1
|
Zhong C, Deng K, Lang X, Shan D, Xie Y, Pan W, Yu J. Therapeutic potential of natural flavonoids in atherosclerosis through endothelium-protective mechanisms: An update. Pharmacol Ther 2025; 271:108864. [PMID: 40274196 DOI: 10.1016/j.pharmthera.2025.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Atherosclerosis and its associated cardiovascular complications remain significant global public health challenges, underscoring the urgent need for effective therapeutic strategies. Endothelial cells are critical for maintaining vascular health and homeostasis, and their dysfunction is a key contributor to the initiation and progression of atherosclerosis. Targeting endothelial dysfunction has, therefore, emerged as a promising approach for the prevention and management of atherosclerosis. Among natural products, flavonoids, a diverse class of plant-derived phenolic compounds, have garnered significant attention for their anti-atherosclerotic properties. A growing body of evidence demonstrates that flavonoids can mitigate endothelial dysfunction, highlighting their potential as endothelial dysfunction-targeted therapeutics for atherosclerosis. In this review, we summarize current knowledge on the roles of natural flavonoids in modulating various aspects of endothelial dysfunction and their therapeutic effects on atherosclerosis, focusing on the underlying molecular mechanisms. We also discuss the challenges and future prospects of translating natural flavonoids into clinical applications for cardiovascular medicine. This review aims to provide critical insights to advance the development of novel endothelium-protective pharmacotherapies for atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Keke Deng
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Lang
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Dan Shan
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yanfei Xie
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Zhang BH, Chen H, Yang R, Jiang Z, Huang S, Chen Z, Liu C, Wang L, Liu XH. Pinocembrin alleviates renal ischemia-reperfusion injury/unilateral ureteral obstruction (UUO)-generated renal fibrosis by targeting the CYP1B1/ROS/MAPK axis. FEBS J 2025; 292:2119-2144. [PMID: 39876048 DOI: 10.1111/febs.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
In our research, we constructed models of renal ischemia-reperfusion (I/R)-exposed acute kidney injury (AKI) and unilateral ureteral obstruction (UUO)-stimulated renal fibrosis (RF) in C57BL/6 mice and HK-2 cells. We firstly authenticated that oral pinocembrin (PIN) administration obviously mitigated tissue damage and renal dysfunction induced by I/R injury, and PIN attenuated UUO-caused RF, as confirmed by the reduced expression of fibrotic markers as well as hematoxylin-eosin (H&E), Sirius red, immunohistochemistry, and Masson staining. Meanwhile, the beneficial role of PIN was again demonstrated in HK-2 cells with hypoxia-reoxygenation (H/R) or transforming growth factor beta-1 (TGF-β1) treatment. Importantly, the "ingredient-target-pathway-disease" network was established through bioinformatics analysis and molecular docking, which showed that PIN may target cytochrome P450 1B1 (CYP1B1) and modulate the mitogen-activated protein kinase (MAPK) pathway to exert its impact during injury. Furthermore, experiments confirmed that PIN usage remarkably constrained CYP1B1 expression, reactive oxygen species (ROS) production, MAPK-pathway-associated inflammation, or apoptosis during I/R injury or UUO exposure. PIN also ameliorated the elevated protein phosphorylation of MAPK pathway components [p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase 1 (JNK ERK and JNK)], which validated the PIN-induced inhibition of the MAPK signaling pathway in renal I/R or UUO injury. Moreover, the AAV9 (adeno-associated virus 9)-packed CYP1B1 or pcDNA-CYP1B1 overexpression plasmid was utilized to treat C57BL/6 mice or HK-2 cells to overexpress CYP1B1, respectively. Notably, CYP1B1 overexpression considerably abolished PIN's restriction impact on ROS generation and MAPK pathway activation. In conclusion, via bioinformatics analysis, molecular docking, animal model, and cellular experiments, we proved that PIN alleviates renal I/R injury/UUO-generated renal fibrosis through regulating the CYP1B1/ROS/MAPK axis.
Collapse
Affiliation(s)
- Bang-Hua Zhang
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, China
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| | - Rui Yang
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| | - Zhengyu Jiang
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| | - Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| |
Collapse
|
3
|
Zhou P, Xu HJ, Wang L. Cardiovascular protective effects of natural flavonoids on intestinal barrier injury. Mol Cell Biochem 2025:10.1007/s11010-025-05213-2. [PMID: 39820766 DOI: 10.1007/s11010-025-05213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Natural flavonoids may be utilized as an important therapy for cardiovascular diseases (CVDs) caused by intestinal barrier damage. More research is being conducted on the protective properties of natural flavonoids against intestinal barrier injury, although the underlying processes remain unknown. Thus, the purpose of this article is to present current research on natural flavonoids to reduce the incidence of CVDs by protecting intestinal barrier injury, with a particular emphasis on intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression). Furthermore, the mechanisms driving intestinal barrier injury development are briefly explored, as well as natural flavonoids having CVD-protective actions on the intestinal barrier. In addition, natural flavonoids with myocardial protective effects were docked with ZO-1 targets to find natural products with higher activity. These natural flavonoids can improve intestinal mechanical barrier function through anti-oxidant or anti-inflammatory mechanism, and then prevent the occurrence and development of CVDs.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hui-Juan Xu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
4
|
Gao F, Zhao Y, Zhang B, Xiao C, Sun Z, Gao Y, Dou X. Orientin alleviates ox-LDL-induced oxidative stress, inflammation and apoptosis in human vascular endothelial cells by regulating Sestrin 1 (SESN1)-mediated autophagy. J Mol Histol 2024; 55:109-120. [PMID: 38165567 DOI: 10.1007/s10735-023-10176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/04/2023] [Indexed: 01/04/2024]
Abstract
Endothelial cells are a crucial component of the vessel-tissue wall and exert an important role in atherosclerosis (AS). To explore the role of Orientin in AS, human vascular endothelial cells (HUVECs) were induced by oxidized low-density lipoprotein (ox-LDL) to simulate the vascular endothelial injury during AS. Cell viability was detected by CCK-8 assay. Oxidative stress and inflammation related markers were measured using kits, RT-qPCR or western blot. Besides, cell apoptosis was assessed with TUNEL staining and cell autophagy was evaluated by LC3 immunofluorescent staining. Additionally, western blot was utilized to evaluate the expression of Sestrin 1 (SESN1) and proteins in AMPK/mTOR signaling. Afterwards, SESN1 was silenced to determine the expression of autophagy-related proteins. The further application of autophagy inhibitor 3-methyladenine (3-MA) was used to clarify the regulatory mechanism of Orientin on autophagy. Results showed that the decreased viability of HUVECs caused by ox-LDL induction was elevated by Orientin. Oxidative stress and inflammation were also attenuated after Orientin addition in HUVECs under ox-LDL condition. Moreover, Orientin suppressed apoptosis and induced autophagy of HUVECs stimulated by ox-LDL, accompanied by enhanced level of phospho (p)-AMPK and declined level of p-mTOR. Interestingly, SESN1 level was elevated by Orientin, and SESN1 depletion alleviated autophagy and reduced p-AMPK expression but enhanced p-mTOR expression. The further experiments indicated that SESN1 silencing or 3-MA addition reversed the inhibitory effects of Orientin on the oxidative stress, inflammation and apoptosis of HUVECs. Collectively, Orientin could induce autophagy by activating SESN1 expression, thereby regulating AMPK/mTOR signaling in ox-LDL-induced HUVECs.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China.
| | - Yongcheng Zhao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Chunwei Xiao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Zhanfa Sun
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Yuan Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Xueyong Dou
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Li X, Kang X, Di Y, Sun S, Yang L, Wang B, Ji Z. CircCHMP5 Contributes to Ox-LDL-induced Endothelial Cell Injury Through the Regulation of MiR-532-5p/ROCK2 axis. Cardiovasc Drugs Ther 2023; 37:1-12. [PMID: 35084579 DOI: 10.1007/s10557-022-07316-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Aberrant expression of circular RNA (circRNA) has been demonstrated to be related to atherosclerosis (AS) formation. However, the mechanism of circCHMP5 (also known as hsa_circ_0003575) in AS formation remains unclear. METHODS Oxidized low-density lipoprotein (ox-LDL) was used to treat human umbilical vein endothelial cells (HUVECs) to construct a cell injury model. The expression level of circCHMP5, miR-532-5p, and Rho-associated protein kinase 2 (ROCK2) was measured using quantitative real-time PCR. Cell cycle, apoptosis, proliferation, and angiogenesis were determined by flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU) assay, and tube formation assay. In addition, the protein expression of apoptosis markers, inflammation factors, and ROCK2 was detected by western blot analysis. The interaction between miR-532-5p and circCHMP5 or ROCK2 was assessed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS Our results indicated that circCHMP5 was overexpressed in ox-LDL-induced HUVECs. CircCHMP5 knockdown promoted cell cycle, proliferation, and angiogenesis while inhibiting apoptosis and inflammation in ox-LDL-induced HUVECs. MiR-532-5p could be sponged by circCHMP5, and its inhibitor reversed the negative regulation of si-circCHMP5 on ox-LDL-induced HUVECs injury. ROCK2, a target of miR-532-5p, reversed the inhibition effect of miR-532-5p on ox-LDL-induced HUVECs injury. Furthermore, we confirmed that circCHMP5 upregulated ROCK2 by sponging miR-532-5p. CONCLUSION To sum up, our data showed that circCHMP5 regulated the miR-532-5p/ROCK2 axis to accelerate ox-LDL-induced HUVECs injury, confirming that circCHMP5 might be a potential target for AS treatment.
Collapse
Affiliation(s)
- Xia Li
- Department I of Cardiology, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, 063000, Hebei, China
| | - Xiaoli Kang
- Department I of Cardiology, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, 063000, Hebei, China
| | - Yali Di
- Department I of Cardiology, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, 063000, Hebei, China
| | - Shuxian Sun
- Department I of Cardiology, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, 063000, Hebei, China
| | - Liming Yang
- Department I of Cardiology, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, 063000, Hebei, China
| | - Bin Wang
- Department I of Cardiology, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, 063000, Hebei, China
| | - Zheng Ji
- Department I of Cardiology, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, 063000, Hebei, China.
| |
Collapse
|
6
|
Valipour M. Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 2023; 37:3724-3743. [PMID: 37282807 DOI: 10.1002/ptr.7902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is closely related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication and hyperinflammatory responses in coronavirus disease 2019 (COVID-19). Therefore, blood-brain barrier-penetrating p38 MAPK inhibitors have good potential for the treatment of central nervous system (CNS) complications of COVID-19. The aim of the present study is the characterization of the therapeutic potential of tanshinone IIA and pinocembrin for the treatment of CNS complications of COVID-19. Studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so forth were used to review the therapeutic capabilities of selected compounds. In continuation of our previous efforts to identify agents with favorable activity/toxicity profiles for the treatment of COVID-19, tanshinone IIA and pinocembrin were identified with a high ability to penetrate the CNS. Considering the nature of the study, no specific time frame was determined for the selection of studies, but the focus was strongly on studies published after the emergence of COVID-19. By describing the association of COVID-19-induced CNS disorders with p38 MAPK pathway disruption, this study concludes that tanshinone IIA and pinocembrin have great potential for better treatment of these complications. The inclusion of these compounds in the drug regimen of COVID-19 patients requires confirmation of their effectiveness through the conduction of high-quality clinical trials.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Luo M, Zheng Y, Tang S, Gu L, Zhu Y, Ying R, Liu Y, Ma J, Guo R, Gao P, Zhang C. Radical oxygen species: an important breakthrough point for botanical drugs to regulate oxidative stress and treat the disorder of glycolipid metabolism. Front Pharmacol 2023; 14:1166178. [PMID: 37251336 PMCID: PMC10213330 DOI: 10.3389/fphar.2023.1166178] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Background: The incidence of glycolipid metabolic diseases is extremely high worldwide, which greatly hinders people's life expectancy and patients' quality of life. Oxidative stress (OS) aggravates the development of diseases in glycolipid metabolism. Radical oxygen species (ROS) is a key factor in the signal transduction of OS, which can regulate cell apoptosis and contribute to inflammation. Currently, chemotherapies are the main method to treat disorders of glycolipid metabolism, but this can lead to drug resistance and damage to normal organs. Botanical drugs are an important source of new drugs. They are widely found in nature with availability, high practicality, and low cost. There is increasing evidence that herbal medicine has definite therapeutic effects on glycolipid metabolic diseases. Objective: This study aims to provide a valuable method for the treatment of glycolipid metabolic diseases with botanical drugs from the perspective of ROS regulation by botanical drugs and to further promote the development of effective drugs for the clinical treatment of glycolipid metabolic diseases. Methods: Using herb*, plant medicine, Chinese herbal medicine, phytochemicals, natural medicine, phytomedicine, plant extract, botanical drug, ROS, oxygen free radicals, oxygen radical, oxidizing agent, glucose and lipid metabolism, saccharometabolism, glycometabolism, lipid metabolism, blood glucose, lipoprotein, triglyceride, fatty liver, atherosclerosis, obesity, diabetes, dysglycemia, NAFLD, and DM as keywords or subject terms, relevant literature was retrieved from Web of Science and PubMed databases from 2013 to 2022 and was summarized. Results: Botanical drugs can regulate ROS by regulating mitochondrial function, endoplasmic reticulum, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), erythroid 2-related factor 2 (Nrf-2), nuclear factor κB (NF-κB), and other signaling pathways to improve OS and treat glucolipid metabolic diseases. Conclusion: The regulation of ROS by botanical drugs is multi-mechanism and multifaceted. Both cell studies and animal experiments have demonstrated the effectiveness of botanical drugs in the treatment of glycolipid metabolic diseases by regulating ROS. However, studies on safety need to be further improved, and more studies are needed to support the clinical application of botanical drugs.
Collapse
Affiliation(s)
- Maocai Luo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Zheng
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- GCP Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linsen Gu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianli Ma
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruixin Guo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Abdelsalam SA, Renu K, Zahra HA, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Ronsard L, Ammar RB, Vidya DS, Karuppaiya P, Al-Ramadan SY, Rajendran P. Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update. Nutrients 2023; 15:nu15051107. [PMID: 36904106 PMCID: PMC10005012 DOI: 10.3390/nu15051107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.
Collapse
Affiliation(s)
- Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Larance Ronsard
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Devanathadesikan Seshadri Vidya
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Palaniyandi Karuppaiya
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - S. Y. Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
- Correspondence: ; Tel.: +966-0135899543
| |
Collapse
|
9
|
Pinocembrin suppresses oxidized low-density lipoprotein-triggered NLRP3 inflammasome/GSDMD-mediated endothelial cell pyroptosis through an Nrf2-dependent signaling pathway. Sci Rep 2022; 12:13885. [PMID: 35974041 PMCID: PMC9381505 DOI: 10.1038/s41598-022-18297-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Pinocembrin (Pin) has been confirmed to exert anti-inflammatory and antiatherosclerotic effects. Here we have explored whether and how Pin would protect vascular endothelial cells against pyroptosis elicited by the exposure to oxidized low density lipoprotein (oxLDL). Our results showed that Pin preconditioning dose-dependently suppressed oxLDL-stimulated HUVEC injury and pyroptosis, which were manifested by improved cell viability, lower lactate dehydrogenase (LDH) levels and DNA damage as well as decreased expression of pyroptosis-related markers, such as NOD-like receptor pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), pro-Caspase-1, cleaved Caspase-1, N-terminus of Gasdermin D-N (GSDMD-N), pro-interleukins-1β (pro-IL-1β), IL-1β and inflammatory cytokines (IL-18 and IL-1β). All of the effects were similar to those of MCC950 (an NLRP3 inhibitor). As expected, Pin distinctly activated the Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidative signaling pathway assessed through increased expressions of Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Furthermore, after transfection with small interfering RNA of Nrf2, the inhibitory effects of Pin on oxLDL-triggered NLRP3 inflammasome/GSDMD-mediated pyroptosis and oxidative stress in HUVECs were weakened. Additionally, Pin up-regulated Nrf2/HO-1 axis and down-regulated NLRP3 inflammasome/GSDMD-mediated pyroptosis signals in Apoe-/- mice fed with high fat diet. These results contribute to the understanding of the anti-pyroptosis mechanisms of Pin and provide a reference for future research on the anti-atherosclerotic effect of Pin.
Collapse
|
10
|
Gao F, Zhao Y, Zhang B, Xiao C, Sun Z, Gao Y, Dou X. SESN1 attenuates the Ox‑LDL‑induced inflammation, apoptosis and endothelial‑mesenchymal transition of human umbilical vein endothelial cells by regulating AMPK/SIRT1/LOX1 signaling. Mol Med Rep 2022; 25:161. [PMID: 35293601 PMCID: PMC8941522 DOI: 10.3892/mmr.2022.12678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells are an important component of the heart and vasculature and form a crucial link between the cardiovascular system and the immune system. Sestrin 1 (SESN1) has an important role in atherosclerosis by inhibiting NOD-like receptor family pyrin domain containing 3 inflammasome activation. However, whether SESN1 is involved in human umbilical vein endothelial cell (HUVEC) injury caused by atherosclerosis has remained to be elucidated. The present study aimed to investigate the functions of SESN1 in the inflammatory response, apoptosis and endothelial-mesenchymal transition (EndMT) of HUVECs following stimulation with oxidized low-density lipoprotein (Ox-LDL). SESN1 expression at the mRNA and protein levels was detected using reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis. Following SESN1 overexpression in Ox-LDL-stimulated HUVECs, cell viability was determined using a Cell Counting Kit-8 assay. Terminal deoxynucleotidyl transferase-mediated nick-end labeling staining was employed to detect cell apoptosis and western blot analysis was used to determine the levels of apoptosis-related proteins. RT-qPCR, ELISA and western blot were utilized to determine the levels of inflammatory factors. Immunofluorescence staining, RT-qPCR and western blot analysis were employed to assess the EndMT of Ox-LDL-stimulated HUVECs. The results revealed that SESN1 exhibited a low expression in HUVECs following Ox-LDL stimulation. SESN1 overexpression suppressed inflammation, apoptosis and EndMT in Ox-LDL-induced HUVECs. In addition, SESN1 stimulated adenosine monophosphate-activated protein kinase catalytic subunit α1/sirtuin 1 signaling to suppress Ox-LDL receptor-1 expression. An AMPK and SIRT1 inhibitor reversed the effects of SESN1 overexpression on the inflammatory response, apoptosis and EndMT of HUVECs exposed to Ox-LDL. Taken together, the present study demonstrated that SENS1 exerts a suppressive effect on Ox-LDL-induced inflammation, apoptosis and EndMT of HUVECs, suggesting that SENS1 may be used as a novel biomarker for endothelial injury-related disorders.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Yongcheng Zhao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Chunwei Xiao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Zhanfa Sun
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Yuan Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Xueyong Dou
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| |
Collapse
|
11
|
Xie HX, Wang YH, Zhang JH, Zhang J, Zhong YN, Ge YX, Cheng ZQ, Jiang CS, Meng N. Design, synthesis and biological evaluation of marine phidianidine-inspired derivatives against oxidized ldl-induced endothelial injury by activating Nrf2 anti-oxidation pathway. Bioorg Chem 2022; 120:105606. [DOI: 10.1016/j.bioorg.2022.105606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
|
12
|
Duan H, Zhang Q, Liu J, Li R, Wang D, Peng W, Wu C. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol Res 2021; 168:105599. [PMID: 33838291 DOI: 10.1016/j.phrs.2021.105599] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/09/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022]
Abstract
Atherosclerosis, a chronic multifactorial disease, is closely related to the development of cardiovascular diseases and is one of the predominant causes of death worldwide. Normal vascular endothelial cells play an important role in maintaining vascular homeostasis and inhibiting atherosclerosis by regulating vascular tension, preventing thrombosis and regulating inflammation. Currently, accumulating evidence has revealed that endothelial cell apoptosis is the first step of atherosclerosis. Excess apoptosis of endothelial cells induced by risk factors for atherosclerosis is a preliminary event in atherosclerosis development and might be a target for preventing and treating atherosclerosis. Interestingly, accumulating evidence shows that natural medicines have great potential to treat atherosclerosis by inhibiting endothelial cell apoptosis. Therefore, this paper reviewed current studies on the inhibitory effect of natural medicines on endothelial cell apoptosis and summarized the risk factors that may induce endothelial cell apoptosis, including oxidized low-density lipoprotein (ox-LDL), reactive oxygen species (ROS), angiotensin II (Ang II), tumor necrosis factor-α (TNF-α), homocysteine (Hcy) and lipopolysaccharide (LPS). We expect this review to highlight the importance of natural medicines, including extracts and monomers, in the treatment of atherosclerosis by inhibiting endothelial cell apoptosis and provide a foundation for the development of potential antiatherosclerotic drugs from natural medicines.
Collapse
Affiliation(s)
- Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| |
Collapse
|
13
|
Kim KM, Lee JY, Jeon BH, Quan KT, Na M, Nam KW, Chae S. Extract of Curcuma zedoaria R. prevents atherosclerosis in apolipoprotein E-deficient mice. Nutr Res Pract 2021; 15:319-328. [PMID: 34093973 PMCID: PMC8155225 DOI: 10.4162/nrp.2021.15.3.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 12/20/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Curcuma zedoaria R. (Zingiberaceae) has been used to treat headache, fever, and hypertension-related symptoms in Asian countries, including Korea, China, and Japan. We investigated whether dietary intake of a C. zedoaria extract (CzE) affected atherosclerosis in vivo. MATERIALS/METHODS Apolipoprotein E-deficient (ApoE−/−) mice (n = 32) were fed a normal diet (ND), a high-cholesterol diet (HCD), an HCD containing CzE (100 mg/kg/day), or an HCD containing simvastatin (10 mg/kg/day) for 12 weeks. The anti-atherosclerotic effects were evaluated by observing changes in fatty streak lesions, immunohistochemical analysis, ex vivo fluorescence imaging, lipid profiles, and western blot analysis. RESULTS The CzE-fed group showed a 41.6% reduction of atherosclerosis. Furthermore, CzE significantly reduced the levels of serum triglyceride, high-density lipoprotein, the chemokine (C-X3-C-motif) ligand 1, the adhesion molecules vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and E-selectin; down-regulation of tumor necrosis factor-α, interleukin-6, high mobility group box-1, and cathepsin levels in the aortic sinuses and aortas of ApoE−/− mice were also observed. CONCLUSIONS The results suggest that the inclusion of a water extract of C. zedoaria in a HCD is closely correlated with reducing the risk of vascular inflammatory diseases in an ApoE mouse model.
Collapse
Affiliation(s)
- Ki Mo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Department of Korean Life Science and Technology, University of Science and Technology, Daejeon 34113, Korea
| | - Joo Young Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Khong Trong Quan
- Department of Pharmacognosy, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - MinKyun Na
- Department of Pharmacognosy, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Kung-Woo Nam
- Department of Life Science and Biotechnology, Soonchunhyang University, Asan 31538, Korea
| | - Sungwook Chae
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Department of Korean Life Science and Technology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
14
|
Sieg SF, Bazdar DA, Zidar D, Freeman M, Lederman MM, Funderburg NT. Highly oxidized low-density lipoprotein mediates activation of monocytes but does not confer interleukin-1β secretion nor interleukin-15 transpresentation function. Immunology 2019; 159:221-230. [PMID: 31663113 DOI: 10.1111/imm.13142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 12/27/2022] Open
Abstract
Oxidized low-density lipoprotein (LDL) contributes to cardiovascular disease in part by mediating activation and maturation of monocytes and macrophages. Furthermore, co-localization studies using histochemical approaches have implicated a potential role for oxidized LDL as a mediator of interleukin-15 (IL-15) expression in myeloid cells of atherosclerotic plaque. The latter activity could be an important pro-inflammatory mechanism that mediates myeloid cell/T-cell crosstalk. Here, we examined the responses of primary human monocytes to highly oxidized LDL molecules. Oxidized LDL readily induced secretion of chemokines MCP-1 (CCL2) and GRO-α (CXCL1) but unlike lipopolysaccharide (LPS), has limited capacity to induce a variety of other cytokines including tumor necrosis factor-α, IL-6, IL-1β and interferon-γ-induced protein-10 and also displayed a poor capacity to induce p-Akt or P-S6 signaling. Failure of oxidized LDL to induce IL-1β secretion was associated with limited induction of caspase-1 activation. Furthermore, despite finding evidence that oxidized LDL could enhance the expression of IL-15 and IL-15 receptor expression in monocytes, we found no evidence that it could confer IL-15 transpresentation capability to these cells. This observation contrasted with induction of IL-15 transpresentation in lipopolysaccharide-stimulated monocytes. Overall, our data suggest that highly oxidized LDL is a selective inducer of monocyte activation. Sterile inflammatory mediators, particularly those implicated in Toll-like receptor 4 signaling, may play a role in vascular pathology but the activities of these agents are not uniform.
Collapse
Affiliation(s)
- Scott F Sieg
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Douglas A Bazdar
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Michael Freeman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Michael M Lederman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Advances in Biosynthesis, Pharmacology, and Pharmacokinetics of Pinocembrin, a Promising Natural Small-Molecule Drug. Molecules 2019; 24:molecules24122323. [PMID: 31238565 PMCID: PMC6631290 DOI: 10.3390/molecules24122323] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
Pinocembrin is one of the most abundant flavonoids in propolis, and it may also be widely found in a variety of plants. In addition to natural extraction, pinocembrin can be obtained by biosynthesis. Biosynthesis efficiency can be improved by a metabolic engineering strategy and a two-phase pH fermentation strategy. Pinocembrin poses an interest for its remarkable pharmacological activities, such as neuroprotection, anti-oxidation, and anti-inflammation. Studies have shown that pinocembrin works excellently in treating ischemic stroke. Pinocembrin can reduce nerve damage in the ischemic area and reduce mitochondrial dysfunction and the degree of oxidative stress. Given its significant efficacy in cerebral ischemia, pinocembrin has been approved by China Food and Drug Administration (CFDA) as a new treatment drug for ischemic stroke and is currently in progress in phase II clinical trials. Research has shown that pinocembrin can be absorbed rapidly in the body and easily cross the blood-brain barrier. In addition, the absorption/elimination process of pinocembrin occurs rapidly and shows no serious accumulation in the body. Pinocembrin has also been found to play a role in Parkinson's disease, Alzheimer's disease, and specific solid tumors, but its mechanisms of action require in-depth studies. In this review, we summarized the latest 10 years of studies on the biosynthesis, pharmacological activities, and pharmacokinetics of pinocembrin, focusing on its effects on certain diseases, aiming to explore its targets, explaining possible mechanisms of action, and finding potential therapeutic applications.
Collapse
|
16
|
Shafi S, Ansari HR, Bahitham W, Aouabdi S. The Impact of Natural Antioxidants on the Regenerative Potential of Vascular Cells. Front Cardiovasc Med 2019; 6:28. [PMID: 30968031 PMCID: PMC6439348 DOI: 10.3389/fcvm.2019.00028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023] Open
Abstract
With advances in technology, the impact of natural antioxidants on vascular cell regeneration is attracting enormous attention as many current studies are now exploring the clinical potential of antioxidants in regenerative medicine. Natural antioxidants are an important step for improving future treatment and prevention of various diseases such as cardiovascular, cancer, neurodegenerative, and diabetes. The use of natural antioxidants which have effects on several types of stem cells with the potential to differentiate into functional endothelium and smooth muscle cells (known as vascular progenitors) for vascular regeneration might override pharmaceutical and surgical treatments. The natural antioxidant systems comprise of several components present in fruits, vegetables, legumes, medicinal plants, and other animal-derived products that interact with reactive free radicals such as oxygen and nitrogen species to neutralize their oxidative damaging effects on vascular cells. Neutralization by antioxidants involves the breaking down of the oxidative cascade chain reactions in the cell membranes in order to fine-tune the free radical levels. The effect of natural antioxidants on vascular regeneration includes restoration or establishment of new vascular structures and functions. In this review, we highlight the significant effects of natural antioxidants on modulating vascular cells to regenerate vessels, as well as possible mechanisms of action and the potential therapeutic benefits on health. The role of antioxidants in regenerating vessels may be critical for the future of regenerative medicine in terms of the maintenance of the normal functioning of vessels and the prevention of multiple vascular diseases.
Collapse
Affiliation(s)
- Shahida Shafi
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Hifzur Rahman Ansari
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Wesam Bahitham
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Sihem Aouabdi
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Indicaxanthin from Opuntia ficus indica (L. Mill) Inhibits Oxidized LDL-Mediated Human Endothelial Cell Dysfunction through Inhibition of NF- κB Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3457846. [PMID: 30911345 PMCID: PMC6398026 DOI: 10.1155/2019/3457846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023]
Abstract
Oxidized low-density lipoproteins (oxLDL) play a pivotal role in the etiopathogenesis of atherosclerosis through the activation of inflammatory signaling events eventually leading to endothelial dysfunction and senescence. In the present work, we investigated the effects of indicaxanthin, a bioavailable, redox-modulating phytochemical from Opuntia ficus indica fruits, with anti-inflammatory activity, against oxLDL-induced endothelial dysfunction. Human umbilical vein cord cells (HUVEC) were stimulated with human oxLDL, and the effects of indicaxanthin were evaluated in a range between 5 and 20 μM, consistent with its plasma level after a fruit meal (7 μM). Pretreatment with indicaxanthin significantly and concentration-dependently inhibited oxLDL-induced cytotoxicity; ICAM-1, VCAM-1, and ELAM-1 increase; and ABC-A1 decrease of both protein and mRNA levels. From a mechanistic perspective, we also provided evidence that the protective effects of indicaxanthin were redox-dependent and related to the pigment efficacy to inhibit NF-κB transcriptional activity. In conclusion, here we demonstrate indicaxanthin as a novel, dietary phytochemical, able to exert significant protective vascular effects in vitro, at nutritionally relevant concentrations.
Collapse
|
18
|
The Inhibitory Effect of Flavonoid Aglycones on the Metabolic Activity of CYP3A4 Enzyme. Molecules 2018; 23:molecules23102553. [PMID: 30301254 PMCID: PMC6222669 DOI: 10.3390/molecules23102553] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023] Open
Abstract
Flavonoids are natural compounds that have been extensively studied due to their positive effects on human health. There are over 4000 flavonoids found in higher plants and their beneficial effects have been shown in vitro as well as in vivo. However, data on their pharmacokinetics and influence on metabolic enzymes is scarce. The aim of this study was to focus on possible interactions between the 30 most commonly encountered flavonoid aglycones on the metabolic activity of CYP3A4 enzyme. 6β-hydroxylation of testosterone was used as marker reaction of CYP3A4 activity. Generated product was determined by HPLC coupled with diode array detector. Metabolism and time dependence, as well as direct inhibition, were tested to determine if inhibition was reversible and/or irreversible. Out of the 30 flavonoids tested, 7 significantly inhibited CYP3A4, most prominent being acacetin that inhibited 95% of enzyme activity at 1 µM concentration. Apigenin showed reversible inhibition, acacetin, and chrysin showed combined irreversible and reversible inhibition while chrysin dimethylether, isorhamnetin, pinocembrin, and tangeretin showed pure irreversible inhibition. These results alert on possible flavonoid–drug interactions on the level of CYP3A4.
Collapse
|