1
|
Xie F, Hu K, Fu R, Zhang Y, Xiao K, Tu J. Association between night shift work and the risk of type 2 diabetes mellitus: a cohort-based meta-analysis. BMC Endocr Disord 2024; 24:268. [PMID: 39696306 DOI: 10.1186/s12902-024-01808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The impact of night shift work on the incidence of type 2 diabetes mellitus (T2DM) is not well understood. This meta-analysis assesses the association between night shift work and the risk of developing T2DM and explores this relationship across various subgroups. METHODS We systematically searched PubMed, Web of Science, EBSCO, and the Cochrane Library from their inception until February 2024. We employed hazard ratios (HR) and 95% confidence intervals (95%CI) to quantify the association between night shift work and T2DM risk. RESULTS Our analysis synthesized data from 9 articles encompassing 10 cohort studies. Overall, night shift workers exhibited a 30% increased incidence of T2DM compared to their daytime counterparts (HR = 1.30, 95% CI: [1.18, 1.43], P < 0.001). Among females, night shift workers had a higher incidence of T2DM (HR = 1.28, 95% CI: [1.16, 1.41]); however, in males, the association was not statistically significant (95% CI: [0.89, 2.63]). For individuals with a body mass index (BMI) > 30 kg/m2, night shift work was associated with an increased T2DM risk (HR = 1.14, P = 0.007), whereas there was no significant association for those with a BMI ≤ 30 kg/m2 (P = 0.255). Further, the risk of T2DM increased with longer durations of night shift work; workers with more than 10 years of night shift work faced a higher T2DM risk than those with 10 years or fewer (HR for > 10 years = 1.17, 95% CI: [1.10, 1.24]; HR for ≤ 10 years = 1.06, 95% CI: [1.03, 1.10]). CONCLUSION Findings suggest potential link between night shift work and T2DM risk. Longer durations of night shift work may increase the risk of T2DM. There may be gender differences (greater harm in women, but the male sample size is small) and obesity differences.
Collapse
Affiliation(s)
- Fei Xie
- Department of Endocrinology, Ningbo Yinzhou No. 2 Hospital, 998 North Qianhe Road, Yinzhou District, Ningbo, Zhejiang, 315100, China.
| | - Kangshuo Hu
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rongrong Fu
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yueming Zhang
- Intensive Care Unit, Hospital of Zhejiang People's Armed Police, Hangzhou, Zhejiang, China
| | - Kaiqi Xiao
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jieni Tu
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Guzmán-Ruíz MA, Guerrero Vargas NN, Ramírez-Carreto RJ, González-Orozco JC, Torres-Hernández BA, Valle-Rodríguez M, Guevara-Guzmán R, Chavarría A. Microglia in physiological conditions and the importance of understanding their homeostatic functions in the arcuate nucleus. Front Immunol 2024; 15:1392077. [PMID: 39295865 PMCID: PMC11408222 DOI: 10.3389/fimmu.2024.1392077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia are highly dynamic cells that have been mainly studied under pathological conditions. The present review discusses the possible implication of microglia as modulators of neuronal electrical responses in physiological conditions and hypothesizes how these cells might modulate hypothalamic circuits in health and during obesity. Microglial cells studied under physiological conditions are highly diverse, depending on the developmental stage and brain region. The evidence also suggests that neuronal electrical activity modulates microglial motility to control neuronal excitability. Additionally, we show that the expression of genes associated with neuron-microglia interaction is down-regulated in obese mice compared to control-fed mice, suggesting an alteration in the contact-dependent mechanisms that sustain hypothalamic arcuate-median eminence neuronal function. We also discuss the possible implication of microglial-derived signals for the excitability of hypothalamic neurons during homeostasis and obesity. This review emphasizes the importance of studying the physiological interplay between microglia and neurons to maintain proper neuronal circuit function. It aims to elucidate how disruptions in the normal activities of microglia can adversely affect neuronal health.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruíz
- Programa de Becas Post-doctorales, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natalí N Guerrero Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Michelle Valle-Rodríguez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Duquenne M, Deligia E, Folgueira C, Bourouh C, Caron E, Pfrieger F, Schwaninger M, Nogueiras R, Annicotte JS, Imbernon M, Prévot V. Tanycytic transcytosis inhibition disrupts energy balance, glucose homeostasis and cognitive function in male mice. Mol Metab 2024; 87:101996. [PMID: 39047908 PMCID: PMC11340606 DOI: 10.1016/j.molmet.2024.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES In Western society, high-caloric diets rich in fats and sugars have fueled the obesity epidemic and its related disorders. Disruption of the body-brain communication, crucial for maintaining glucose and energy homeostasis, arises from both obesogenic and genetic factors, leading to metabolic disorders. Here, we investigate the role of hypothalamic tanycyte shuttles between the pituitary portal blood and the third ventricle cerebrospinal fluid in regulating energy balance. METHODS We inhibited vesicle-associated membrane proteins (VAMP1-3)-mediated release in tanycytes by expressing the botulinum neurotoxin type B light chain (BoNT/B) in a Cre-dependent manner in tanycytes. This was achieved by injecting either TAT-Cre in the third ventricle or an AAV1/2 expressing Cre under the control of the tanycyte-specific promoter iodothyronine deiodinase 2 into the lateral ventricle of adult male mice. RESULTS In male mice fed a standard diet, targeted expression of BoNT/B in adult tanycytes blocks leptin transport into the mediobasal hypothalamus and results in normal-weight central obesity, including increased food intake, abdominal fat deposition, and elevated leptin levels but no marked change in body weight. Furthermore, BoNT/B expression in adult tanycytes promotes fatty acid storage, leading to glucose intolerance and insulin resistance. Notably, these metabolic disturbances occur despite a compensatory increase in insulin secretion, observed both in response to exogenous glucose boluses in vivo and in isolated pancreatic islets. Intriguingly, these metabolic alterations are associated with impaired spatial memory in BoNT/B-expressing mice. CONCLUSIONS These findings underscore the central role of tanycytes in brain-periphery communication and highlight their potential implication in the age-related development of type 2 diabetes and cognitive decline. Our tanycytic BoNT/B mouse model provides a robust platform for studying how these conditions progress over time, from prediabetic states to full-blown metabolic and cognitive disorders, and the mechanistic contribution of tanycytes to their development. The recognition of the impact of tanycytic transcytosis on hormone transport opens new avenues for developing targeted therapies that could address both metabolic disorders and their associated cognitive comorbidities, which often emerge or worsen with advancing age.
Collapse
Affiliation(s)
- Manon Duquenne
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Eleonora Deligia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Cintia Folgueira
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Cyril Bourouh
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Frank Pfrieger
- Centre National de la Recherche Scientifique, Universite de Strasbourg, Institut des Neurosciences Cellulaires et Integratives, 67000 Strasbourg, France
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Jean-Sébastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Monica Imbernon
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France.
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
4
|
Fernandois D, Rusidzé M, Mueller-Fielitz H, Sauve F, Deligia E, Silva MSB, Evrard F, Franco-García A, Mazur D, Martinez-Corral I, Jouy N, Rasika S, Maurage CA, Giacobini P, Nogueiras R, Dehouck B, Schwaninger M, Lenfant F, Prevot V. Estrogen receptor-α signaling in tanycytes lies at the crossroads of fertility and metabolism. Metabolism 2024; 158:155976. [PMID: 39019342 PMCID: PMC7616427 DOI: 10.1016/j.metabol.2024.155976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Estrogen secretion by the ovaries regulates the hypothalamic-pituitary-gonadal axis during the reproductive cycle, influencing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, and also plays a role in regulating metabolism. Here, we establish that hypothalamic tanycytes-specialized glia lining the floor and walls of the third ventricle-integrate estrogenic feedback signals from the gonads and couple reproduction with metabolism by relaying this information to orexigenic neuropeptide Y (NPY) neurons. METHODS Using mouse models, including mice floxed for Esr1 (encoding estrogen receptor alpha, ERα) and those with Cre-dependent expression of designer receptors exclusively activated by designer drugs (DREADDs), along with viral-mediated, pharmacological and indirect calorimetric approaches, we evaluated the role of tanycytes and tanycytic estrogen signaling in pulsatile LH secretion, cFos expression in NPY neurons, estrous cyclicity, body-weight changes and metabolic parameters in adult females. RESULTS In ovariectomized mice, chemogenetic activation of tanycytes significantly reduced LH pulsatile release, mimicking the effects of direct NPY neuron activation. In intact mice, tanycytes were crucial for the estrogen-mediated control of GnRH/LH release, with tanycytic ERα activation suppressing fasting-induced NPY neuron activation. Selective knockout of Esr1 in tanycytes altered estrous cyclicity and fertility in female mice and affected estrogen's ability to inhibit refeeding in fasting mice. The absence of ERα signaling in tanycytes increased Npy transcripts and body weight in intact mice and prevented the estrogen-mediated decrease in food intake as well as increase in energy expenditure and fatty acid oxidation in ovariectomized mice. CONCLUSIONS Our findings underscore the pivotal role of tanycytes in the neuroendocrine coupling of reproduction and metabolism, with potential implications for its age-related deregulation after menopause. SIGNIFICANCE STATEMENT Our investigation reveals that tanycytes, specialized glial cells in the brain, are key interpreters of estrogen signals for orexigenic NPY neurons in the hypothalamus. Disrupting tanycytic estrogen receptors not only alters fertility in female mice but also impairs the ability of estrogens to suppress appetite. This work thus sheds light on the critical role played by tanycytes in bridging the hormonal regulation of cyclic reproductive function and appetite/feeding behavior. This understanding may have potential implications for age-related metabolic deregulation after menopause.
Collapse
Affiliation(s)
- Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
| | - Helge Mueller-Fielitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Florent Sauve
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Eleonora Deligia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Florence Evrard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain, Instituto Murciano de Investigación Biosanitaria (IMIB), Pascual Parrilla, Murcia, Spain
| | - Daniele Mazur
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Ines Martinez-Corral
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | | | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Benedicte Dehouck
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Francoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France.
| |
Collapse
|
5
|
Barahona MJ, Ferrada L, Vera M, Nualart F. Tanycytes release glucose using the glucose-6-phosphatase system during hypoglycemia to control hypothalamic energy balance. Mol Metab 2024; 84:101940. [PMID: 38641253 PMCID: PMC11060961 DOI: 10.1016/j.molmet.2024.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE The liver releases glucose into the blood using the glucose-6-phosphatase (G6Pase) system, a multiprotein complex located in the endoplasmic reticulum (ER). Here, we show for the first time that the G6Pase system is also expressed in hypothalamic tanycytes, and it is required to regulate energy balance. METHODS Using automatized qRT-PCR and immunohistochemical analyses, we evaluated the expression of the G6Pase system. Fluorescent glucose analogue (2-NBDG) uptake was evaluated by 4D live-cell microscopy. Glucose release was tested using a glucose detection kit and high-content live-cell analysis instrument, Incucyte s3. In vivo G6pt knockdown in tanycytes was performed by AAV1-shG6PT-mCherry intracerebroventricular injection. Body weight gain, adipose tissue weight, food intake, glucose metabolism, c-Fos, and neuropeptide expression were evaluated at 4 weeks post-transduction. RESULTS Tanycytes sequester glucose-6-phosphate (G6P) into the ER through the G6Pase system and release glucose in hypoglycaemia via facilitative glucose transporters (GLUTs). Strikingly, in vivo tanycytic G6pt knockdown has a powerful peripheral anabolic effect observed through decreased body weight, white adipose tissue (WAT) tissue mass, and strong downregulation of lipogenesis genes. Selective deletion of G6pt in tanycytes also decreases food intake, c-Fos expression in the arcuate nucleus (ARC), and Npy mRNA expression in fasted mice. CONCLUSIONS The tanycyte-associated G6Pase system is a central mechanism involved in controlling metabolism and energy balance.
Collapse
Affiliation(s)
- María José Barahona
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile; Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile; Laboratory of Appetite Physiology (FIDELA), Faculty of Medicine and Sciences, University San Sebastián, Concepción Campus, Concepción, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Matías Vera
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile; Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile; Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile.
| |
Collapse
|
6
|
Vargas Y, Castro Tron AE, Rodríguez Rodríguez A, Uribe RM, Joseph-Bravo P, Charli JL. Thyrotropin-Releasing Hormone and Food Intake in Mammals: An Update. Metabolites 2024; 14:302. [PMID: 38921437 PMCID: PMC11205479 DOI: 10.3390/metabo14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2) is an intercellular signal produced mainly by neurons. Among the multiple pharmacological effects of TRH, that on food intake is not well understood. We review studies demonstrating that peripheral injection of TRH generally produces a transient anorexic effect, discuss the pathways that might initiate this effect, and explain its short half-life. In addition, central administration of TRH can produce anorexic or orexigenic effects, depending on the site of injection, that are likely due to interaction with TRH receptor 1. Anorexic effects are most notable when TRH is injected into the hypothalamus and the nucleus accumbens, while the orexigenic effect has only been detected by injection into the brain stem. Functional evidence points to TRH neurons that are prime candidate vectors for TRH action on food intake. These include the caudal raphe nuclei projecting to the dorsal motor nucleus of the vagus, and possibly TRH neurons from the tuberal lateral hypothalamus projecting to the tuberomammillary nuclei. For other TRH neurons, the anatomical or physiological context and impact of TRH in each synaptic domain are still poorly understood. The manipulation of TRH expression in well-defined neuron types will facilitate the discovery of its role in food intake control in each anatomical scene.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Cuernavaca 62210, Mexico; (Y.V.); (A.E.C.T.); (A.R.R.); (R.M.U.); (P.J.-B.)
| |
Collapse
|
7
|
Markussen FAF, Cázarez-Márquez F, Melum VJ, Hazlerigg DG, Wood SH. c-fos induction in the choroid plexus, tanycytes and pars tuberalis is an early indicator of spontaneous arousal from torpor in a deep hibernator. J Exp Biol 2024; 227:jeb247224. [PMID: 38690647 PMCID: PMC11166454 DOI: 10.1242/jeb.247224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.
Collapse
Affiliation(s)
- Fredrik A. F. Markussen
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Fernando Cázarez-Márquez
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Vebjørn J. Melum
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - David G. Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Shona H. Wood
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| |
Collapse
|
8
|
Speksnijder EM, Bisschop PH, Siegelaar SE, Stenvers DJ, Kalsbeek A. Circadian desynchrony and glucose metabolism. J Pineal Res 2024; 76:e12956. [PMID: 38695262 DOI: 10.1111/jpi.12956] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Esther M Speksnijder
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Sarah E Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Buller S, Blouet C. Brain access of incretins and incretin receptor agonists to their central targets relevant for appetite suppression and weight loss. Am J Physiol Endocrinol Metab 2024; 326:E472-E480. [PMID: 38381398 PMCID: PMC11193531 DOI: 10.1152/ajpendo.00250.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/05/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
New incretin-based pharmacotherapies provide efficient and safe therapeutic options to curb appetite and produce weight loss in patients with obesity. Delivered systemically, these molecules produce pleiotropic metabolic benefits, but the target sites mediating their weight-suppressive action are located within the brain. Recent research has increased our understanding of the neural circuits and behavioral mechanisms involved in the anorectic and metabolic consequences of glucagon-like peptide 1 (GLP-1)-based weight loss strategies, yet little is known about how these drugs access their functional targets in the brain to produce sustained weight loss. The majority of brain cells expressing incretin receptors are located behind the blood-brain barrier, shielded from the circulation and fluctuations in the availability of peripheral signals, which is a major challenge for the development of CNS-targeted therapeutic peptides. GLP-1 receptor (GLP-1R) agonists with increased half-life and enhanced therapeutic benefit do not cross the blood-brain barrier, yet they manage to access discrete brain sites relevant to the regulation of energy homeostasis. In this review, we give a brief overview of the different routes for peptide hormones to access the brain. We then examine the evidence informing the routes employed by incretins and incretin receptor agonists to access brain targets relevant for their appetite and weight-suppressive actions. We highlight existing controversies and suggest future directions to further establish the functionally relevant access routes for GLP-1-based weight loss compounds, which might guide the development and selection of the future generation of incretin receptor polypharmacologies.
Collapse
Affiliation(s)
- Sophie Buller
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Clemence Blouet
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Abstract
The brain is a complex organ, fundamentally changing across the day to perform basic functions like sleep, thought, and regulating whole-body physiology. This requires a complex symphony of nutrients, hormones, ions, neurotransmitters and more to be properly distributed across the brain to maintain homeostasis throughout 24 hours. These solutes are distributed both by the blood and by cerebrospinal fluid. Cerebrospinal fluid contents are distinct from the general circulation because of regulation at brain barriers including the choroid plexus, glymphatic system, and blood-brain barrier. In this review, we discuss the overlapping circadian (≈24-hour) rhythms in brain fluid biology and at the brain barriers. Our goal is for the reader to gain both a fundamental understanding of brain barriers alongside an understanding of the interactions between these fluids and the circadian timing system. Ultimately, this review will provide new insight into how alterations in these finely tuned clocks may lead to pathology.
Collapse
Affiliation(s)
- Velia S Vizcarra
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
11
|
Romo-Nava F, Awosika OO, Basu I, Blom TJ, Welge J, Datta A, Guillen A, Guerdjikova AI, Fleck DE, Georgiev G, Mori N, Patino LR, DelBello MP, McNamara RK, Buijs RM, Frye MA, McElroy SL. Effect of non-invasive spinal cord stimulation in unmedicated adults with major depressive disorder: a pilot randomized controlled trial and induced current flow pattern. Mol Psychiatry 2024; 29:580-589. [PMID: 38123726 PMCID: PMC11153138 DOI: 10.1038/s41380-023-02349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Converging theoretical frameworks suggest a role and a therapeutic potential for spinal interoceptive pathways in major depressive disorder (MDD). Here, we aimed to evaluate the antidepressant effects and tolerability of transcutaneous spinal direct current stimulation (tsDCS) in MDD. This was a double-blind, randomized, sham-controlled, parallel group, pilot clinical trial in unmedicated adults with moderate MDD. Twenty participants were randomly allocated (1:1 ratio) to receive "active" 2.5 mA or "sham" anodal tsDCS sessions with a thoracic (anode; T10)/right shoulder (cathode) electrode montage 3 times/week for 8 weeks. Change in depression severity (MADRS) scores (prespecified primary outcome) and secondary clinical outcomes were analyzed with ANOVA models. An E-Field model was generated using the active tsDCS parameters. Compared to sham (n = 9), the active tsDCS group (n = 10) showed a greater baseline to endpoint decrease in MADRS score with a large effect size (-14.6 ± 2.5 vs. -21.7 ± 2.3, p = 0.040, d = 0.86). Additionally, compared to sham, active tsDCS induced a greater decrease in MADRS "reported sadness" item (-1.8 ± 0.4 vs. -3.2 ± 0.4, p = 0.012), and a greater cumulative decrease in pre/post tsDCS session diastolic blood pressure change from baseline to endpoint (group difference: 7.9 ± 3.7 mmHg, p = 0.039). Statistical trends in the same direction were observed for MADRS "pessimistic thoughts" item and week-8 CGI-I scores. No group differences were observed in adverse events (AEs) and no serious AEs occurred. The current flow simulation showed electric field at strength within the neuromodulation range (max. ~0.45 V/m) reaching the thoracic spinal gray matter. The results from this pilot study suggest that tsDCS is feasible, well-tolerated, and shows therapeutic potential in MDD. This work also provides the initial framework for the cautious exploration of non-invasive spinal cord neuromodulation in the context of mental health research and therapeutics. The underlying mechanisms warrant further investigation. Clinicaltrials.gov registration: NCT03433339 URL: https://clinicaltrials.gov/ct2/show/NCT03433339 .
Collapse
Affiliation(s)
- Francisco Romo-Nava
- Lindner Center of HOPE, Mason, OH, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Oluwole O Awosika
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ishita Basu
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas J Blom
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc, New York, NY, USA
| | | | - Anna I Guerdjikova
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Nicole Mori
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Luis R Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ruud M Buijs
- Departamento de Fisiología Celular y Biología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Susan L McElroy
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
12
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Wang Z, Cui S, Zhang T, Wang W, Li J, Chen YQ, Zhu SL. Akkermansia muciniphila supplementation improves glucose tolerance in intestinal Ffar4 knockout mice during the daily light to dark transition. mSystems 2023; 8:e0057323. [PMID: 37787527 PMCID: PMC10654094 DOI: 10.1128/msystems.00573-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Alterations in the intestinal environment are associated with various diseases, and FFAR4 is abundantly enriched in the intestine, where it has been shown to have the ability to regulate intestinal hormone secretion and intestinal microbiota; here, we confirmed previous reports. Meanwhile, we found that intestinal FFAR4 regulates glucagon-like peptide 1 secretion by decreasing Akkermansia muciniphila abundance and show that such change is associated with the level of glucose utilization at ZT12 in mice. Intestinal FFAR4 deficiency leads to severely impaired glucose tolerance at the ZT12 moment in mice, and Akkermansia muciniphila supplementation ameliorates the abnormal glucose utilization at the ZT12 moment caused by FFAR4 deficiency, which is very similar to the dawn phenomenon in diabetic patients. Collectively, our data suggest that intestinal Ffar4 deteriorates glucose tolerance at the daily light to dark transition by affecting Akkermansia muciniphila.
Collapse
Affiliation(s)
- Zhe Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - TingTing Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JiaYu Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Y. Q. Chen
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sheng long Zhu
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Hurtado-Alvarado G, Soto-Tinoco E, Santacruz-Martínez E, Prager-Khoutorsky M, Escobar C, Buijs RM. Suprachiasmatic nucleus promotes hyperglycemia induced by sleep delay. Curr Biol 2023; 33:4343-4352.e4. [PMID: 37725978 DOI: 10.1016/j.cub.2023.08.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
Short sleep is linked to disturbances in glucose metabolism and may induce a prediabetic condition. The biological clock in the suprachiasmatic nucleus (SCN) regulates the glucose rhythm in the circulation and the sleep-wake cycle. SCN vasopressin neurons (SCNVP) control daily glycemia by regulating the entrance of glucose into the arcuate nucleus (ARC). Thus, we hypothesized that sleep delay may influence SCN neuronal activity. We, therefore, investigated the role of SCNVP when sleep is disrupted by forced locomotor activity. After 2 h of sleep delay, rats exhibited decreased SCNVP neuronal activity, a decrease in the glucose transporter GLUT1 expression in tanycytes lining the third ventricle, lowered glucose entrance into the ARC, and developed hyperglycemia. The association between reduced SCNVP neuronal activity and hyperglycemia in sleep-delayed rats was evidenced by injecting intracerebroventricular vasopressin; this increased GLUT1 immunoreactivity in tanycytes, thus promoting normoglycemia. Following sleep recovery, glucose levels decreased, whereas SCNVP neuronal activity increased. These results imply that sleep-delay-induced changes in SCNVP activity lead to glycemic impairment, inferring that disruption of biological clock function might represent a critical step in developing type 2 diabetes.
Collapse
Affiliation(s)
- Gabriela Hurtado-Alvarado
- Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mario de la Cueva Circuit, 04510 Mexico City, Mexico
| | - Eva Soto-Tinoco
- Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mario de la Cueva Circuit, 04510 Mexico City, Mexico
| | - Esteban Santacruz-Martínez
- Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mario de la Cueva Circuit, 04510 Mexico City, Mexico
| | - Masha Prager-Khoutorsky
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC H3G 1Y6, Canada
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Ruud M Buijs
- Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mario de la Cueva Circuit, 04510 Mexico City, Mexico.
| |
Collapse
|
15
|
Jiménez-Correa U, Bonilla N, Álvarez-García HB, Méndez-Alonzo G, Barrera-Medina A, Santana-Miranda R, Poblano A, Marín-Agudelo HA. Delayed sleep phase disorder during the COVID-19 pandemic and its health implications. CNS Spectr 2023; 28:581-586. [PMID: 36852604 DOI: 10.1017/s109285292300007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Circadian rhythm sleep disorders are alterations that are characterized by a shift in the sleep-wake cycle relative to day and night, such as the delayed sleep phase disorder (DSPD), which is a retard of at least 2 hours in the sleep start. Typically, the patient falls asleep after 2 a.m. and wakes up after 10 a.m. and with symptom of sleep onset insomnia. The prevalence of DSPD in young adults is 0.48%, increasing to 3.3% in adolescents. Interestingly, patients with COVID-19 infection report anxiety due to the intensive care unit lockdown and constant exposure to bright light. In addition, post-COVID patients have an increased risk of developing DSPD. For example, in adolescent post-COVID patients, the prevalence of DSPD increases to 63.3%. Patients with DSPD also have alterations in metabolic health, poor school performance, cognitive impairment, and a higher risk of developing other diseases. The objective of the present review is therefore to describe the characteristics of DSPD during the COVID-19 pandemic and to outline its possible implications for physical health (eg, metabolism) and mental health (eg, anxiety or depression).
Collapse
Affiliation(s)
- Ulises Jiménez-Correa
- Clinic of Sleep Disorders, National University of Mexico (UNAM), Mexico City, México
| | - Naylea Bonilla
- Clinic of Sleep Disorders, National University of Mexico (UNAM), Mexico City, México
| | | | - Gerardo Méndez-Alonzo
- Clinic of Sleep Disorders, National University of Mexico (UNAM), Mexico City, México
- Department of Neurology, MIG Hospital, Mexico City, México
| | - Andrés Barrera-Medina
- Clinic of Sleep Disorders, National University of Mexico (UNAM), Mexico City, México
| | | | - Adrián Poblano
- Clinic of Sleep Disorders, National University of Mexico (UNAM), Mexico City, México
- Laboratory of Cognitive Neurophysiology, National Institute of Rehabilitation, Mexico City, México
| | | |
Collapse
|
16
|
Mineiro R, Albuquerque T, Neves AR, Santos CRA, Costa D, Quintela T. The Role of Biological Rhythms in New Drug Formulations to Cross the Brain Barriers. Int J Mol Sci 2023; 24:12541. [PMID: 37628722 PMCID: PMC10454916 DOI: 10.3390/ijms241612541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
For brain protection, the blood-brain barrier and blood-cerebrospinal fluid barrier limit the traffic of molecules between blood and brain tissue and between blood and cerebrospinal fluid, respectively. Besides their protective function, brain barriers also limit the passage of therapeutic drugs to the brain, which constitutes a great challenge for the development of therapeutic strategies for brain disorders. This problem has led to the emergence of novel strategies to treat neurological disorders, like the development of nanoformulations to deliver therapeutic agents to the brain. Recently, functional molecular clocks have been identified in the blood-brain barrier and in the blood-cerebrospinal fluid barrier. In fact, circadian rhythms in physiological functions related to drug disposition were also described in brain barriers. This opens the possibility for chronobiological approaches that aim to use time to improve drug efficacy and safety. The conjugation of nanoformulations with chronobiology for neurological disorders is still unexplored. Facing this, here, we reviewed the circadian rhythms in brain barriers, the nanoformulations studied to deliver drugs to the brain, and the nanoformulations with the potential to be conjugated with a chronobiological approach to therapeutic strategies for the brain.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Raquel Neves
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília R. A. Santos
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- UDI-IPG—Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
17
|
Li X, Sun Z. Circadian clock and temporal meal pattern. MEDICAL REVIEW (2021) 2023; 3:85-101. [PMID: 37724110 PMCID: PMC10471112 DOI: 10.1515/mr-2022-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 09/20/2023]
Abstract
The central circadian clock in the brain controls the time-of-the-day variations in acute meal responses, with a low glycemic response but a high satiety/thermogenic response to meals consumed at waking compared to other time points. Consistently, studies show that consuming a significant proportion of calories, particularly carbohydrates, in breakfast is beneficial for the chronic management of obesity and its associated metabolic syndrome, compared to consuming identical meals at dinner. Conversely, breakfast skipping or/and late dinner can have unfavorable metabolic outcomes. It remains controversial how meal frequency affects metabolic health. In contrast, irregular meals, especially irregular breakfasts, show consistent adverse metabolic consequences. Time-restricted feeding (TRF), with all calories consumed within less than 12-h per day, can improve metabolism and extend lifespan. A major component of TRF in humans is caloric restriction, which contributes significantly to the beneficial effects of TRF in humans. By comparison, TRF effects in rodents can be independent of caloric restriction and show day/night phase specificity. TRF could alleviate metabolic abnormalities due to circadian disruption, but its effects appear independent of the circadian clock in rodents. Understanding neuroendocrine mechanisms underlying clock-mediated metabolic regulation will shed light on the metabolic effects of temporal meal patterns.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Sun
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Guzmán-Ruiz MA, Guerrero-Vargas NN, Lagunes-Cruz A, González-González S, García-Aviles JE, Hurtado-Alvarado G, Mendez-Hernández R, Chavarría-Krauser A, Morin JP, Arriaga-Avila V, Buijs RM, Guevara-Guzmán R. Circadian modulation of microglial physiological processes and immune responses. Glia 2023; 71:155-167. [PMID: 35971989 PMCID: PMC10087862 DOI: 10.1002/glia.24261] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022]
Abstract
Microglia is considered the central nervous system (CNS) resident macrophages that establish an innate immune response against pathogens and toxins. However, the recent studies have shown that microglial gene and protein expression follows a circadian pattern; several immune activation markers and clock genes are expressed rhythmically without the need for an immune stimulus. Furthermore, microglia responds to an immune challenge with different magnitudes depending on the time of the day. This review examines the circadian control of microglia function and the possible physiological implications. For example, we discuss that synaptic prune is performed in the cortex at a certain moment of the day. We also consider the implications of daily microglial function for maintaining biological rhythms like general activity, body temperature, and food intake. We conclude that the developmental stage, brain region, and pathological state are not the only factors to consider for the evaluation of microglial functions; instead, emerging evidence indicates that circadian time as an essential aspect for a better understanding of the role of microglia in CNS physiology.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Alejandra Lagunes-Cruz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Shellye González-González
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jesús Enrique García-Aviles
- Área de Neurociencias, Departamento de Biología de la Reproducción, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, México City, Mexico
| | | | - Rebeca Mendez-Hernández
- Instituto Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Anahí Chavarría-Krauser
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jean-Pascal Morin
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Virginia Arriaga-Avila
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Ruud M Buijs
- Instituto Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
19
|
Olejniczak I, Campbell B, Tsai YC, Tyagarajan SK, Albrecht U, Ripperger JA. Suprachiasmatic to paraventricular nuclei interaction generates normal food searching rhythms in mice. Front Physiol 2022; 13:909795. [PMID: 36277219 PMCID: PMC9582613 DOI: 10.3389/fphys.2022.909795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Searching for food follows a well-organized decision process in mammals to take up food only if necessary. Moreover, scavenging is preferred during their activity phase. Various time-dependent regulatory processes have been identified originating from the suprachiasmatic nuclei (SCN), which convert external light information into synchronizing output signals. However, a direct impact of the SCN on the timing of normal food searching has not yet been found. Here, we revisited the function of the SCN to affect when mice look for food. We found that this process was independent of light but modified by the palatability of the food source. Surprisingly, reducing the output from the SCN, in particular from the vasopressin releasing neurons, reduced the amount of scavenging during the early activity phase. The SCN appeared to transmit a signal to the paraventricular nuclei (PVN) via GABA receptor A1. Finally, the interaction of SCN and PVN was verified by retrograde transport-mediated complementation. None of the genetic manipulations affected the uptake of more palatable food. The data indicate that the PVN are sufficient to produce blunted food searching rhythms and are responsive to hedonistic feeding. Nevertheless, the search for normal food during the early activity phase is significantly enhanced by the SCN.
Collapse
Affiliation(s)
- Iwona Olejniczak
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Benjamin Campbell
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Yuan-Chen Tsai
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Urs Albrecht
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A. Ripperger
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Jürgen A. Ripperger,
| |
Collapse
|
20
|
Nampoothiri S, Nogueiras R, Schwaninger M, Prevot V. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat Metab 2022; 4:813-825. [PMID: 35879459 PMCID: PMC7613794 DOI: 10.1038/s42255-022-00610-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
Communication between the periphery and the brain is key for maintaining energy homeostasis. To do so, peripheral signals from the circulation reach the brain via the circumventricular organs (CVOs), which are characterized by fenestrated vessels lacking the protective blood-brain barrier (BBB). Glial cells, by virtue of their plasticity and their ideal location at the interface of blood vessels and neurons, participate in the integration and transmission of peripheral information to neuronal networks in the brain for the neuroendocrine control of whole-body metabolism. Metabolic diseases, such as obesity and type 2 diabetes, can disrupt the brain-to-periphery communication mediated by glial cells, highlighting the relevance of these cell types in the pathophysiology of such complications. An improved understanding of how glial cells integrate and respond to metabolic and humoral signals has become a priority for the discovery of promising therapeutic strategies to treat metabolic disorders. This Review highlights the role of glial cells in the exchange of metabolic signals between the periphery and the brain that are relevant for the regulation of whole-body energy homeostasis.
Collapse
Affiliation(s)
- Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Ruben Nogueiras
- Universidade de Santiago de Compostela-Instituto de Investigation Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrition, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
21
|
Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends Neurosci 2022; 45:471-482. [PMID: 35466006 PMCID: PMC9117496 DOI: 10.1016/j.tins.2022.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 01/28/2023]
Abstract
The circadian clock provides cue-independent anticipatory signals for diurnal rhythms of baseline glucose levels and glucose tolerance. The central circadian clock is located in the hypothalamic suprachiasmatic nucleus (SCN), which comprises primarily GABAergic neurons. The SCN clock regulates physiological diurnal rhythms of endogenous glucose production (EGP) and hepatic insulin sensitivity through neurohumoral mechanisms. Disruption of the molecular circadian clock is associated with the extended dawn phenomenon (DP) in type 2 diabetes (T2D), referring to hyperglycemia in the early morning without nocturnal hypoglycemia. The DP affects nearly half of patients with diabetes, with poorly defined etiology and a lack of targeted therapy. Here we review neural and secreted factors in physiological diurnal rhythms of glucose metabolism and their pathological implications for the DP.
Collapse
|
22
|
Imbernon M, Dehouck B, Prevot V. Glycemic control: Tanycytes march to the beat of the suprachiasmatic drummer. Curr Biol 2022; 32:R173-R176. [DOI: 10.1016/j.cub.2022.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|