1
|
Okamura T, Kitagawa N, Kitagawa N, Sakai K, Sumi M, Kobayashi G, Imai D, Matsui T, Hamaguchi M, Fukui M. Single-cell analysis reveals islet autoantigen's immune activation in type 1 diabetes patients. J Clin Biochem Nutr 2025; 76:64-84. [PMID: 39896168 PMCID: PMC11782777 DOI: 10.3164/jcbn.24-86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 02/04/2025] Open
Abstract
In this study, we used single-cell sequencing, which can comprehensively detect the type and number of transcripts per cell, to efficiently stimulate peripheral blood mononuclear cells of type 1 diabetic patients with overlapping peptides of GAD, IA-2, and insulin antigens, and performed gene expression analysis by single-cell variable-diversity-joining sequencing and T-cell receptor repertoire analysis. Twenty male patients with type 1 diabetes mellitus participating in the KAMOGAWA-DM cohort were included. Four of them were randomly selected for BD Rhapsody system after reacting peripheral blood mononuclear cells with overlapping peptides of GAD, IA-2, and insulin antigen. Peripheral blood mononuclear cells were clustered into CD8+ T cells, CD4+ T cells, granulocytes, natural killer cells, dendritic cells, monocytes, and B cells based on Seurat analysis. In the insulin group, gene expression of inflammatory cytokines was elevated in cytotoxic CD8+ T cells and Th1 and Th17 cells, and gene expression related to exhaustion was elevated in regulatory T cells. In T cell receptors of various T cells, the T cell receptor β chain was monoclonally increased in the TRBV28/TRBJ2-7 pairs. This study provides insights into the pathogenesis of type 1 diabetes and provides potential targets for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Diabetology, Kameoka Municipal Hospital, 1-1 Shinonoda, Shino-cho, Kameoka 621-8585, Japan
| | - Nobuko Kitagawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kimiko Sakai
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Madoka Sumi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Genki Kobayashi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Dan Imai
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Matsui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Huang X, Li Y, Tong X, Wu Y, Zhang R, Sheng L, Xu J, Yu Z, Chen Z, Sun T, Wang F, Yang Q, Li Z, Gao C, Ma L, Ding H, Zang S, Yang N, Zhang TN, Liu J. Increased Circulating IL-32 Is Associated With Placenta Macrophage-derived IL-32 and Gestational Diabetes Mellitus. J Clin Endocrinol Metab 2024; 109:333-343. [PMID: 37708356 DOI: 10.1210/clinem/dgad531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE Placenta-derived inflammation plays a vital role in the pathophysiology of gestational diabetes mellitus (GDM). IL-32 is a novel pro-inflammatory cytokine and metabolic regulator involved in the development of metabolic disease. We investigated the effect of IL-32 in GDM. MATERIALS AND METHODS First-trimester C-reactive protein (CRP) level was monitored in a case-control study of 186 women with GDM and 186 women without. Placental tissue was lysed and analyzed by high-resolution liquid chromatography-tandem mass spectrometry. Circulating level of inflammatory cytokines IL-32, IL-6, and TNF-α were measured by ELISA kits. The expression of placenta-derived macrophages, inflammatory cytokines, and related pathway proteins were assessed by reverse transcriptase-quantitative PCR, western blot, immunohistochemistry, or immunofluorescence. RESULTS First-trimester CRP level in peripheral blood was closely associated with glucose and insulin resistance index and was an independent correlation with the development of GDM. High-resolution liquid chromatography-tandem mass spectrometry revealed that placenta-derived CRP expression was dramatically elevated in women with GDM. Interestingly, the expression of placenta-derived IL-32 was also increased and located in the macrophages of placental tissue. Meanwhile, the expression of IL-6, TNF-α, and p-p38 were up-regulated in the placental tissues with GDM. Either IL-6 or TNF-α was colocated with IL-32 in the placental tissue. Importantly, circulating IL-32 throughout pregnancy was increased in GDM and was related to placental-derived IL-32 expression, circulating IL-6, and TNF-α, glucose and insulin resistance index. CONCLUSION Increased circulating IL-32 throughout pregnancy was closely associated with placenta macrophage-derived IL-32 expression and GDM. First trimester IL-32 level in peripheral blood may serve to predict the development of GDM.
Collapse
Affiliation(s)
- Xinmei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xiaoxu Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yueyue Wu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Rui Zhang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Li Sheng
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Jiong Xu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zhiyan Yu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zaoping Chen
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Tiange Sun
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Fang Wang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Qian Yang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zhangyan Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Cuijun Gao
- Department of Obstetrics, Wujing Hospital, Shanghai 200241, China
| | - Ling Ma
- Department of Obstetrics, Wujing Hospital, Shanghai 200241, China
| | - Heyuan Ding
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
3
|
Shim S, Lee S, Hisham Y, Kim S, Nguyen TT, Taitt AS, Hwang J, Jhun H, Park HY, Lee Y, Yeom SC, Kim SY, Kim YG, Kim S. Comparison of the Seven Interleukin-32 Isoforms’ Biological Activities: IL-32θ Possesses the Most Dominant Biological Activity. Front Immunol 2022; 13:837588. [PMID: 35281066 PMCID: PMC8914309 DOI: 10.3389/fimmu.2022.837588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Cytokines are significantly associated with the homeostasis of immune responses in health and disease. Interleukin-32 (IL-32) is a cytokine originally discovered in natural killer cell transcript 4. IL-32 with different disorders has been described in terms of pathogenesis and the progression of diseases. Clinical studies have investigated IL-32 under various conditions, such as viral infection, autoimmune diseases, inflammatory diseases, certain types of cancer, vascular disease, and pulmonary diseases. The high expression of IL-32 was identified in different tissues with various diseases and found to have multiple transcripts of up to seven isoforms. However, the purification and biological activities of these isoforms have not been investigated yet. Therefore, in this study, we purified and compared the biological activity of recombinant IL-32 (rIL-32) isoforms. This is the first time for seven rIL-32 isoforms (α, β, δ, γ, ϵ, ζ, and θ) to be cloned and purified using an Escherichia coli expression system. Next, we evaluate the biological activities of these seven rIL-32 isoforms, which were used to treat different types of cells by assessing the levels of inflammatory cytokine production. The results revealed that rIL-32θ possessed the most dominant biological activity in both immune and non-immune cells.
Collapse
Affiliation(s)
- Saerok Shim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Siyoung Lee
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Yasmin Hisham
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Tam T. Nguyen
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Afeisha S. Taitt
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Jihyeong Hwang
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Wanju, South Korea
| | - Ho-Young Park
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, South Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, Collage of Medicine, Inje University, Busan, South Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- *Correspondence: Yong-Gil Kim, ; Soohyun Kim,
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- *Correspondence: Yong-Gil Kim, ; Soohyun Kim,
| |
Collapse
|
4
|
de Albuquerque R, Komsi E, Starskaia I, Ullah U, Lahesmaa R. The role of Interleukin-32 in autoimmunity. Scand J Immunol 2021; 93:e13012. [PMID: 33336406 DOI: 10.1111/sji.13012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 01/10/2023]
Abstract
Interleukin-32 (IL-32) is a pro-inflammatory cytokine that induces other cytokines involved in inflammation, including tumour necrosis factor (TNF)-α, IL-6 and IL-1β. Recent evidence suggests that IL-32 has a crucial role in host defence against pathogens, as well as in the pathogenesis of chronic inflammation. Abnormal IL-32 expression has been linked to several autoimmune diseases, such as rheumatoid arthritis and inflammatory bowel diseases, and a recent study suggested the importance of IL-32 in the pathogenesis of type 1 diabetes. However, despite accumulating evidence, many molecular characteristics of this cytokine, including the secretory route and the receptor for IL-32, remain largely unknown. In addition, the IL-32 gene is found in higher mammals but not in rodents. In this review, we outline the current knowledge of IL-32 biological functions, properties, and its role in autoimmune diseases. We particularly highlight the role of IL-32 in rheumatoid arthritis and type 1 diabetes.
Collapse
Affiliation(s)
- Rafael de Albuquerque
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elina Komsi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ubaid Ullah
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
5
|
Fadaei R, Bagheri N, Heidarian E, Nouri A, Hesari Z, Moradi N, Ahmadi A, Ahmadi R. Serum levels of IL-32 in patients with type 2 diabetes mellitus and its relationship with TNF-α and IL-6. Cytokine 2020; 125:154832. [DOI: 10.1016/j.cyto.2019.154832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/24/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
|
6
|
Kallionpää H, Somani J, Tuomela S, Ullah U, de Albuquerque R, Lönnberg T, Komsi E, Siljander H, Honkanen J, Härkönen T, Peet A, Tillmann V, Chandra V, Anagandula MK, Frisk G, Otonkoski T, Rasool O, Lund R, Lähdesmäki H, Knip M, Lahesmaa R. Early Detection of Peripheral Blood Cell Signature in Children Developing β-Cell Autoimmunity at a Young Age. Diabetes 2019; 68:2024-2034. [PMID: 31311800 DOI: 10.2337/db19-0287] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/10/2019] [Indexed: 11/13/2022]
Abstract
The appearance of type 1 diabetes (T1D)-associated autoantibodies is the first and only measurable parameter to predict progression toward T1D in genetically susceptible individuals. However, autoantibodies indicate an active autoimmune reaction, wherein the immune tolerance is already broken. Therefore, there is a clear and urgent need for new biomarkers that predict the onset of the autoimmune reaction preceding autoantibody positivity or reflect progressive β-cell destruction. Here we report the mRNA sequencing-based analysis of 306 samples including fractionated samples of CD4+ and CD8+ T cells as well as CD4-CD8- cell fractions and unfractionated peripheral blood mononuclear cell samples longitudinally collected from seven children who developed β-cell autoimmunity (case subjects) at a young age and matched control subjects. We identified transcripts, including interleukin 32 (IL32), that were upregulated before T1D-associated autoantibodies appeared. Single-cell RNA sequencing studies revealed that high IL32 in case samples was contributed mainly by activated T cells and NK cells. Further, we showed that IL32 expression can be induced by a virus and cytokines in pancreatic islets and β-cells, respectively. The results provide a basis for early detection of aberrations in the immune system function before T1D and suggest a potential role for IL32 in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Henna Kallionpää
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Juhi Somani
- Department of Computer Science, Aalto University School of Science, Espoo, Finland
| | - Soile Tuomela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ubaid Ullah
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rafael de Albuquerque
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elina Komsi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jarno Honkanen
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Aleksandr Peet
- Department of Pediatrics, University of Tartu, Tartu, Estonia
- Children's Clinic of Tartu, Tartu University Hospital, Tartu, Estonia
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu, Tartu, Estonia
- Children's Clinic of Tartu, Tartu University Hospital, Tartu, Estonia
| | - Vikash Chandra
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Gun Frisk
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Timo Otonkoski
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University School of Science, Espoo, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
7
|
Damen MSMA, Ballak D, Sapinsley Z, Bai X, Chan ED, Seals DR, Popa CD, Joosten LAB. Transgenic mice expressing human IL-32 develop adipokine profiles resembling those of obesity-induced metabolic changes. Cytokine 2019; 125:154793. [PMID: 31398626 DOI: 10.1016/j.cyto.2019.154793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023]
Abstract
Low-grade inflammation is associated with the development of insulin resistance in obese individuals. The present study aims to provide additional evidence strengthening the role of interleukin (IL)-32 in this key process. Using an IL-32 transgenic (IL-32tg) mouse model, we observed that IL-32tg fed a normal diet had greater body weight, due to greater accumulation of white adipose tissue (WAT) along with larger sized adipocytes. This led to metabolic consequences, with significant higher leptin levels and a trend towards hyperinsulinemia, indicating a phenotype resembling the metabolic syndrome. Adipocytes of IL-32tg mice were more prone to induce a pro-inflammatory response locally, which would be expected when predisposed to insulin resistance and type2 diabetes mellitus (T2D). In conclusion, our study provides novel evidence of a direct contribution of IL-32 to pathophysiological perturbations within the adipose tissue, possibly contributing to the metabolic syndrome that precedes frank insulin resistance and T2D. Future research should focus on the role of IL-32 in the obesity epidemic.
Collapse
Affiliation(s)
- Michelle S M A Damen
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), 6525GA Nijmegen, the Netherlands.
| | - Dov Ballak
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), 6525GA Nijmegen, the Netherlands; University of Colorado, Department of Medicine, 12700 E 19th Ave, B-168, Aurora, Colorado 80045, United States
| | - Zackary Sapinsley
- University of Colorado, Department of Medicine, 12700 E 19th Ave, B-168, Aurora, Colorado 80045, United States
| | - Xiyuan Bai
- University of Colorado, Department of Medicine, 12700 E 19th Ave, B-168, Aurora, Colorado 80045, United States; Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States; Academic Affairs, National Jewish Health, Denver, CO, United States; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Edward D Chan
- University of Colorado, Department of Medicine, 12700 E 19th Ave, B-168, Aurora, Colorado 80045, United States; Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States; Academic Affairs, National Jewish Health, Denver, CO, United States; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Douglas R Seals
- University of Colorado, Department of Medicine, 12700 E 19th Ave, B-168, Aurora, Colorado 80045, United States
| | - Calin D Popa
- Department of Rheumatology, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Sint Maartenskliniek Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), 6525GA Nijmegen, the Netherlands
| |
Collapse
|
8
|
Sohn DH, Nguyen TT, Kim S, Shim S, Lee S, Lee Y, Jhun H, Azam T, Kim J, Kim S. Structural Characteristics of Seven IL-32 Variants. Immune Netw 2019; 19:e8. [PMID: 31089435 PMCID: PMC6494766 DOI: 10.4110/in.2019.19.e8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
IL-32 exists as seven mRNA transcripts that can translate into distinct individual IL-32 variants with specific protein domains. These translated protein domains of IL-32 variants code for specific functions that allow for interaction with different molecules intracellularly or extracellularly. The longest variant is IL-32γ possessing 234 amino acid residues with all 11 protein domains, while the shortest variant is IL-32α possessing 131 amino acid residues with three of the protein domains. The first domain exists in 6 variants except IL-32δ variant, which has a distinct translation initiation codon due to mRNA splicing. The last eleventh domain is common domain for all seven IL-32 variants. Numerous studies in different fields, such as inflammation, autoimmunity, pathogen infection, and cancer biology, have claimed the specific biological activity of individual IL-32 variant despite the absence of sufficient data. There are 4 additional IL-32 variants without proper transcripts. In this review, the structural characteristics of seven IL-32 transcripts are described based on the specific protein domains.
Collapse
Affiliation(s)
- Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Tam T Nguyen
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Saerok Shim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Siyoung Lee
- YbdYbiotech Research Center, Seoul 08589, Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, Collage of Medicine, Inje University, Busan 47392, Korea
| | - Hyunjhung Jhun
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,Technical Assistance Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Tania Azam
- YbdYbiotech Research Center, Seoul 08589, Korea
| | - Joohee Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,Department of Clinical Pathology, Kyungdong University Medical Campus, Wonju 24695, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.,Veterinary Science Research Institute, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
9
|
Shao X, Wang B, Mu K, Li L, Li Q, He W, Yao Q, Jia X, Zhang JA. Key gene co-expression modules and functional pathways involved in the pathogenesis of Graves' disease. Mol Cell Endocrinol 2018; 474:252-259. [PMID: 29614339 DOI: 10.1016/j.mce.2018.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
Graves' disease (GD) is a common autoimmune thyroid disease characterized by positive thyroid stimulating hormone receptor antibody. To better understand its molecular pathogenesis, we adopted the weighted gene co-expression network analysis to reveal co-expression modules of key genes involved in the pathogenesis of GD, protein-protein interaction network analysis to identify the hub genes related to GD development and functional analyses to explore their possible functions. Our results showed that 1) a total of 2667 differentially expressed genes in our microarray study and 16 different gene co-expression modules were associated with GD, and 2) the most significant module was associated with the percentage of macrophages, T follicular helper cells and CD4+ memory T cells and mainly enriched in immune regulation and immune response. Overall, our study reveals several key gene co-expression modules and functional pathways involved in GD, which provides some novel insights into the pathogenesis of GD.
Collapse
Affiliation(s)
- Xiaoqing Shao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Kaida Mu
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Ling Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Weiwei He
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
10
|
Xuan W, Huang W, Wang R, Chen C, Chen Y, Wang Y, Tan X. Elevated circulating IL-32 presents a poor prognostic outcome in patients with heart failure after myocardial infarction. Int J Cardiol 2017; 243:367-373. [PMID: 28747035 DOI: 10.1016/j.ijcard.2017.03.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/20/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Interleukin-32 (IL-32) is a newly discovered proinflammatory cytokine. However, there are limited data regarding IL-32 as a biomarker for heart failure (HF). In this study, we assessed the prognostic value of IL-32 in patients with chronic HF after myocardial infarction (MI). METHODS AND RESULTS Over a period of 1.8years, we prospectively enrolled 100 patients with chronic HF after MI. IL-32, NT-proBNP, Matrix metallopeptidase 9 (MMP-9), procollagen type I (PI) and type III (PIII) were measured at baseline. Study endpoint was adverse cardiac events. High IL-32 levels were associated with numerous factors that are related to deteriorate cardiac function and cardiac fibrosis. Strong expression of IL-32 was detected in human cardiomyocytes from HF tissue. ROC curve revealed the area under the curve of IL-32 for predicting negative outcome of HF was 0.72 (95% CI: 0.60-0.83, P<0.01). Kaplan-Meier statistics showed that the risk of adverse cardiac event was 5.75 fold (hazard ratio 5.75, 95% CI 1.53-21.58, P=0.009), which increased in the highest quartile (>296pg/mL). Cox regression analysis revealed IL-32 was an independent predictor for cardiac events (hazard ratio 2.78, 95% CI 1.02-7.57, P=0.046). Recombinant IL-32 significantly exacerbated infarct size in a mouse model of MI. IL-32 upregulated expression of MMP-9, PIII and transforming growth factor beta in rat fibroblasts. CONCLUSION IL-32 might be a novel predictor of adverse cardiac event in patients with HF after MI. The pro-fibrotic effect of IL-32 may contribute to adverse cardiac remodeling and progression to HF.
Collapse
Affiliation(s)
- Wanling Xuan
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weixing Huang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ruijie Wang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chang Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yequn Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Wang
- Department of Radiology, University of California San Francisco, San Francisco, CA, United States
| | - Xuerui Tan
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
11
|
Son DJ, Jung YY, Seo YS, Park H, Lee DH, Kim S, Roh YS, Han SB, Yoon DY, Hong JT. Interleukin-32α Inhibits Endothelial Inflammation, Vascular Smooth Muscle Cell Activation, and Atherosclerosis by Upregulating Timp3 and Reck through suppressing microRNA-205 Biogenesis. Am J Cancer Res 2017; 7:2186-2203. [PMID: 28740544 PMCID: PMC5505053 DOI: 10.7150/thno.18407] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Interleukin-32 (IL-32) is a multifaceted cytokine that promotes inflammation and regulates vascular endothelial cell behavior. Although some IL-32 isoforms have been reported to contribute to vascular inflammation and atherosclerosis, the functional role of IL-32α in vascular inflammation and atherogenesis has not been studied. Methods: IL-32α function was assessed in cells with transient IL-32α overexpression or treated with recombinant human IL-32α by western blotting and mRNA expression analysis. Vascular smooth muscle cell (VSMC) proliferation and migration was examined by BrdU incorporation and wound healing assays, respectively. In addition, the participation of IL-32α on vascular inflammation, arterial wall thickening, and atherosclerosis in vivo was monitored in human IL-32α transgenic (hIL-32α-Tg) mice with or without ApoE knockout (ApoE-/-/hIL-32α-Tg). Results: Our analyses showed that IL-32α suppresses genes involved in the inflammatory and immune responses and cell proliferation, and by limiting matrix metalloproteinase (MMP) function. In vivo, administration of hIL-32α inhibited vascular inflammation and atherosclerosis in hIL-32α-Tg and ApoE-/-/hIL-32α-Tg mice. Subsequent microarray and in silico analysis also revealed a marked decreased in inflammatory gene expression in hIL-32α-Tg mice. Collectively, our studies demonstrated that IL-32α upregulates the atheroprotective genes Timp3 and Reck by downregulating microRNA-205 through regulation of the Rprd2-Dgcr8/Ddx5-Dicer1 biogenesis pathway. Conclusion: Our findings provide the first direct evidence that IL-32α is an anti-inflammatory and anti-atherogenic cytokine that may be useful as a diagnostic and therapeutic protein in atherosclerosis.
Collapse
|
12
|
Lee S, Choi DK, Kwak A, Kim S, Nguyen TT, Gil G, Kim E, Yoo KH, Kim IA, Lee Y, Jhun H, Chan ED, Bai X, Kim H, Kim YS, Kim S. IL-32-induced Inflammatory Cytokines Are Selectively Suppressed by α1-antitrypsin in Mouse Bone Marrow Cells. Immune Netw 2017; 17:116-120. [PMID: 28458623 PMCID: PMC5407983 DOI: 10.4110/in.2017.17.2.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/01/2022] Open
Abstract
The induction of interleukin (IL)-32 in bone marrow (BM) inflammation is crucial in graft versus host disease (GvHD) that is a common side effect of allogeneic BM transplantation. Clinical trials on α-1 antitrypsin (AAT) in patients with GvHD are based on the preliminary human and mouse studies on AAT reducing the severity of GvHD. Proteinase 3 (PR3) is an IL-32-binding protein that was isolated from human urine. IL-32 primarily induces inflammatory cytokines in myeloid cells, probably due to PR3 expression on the membrane of the myeloid lineage cells. The inhibitory activity of AAT on serine proteinases may explain the anti-inflammatory effect of AAT on GvHD. However, the anti-inflammatory activity of AAT on BM cells remains unclear. Mouse BM cells were treated with IL-32γ and different inflammatory stimuli to investigate the anti-inflammatory activity of AAT. Recombinant AAT-Fc fusion protein inhibited IL-32γ-induced IL-6 expression in BM cells, but failed to suppress that induced by other stimuli. In addition, the binding of IL-32γ to PR3 was abrogated by AAT-Fc. The data suggest that the specific anti-inflammatory effect of AAT in mouse BM cells is due to the blocking of IL-32 binding to membrane PR3.
Collapse
Affiliation(s)
- Siyoung Lee
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,YbdYbiotech Research Center, Seoul 08589, Korea
| | - Dong-Ki Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Areum Kwak
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Tam Thanh Nguyen
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Gaae Gil
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Eunhye Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Kwang Ha Yoo
- Division of Pulmonology, Department of Internal Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - In Ae Kim
- Division of Pulmonology, Department of Internal Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, College of Medicine, Inje University, Busan 47392, Korea
| | - Hyunjhung Jhun
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,Korea Food Research Institute, Seongnam 13539, Korea
| | - Edward D Chan
- Departments of Medicine and Academic Affairs, National Jewish Health, Denver, CO 80206, USA
| | - Xiyuan Bai
- Departments of Medicine and Academic Affairs, National Jewish Health, Denver, CO 80206, USA
| | - Hyunwoo Kim
- Division of Nephrology, Department of Internal Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
13
|
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Valentí V, Moncada R, Landecho MF, Silva C, Salvador J, Frühbeck G. Increased Interleukin-32 Levels in Obesity Promote Adipose Tissue Inflammation and Extracellular Matrix Remodeling: Effect of Weight Loss. Diabetes 2016; 65:3636-3648. [PMID: 27630206 DOI: 10.2337/db16-0287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/04/2016] [Indexed: 12/28/2022]
Abstract
Interleukin (IL)-32 is a recently described cytokine involved in the regulation of inflammation. We aimed to explore whether IL-32 could function as an inflammatory and angiogenic factor in human obesity and obesity-associated type 2 diabetes. Samples obtained from 90 subjects were used in the study. Obese patients exhibited higher expression levels of IL-32 in visceral adipose tissue (AT) as well as in subcutaneous AT and peripheral blood mononuclear cells. IL32 was mainly expressed by stromovascular fraction cells, and its expression was significantly enhanced by inflammatory stimuli and hypoxia, whereas no changes were found after the incubation with anti-inflammatory cytokines. The addition of exogenous IL-32 induced the expression of inflammation and extracellular matrix-related genes in human adipocyte cultures, and IL32-silenced adipocytes showed a downregulation of inflammatory genes. Furthermore, adipocyte-conditioned media obtained from obese patients increased IL32 gene expression in human monocyte cultures, whereas the adipocyte-conditioned media from lean volunteers had no effect on IL32 mRNA levels. These findings provide evidence, for the first time, about the inflammatory and remodeling properties of IL-32 in AT, implicating this cytokine in obesity-associated comorbidities.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - Víctor Valentí
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel F Landecho
- Department of Internal Medicine, Clínica Universidad de Navarra, Pamplona, Spain
- TRUEHF Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Camilo Silva
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Salvador
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
14
|
Altered Expression of Transporters, its Potential Mechanisms and Influences in the Liver of Rodent Models Associated with Diabetes Mellitus and Obesity. Eur J Drug Metab Pharmacokinet 2015; 41:199-210. [PMID: 26597190 DOI: 10.1007/s13318-015-0306-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is becoming an increasingly prevalent disease that concerns patients and healthcare professionals worldwide. Among many anti-diabetic agents in clinical uses, numerous reports are available on their altered pharmacokinetics because of changes in the expression of drug transporters and metabolic enzymes under diabetic states. These changes may affect the safety and efficacy of therapeutic agents and/or drug-drug interaction with co-administered agents. Therefore, the changes in transporter expression should be identified, and the underlying mechanisms should be clarified. This review summarizes the progress of recent studies on the alterations in important uptake and efflux transporters in liver of diabetic animals and their regulatory pathways.
Collapse
|
15
|
Simó R, Sáez-López C, Barbosa-Desongles A, Hernández C, Selva DM. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol Metab 2015; 26:376-83. [PMID: 26044465 DOI: 10.1016/j.tem.2015.05.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 12/26/2022]
Abstract
Sex hormone-binding globulin (SHBG) is produced and secreted by the liver into the bloodstream where it binds sex steroids and regulates their bioavailability. Traditionally, body mass index (BMI) was thought to be the major determinant of SHBG concentrations and hyperinsulinemia the main cause for low SHBG levels found in obesity. However, no mechanisms have ever been described. Emerging evidence now shows that liver fat content rather than BMI is a strong determinant of circulating SHBG. In this review we discuss evidence demonstrating that insulin might not regulate SHBG production, describe putative molecular mechanisms by which proinflammatory cytokines downregulate SHBG, and comment on recent findings suggesting dietary SHBG regulation. Finally, clinical implications of all of these findings and future perspectives are discussed.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain.
| | - Cristina Sáez-López
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain
| | - Anna Barbosa-Desongles
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain
| | - David M Selva
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain.
| |
Collapse
|