1
|
Nikonorova IA, desRanleau E, Jacobs KC, Saul J, Walsh JD, Wang J, Barr MM. Polycystins recruit cargo to distinct ciliary extracellular vesicle subtypes in C. elegans. Nat Commun 2025; 16:2899. [PMID: 40180912 PMCID: PMC11968823 DOI: 10.1038/s41467-025-57512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Therapeutic use of tiny extracellular vesicles (EVs) requires understanding cargo loading mechanisms. Here, we use a modular proximity labeling approach to identify the cargo of ciliary EVs associated with the transient receptor potential channel polycystin-2 PKD-2 of C. elegans. Polycystins are conserved ciliary proteins and cargo of EVs; dysfunction causes polycystic kidney disease in humans and mating deficits in C. elegans. We discover that polycystins localize with specific cargo on ciliary EVs: polycystin-associated channel-like protein PACL-1, dorsal and ventral polycystin-associated membrane C-type lectins PAMLs, and conserved tumor necrosis factor receptor-associated factor (TRAF) TRF-1 and TRF-2. Loading of these components to EVs relies on polycystin-1 LOV-1. Our modular EV-TurboID approach can be applied in both cell- and tissue-specific manners to define the composition of distinct EV subtypes, addressing a major challenge of the EV field.
Collapse
Affiliation(s)
- Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Elizabeth desRanleau
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Katherine C Jacobs
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jonathon D Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Lin B, Huang S, Li Z, Huang Q, Song H, Fang T, Liao J, Gheysen G, Zhuo K. Mitochondrial Protein MjEF-Tu is Secreted into Host Plants by Nematodes Eliciting Immune Signaling and Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412968. [PMID: 39888272 PMCID: PMC11923865 DOI: 10.1002/advs.202412968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Indexed: 02/01/2025]
Abstract
Little is known about plant-parasitic animal-derived pathogen-associated molecular pattern (PAMP)/ pattern-recognition receptor (PRR) pairs. Additionally, mitochondrial proteins have not previously been reported to be secreted into hosts by pathogens. Here, it is found that the Meloidogyne javanica elongation factor thermo unstable (EF-Tu) (MjEF-Tu) located in the nematode mitochondria is up-regulated and secreted into the host plant during nematode parasitism. MjEF-Tu interacts with the PRR Arabidopsis thaliana EF-Tu receptor (AtEFR), triggering the plant hallmark defence responses mediated by AtEFR. An 18-aa sequence (Nelf18) in the N terminus of the nematode EF-Tu contributes to the immunogenic activity. M. javanica water extract and mitochondrial extract also induce plant immunity sensed by AtEFR, owing to the presence of MjEF-Tu. In addition, Nelf18 enhances plant resistance to nematode, virus, and bacterial infections depending on AtEFR. These findings first demonstrate that mitochondrial proteins from pathogens can be secreted into hosts and function as a cross-kingdom signal and identified the first plant-parasitic animal-derived proteinaceous PAMP/PRR pair, providing novel insights into host-pathogen interactions.
Collapse
Affiliation(s)
- Borong Lin
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Shaozhen Huang
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Zhiwen Li
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Qiuling Huang
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Handa Song
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Tianyi Fang
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Jinling Liao
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | | | - Kan Zhuo
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
3
|
Bhunia PK, Raj V, Kasturi P. The abundance change of age-regulated secreted proteins affects lifespan of C. elegans. Mech Ageing Dev 2024; 222:112003. [PMID: 39505117 DOI: 10.1016/j.mad.2024.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Proteome integrity is vital for survival and failure to maintain it results in uncontrolled protein abundances, misfolding and aggregation which cause proteotoxicity. In multicellular organisms, proteotoxic stress is communicated among tissues to maintain proteome integrity for organismal stress resistance and survival. However, the nature of these signalling molecules and their regulation in extracellular space is largely unknown. Secreted proteins are induced in response to various stresses and aging, indicating their roles in inter-tissue communication. To study the fates of age-regulated proteins with potential localization to extracellular, we analysed publicly available age-related proteome data of C. elegans. We found that abundance of majority of the proteins with signal peptides (SP) increases with age, which might result in their supersaturation and subsequent aggregation. Intriguingly, these changes are differentially regulated in the lifespan mutants. A subset of these SP proteins is also found in the cargo of extracellular vesicles. Many of these proteins are novel and functionally uncharacterized. Reducing levels of a few extracellular proteins results in increasing lifespan. This suggests that uncontrolled levels of extracellular proteins might disturb proteostasis and limit the lifespan. Overall, our findings suggest that the age-induced secreted proteins might be the potential candidates to be considered as biomarkers or for mitigating age-related pathological conditions.
Collapse
Affiliation(s)
- Prasun Kumar Bhunia
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Vishwajeet Raj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Prasad Kasturi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India.
| |
Collapse
|
4
|
Blow F, Jeffrey K, Chow FWN, Nikonorova IA, Barr MM, Cook AG, Prevo B, Cheerambathur DK, Buck AH. SID-2 is a conserved extracellular vesicle protein that is not associated with environmental RNAi in parasitic nematodes. Open Biol 2024; 14:240190. [PMID: 39501794 PMCID: PMC11538922 DOI: 10.1098/rsob.240190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
In the free-living nematode Caenorhabditis elegans, the transmembrane protein SID-2 imports double-stranded RNA into intestinal cells to trigger systemic RNA interference (RNAi), allowing organisms to sense and respond to environmental cues such as the presence of pathogens. This process, known as environmental RNAi, has not been observed in the most closely related parasites that are also within clade V. Previous sequence-based searches failed to identify sid-2 orthologues in available clade V parasite genomes. In this study, we identified sid-2 orthologues in these parasites using genome synteny and protein structure-based comparison, following identification of a SID-2 orthologue in extracellular vesicles from the murine intestinal parasitic nematode Heligmosomoides bakeri. Expression of GFP-tagged H. bakeri SID-2 in C. elegans showed similar localization to the intestinal apical membrane as seen for GFP-tagged C. elegans SID-2, and further showed mobility in intestinal cells in vesicle-like structures. We tested the capacity of H. bakeri SID-2 to functionally complement environmental RNAi in a C. elegans SID-2 null mutant and show that H. bakeri SID-2 does not rescue the phenotype in this context. Our work identifies SID-2 as a highly abundant EV protein whose ancestral function may be unrelated to environmental RNAi, and rather highlights an association with extracellular vesicles in nematodes.
Collapse
Affiliation(s)
- Frances Blow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Kate Jeffrey
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey NJ 08854, USA
| | - Atlanta G Cook
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
5
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
6
|
Wang J, Barr MM, Wehman AM. Extracellular vesicles. Genetics 2024; 227:iyae088. [PMID: 38884207 PMCID: PMC11304975 DOI: 10.1093/genetics/iyae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Extracellular vesicles (EVs) encompass a diverse array of membrane-bound organelles released outside cells in response to developmental and physiological cell needs. EVs play important roles in remodeling the shape and content of differentiating cells and can rescue damaged cells from toxic or dysfunctional content. EVs can send signals and transfer metabolites between tissues and organisms to regulate development, respond to stress or tissue damage, or alter mating behaviors. While many EV functions have been uncovered by characterizing ex vivo EVs isolated from body fluids and cultured cells, research using the nematode Caenorhabditis elegans has provided insights into the in vivo functions, biogenesis, and uptake pathways. The C. elegans EV field has also developed methods to analyze endogenous EVs within the organismal context of development and adult physiology in free-living, behaving animals. In this review, we summarize major themes that have emerged for C. elegans EVs and their relevance to human health and disease. We also highlight the diversity of biogenesis mechanisms, locations, and functions of worm EVs and discuss open questions and unexplored topics tenable in C. elegans, given the nematode model is ideal for light and electron microscopy, genetic screens, genome engineering, and high-throughput omics.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
7
|
Shimizu T, Nomachi T, Matsumoto K, Hisamoto N. A cytidine deaminase regulates axon regeneration by modulating the functions of the Caenorhabditis elegans HGF/plasminogen family protein SVH-1. PLoS Genet 2024; 20:e1011367. [PMID: 39058749 PMCID: PMC11305532 DOI: 10.1371/journal.pgen.1011367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The pathway for axon regeneration in Caenorhabditis elegans is activated by SVH-1, a growth factor belonging to the HGF/plasminogen family. SVH-1 is a dual-function factor that acts as an HGF-like growth factor to promote axon regeneration and as a protease to regulate early development. It is important to understand how SVH-1 is converted from a protease to a growth factor for axon regeneration. In this study, we demonstrate that cytidine deaminase (CDD) SVH-17/CDD-2 plays a role in the functional conversion of SVH-1. We find that the codon exchange of His-755 to Tyr in the Asp-His-Ser catalytic triad of SVH-1 can suppress the cdd-2 defect in axon regeneration. Furthermore, the stem hairpin structure around the His-755 site in svh-1 mRNA is required for the activation of axon regeneration by SVH-1. These results suggest that CDD-2 promotes axon regeneration by transforming the function of SVH-1 from a protease to a growth factor through modification of svh-1 mRNA.
Collapse
Affiliation(s)
- Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Takafumi Nomachi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
8
|
Wang J, Saul J, Nikonorova IA, Cruz CN, Power KM, Nguyen KC, Hall DH, Barr MM. Ciliary intrinsic mechanisms regulate dynamic ciliary extracellular vesicle release from sensory neurons. Curr Biol 2024; 34:2756-2763.e2. [PMID: 38838665 PMCID: PMC11187650 DOI: 10.1016/j.cub.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Extracellular vesicles (EVs) are submicron membranous structures and key mediators of intercellular communication.1,2 Recent research has highlighted roles for cilia-derived EVs in signal transduction, underscoring their importance as bioactive extracellular organelles containing conserved ciliary signaling proteins.3,4 Members of the transient receptor potential (TRP) channel polycystin-2 (PKD-2) family are found in ciliary EVs of the green algae Chlamydomonas and the nematode Caenorhabditis elegans5,6 and in EVs in the mouse embryonic node and isolated from human urine.7,8 In C. elegans, PKD-2 is expressed in male-specific EV-releasing sensory neurons, which extend ciliary tips to ciliary pore and directly release EVs into the environment.6,9 Males release EVs in a mechanically stimulated manner, regulate EV cargo content in response to mating partners, and deposit PKD-2::GFP-labeled EVs on the vulval cuticle of hermaphrodites during mating.9,10 Combined, our findings suggest that ciliary EV release is a dynamic process. Herein, we identify mechanisms controlling dynamic EV shedding using time-lapse imaging. Cilia can sustain the release of PKD-2-labeled EVs for 2 h. This extended release doesn't require neuronal transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The kinesin-3 motor kinesin-like protein 6 (KLP-6) is necessary for initial and extended EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dynamic replenishment of PKD-2 at the ciliary tip is key to sustained EV release. Our study provides a comprehensive portrait of real-time ciliary EV release and mechanisms supporting cilia as proficient EV release platforms.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Carlos Nava Cruz
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Kaiden M Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ken C Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Nikonorova IA, desRanleau E, Jacobs KC, Saul J, Walsh JD, Wang J, Barr MM. Polycystins recruit cargo to distinct ciliary extracellular vesicle subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.588758. [PMID: 38659811 PMCID: PMC11042387 DOI: 10.1101/2024.04.17.588758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Therapeutic use of tiny extracellular vesicles (EVs) requires understanding cargo loading mechanisms. Here, we used a modular proximity label approach to identify EV cargo associated with the transient potential channel (TRP) polycystin PKD-2 of C. elegans. Polycystins are conserved receptor-TRP channel proteins affecting cilium function; dysfunction causes polycystic kidney disease in humans and mating deficits in C. elegans. Polycystin-2 EV localization is conserved from algae to humans, hinting at an ancient and unknown function. We discovered that polycystins associate with and direct specific cargo to EVs: channel-like PACL-1, dorsal and ventral membrane C-type lectins PAMLs, and conserved tumor necrosis-associated factor (TRAF) signaling adaptors TRF-1 and TRF-2. Loading of these components relied on polycystin-1 LOV-1. Our modular EV-TurboID approach can be applied in both cell- and tissue-specific manners to define the composition of distinct EV subtypes, addressing a major challenge of the EV field.
Collapse
Affiliation(s)
- Inna A. Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Elizabeth desRanleau
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Katherine C. Jacobs
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Joshua Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Jonathon D. Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
- Lead contact
| |
Collapse
|
10
|
Luo J, Bainbridge C, Miller RM, Barrios A, Portman DS. C. elegans males optimize mate-preference decisions via sex-specific responses to multimodal sensory cues. Curr Biol 2024; 34:1309-1323.e4. [PMID: 38471505 PMCID: PMC10965367 DOI: 10.1016/j.cub.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
For sexually reproducing animals, selecting optimal mates is important for maximizing reproductive fitness. In the nematode C. elegans, populations reproduce largely by hermaphrodite self-fertilization, but the cross-fertilization of hermaphrodites by males also occurs. Males' ability to recognize hermaphrodites involves several sensory cues, but an integrated view of the ways males use these cues in their native context to assess characteristics of potential mates has been elusive. Here, we examine the mate-preference behavior of C. elegans males evoked by natively produced cues. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside sex pheromones, surface-associated cues, and other signals to assess multiple features of potential mates. Specific aspects of mate preference are communicated by distinct signals: developmental stage and sex are signaled by ascaroside pheromones and surface cues, whereas the presence of a self-sperm-depleted hermaphrodite is likely signaled by VSPs. Furthermore, males prefer to interact with virgin over mated, and well-fed over food-deprived, hermaphrodites; these preferences are likely adaptive and are also mediated by ascarosides and other cues. Sex-typical mate-preference behavior depends on the sexual state of the nervous system, such that pan-neuronal genetic masculinization in hermaphrodites generates male-typical social behavior. We also identify an unexpected role for the sex-shared ASH sensory neurons in male attraction to ascaroside sex pheromones. Our findings lead to an integrated view in which the distinct physical properties of various mate-preference cues guide a flexible, stepwise behavioral program by which males assess multiple features of potential mates to optimize mate preference.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Chance Bainbridge
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Renee M Miller
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14620, USA
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Moran AL, Louzao-Martinez L, Norris DP, Peters DJM, Blacque OE. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 2024; 20:83-100. [PMID: 37872350 DOI: 10.1038/s41581-023-00773-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Collapse
Affiliation(s)
- Ailis L Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Laura Louzao-Martinez
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 1157] [Impact Index Per Article: 1157.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
13
|
Jiang WI, De Belly H, Wang B, Wong A, Kim M, Oh F, DeGeorge J, Huang X, Guang S, Weiner OD, Ma DK. Early-life stress triggers long-lasting organismal resilience and longevity via tetraspanin. SCIENCE ADVANCES 2024; 10:eadj3880. [PMID: 38266092 PMCID: PMC10807809 DOI: 10.1126/sciadv.adj3880] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Early-life stress experiences can produce lasting impacts on organismal adaptation and fitness. How transient stress elicits memory-like physiological effects is largely unknown. Here, we show that early-life thermal stress strongly up-regulates tsp-1, a gene encoding the conserved transmembrane tetraspanin in C. elegans. TSP-1 forms prominent multimers and stable web-like structures critical for membrane barrier functions in adults and during aging. Increased TSP-1 abundance persists even after transient early-life heat stress. Such regulation requires CBP-1, a histone acetyltransferase that facilitates initial tsp-1 transcription. Tetraspanin webs form regular membrane structures and mediate resilience-promoting effects of early-life thermal stress. Gain-of-function TSP-1 confers marked C. elegans longevity extension and thermal resilience in human cells. Together, our results reveal a cellular mechanism by which early-life thermal stress produces long-lasting memory-like impact on organismal resilience and longevity.
Collapse
Affiliation(s)
- Wei I. Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew Wong
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Minseo Kim
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Fiona Oh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jason DeGeorge
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Xinya Huang
- The USTC RNA Institute, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Shouhong Guang
- The USTC RNA Institute, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
14
|
Wu J, Yang OJ, Soderblom EJ, Yan D. Heat Shock Proteins Function as Signaling Molecules to Mediate Neuron-Glia Communication During Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576052. [PMID: 38293019 PMCID: PMC10827141 DOI: 10.1101/2024.01.18.576052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The nervous system is primarily composed of neurons and glia, and the communication between them plays profound roles in regulating the development and function of the brain. Neuron-glia signal transduction is known to be mediated by secreted or juxtacrine signals through ligand-receptor interactions on the cell membrane. Here, we report a novel mechanism for neuron-glia signal transduction, wherein neurons transmit proteins to glia through extracellular vesicles, activating glial signaling pathways. We find that in the amphid sensory organ of Caenorhabditis elegans, different sensory neurons exhibit varying aging rates. This discrepancy in aging is governed by the crosstalk between neurons and glia. We demonstrate that early-aged neurons can transmit heat shock proteins (HSP) to glia via extracellular vesicles. These neuronal HSPs activate the IRE1-XBP1 pathway, further increasing their expression in glia, forming a positive feedback loop. Ultimately, the activation of the IRE1-XBP-1 pathway leads to the transcriptional regulation of chondroitin synthases to protect glia-embedded neurons from aging-associated functional decline. Therefore, our studies unveil a novel mechanism for neuron-glia communication in the nervous system and provide new insights into our understanding of brain aging.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Olivia Jiaming Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- East Chapel Hill High School, Chapel Hill, NC 27514, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University Medical School, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell biology, Department of Neurobiology, Regeneration next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
15
|
Zhao H, Li Q, Zhou J. Ciliary ectosomes: critical microvesicle packets transmitted from the cell tower. Sci Bull (Beijing) 2023; 68:2674-2677. [PMID: 37833188 DOI: 10.1016/j.scib.2023.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
Wang J, Saul J, Nikonorova IA, Cruz CN, Power KM, Nguyen KC, Hall DH, Barr MM. Ciliary intrinsic mechanisms regulate dynamic ciliary extracellular vesicle release from sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565151. [PMID: 37961114 PMCID: PMC10635059 DOI: 10.1101/2023.11.01.565151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cilia-derived extracellular vesicles (EVs) contain signaling proteins and act in intercellular communication. Polycystin-2 (PKD-2), a transient receptor potential channel, is a conserved ciliary EVs cargo. Caenorhabditis elegans serves as a model for studying ciliary EV biogenesis and function. C. elegans males release EVs in a mechanically-induced manner and deposit PKD-2-labeled EVs onto the hermaphrodite vulva during mating, suggesting an active release process. Here, we study the dynamics of ciliary EV release using time-lapse imaging and find that cilia can sustain the release of PKD-2-labeled EVs for a two-hour duration. Intriguingly, this extended release doesn't require neuronal synaptic transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The ciliary kinesin-3 motor KLP-6 is necessary for both initial and extended ciliary EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dihydroceramide desaturase DEGS1/2 ortholog TTM-5 is highly expressed in the EV-releasing sensory neurons, localizes to cilia, and is required for sustained but not initial ciliary EV release, implicating ceramide in ciliary ectocytosis. The study offers a comprehensive portrait of real-time ciliary EV release, and mechanisms supporting cilia as proficient EV release platforms.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Inna A. Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Carlos Nava Cruz
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Kaiden M. Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ken C. Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Dong W, Liu Y, Hou J, Zhang J, Xu J, Yang K, Zhu L, Lin D. Nematodes Degrade Extracellular Antibiotic Resistance Genes by Secreting DNase II Encoded by the nuc-1 Gene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12042-12052. [PMID: 37523858 DOI: 10.1021/acs.est.3c03829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
This study investigated the degradation performance and mechanism of extracellular antibiotic resistance genes (eARGs) by nematodes using batch degradation experiments, mutant strain validation, and phylogenetic tree construction. Caenorhabditis elegans, a representative nematode, effectively degraded approximately 99.999% of eARGs (tetM and kan) in 84 h and completely deactivated them within a few hours. Deoxyribonuclease (DNase) II encoded by nuc-1 in the excretory and secretory products of nematodes was the primary mechanism. A neighbor-joining phylogenetic tree indicated the widespread presence of homologs of the NUC-1 protein in other nematodes, such as Caenorhabditis remanei and Caenorhabditis brenneri, whose capabilities of degrading eARGs were then experimentally confirmed. C. elegans remained effective in degrading eARGs under the effects of natural organic matter (5, 10, and 20 mg/L, 5.26-6.22 log degradation), cation (2.0 mM Mg2+ and 2.5 mM Ca2+, 5.02-5.04 log degradation), temperature conditions (1, 20, and 30 °C, 1.21-5.26 log degradation), and in surface water and wastewater samples (4.78 and 3.23 log degradation, respectively). These findings highlight the pervasive but neglected role of nematodes in the natural decay of eARGs and provide novel approaches for antimicrobial resistance mitigation biotechnology by introducing nematodes to wastewater, sludge, and biosolids.
Collapse
Affiliation(s)
- Wenhua Dong
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
19
|
Jiang C, Jiang Z, Sha G, Wang D, Tang D. Small extracellular vesicle-mediated metabolic reprogramming: from tumors to pre-metastatic niche formation. Cell Commun Signal 2023; 21:116. [PMID: 37208722 PMCID: PMC10199549 DOI: 10.1186/s12964-023-01136-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Metastasis, the spread of a tumor or cancer from the primary site of the body to a secondary site, is a multi-step process in cancer progression, accounting for various obstacles in cancer treatment and most cancer-related deaths. Metabolic reprogramming refers to adaptive metabolic changes that occur in cancer cells in the tumor microenvironment (TME) to enhance their survival ability and metastatic potential. Stromal cell metabolism also changes to stimulate tumor proliferation and metastasis. Metabolic adaptations of tumor and non-tumor cells exist not only in the TME but also in the pre-metastatic niche (PMN), a remote TME conducive for tumor metastasis. As a novel mediator in cell-to-cell communication, small extracellular vesicles (sEVs), which have a diameter of 30-150 nm, reprogram metabolism in stromal and cancer cells within the TME by transferring bioactive substances including proteins, mRNAs and miRNAs (microRNAs). sEVs can be delivered from the primary TME to PMN, affecting PMN formation in stroma rewriting, angiogenesis, immunological suppression and matrix cell metabolism by mediating metabolic reprogramming. Herein, we review the functions of sEVs in cancer cells and the TME, how sEVs facilitate PMN establishment to trigger metastasis via metabolic reprogramming, and the prospective applications of sEVs in tumor diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Chuwen Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001 Jiangsu Province China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001 Jiangsu Province China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, 225001 Jiangsu Province China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 China
| |
Collapse
|
20
|
Cable J, Witwer KW, Coffey RJ, Milosavljevic A, von Lersner AK, Jimenez L, Pucci F, Barr MM, Dekker N, Barman B, Humphrys D, Williams J, de Palma M, Guo W, Bastos N, Hill AF, Levy E, Hantak MP, Crewe C, Aikawa E, Adamczyk AM, Zanotto TM, Ostrowski M, Arab T, Rabe DC, Sheikh A, da Silva DR, Jones JC, Okeoma C, Gaborski T, Zhang Q, Gololobova O. Exosomes, microvesicles, and other extracellular vesicles-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1523:24-37. [PMID: 36961472 PMCID: PMC10715677 DOI: 10.1111/nyas.14974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.g., they can be found in biofluids) and drug-delivery vehicles. On October 30-November 2, 2022, researchers in the EV field convened for the Keystone symposium "Exosomes, Microvesicles, and Other Extracellular Vesicles" to discuss developing standardized language and methodology, new data on the basic biology of EVs and potential clinical utility, as well as novel technologies to isolate and characterize EVs.
Collapse
Affiliation(s)
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics; Dan L Duncan Comprehensive Cancer Center; and Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA
| | | | - Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ferdinando Pucci
- Department of Otolaryngology-Head and Neck Surgery; Department of Cell, Developmental & Cancer Biology; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Niek Dekker
- Protein Sciences, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bahnisikha Barman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Justin Williams
- University of California, Berkeley, Berkeley, California, USA
| | - Michele de Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL); Agora Cancer Research Center; and Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nuno Bastos
- i3S Instituto de Investigação e Inovação em Saúde; IPATIMUP Institute of Molecular Pathology and Immunology; and ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Andrew F Hill
- Research Centre for Extracellular Vesicles; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University and Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry; Department of Biochemistry & Molecular Pharmacology; and NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael P Hantak
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
| | - Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Cell Biology, Washington University, St. Louis, Missouri, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine and Center for Excellence in Vascular Biology, Department of Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tamires M Zanotto
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matias Ostrowski
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tanina Arab
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel C Rabe
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Aadil Sheikh
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, Texas, USA
| | | | - Jennifer C Jones
- Translational Nanobiology Section, Laboratory of Pathology and Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chioma Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Thomas Gaborski
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Luo J, Barrios A, Portman DS. C. elegans males optimize mate-choice decisions via sex-specific responses to multimodal sensory cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.08.536021. [PMID: 37066192 PMCID: PMC10104232 DOI: 10.1101/2023.04.08.536021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
For sexually reproducing animals, selecting optimal mates is essential for maximizing reproductive fitness. Because the nematode C. elegans reproduces mostly by self-fertilization, little is known about its mate-choice behaviors. While several sensory cues have been implicated in males' ability to recognize hermaphrodites, achieving an integrated understanding of the ways males use these cues to assess relevant characteristics of potential mates has proven challenging. Here, we use a choice-based social-interaction assay to explore the ability of C. elegans males to make and optimize mate choices. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside pheromones, surface-bound chemical cues, and other signals to robustly assess a variety of features of potential mates. Specific aspects of mate choice are communicated by distinct signals: the presence of a sperm-depleted, receptive hermaphrodite is likely signaled by VSPs, while developmental stage and sex are redundantly specified by ascaroside pheromones and surface-associated cues. Ascarosides also signal nutritional information, allowing males to choose well-fed over starved mates, while both ascarosides and surface-associated cues cause males to prefer virgin over previously mated hermaphrodites. The male-specificity of these behavioral responses is determined by both male-specific neurons and the male state of sex-shared circuits, and we reveal an unexpected role for the sex-shared ASH sensory neurons in male attraction to endogenously produced hermaphrodite ascarosides. Together, our findings lead to an integrated view of the signaling and behavioral mechanisms by which males use diverse sensory cues to assess multiple features of potential mates and optimize mate choice.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S. Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| |
Collapse
|
22
|
Quesnelle DC, Huang C, Boudreau JR, Lam A, Paw J, Bendena WG, Chin-Sang ID. C. elegans vab-6 encodes a KIF3A kinesin and functions cell non-autonomously to regulate epidermal morphogenesis. Dev Biol 2023; 497:33-41. [PMID: 36893881 DOI: 10.1016/j.ydbio.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
Cells undergo strict regulation to develop their shape in a process called morphogenesis. Caenorhabditis elegans with mutations in the variable abnormal (vab) class of genes have been shown to display epidermal and neuronal morphological defects. While several vab genes have been well-characterized, the function of the vab-6 gene remains unknown. Here, we show that vab-6 is synonymous with a subunit of the kinesin-II heterotrimeric motor complex called klp-20/Kif3a, a motor well-understood to be involved in developing sensory cilia in the nervous system. We show that certain klp-20 alleles cause animals to develop a bumpy body phenotype that is variable but most severe in mutants containing single amino-acid substitutions in the catalytic head-domain sites of the protein. Surprisingly, animals carrying a klp-20 null allele do not show the bumpy epidermal phenotype suggesting genetic redundancy and only when mutant versions of the KLP-20 protein are present, the epidermal phenotype is observed. The bumpy epidermal phenotype was not observed in other kinesin-2 mutants, suggesting that KLP-20 is functioning independently from its role in intraflagellar transport (IFT) during ciliogenesis. Interestingly, despite having such a prominent epidermal phenotype, KLP-20 is not expressed in the epidermis, strongly suggesting a cell non-autonomous role in which it regulates epidermal morphogenesis.
Collapse
Affiliation(s)
| | - Cindy Huang
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Annie Lam
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Jadine Paw
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
23
|
Razzauti A, Lobo T, Laurent P. Cilia-Derived Extracellular Vesicles in Caenorhabditis Elegans: In Vivo Imaging and Quantification of Extracellular Vesicle Release and Capture. Methods Mol Biol 2023; 2668:277-299. [PMID: 37140803 DOI: 10.1007/978-1-0716-3203-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Caenorhabditis elegans is a microscopic model nematode characterized by body transparency and ease of genetic manipulation. Release of extracellular vesicles (EVs) is observed from different tissues; of particular interest are the EVs released by the cilia of sensory neurons. C. elegans ciliated sensory neurons produce EVs that are environmentally released and/or captured by neighboring glial cells. In this chapter, we describe a methodological approach to image the biogenesis, release, and capture of EVs by glial cells in anesthetized animals. This method will allow the experimenter to visualize and quantify the release of ciliary-derived EVs.
Collapse
Affiliation(s)
- Adrià Razzauti
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Teresa Lobo
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Bruxelles, Belgium.
| |
Collapse
|
24
|
Brewer KM, Brewer KK, Richardson NC, Berbari NF. Neuronal cilia in energy homeostasis. Front Cell Dev Biol 2022; 10:1082141. [PMID: 36568981 PMCID: PMC9773564 DOI: 10.3389/fcell.2022.1082141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
A subset of genetic disorders termed ciliopathies are associated with obesity. The mechanisms behind cilia dysfunction and altered energy homeostasis in these syndromes are complex and likely involve deficits in both development and adult homeostasis. Interestingly, several cilia-associated gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis, including their roles in centrally mediated food intake and peripheral tissues, many questions remain. Here, we briefly discuss syndromic ciliopathies and monogenic cilia signaling mutations associated with obesity. We then focus on potential ways neuronal cilia regulate energy homeostasis. We discuss the literature around cilia and leptin-melanocortin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We also discuss the different brain regions where cilia are implicated in energy homeostasis and the potential for cilia dysfunction in neural development to contribute to obesity. We close with a short discussion on the challenges and opportunities associated with studies looking at neuronal cilia and energy homeostasis. This review highlights how neuronal cilia-mediated signaling is critical for proper energy homeostasis.
Collapse
Affiliation(s)
- Kathryn M. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Katlyn K. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Nicholas C. Richardson
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
25
|
Clupper M, Gill R, Elsayyid M, Touroutine D, Caplan JL, Tanis JE. Kinesin-2 motors differentially impact biogenesis of extracellular vesicle subpopulations shed from sensory cilia. iScience 2022; 25:105262. [PMID: 36304122 PMCID: PMC9593189 DOI: 10.1016/j.isci.2022.105262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
Extracellular vesicles (EVs) are bioactive lipid-bilayer enclosed particles released from nearly all cells. One specialized site for EV shedding is the primary cilium. Here, we discover the conserved ion channel CLHM-1 as a ciliary EV cargo. Imaging of EVs released from sensory neuron cilia of Caenorhabditis elegans expressing fluorescently tagged CLHM-1 and TRP polycystin-2 channel PKD-2 shows enrichment of these cargoes in distinct EV subpopulations that are differentially shed in response to mating partner availability. PKD-2 alone is present in EVs shed from the cilium distal tip, whereas CLHM-1 EVs bud from a secondary site(s), including the ciliary base. Heterotrimeric and homodimeric kinesin-2 motors have discrete impacts on PKD-2 and CLHM-1 colocalization in both cilia and EVs. Total loss of kinesin-2 activity decreases shedding of PKD-2 but not CLHM-1 EVs. Our data demonstrate that anterograde intraflagellar transport is required for selective enrichment of protein cargoes into heterogeneous EVs with different signaling potentials.
Collapse
Affiliation(s)
- Michael Clupper
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Rachael Gill
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Malek Elsayyid
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Denis Touroutine
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jeffrey L. Caplan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica E. Tanis
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
26
|
Li Z, He Q, Peng J, Yan Y, Fu C. Identification of Downregulated Exosome-Associated Gene ENPP1 as a Novel Lipid Metabolism and Immune-Associated Biomarker for Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:4834791. [PMID: 36199794 PMCID: PMC9529392 DOI: 10.1155/2022/4834791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Exosome plays an important role in the occurrence and development of tumors, such as hepatocellular carcinoma (LIHC). However, the functions and mechanisms of exosome-associated molecules in LIHC are still underexplored. Here, we investigated the role of the exosome-related gene ENPP1 in LIHC. Comprehensive bioinformatics from multiple databases revealed that ENPP1 was significantly downregulated in LIHC tissues. The patients with downregulated ENPP1 displayed a poor prognosis. Immunohistochemistry (IHC) was used to further confirm the downregulated ENPP1 in LIHC tissues. In addition, the coexpression network of ENPP1 was also explored to understand its roles in the underlying signaling pathways, including fatty acid degradation and the PPAR signaling pathway. Simultaneously, GSEA analysis indicated the potential roles of ENPP1 in the lipid metabolism-associated signaling pathways in the pathogenesis of LIHC, including fatty acid metabolism, fatty acid synthesis, and so on. Finally, immunological analysis indicated that ENPP1 might also be involved in multiple immune-related features, including immunoinhibitors, immunostimulators, and chemokines. Taken together, these findings could enhance our understanding of ENPP1 in LIHC pathogenesis and immune response and provide a new target for ENPP1-related immunotherapy in clinical treatment.
Collapse
Affiliation(s)
- Zhilan. Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qingchun. He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu. Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang. Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Chencheng. Fu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| |
Collapse
|