1
|
Allen AE, Hahn J, Richardson R, Pantiru A, Mouland J, Babu A, Baño-Otalora B, Monavarfeshani A, Yan W, Williams C, Wynne J, Rodgers J, Milosavljevic N, Orlowska-Feuer P, Storchi R, Sanes JR, Shekhar K, Lucas RJ. Altered proportions of retinal cell types and distinct visual codes in rodents occupying divergent ecological niches. Curr Biol 2025; 35:1446-1458.e5. [PMID: 40043699 DOI: 10.1016/j.cub.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 02/07/2025] [Indexed: 04/10/2025]
Abstract
Vertebrate retinas share a basic blueprint comprising 5 neuronal classes arranged according to a common wiring diagram. Yet, vision is aligned with species differences in behavior and ecology, raising the question of how evolution acts on this circuit to adjust its computational characteristics. We address that problem by comparing the thalamic visual code and retinal cell composition in closely related species occupying different niches: Rhabdomys pumilio, which are day-active murid rodents, and nocturnal laboratory mice (Mus musculus). Using high-density electrophysiological recordings, we compare visual responses at both single-unit and population levels in the thalamus of these two species. We find that Rhabdomys achieves a higher spatiotemporal resolution visual code through the selective expansion of information channels characterized by non-linear spatiotemporal summation. Comparative analysis of single-cell transcriptomic atlases reveals that this difference originates with the increased relative abundance of retinal bipolar and ganglion cell types supporting OFF and ON-OFF responses. These findings demonstrate that evolution may drive changes in neural computation by adjusting the proportions of shared cell types rather than inventing new types and show the power of matching high-density physiological recordings with transcriptomic cell atlases to study evolution in the brain.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rose Richardson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andreea Pantiru
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Josh Mouland
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Aadhithyan Babu
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Beatriz Baño-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Williams
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan Wynne
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Rodgers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Patrycja Orlowska-Feuer
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert J Lucas
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
2
|
Watanabe M, Yamada T, Koike C, Takahashi M, Tachibana M, Mandai M. Transplantation of genome-edited retinal organoids restores some fundamental physiological functions coordinated with severely degenerated host retinas. Stem Cell Reports 2025; 20:102393. [PMID: 39824188 PMCID: PMC11864131 DOI: 10.1016/j.stemcr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025] Open
Abstract
We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1-/- ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays. Notably, retinal ganglion cells (RGCs) in TP-rd1 retinas acquired light sensitivity comparable to that of WT retinas. Furthermore, RGCs in TP-rd1 retinas showed light adaptation to a photopic background and responded to flickering stimuli. These results demonstrate that transplantation of gRO sheets may restore some fundamental physiological functions, possibly coordinating with the remaining functions in retinas with end-stage degeneration.
Collapse
Affiliation(s)
- Mikiya Watanabe
- VCCT Inc., Kobe, Hyogo 650-0047, Japan; Graduate School of Pharmacy, Ritsumeikan University, Kusatsu, Siga 525-8577, Japan; Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takayuki Yamada
- Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan; Vision Care Inc., Kobe, Hyogo 650-0047, Japan
| | - Chieko Koike
- Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Ritsumeikan Global Innovation Research Organization(R-GIRO), Ritsumeikan University, Kusatsu, Siga 525-8577, Japan; College of Pharmaceutical Science, Ritsumeikan University, Kusatsu, Siga 525-8577, Japan
| | - Masayo Takahashi
- Vision Care Inc., Kobe, Hyogo 650-0047, Japan; Ritsumeikan Advanced Research Academy, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masao Tachibana
- Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Michiko Mandai
- Research Center, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
3
|
Okawa H, Sampath AP. Temporal Transformation of the Rod Single-Photon Response in the Retinal Circuitry. Invest Ophthalmol Vis Sci 2025; 66:52. [PMID: 39976956 PMCID: PMC11844226 DOI: 10.1167/iovs.66.2.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
Purpose The temporal sensitivity of rod vision is higher than expected based on slow single-photon responses produced by phototransduction in rod outer segments. We sought to establish the retinal basis for the temporal speeding of rod responses and their dependence on phototransduction. Methods We made patch-clamp recordings of photocurrent and photovoltage from rods and rod bipolar cells (RBCs), and loose-patch and voltage-clamp recordings from ON α retinal ganglion cells, in three mouse strains: wild-type (WT), rhodopsin hemizygotes (Rh+/-), and GCAPs-/-. Results Single-photon responses from the three strains differed in the kinetics of their waveforms: Rh+/- were more rapid than WT and GCAPs-/- considerably slower. RBCs in all three strains decayed much faster than their respective rod current responses, and much of this transformation was the prior result of conversion of rod photocurrent to photovoltage. Light responses were further accelerated at the bipolar-cell synapse and in the inner plexiform layer, with the remarkable result that ganglion-cell EPSPs and spike output both nearly overlap in waveform from all three strains despite large differences in rod photocurrents. These kinetic alterations were mostly affected by linear filters at each step in integration, with some contribution also from nonlinear interactions especially apparent in the GCAPs-/- retina. Conclusions The retina extracts principally the initial phase of single-photon responses through a series of high-pass, largely linear filters at each integration stage. Much of this transformation occurs in the rods themselves, but important contributions are also made at the rod-to-RBC synapse and within the inner plexiform layer.
Collapse
Affiliation(s)
- Haruhisa Okawa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States
| | - Alapakkam P. Sampath
- Jules Stein Eye Institute, Dept of Ophthalmology, UCLA School of Medicine, Los Angeles, California, United States
| |
Collapse
|
4
|
D'Souza SP, Upton BA, Eldred KC, Glass I, Nayak G, Grover K, Ahmed A, Nguyen MT, Hu YC, Gamlin P, Lang RA. Developmental control of rod number via a light-dependent retrograde pathway from intrinsically photosensitive retinal ganglion cells. Dev Cell 2024; 59:2897-2911.e6. [PMID: 39142280 PMCID: PMC11537824 DOI: 10.1016/j.devcel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Photoreception is essential for the development of the visual system, shaping vision's first synapse to cortical development. Here, we find that the lighting environment controls developmental rod apoptosis via Opn4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using genetics, sensory environment manipulations, and computational approaches, we establish a pathway where light-dependent glutamate released from ipRGCs is detected via a transiently expressed glutamate receptor (Grik3) on rod precursors within the inner retina. Communication between these cells is mediated by hybrid neurites on ipRGCs that sense light before eye opening. These structures span the ipRGC-rod precursor distance over development and contain the machinery for photoreception (Opn4) and neurotransmitter release (Vglut2 & Syp). Assessment of the human gestational retina identifies conserved hallmarks of an ipRGC-to-rod axis, including displaced rod precursors, transient GRIK3 expression, and ipRGCs with deep-projecting neurites. This analysis defines an adaptive retrograde pathway linking the sensory environment to rod precursors via ipRGCs prior to eye opening.
Collapse
Affiliation(s)
- Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Brian A Upton
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kiara C Eldred
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ian Glass
- Birth Defects Research Laboratory, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Gowri Nayak
- Transgenic Animal and Genome Editing Core, Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kassidy Grover
- Division of Hematology and Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Abdulla Ahmed
- Medical Doctor (M.D.) Training Program, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Minh-Thanh Nguyen
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Transgenic Animal and Genome Editing Core, Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Paul Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Richard A Lang
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
5
|
Allen AE, Hahn J, Richardson R, Pantiru A, Mouland J, Baño-Otalora B, Monavarfeshani A, Yan W, Williams C, Wynne J, Rodgers J, Milosavljevic N, Orlowska-Feuer P, Storchi R, Sanes JR, Shekhar K, Lucas RJ. Reconfiguration of the visual code and retinal cell type complement in closely related diurnal and nocturnal mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598659. [PMID: 38915685 PMCID: PMC11195227 DOI: 10.1101/2024.06.14.598659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
How does evolution act on neuronal populations to match computational characteristics to functional demands? We address this problem by comparing visual code and retinal cell composition in closely related murid species with different behaviours. Rhabdomys pumilio are diurnal and have substantially thicker inner retina and larger visual thalamus than nocturnal Mus musculus. High-density electrophysiological recordings of visual response features in the dorsal lateral geniculate nucleus (dLGN) reveals that Rhabdomys attains higher spatiotemporal acuity both by denser coverage of the visual scene and a selective expansion of elements of the code characterised by non-linear spatiotemporal summation. Comparative analysis of single cell transcriptomic cell atlases reveals that realignment of the visual code is associated with increased relative abundance of bipolar and ganglion cell types supporting OFF and ON-OFF responses. These findings demonstrate how changes in retinal cell complement can reconfigure the coding of visual information to match changes in visual needs.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rose Richardson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andreea Pantiru
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Josh Mouland
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Beatriz Baño-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Christopher Williams
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan Wynne
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Rodgers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Patrycja Orlowska-Feuer
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute; Vision Science Graduate Group; Center for Computational Biology; Biophysics Graduate Group; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| | - Robert J Lucas
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
6
|
Kilpeläinen M, Westö J, Tiihonen J, Laihi A, Takeshita D, Rieke F, Ala-Laurila P. Primate retina trades single-photon detection for high-fidelity contrast encoding. Nat Commun 2024; 15:4501. [PMID: 38802354 PMCID: PMC11130139 DOI: 10.1038/s41467-024-48750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
How the spike output of the retina enables human visual perception is not fully understood. Here, we address this at the sensitivity limit of vision by correlating human visual perception with the spike outputs of primate ON and OFF parasol (magnocellular) retinal ganglion cells in tightly matching stimulus conditions. We show that human vision at its ultimate sensitivity limit depends on the spike output of the ON but not the OFF retinal pathway. Consequently, nonlinear signal processing in the retinal ON pathway precludes perceptual detection of single photons in darkness but enables quantal-resolution discrimination of differences in light intensity.
Collapse
Affiliation(s)
- Markku Kilpeläinen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Johan Westö
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jussi Tiihonen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Anton Laihi
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Daisuke Takeshita
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, US
| | - Petri Ala-Laurila
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland.
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| |
Collapse
|
7
|
Fain GL. Vision: Life on the dark side. Curr Biol 2022; 32:R741-R743. [PMID: 35820384 DOI: 10.1016/j.cub.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mice detect decreases in illumination in dim light near the visual threshold with OFF retinal ganglion cells.
Collapse
Affiliation(s)
- Gordon L Fain
- Departments of Integrative Biology/Physiology and Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|