zhang T, Liu T. Hierarchical functional differences between gyri and sulci at different scales. Cereb Cortex 2024; 34:bhae057. [PMID: 38483143 DOI: 10.1093/cercor/bhae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024] Open
Abstract
Gyri and sulci are 2 fundamental cortical folding patterns of the human brain. Recent studies have suggested that gyri and sulci may play different functional roles given their structural and functional heterogeneity. However, our understanding of the functional differences between gyri and sulci remains limited due to several factors. Firstly, previous studies have typically focused on either the spatial or temporal domain, neglecting the inherently spatiotemporal nature of brain functions. Secondly, analyses have often been restricted to either local or global scales, leaving the question of hierarchical functional differences unresolved. Lastly, there has been a lack of appropriate analytical tools for interpreting the hierarchical spatiotemporal features that could provide insights into these differences. To overcome these limitations, in this paper, we proposed a novel hierarchical interpretable autoencoder (HIAE) to explore the hierarchical functional difference between gyri and sulci. Central to our approach is its capability to extract hierarchical features via a deep convolutional autoencoder and then to map these features into an embedding vector using a carefully designed feature interpreter. This process transforms the features into interpretable spatiotemporal patterns, which are pivotal in investigating the functional disparities between gyri and sulci. We evaluate the proposed framework on Human Connectome Project task functional magnetic resonance imaging dataset. The experiments demonstrate that the HIAE model can effectively extract and interpret hierarchical spatiotemporal features that are neuroscientifically meaningful. The analyses based on the interpreted features suggest that gyri are more globally activated, whereas sulci are more locally activated, demonstrating a distinct transition in activation patterns as the scale shifts from local to global. Overall, our study provides novel insights into the brain's anatomy-function relationship.
Collapse
Affiliation(s)
- Lin Zhao
- School of Computing, University of Georgia, Athens, GA 30602, USA
| | - Haixing Dai
- School of Computing, University of Georgia, Athens, GA 30602, USA
| | - Zihao Wu
- School of Computing, University of Georgia, Athens, GA 30602, USA
| | - Xi Jiang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dajiang Zhu
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76013, USA
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
29
|
Özalay Ö, Mediavilla T, Giacobbo BL, Pedersen R, Marcellino D, Orädd G, Rieckmann A, Sultan F. Longitudinal monitoring of the mouse brain reveals heterogenous network trajectories during aging. Commun Biol 2024; 7:210. [PMID: 38378942 PMCID: PMC10879497 DOI: 10.1038/s42003-024-05873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
The human aging brain is characterized by changes in network efficiency that are currently best captured through longitudinal resting-state functional MRI (rs-fMRI). These studies however are challenging due to the long human lifespan. Here we show that the mouse animal model with a much shorter lifespan allows us to follow the functional network organization over most of the animal's adult lifetime. We used a longitudinal study of the functional connectivity of different brain regions with rs-fMRI under anesthesia. Our analysis uncovers network modules similar to those reported in younger mice and in humans (i.e., prefrontal/default mode network (DMN), somatomotor and somatosensory networks). Statistical analysis reveals different patterns of network reorganization during aging. Female mice showed a pattern akin to human aging, with de-differentiation of the connectome, mainly due to increases in connectivity of the prefrontal/DMN cortical networks to other modules. Our male cohorts revealed heterogenous aging patterns with only one group confirming the de- differentiation, while the majority showed an increase in connectivity of the somatomotor cortex to the Nucleus accumbens. In summary, in line with human work, our analysis in mice supports the concept of de-differentiation in the aging mammalian brain and reveals additional trajectories in aging mice networks.
Collapse
Affiliation(s)
- Özgün Özalay
- Department of Medical and Translational Biology, Umeå University, 90 187, Umeå, Sweden
| | - Tomas Mediavilla
- Department of Medical and Translational Biology, Umeå University, 90 187, Umeå, Sweden
| | - Bruno Lima Giacobbo
- Department of Medical and Translational Biology, Umeå University, 90 187, Umeå, Sweden
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Robin Pedersen
- Department of Medical and Translational Biology, Umeå University, 90 187, Umeå, Sweden
| | - Daniel Marcellino
- Department of Medical and Translational Biology, Umeå University, 90 187, Umeå, Sweden
| | - Greger Orädd
- Department of Medical and Translational Biology, Umeå University, 90 187, Umeå, Sweden
| | - Anna Rieckmann
- Department of Medical and Translational Biology, Umeå University, 90 187, Umeå, Sweden
- Department of Diagnostics and Intervention, Radiation Physics, Umeå University, 90 187, Umeå, Sweden
- Institute for Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Fahad Sultan
- Department of Medical and Translational Biology, Umeå University, 90 187, Umeå, Sweden.
| |
Collapse
|
30
|
Benozzo D, Baron G, Coletta L, Chiuso A, Gozzi A, Bertoldo A. Macroscale coupling between structural and effective connectivity in the mouse brain. Sci Rep 2024; 14:3142. [PMID: 38326324 PMCID: PMC10850485 DOI: 10.1038/s41598-024-51613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/07/2024] [Indexed: 02/09/2024] Open
Abstract
Exploring how the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the major goals of modern neuroscience. At the macroscale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be considered: the directionality of the structural connectome and limitations in explaining networks functions through an undirected measure such as FC. Here, we employed an accurate directed SC of the mouse brain acquired through viral tracers and compared it with single-subject effective connectivity (EC) matrices derived from a dynamic causal model (DCM) applied to whole-brain resting-state fMRI data. We analyzed how SC deviates from EC and quantified their respective couplings by conditioning on the strongest SC links and EC links. We found that when conditioning on the strongest EC links, the obtained coupling follows the unimodal-transmodal functional hierarchy. Whereas the reverse is not true, as there are strong SC links within high-order cortical areas with no corresponding strong EC links. This mismatch is even more clear across networks; only within sensory motor networks did we observe connections that align in terms of both effective and structural strength.
Collapse
Affiliation(s)
- Danilo Benozzo
- Department of Information Engineering, University of Padova, Padua, Italy.
| | - Giorgia Baron
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Chiuso
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padua, Italy.
- Padova Neuroscience Center (PNC), Padua, Italy.
| |
Collapse
|
31
|
Ben Youss Z, Arefin TM, Qayyum S, Yi R, Zhang J, Zaim Wadghiri Y, Alon L, Yaghmazadeh O. Open-source versatile 3D-print animal conditioning platform design for in vivo preclinical brain imaging in awake mice and anesthetized mice and rats. Lab Anim (NY) 2024; 53:33-42. [PMID: 38279029 PMCID: PMC11095950 DOI: 10.1038/s41684-023-01320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/14/2023] [Indexed: 01/28/2024]
Abstract
Proper animal conditioning is a key factor in the quality and success of preclinical neuroimaging applications. Here, we introduce an open-source easy-to-modify multimodal 3D printable design for rodent conditioning for magnetic resonance imaging (MRI) or other imaging modalities. Our design can be used for brain imaging in anesthetized or awake mice, and in anesthetized rats. We show ease of use and reproducibility of subject conditioning with anatomical T2-weighted imaging for both mice and rats. We also demonstrate the application of our design for awake functional MRI in mice using both visual evoked potential and olfactory stimulation paradigms. In addition, using a combined MRI, positron emission tomography and X-ray computed tomography experiment, we demonstrate that our proposed cradle design can be utilized for multiple imaging modalities.
Collapse
Affiliation(s)
- Zakia Ben Youss
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Tanzil Mahmud Arefin
- Center for Neurotechnology in Mental Health Research, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Sawwal Qayyum
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Runjie Yi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Youssef Zaim Wadghiri
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | - Leeor Alon
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | - Omid Yaghmazadeh
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Ragone E, Tanner J, Jo Y, Zamani Esfahlani F, Faskowitz J, Pope M, Coletta L, Gozzi A, Betzel R. Modular subgraphs in large-scale connectomes underpin spontaneous co-fluctuation events in mouse and human brains. Commun Biol 2024; 7:126. [PMID: 38267534 PMCID: PMC10810083 DOI: 10.1038/s42003-024-05766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Previous studies have adopted an edge-centric framework to study fine-scale network dynamics in human fMRI. To date, however, no studies have applied this framework to data collected from model organisms. Here, we analyze structural and functional imaging data from lightly anesthetized mice through an edge-centric lens. We find evidence of "bursty" dynamics and events - brief periods of high-amplitude network connectivity. Further, we show that on a per-frame basis events best explain static FC and can be divided into a series of hierarchically-related clusters. The co-fluctuation patterns associated with each cluster centroid link distinct anatomical areas and largely adhere to the boundaries of algorithmically detected functional brain systems. We then investigate the anatomical connectivity undergirding high-amplitude co-fluctuation patterns. We find that events induce modular bipartitions of the anatomical network of inter-areal axonal projections. Finally, we replicate these same findings in a human imaging dataset. In summary, this report recapitulates in a model organism many of the same phenomena observed in previously edge-centric analyses of human imaging data. However, unlike human subjects, the murine nervous system is amenable to invasive experimental perturbations. Thus, this study sets the stage for future investigation into the causal origins of fine-scale brain dynamics and high-amplitude co-fluctuations. Moreover, the cross-species consistency of the reported findings enhances the likelihood of future translation.
Collapse
Affiliation(s)
| | - Jacob Tanner
- Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47401, USA
| | - Youngheun Jo
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Farnaz Zamani Esfahlani
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Maria Pope
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47401, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47401, USA
| | | | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Richard Betzel
- Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA.
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47401, USA.
| |
Collapse
|
33
|
Chen Y, Fernandez Z, Scheel N, Gifani M, Zhu DC, Counts SE, Dorrance AM, Razansky D, Yu X, Qian W, Qian C. Novel inductively coupled ear-bars (ICEs) to enhance restored fMRI signal from susceptibility compensation in rats. Cereb Cortex 2024; 34:bhad479. [PMID: 38100332 PMCID: PMC10793587 DOI: 10.1093/cercor/bhad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Functional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-bars, resulting in approximately a 2-fold increase in sensitivity in entorhinal cortex. Notably, the inductively coupled ear-bar can be seamlessly integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the versatility of inductively coupled ear-bars, we conducted echo-planner imaging-based task functional magnetic resonance imaging in rats modeling Alzheimer's disease. As a proof of concept, we also demonstrated resting-state-functional magnetic resonance imaging connectivity maps originating from the left entorhinal cortex-a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex, Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by conventional magnetic resonance imaging detectors, thereby facilitating improved observation of functional magnetic resonance imaging outcomes.
Collapse
Affiliation(s)
- Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen 72076, Germany
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Zachary Fernandez
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Norman Scheel
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Mahsa Gifani
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Scott E Counts
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI 49508, United States
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48105, United States
| | - Anne M Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich 8006, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Institute for Biomedical Engineering, , Zurich 8092, Switzerland
- Zurich Neuroscience Center, Zurich 8057, Switzerland
| | - Xin Yu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114, United States
| | - Wei Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Chunqi Qian
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
34
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
35
|
Khodadadi M, Helluy X, Güntürkün O, Behroozi M. Segmented spin-echo echo-planar imaging improves whole-brain BOLD functional MRI in awake pigeon brains. NMR IN BIOMEDICINE 2024; 37:e5034. [PMID: 37681398 DOI: 10.1002/nbm.5034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) in awake small animals such as pigeons or songbirds opens a new window into the neural fundaments of cognitive behavior. However, high-field fMRI in the avian brain is challenging due to strong local magnetic field inhomogeneities caused by air cavities in the skull. A spoiled gradient-echo fMRI sequence has already been used to map the auditory network in songbirds, but due to susceptibility artifacts only 50% of the whole brain could be recorded. Since whole-brain fMRI coverage is vital to reveal whole-brain networks, an MRI sequence that is less susceptible to these artifacts was required. This was recently achieved in various bird species by using a rapid acquisition with relaxation enhancement (RARE) sequence. Weak blood oxygen level-dependent (BOLD) sensitivity, low temporal resolution, and heat caused by the long train of RF refocusing pulses are the main limits of RARE fMRI at high magnetic fields. To go beyond some of these limitations, we here describe the implementation of a two-segmented spin-echo echo-planar imaging (SE-EPI). The proposed sequence covers the whole brain of awake pigeons. The sequence was applied to investigate the auditory network in awake pigeons and assessed the relative merits of this method in comparison with the single-shot RARE sequence. At the same imaging resolution but with a volume acquisition of 3 s versus 4 s for RARE, the two-segmented SE-EPI provided twice the strength of BOLD activity compared with the single-shot RARE sequence, while the image signal-to-noise ratio (SNR) and in particular the temporal SNR were very similar for the two sequences. In addition, the activation patterns in two-segmented SE-EPI data are more symmetric and larger than single-shot RARE results. Two-segmented SE-EPI represents a valid alternative to the RARE sequence in avian fMRI research since it yields more than twice the BOLD sensitivity per unit of time with much less energy deposition and better temporal resolution, particularly for event-related experiments.
Collapse
Affiliation(s)
- Mina Khodadadi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Xavier Helluy
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
36
|
Ao Y, Catal Y, Lechner S, Hua J, Northoff G. Intrinsic neural timescales relate to the dynamics of infraslow neural waves. Neuroimage 2024; 285:120482. [PMID: 38043840 DOI: 10.1016/j.neuroimage.2023.120482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023] Open
Abstract
The human brain is a highly dynamic organ that operates across a variety of timescales, the intrinsic neural timescales (INT). In addition to the INT, the neural waves featured by its phase-related processes including their cycles with peak/trough and rise/fall play a key role in shaping the brain's neural activity. However, the relationship between the brain's ongoing wave dynamics and INT remains yet unclear. In this study, we utilized functional magnetic resonance imaging (fMRI) rest and task data from the Human Connectome Project (HCP) to investigate the relationship of infraslow wave dynamics [as measured in terms of speed by changes in its peak frequency (PF)] with INT. Our findings reveal that: (i) the speed of phase dynamics (PF) is associated with distinct parts of the ongoing phase cycles, namely higher PF in peak/trough and lower PF in rise/fall; (ii) there exists a negative correlation between phase dynamics (PF) and INT such that slower PF relates to longer INT; (iii) exposure to a movie alters both PF and INT across the different phase cycles, yet their negative correlation remains intact. Collectively, our results demonstrate that INT relates to infraslow phase dynamics during both rest and task states.
Collapse
Affiliation(s)
- Yujia Ao
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yasir Catal
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephan Lechner
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, 1010 Vienna, Austria; Vienna Doctoral School Cognition, Behavior and Neuroscience, University of Vienna, 1030 Vienna, Austria
| | - Jingyu Hua
- Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
37
|
Chan RW, Edelman BJ, Tsang SY, Gao K, Yu ACH. Opportunities for System Neuroscience. ADVANCES IN NEUROBIOLOGY 2024; 41:247-253. [PMID: 39589717 DOI: 10.1007/978-3-031-69188-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Systems neuroscience explores the intricate organization and dynamic function of neural circuits and networks within the brain. By elucidating how these complex networks integrate to execute mental operations, this field aims to deepen our understanding of the biological basis of cognition, behavior, and consciousness. In this chapter, we outline the promising future of systems neuroscience, highlighting the emerging opportunities afforded by powerful technological innovations and their applications. Cutting-edge tools such as awake functional MRI, ultrahigh field strength neuroimaging, functional ultrasound imaging, and optoacoustic techniques have revolutionized the field, enabling unprecedented observation and analysis of brain activity. The insights gleaned from these advanced methodologies have empowered the development of a suite of exciting applications across diverse domains. These include brain-machine interfaces (BMIs) for neural prosthetics, cognitive enhancement therapies, personalized mental health interventions, and precision medicine approaches. As our comprehension of neural systems continues to grow, it is envisioned that these and related applications will become increasingly refined and impactful in improving human health and well-being.
Collapse
Affiliation(s)
- Russell W Chan
- Hai Kang Life Corporation Ltd, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Bradley Jay Edelman
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Biological Intelligence, Planegg, Germany
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Kai Gao
- Children's Medical Center, Peking University First Hospital, Beijing, China
| | - Albert Cheung-Hoi Yu
- Hai Kang Life Corporation Ltd, Hong Kong, China.
- Neuroscience Research Institute, Peking University, Beijing, China.
| |
Collapse
|
38
|
Griffa A, Mach M, Dedelley J, Gutierrez-Barragan D, Gozzi A, Allali G, Grandjean J, Van De Ville D, Amico E. Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice. Nat Commun 2023; 14:8216. [PMID: 38081838 PMCID: PMC10713651 DOI: 10.1038/s41467-023-43971-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain's computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems. The layout of information-related pathways is unique to individuals across different mammalian species, pointing at the individual-level specificity of information routing architecture. Our work provides evidence that different communication patterns are tied to the evolution of mammalian brain networks.
Collapse
Affiliation(s)
- Alessandra Griffa
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| | - Mathieu Mach
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Julien Dedelley
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Gilles Allali
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN, Nijmegen, The Netherlands
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Enrico Amico
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
39
|
Pagani M, Gutierrez-Barragan D, de Guzman AE, Xu T, Gozzi A. Mapping and comparing fMRI connectivity networks across species. Commun Biol 2023; 6:1238. [PMID: 38062107 PMCID: PMC10703935 DOI: 10.1038/s42003-023-05629-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Technical advances in neuroimaging, notably in fMRI, have allowed distributed patterns of functional connectivity to be mapped in the human brain with increasing spatiotemporal resolution. Recent years have seen a growing interest in extending this approach to rodents and non-human primates to understand the mechanism of fMRI connectivity and complement human investigations of the functional connectome. Here, we discuss current challenges and opportunities of fMRI connectivity mapping across species. We underscore the critical importance of physiologically decoding neuroimaging measures of brain (dys)connectivity via multiscale mechanistic investigations in animals. We next highlight a set of general principles governing the organization of mammalian connectivity networks across species. These include the presence of evolutionarily conserved network systems, a dominant cortical axis of functional connectivity, and a common repertoire of topographically conserved fMRI spatiotemporal modes. We finally describe emerging approaches allowing comparisons and extrapolations of fMRI connectivity findings across species. As neuroscientists gain access to increasingly sophisticated perturbational, computational and recording tools, cross-species fMRI offers novel opportunities to investigate the large-scale organization of the mammalian brain in health and disease.
Collapse
Affiliation(s)
- Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - A Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ting Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
40
|
Xiao D, Yan Y, Murphy TH. Mesotrode chronic simultaneous mesoscale cortical imaging and subcortical or peripheral nerve spiking activity recording in mice. eLife 2023; 12:RP87691. [PMID: 37962180 PMCID: PMC10645427 DOI: 10.7554/elife.87691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Brain function originates from hierarchical spatial-temporal neural dynamics distributed across cortical and subcortical networks. However, techniques available to assess large-scale brain network activity with single-neuron resolution in behaving animals remain limited. Here, we present Mesotrode that integrates chronic wide-field mesoscale cortical imaging and compact multi-site cortical/subcortical cellular electrophysiology in head-fixed mice that undergo self-initiated running or orofacial movements. Specifically, we harnessed the flexibility of chronic multi-site tetrode recordings to monitor single-neuron activity in multiple subcortical structures while simultaneously imaging the mesoscale activity of the entire dorsal cortex. A mesoscale spike-triggered averaging procedure allowed the identification of cortical activity motifs preferentially associated with single-neuron spiking. Using this approach, we were able to characterize chronic single-neuron-related functional connectivity maps for up to 60 days post-implantation. Neurons recorded from distinct subcortical structures display diverse but segregated cortical maps, suggesting that neurons of different origins participate in distinct cortico-subcortical pathways. We extended the capability of Mesotrode by implanting the micro-electrode at the facial motor nerve and found that facial nerve spiking is functionally associated with the PTA, RSP, and M2 network, and optogenetic inhibition of the PTA area significantly reduced the facial movement of the mice. These findings demonstrate that Mesotrode can be used to sample different combinations of cortico-subcortical networks over prolonged periods, generating multimodal and multi-scale network activity from a single implant, offering new insights into the neural mechanisms underlying specific behaviors.
Collapse
Affiliation(s)
- Dongsheng Xiao
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological ResearchVancouverCanada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Yuhao Yan
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological ResearchVancouverCanada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological ResearchVancouverCanada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| |
Collapse
|
41
|
Finn ES, Poldrack RA, Shine JM. Functional neuroimaging as a catalyst for integrated neuroscience. Nature 2023; 623:263-273. [PMID: 37938706 DOI: 10.1038/s41586-023-06670-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/22/2023] [Indexed: 11/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) enables non-invasive access to the awake, behaving human brain. By tracking whole-brain signals across a diverse range of cognitive and behavioural states or mapping differences associated with specific traits or clinical conditions, fMRI has advanced our understanding of brain function and its links to both normal and atypical behaviour. Despite this headway, progress in human cognitive neuroscience that uses fMRI has been relatively isolated from rapid advances in other subdomains of neuroscience, which themselves are also somewhat siloed from one another. In this Perspective, we argue that fMRI is well-placed to integrate the diverse subfields of systems, cognitive, computational and clinical neuroscience. We first summarize the strengths and weaknesses of fMRI as an imaging tool, then highlight examples of studies that have successfully used fMRI in each subdomain of neuroscience. We then provide a roadmap for the future advances that will be needed to realize this integrative vision. In this way, we hope to demonstrate how fMRI can help usher in a new era of interdisciplinary coherence in neuroscience.
Collapse
Affiliation(s)
- Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Dartmouth, NH, USA.
| | | | - James M Shine
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
42
|
Deivasigamani S, Miteva MT, Natale S, Gutierrez-Barragan D, Basilico B, Di Angelantonio S, Weinhard L, Molotkov D, Deb S, Pape C, Bolasco G, Galbusera A, Asari H, Gozzi A, Ragozzino D, Gross CT. Microglia complement signaling promotes neuronal elimination and normal brain functional connectivity. Cereb Cortex 2023; 33:10750-10760. [PMID: 37718159 PMCID: PMC10629900 DOI: 10.1093/cercor/bhad313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However, while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement signaling mediates synaptic pruning in the brain more generally. Here we found that mice lacking the Complement receptor 3, the major microglia complement receptor, failed to show a deficit in either synaptic pruning or axon elimination in the developing mouse cortex. Instead, mice lacking Complement receptor 3 exhibited a deficit in the perinatal elimination of neurons in the cortex, a deficit that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data demonstrate a role for complement in promoting neuronal elimination in the developing cortex.
Collapse
Affiliation(s)
- Senthilkumar Deivasigamani
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Mariya T Miteva
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
- Neuroscience Masters Programme, Sapienza University, Piazza Aldo Moro 1, 00185 Roma, Italy
| | - Silvia Natale
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, 38068 Rovereto, Italy
| | - Bernadette Basilico
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Laetitia Weinhard
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Dmitry Molotkov
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Sukrita Deb
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Constantin Pape
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Giulia Bolasco
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, 38068 Rovereto, Italy
| | - Hiroki Asari
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, 38068 Rovereto, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina, 00179 Rome, Italy
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| |
Collapse
|
43
|
Nghiem TAE, Lee B, Chao THH, Branigan NK, Mistry PK, Shih YYI, Menon V. Space wandering in the rodent default mode network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555793. [PMID: 37693501 PMCID: PMC10491169 DOI: 10.1101/2023.08.31.555793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here we use multisite GCaMP fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes- the retrosplenial cortex, cingulate cortex, and prelimbic cortex- as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and discovered that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.
Collapse
Affiliation(s)
| | - Byeongwook Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill
- Department of Neurology, University of North Carolina at Chapel Hill
| | | | - Percy K. Mistry
- Department of Psychiatry & Behavioral Sciences, Stanford University
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill
- Department of Neurology, University of North Carolina at Chapel Hill
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University
- Department of Neurology & Neurological Sciences, Stanford University
- Wu Tsai Neurosciences Institute, Stanford University
| |
Collapse
|
44
|
Lee SH, Shnitko TA, Hsu LM, Broadwater MA, Sardinas M, Wang TWW, Robinson DL, Vetreno RP, Crews FT, Shih YYI. Acute alcohol induces greater dose-dependent increase in the lateral cortical network functional connectivity in adult than adolescent rats. ADDICTION NEUROSCIENCE 2023; 7:100105. [PMID: 37576436 PMCID: PMC10421607 DOI: 10.1016/j.addicn.2023.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Alcohol misuse and, particularly adolescent drinking, is a major public health concern. While evidence suggests that adolescent alcohol use affects frontal brain regions that are important for cognitive control over behavior little is known about how acute alcohol exposure alters large-scale brain networks and how sex and age may moderate such effects. Here, we employ a recently developed functional magnetic resonance imaging (fMRI) protocol to acquire rat brain functional connectivity data and use an established analytical pipeline to examine the effect of sex, age, and alcohol dose on connectivity within and between three major rodent brain networks: defaul mode, salience, and lateral cortical network. We identify the intra- and inter-network connectivity differences and establish moderation models to reveal significant influences of age on acute alcohol-induced lateral cortical network connectivity. Through this work, we make brain-wide isotropic fMRI data with acute alcohol challenge publicly available, with the hope to facilitate future discovery of brain regions/circuits that are causally relevant to the impact of acute alcohol use.
Collapse
Affiliation(s)
- Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Tatiana A. Shnitko
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Margaret A. Broadwater
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Mabelle Sardinas
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
45
|
Poplawsky AJ, Cover C, Reddy S, Chishti HB, Vazquez A, Fukuda M. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb. Neuroimage 2023; 274:120121. [PMID: 37080347 PMCID: PMC10240534 DOI: 10.1016/j.neuroimage.2023.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States.
| | - Christopher Cover
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sujatha Reddy
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| | - Harris B Chishti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| |
Collapse
|
46
|
Obrecht M, Zurbruegg S, Accart N, Lambert C, Doelemeyer A, Ledermann B, Beckmann N. Magnetic resonance imaging and ultrasound elastography in the context of preclinical pharmacological research: significance for the 3R principles. Front Pharmacol 2023; 14:1177421. [PMID: 37448960 PMCID: PMC10337591 DOI: 10.3389/fphar.2023.1177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.
Collapse
Affiliation(s)
- Michael Obrecht
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Zurbruegg
- Neurosciences Department, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nathalie Accart
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Lambert
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Arno Doelemeyer
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Birgit Ledermann
- 3Rs Leader, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolau Beckmann
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
47
|
Kim S, Moon HS, Vo TT, Kim CH, Im GH, Lee S, Choi M, Kim SG. Whole-brain mapping of effective connectivity by fMRI with cortex-wide patterned optogenetics. Neuron 2023; 111:1732-1747.e6. [PMID: 37001524 DOI: 10.1016/j.neuron.2023.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023]
Abstract
Functional magnetic resonance imaging (fMRI) with optogenetic neural manipulation is a powerful tool that enables brain-wide mapping of effective functional networks. To achieve flexible manipulation of neural excitation throughout the mouse cortex, we incorporated spatiotemporal programmable optogenetic stimuli generated by a digital micromirror device into an MRI scanner via an optical fiber bundle. This approach offered versatility in space and time in planning the photostimulation pattern, combined with in situ optical imaging and cell-type-specific or circuit-specific genetic targeting in individual mice. Brain-wide effective connectivity obtained by fMRI with optogenetic stimulation of atlas-based cortical regions is generally congruent with anatomically defined axonal tracing data but is affected by the types of anesthetics that act selectively on specific connections. fMRI combined with flexible optogenetics opens a new path to investigate dynamic changes in functional brain states in the same animal through high-throughput brain-wide effective connectivity mapping.
Collapse
Affiliation(s)
- Seonghoon Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Seok Moon
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Thanh Tan Vo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang-Ho Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Myunghwan Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
48
|
Wang Y, Yang C, Li G, Ao Y, Jiang M, Cui Q, Pang Y, Jing X. Frequency-dependent effective connections between local signals and the global brain signal during resting-state. Cogn Neurodyn 2023; 17:555-560. [PMID: 37007197 PMCID: PMC10050607 DOI: 10.1007/s11571-022-09831-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 03/07/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022] Open
Abstract
The psychological and physiological meanings of resting-state global brain signal (GS) and GS topography have been well confirmed. However, the causal relationship between GS and local signals was largely unknown. Based on the Human Connectome Project dataset, we investigated the effective GS topography using the Granger causality (GC) method. In consistent with GS topography, both effective GS topographies from GS to local signals and from local signals to GS showed greater GC values in sensory and motor regions in most frequency bands, suggesting that the unimodal superiority is an intrinsic architecture of GS topography. However, the significant frequency effect for GC values from GS to local signals was primarily located in unimodal regions and dominated at slow 4 frequency band whereas that from local signals to GS was mainly located in transmodal regions and dominated at slow 6 frequency band, consisting with the opinion that the more integrated the function, the lower the frequency. These findings provided valuable insight for the frequency-dependent effective GS topography, improving the understanding of the underlying mechanism of GS topography. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09831-0.
Collapse
Affiliation(s)
- Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Gen Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Muliang Jiang
- First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu, China
| |
Collapse
|
49
|
Gozzi A, Zerbi V. Modeling Brain Dysconnectivity in Rodents. Biol Psychiatry 2023; 93:419-429. [PMID: 36517282 DOI: 10.1016/j.biopsych.2022.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
Altered or atypical functional connectivity as measured with functional magnetic resonance imaging (fMRI) is a hallmark feature of brain connectopathy in psychiatric, developmental, and neurological disorders. However, the biological underpinnings and etiopathological significance of this phenomenon remain unclear. The recent development of MRI-based techniques for mapping brain function in rodents provides a powerful platform to uncover the determinants of functional (dys)connectivity, whether they are genetic mutations, environmental risk factors, or specific cellular and circuit dysfunctions. Here, we summarize the recent contribution of rodent fMRI toward a deeper understanding of network dysconnectivity in developmental and psychiatric disorders. We highlight substantial correspondences in the spatiotemporal organization of rodent and human fMRI networks, supporting the translational relevance of this approach. We then show how this research platform might help us comprehend the importance of connectional heterogeneity in complex brain disorders and causally relate multiscale pathogenic contributors to functional dysconnectivity patterns. Finally, we explore how perturbational techniques can be used to dissect the fundamental aspects of fMRI coupling and reveal the causal contribution of neuromodulatory systems to macroscale network activity, as well as its altered dynamics in brain diseases. These examples outline how rodent functional imaging is poised to advance our understanding of the bases and determinants of human functional dysconnectivity.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering, École polytechnique fédérale de Lausanne, Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
| |
Collapse
|
50
|
Benozzo D, Baron G, Coletta L, Chiuso A, Gozzi A, Bertoldo A. Macroscale coupling between structural and effective connectivity in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529400. [PMID: 36865122 PMCID: PMC9980133 DOI: 10.1101/2023.02.22.529400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
How the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the biggest questions of modern neuroscience. At the macro-scale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be taken into account: the directionality of the structural connectome and the limitations of describing network functions in terms of FC. Here, we employed an accurate directed SC of the mouse brain obtained by means of viral tracers, and related it with single-subject effective connectivity (EC) matrices computed by applying a recently developed DCM to whole-brain resting-state fMRI data. We analyzed how SC deviates from EC and quantified their couplings by conditioning both on the strongest SC links and EC links. We found that when conditioning on the strongest EC links, the obtained coupling follows the unimodal-transmodal functional hierarchy. Whereas the reverse is not true, as there are strong SC links within high-order cortical areas with no corresponding strong EC links. This mismatch is even more clear across networks. Only the connections within sensory motor networks align both in terms of effective and structural strength.
Collapse
Affiliation(s)
- Danilo Benozzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giorgia Baron
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Chiuso
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| |
Collapse
|