1
|
Huang L, Zhu X, Kuang J, Li B, Yu Q, Liu M, Li B, Guo H, Li P. Molecular and functional characterization of viperin in golden pompano, Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109098. [PMID: 37758099 DOI: 10.1016/j.fsi.2023.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
The radical S-adenosyl methionine domain-containing protein 2 (RSAD2), also known as viperin, plays a momentous and multifaceted role in antiviral immunity. However, the function of viperin is uninvestigated in golden pompano, Trachinotus ovatus. In the present study, a viperin homolog, named To-viperin, was cloned and characterized from golden pompano, and its role in response to grouper iridovirus (SGIV) and nervous necrosis virus (NNV) infection was investigated. The whole open reading frame (ORF) of To-viperin was composed of 1050 bp and encoded a polypeptide of 349 amino acids with 70.66%-83.51% identity with the known viperin homologs from other fish species. A variable N-terminal domain, a highly conserved C-terminal domain, and a conserved middle radical SAM domain (aa 61-271) with the three-cysteine motif CxxCxxC was found in To-viperin sequence. Expression analysis showed that To-viperin was constitutively expressed in all tested organs and was located mainly in the ER of golden pompano cells. Treatments with SGIV, poly I: C, or NNV could induce the up-regulation of viperin to varying degrees. The ectopic expression of To-viperin in vitro significantly reduced the viral titer of SGIV and NNV. Furthermore, To-viperin overexpression enhanced the expression of IFNc, IRF3, and ISG15 genes as well as, to a lesser extent, the IL-6 gene. In summary, our results suggested that the function of viperin is likely to be conserved in fish specise, as observed in other vertebrates, shedding light on the evolutionary conservation of viperin.
Collapse
Affiliation(s)
- Lin Huang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China
| | - Xiaowen Zhu
- Guangdong Key Laboratory of Aquatic Animal Disease Prevention and Control and Healthy Aquaculture, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China
| | - Jihui Kuang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning, PR China
| | - Bohuan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, PR China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China
| | - Bingzheng Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China; College of Food Science and Quality Engineering, Nanning University, Nanning, PR China
| | - Hui Guo
- Guangdong Key Laboratory of Aquatic Animal Disease Prevention and Control and Healthy Aquaculture, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China.
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China; Guangdong Key Laboratory of Aquatic Animal Disease Prevention and Control and Healthy Aquaculture, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning, PR China; College of Food Science and Quality Engineering, Nanning University, Nanning, PR China.
| |
Collapse
|
2
|
Tazeem S, Nagaraju A, Begum H, Tommi JA, Sudarshan Reddy L, Vijay Kumar M. COVID-19 Associated Mucormycosis. Indian J Otolaryngol Head Neck Surg 2023:1-9. [PMID: 37362123 PMCID: PMC10257165 DOI: 10.1007/s12070-023-03676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 06/28/2023] Open
Abstract
Mucormycosis is a life-threatening opportunistic fungal infection seen in immunocompromised states. Rising incidence of mucormycosis among Coronavirus Disease-2019 infected individuals is an increasing concern in India. The disease which was endemic has blown out to become an epidemic. The purpose of this research is to study the epidemiology, management and outcome of Coronavirus Disease-2019 Associated Mucormycosis (CAM) cases. Additionally, the role of diabetes and steroids in the causation of CAM was determined. A hospital-based observational study was conducted at a tertiary care centre involving cases with rhino-orbital mucormycosis with recent history of COVID-19 infection. Out of 205,166(81%) cases had Diabetes Mellitus as a comorbid condition. Among them, 75(36.6%) cases were diagnosed with diabetes during COVID-19 treatment. 161/205(78.5%) cases received corticosteroids during COVID-19 treatment. Corticosteroids were notindicated in 43(26.7%) cases. 177/205(85.4%) cases were alive at the end of 12 weeks. 8 out of 10 deaths were seen in cases having diabetes. As the incidence of mucormycosis is increasing, better awareness among general population about the disease, early diagnosis and multidisciplinary approach is required to improve prognosis.
Collapse
Affiliation(s)
| | - A. Nagaraju
- Department of ENT, Osmania Medical College, Hyderabad, India
| | | | | | | | - M. Vijay Kumar
- Department of Community Medicine, Gandhi Medical College, Secunderabad, India
| |
Collapse
|
3
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
4
|
Chen H, Zhang L, Zhang W, Dai Z, Chen T, Wei Y, Chen M. Clinical characteristics and remission of nine cases with coronavirus disease 2019 infection in Zunyi, Southwest of China: A retrospective study. Medicine (Baltimore) 2022; 101:e31494. [PMID: 36595797 PMCID: PMC9794302 DOI: 10.1097/md.0000000000031494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has become a rock-ribbed public pandemic and caused substantial health concerns worldwide. In addition to therapeutic strategies, the epidemiologic features and clinical characteristics of patients responded to COVID-19 infection are of equal importance. The study aims to systematically evaluate the clinical presentations and remission of cases with COVID-19 infection in Zunyi, Southwest of China, and to determine the similarities and variations for further clinical classification and comprehensive treatment. Herein, we conducted a retrospective study upon 9 patients in Zunyi, southwest of China, including 1 mild (LPA), 5 severe (SPA) and 3 critical (CPA) types of COVID-19 infection. In details, the demographic data, historical epidemiology, previous medical history, clinical symptoms and complications, laboratory examination, chest imaging, treatment and outcomes of the patients were throughout explored. The non-normal distribution of the data was conducted by utilizing the SPSS software, and significant statistical differences were identified when P < .05. By retrospective analysis of the 9 cases, we found there were multifaceted similarities and differences among them in clinical representation. The patients collectively showed negative for nucleic acid test (NAT) and favorable prognosis after receiving comprehensive therapy such as hormonotherapy, hemopruification, and antiviral administration as well as respiratory support. On the basis of the information, we systematically dissected the clinical features and outcomes of the enrolled patients with COVID-19 and the accompanied multiple syndromes, which would serve as new references for clinical classification and comprehensive treatment. Analysis of clinical characteristics and therapeutic effect of 9 cases of novel coronavirus pneumonia (COVID-19), ChiCTR2000031930. Registered April 15, 2020 (retrospective registration).
Collapse
Affiliation(s)
- Hongjun Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cerebrovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Leisheng Zhang
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, China
- Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, China
- Shandong Provincial Key Laboratory of Translational Medicine for Rheumatic and Immune Diseases, Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China
| | - Wei Zhang
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cerebrovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhihua Dai
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, China
| | - Tao Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cerebrovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiyong Wei
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Miao Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- * Correspondence: Miao Chen, Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China (e-mail: )
| |
Collapse
|
5
|
Alavi M, Mozafari MR, Ghaemi S, Ashengroph M, Hasanzadeh Davarani F, Mohammadabadi M. Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) of SARS-CoV-2: In Silico Study. Biomedicines 2022; 10:biomedicines10123074. [PMID: 36551830 PMCID: PMC9775955 DOI: 10.3390/biomedicines10123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 from the family Coronaviridae is the cause of the outbreak of severe pneumonia, known as coronavirus disease 2019 (COVID-19), which was first recognized in 2019. Various potential antiviral drugs have been presented to hinder SARS-CoV-2 or treat COVID-19 disease. Side effects of these drugs are among the main complicated issues for patients. Natural compounds, specifically primary and secondary herbal metabolites, may be considered as alternative options to provide therapeutic activity and reduce cytotoxicity. Phenolic materials such as epigallocatechin gallate (EGCG, polyphenol) and quercetin have shown antibacterial, antifungal, antiviral, anticancer, and anti-inflammatory effects in vitro and in vivo. Therefore, in this study, molecular docking was applied to measure the docking property of epigallocatechin gallate and quercetin towards the transmembrane spike (S) glycoprotein of SARS-CoV-2. Results of the present study showed Vina scores of -9.9 and -8.3 obtained for EGCG and quercetin by CB-Dock. In the case of EGCG, four hydrogen bonds of OG1, OD2, O3, and O13 atoms interacted with the Threonine (THR778) and Aspartic acid (ASP867) amino acids of the spike glycoprotein (6VSB). According to these results, epigallocatechin gallate and quercetin can be considered potent therapeutic compounds for addressing viral diseases.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Kurdistan 6617715175, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
- Correspondence: (M.A.); (M.R.M.)
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
- Correspondence: (M.A.); (M.R.M.)
| | - Saba Ghaemi
- Research Committee of Medical School, Alborz University of Medical Science, Karaj 3149779453, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Kurdistan 6617715175, Iran
| | | | - Mohammadreza Mohammadabadi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| |
Collapse
|
6
|
Wang K, Deng H, Song B, He J, Liu S, Fu J, Zhang L, Li D, Balaji KS, Mei Z, Cheng J, Fu J. The Correlation Between Immune Invasion and SARS-COV-2 Entry Protein ADAM17 in Cancer Patients by Bioinformatic Analysis. Front Immunol 2022; 13:923516. [PMID: 35720350 PMCID: PMC9203860 DOI: 10.3389/fimmu.2022.923516] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
SARS-Cov-2 caused the COVID-19 pandemic worldwide. ADAM17 functions as a disintegrin and transmembrane metalloproteinase domain protein involved in the regulation of SARS-CoV-2 receptor ACE2. However, its impact on cancer patients infected with COVID-19 and its correlation with immune cell infiltration is unclear. This study compared ADAM17 expression between normal and tumor tissues based on GEPIA. The correlations between ADAM17 expression and immune cell infiltration and immunomodulators were investigated. Besides, treated drugs for targeting ADAM17 were searched in the TISDB database. We found that ADAM17 was highly conserved in many species and was mainly expressed in lung, brain, female tissues, bone marrow and lymphoid tissues. It was also highly expressed in respiratory epithelial cells of rhinitis and bronchus. ADAM17 expression in tumors was higher than that in several paired normal tissues and was negatively correlated with the prognosis of patients with malignant tumors. Interestingly, ADAM17 expression significantly correlated with immunomodulators and immune cell infiltration in normal and tumor tissues. Moreover, eight small molecules targeting ADAM17 only demonstrate therapeutic significance. These findings imply important implications for ADAM17 in cancer patients infected with COVID-19 and provide new clues for development strategy of anti-COVID-19.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haoyue Deng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Binghui Song
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Lianmei Zhang
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.,Basic Medical School, Southwest Medical University, Luzhou, China
| | | | - Zhiqiang Mei
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. Computational insight of dexamethasone against potential targets of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:875-885. [PMID: 32924825 PMCID: PMC7544935 DOI: 10.1080/07391102.2020.1819880] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
The health sector has been on the race to find a potent therapy for coronavirus disease (COVID)-19, a diseases caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2. Repurposed anti-viral drugs have played a huge role in combating the virus, and most recently, dexamethasone (Dex) have shown its therapeutic activity in severe cases of COVID-19 patients. The study sought to provide insights on the anti-COVID-19 mechanism of Dex at both atomic and molecular level against SARS-CoV-2 targets. Computational methods were employed to predict the binding affinity of Dex to SARS-CoV-2 using the Schrodinger suite (v2020-2). The target molecules and ligand (Dex) were retrieved from PDB and PubChem, respectively. The selected targets were SARS-CoV-2 main protease (Mpro), and host secreted molecules glucocorticoid receptor, and Interleukin-6 (IL-6). Critical analyses such as Protein and ligand preparation, molecular docking, molecular dynamic (MD) simulations, and absorption, distribution, metabolism, excretion (ADME), and toxicity analyses were performed using the targets and the ligand as inputs. Dex showed stronger affinity to its theoretical (glucocorticoid) receptor with a superior docking score of -14.7 and a good binding energy value of -147.48 kcal/mol; while short hydrogen bond distances were observed in both Mpro and IL-6 when compared to glucocorticoid receptor. Based on these findings, Dex-target complexes were used to perform MD simulations to analyze Dex stability at 50 ns. This study demonstrates that Dex could bind to both the viral and host receptors as a potential drug candidate for COVID-19. To ascertain the biological fitness of this study, other SARS-CoV-2 targets should be explored. Also, the in vitro studies of dexamethasone against several SARS-CoV-2 targets warrant further investigation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
8
|
Rochette L, Zeller M, Cottin Y, Vergely C. GDF15: an emerging modulator of immunity and a strategy in COVID-19 in association with iron metabolism. Trends Endocrinol Metab 2021; 32:875-889. [PMID: 34593305 PMCID: PMC8423996 DOI: 10.1016/j.tem.2021.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of respiratory and cardiovascular diseases, known as coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes the structural proteins spike (S), envelope (E), membrane (M), and nucleocapsid (N). The receptor-binding domain on the surface subunit S1 is responsible for attachment of the virus to angiotensin (Ang)-converting enzyme 2 (ACE2), which is highly expressed in host cells. The cytokine storm observed in patients with COVID-19 contributes to the endothelial vascular dysfunction, which can lead to acute respiratory distress syndrome, multiorgan failure, alteration in iron homeostasis, and death. Growth and differentiation factor 15 (GDF15), which belongs to the transforming growth factor-β (TGF-β) superfamily of proteins, has a pivotal role in the development and progression of diseases because of its role as a metabolic regulator. In COVID-19, GDF15 activity increases in response to tissue damage. GDF15 appears to be a strong predictor of poor outcomes in patients critically ill with COVID-19 and acts as an 'inflammation-induced central mediator of tissue tolerance' via its metabolic properties. In this review, we examine the potential properties of GDF15 as an emerging modulator of immunity in COVID-19 in association with iron metabolism. The virus life cycle in host cell provides potential targets for drug therapy.
Collapse
Affiliation(s)
- Luc Rochette
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France.
| | - Marianne Zeller
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France
| | - Yves Cottin
- Cardiology Unit, Dijon Bourgogne University Hospital, 21000 Dijon, France
| | - Catherine Vergely
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France
| |
Collapse
|
9
|
Milne S, Li X, Yang CX, Leitao Filho FS, Hernández Cordero AI, Yang CWT, Shaipanich T, van Eeden SF, Leung JM, Lam S, Sin DD. Inhaled corticosteroids downregulate SARS-CoV-2-related genes in COPD: results from a randomised controlled trial. Eur Respir J 2021; 58:13993003.00130-2021. [PMID: 33795322 PMCID: PMC8015643 DOI: 10.1183/13993003.00130-2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Stephen Milne
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Both authors contributed equally to the work
| | - Xuan Li
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Both authors contributed equally to the work
| | - Chen Xi Yang
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Fernando Sergio Leitao Filho
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ana I Hernández Cordero
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Cheng Wei Tony Yang
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Providence Airway Centre, Vancouver, BC, Canada
| | - Tawimas Shaipanich
- Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephan F van Eeden
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Lam
- Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada .,Dept of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Fan Y, Wang Y, Yu S, Chang J, Yan Y, Wang Y, Bian Y. Natural products provide a new perspective for anti-complement treatment of severe COVID-19: a review. Chin Med 2021; 16:67. [PMID: 34321065 PMCID: PMC8318062 DOI: 10.1186/s13020-021-00478-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
Exaggerated immune response and cytokine storm are accounted for the severity of COVID-19, including organ dysfunction, especially progressive respiratory failure and generalized coagulopathy. Uncontrolled activation of complement contributes to acute and chronic inflammation, the generation of cytokine storm, intravascular coagulation and cell/tissue damage, which may be a favorable target for the treatment of multiple organ failure and reduction of mortality in critically ill patients with COVID-19. Cytokine storm suppression therapy can alleviate the symptoms of critically ill patients to some extent, but as a remedial etiological measure, its long-term efficacy is still questionable. Anti-complement therapy has undoubtedly become an important hotspot in the upstream regulation of cytokine storm. However, chemosynthetic complement inhibitors are expensive, and their drug resistance and long-term side effects require further investigation. New complement inhibitors with high efficiency and low toxicity can be obtained from natural products at low development cost. This paper puts forward some insights of the development of natural anti-complement products in traditional Chinese medicine, that may provide a bright perspective for suppressing cytokine storm in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Yadong Fan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Shuang Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Jun Chang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Yiqi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
11
|
Beecker J, Papp K, Dutz J, Vender R, Gniadecki R, Cooper C, Gisondi P, Gooderham M, Hong C, Kirchhof M, Lynde C, Maari C, Poulin Y, Puig L. Position statement for a pragmatic approach to immunotherapeutics in patients with inflammatory skin diseases during the coronavirus disease 2019 pandemic and beyond. J Eur Acad Dermatol Venereol 2021; 35:797-806. [PMID: 33533553 PMCID: PMC8014810 DOI: 10.1111/jdv.17075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, a novel RNA virus that was declared a global pandemic on 11 March 2020. The efficiency of infection with SARS-CoV-2 is reflected by its rapid global spread. The SARS-CoV-2 pandemic has implications for patients with inflammatory skin diseases on systemic immunotherapy who may be at increased risk of infection or more severe infection. This position paper is a focused examination of current evidence considering the mechanisms of action of immunotherapeutic drugs in relation to immune response to SARS-CoV-2. We aim to provide practical guidance for dermatologists managing patients with inflammatory skin conditions on systemic therapies during the current pandemic and beyond. Considering the limited and rapidly evolving evidence, mechanisms of action of therapies, and current knowledge of SARS-CoV-2 infection, we propose that systemic immunotherapy can be continued, with special considerations for at risk patients or those presenting with symptoms.
Collapse
Affiliation(s)
- J. Beecker
- University of OttawaOttawaONCanada
- Division of DermatologyThe Ottawa HospitalOttawaONCanada
- Ottawa Hospital Research InstituteOttawaONCanada
- Probity Medical Research Inc.WaterlooONCanada
| | - K.A. Papp
- Probity Medical Research Inc.WaterlooONCanada
- K Papp Clinical ResearchWaterlooONCanada
| | - J. Dutz
- Skin Care CenterVancouverBCCanada
- Department of Dermatology and Skin ScienceUniversity of British ColumbiaVancouverBCCanada
- Skin ScienceBC Children's Hospital Research InstituteVancouverBCCanada
| | - R.B. Vender
- Dermatrials Research Inc.HamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| | - R. Gniadecki
- Probity Medical Research Inc.WaterlooONCanada
- Division of DermatologyDepartment of MedicineFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - C. Cooper
- University of OttawaOttawaONCanada
- Ottawa Hospital Research InstituteOttawaONCanada
- The Ottawa Hospital and Regional Hepatitis ProgramOttawaONCanada
| | - P. Gisondi
- Department of MedicineSection of Dermatology and VenereologyUniversity of VeronaVeronaItaly
| | - M. Gooderham
- Probity Medical Research Inc.WaterlooONCanada
- SKiN Centre for DermatologyPeterboroughONCanada
| | - C.H. Hong
- Probity Medical Research Inc.WaterlooONCanada
- Department of Dermatology and Skin ScienceUniversity of British ColumbiaVancouverBCCanada
- Dr. Chih‐ho Hong Medical Inc.SurreyBCCanada
| | - M.G. Kirchhof
- University of OttawaOttawaONCanada
- Division of DermatologyThe Ottawa HospitalOttawaONCanada
| | - C.W. Lynde
- Probity Medical Research Inc.WaterlooONCanada
- Lynde Institute for DermatologyMarkhamONCanada
| | - C. Maari
- Innovaderm Research IncMontrealQCCanada
| | - Y. Poulin
- Centre de Recherche Dermatologique du Québec MétropolitainQuébecQCCanada
- Department of MedicineUniversité LavalHôpital Hôtel‐Dieu de QuébecQuebécQCCanada
| | - L. Puig
- Department of DermatologyHospital de la Santa Creu i Sant PauBarcelonaSpain
| |
Collapse
|
12
|
Lien TS, Sun DS, Hung SC, Wu WS, Chang HH. Dengue Virus Envelope Protein Domain III Induces Nlrp3 Inflammasome-Dependent NETosis-Mediated Inflammation in Mice. Front Immunol 2021; 12:618577. [PMID: 33815373 PMCID: PMC8009969 DOI: 10.3389/fimmu.2021.618577] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Abnormal immune responses and cytokine storm are involved in the development of severe dengue, a life-threatening disease with high mortality. Dengue virus-induced neutrophil NETosis response is associated with cytokine storm; while the role of viral factors on the elicitation of excessive inflammation mains unclear. Here we found that treatments of dengue virus envelope protein domain III (EIII), cellular binding moiety of virion, is sufficient to induce neutrophil NETosis processes in vitro and in vivo. Challenges of EIII in inflammasome Nlrp3-/- and Casp1-/- mutant mice resulted in less inflammation and NETosis responses, as compared to the wild type controls. Blockages of EIII-neutrophil interaction using cell-binding competitive inhibitor or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK can suppress EIII-induced NETosis response. These results collectively suggest that Nlrp3 inflammsome is a molecular target for treating dengue-elicited inflammatory pathogenesis.
Collapse
Affiliation(s)
- Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
13
|
Clark NF, Taylor-Robinson AW. COVID-19 Therapy: Could a Copper Derivative of Chlorophyll a Be Used to Treat Lymphopenia Associated With Severe Symptoms of SARS-CoV-2 Infection? Front Med (Lausanne) 2021; 8:620175. [PMID: 33777973 PMCID: PMC7994343 DOI: 10.3389/fmed.2021.620175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Nicole F. Clark
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Andrew W. Taylor-Robinson
- Infectious Diseases Research Group, School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, QLD, Australia
- College of Health and Human Sciences, Charles Darwin University, Casuarina, NT, Australia
| |
Collapse
|
14
|
Que Y, Hu C, Wan K, Hu P, Wang R, Luo J, Li T, Ping R, Hu Q, Sun Y, Wu X, Tu L, Du Y, Chang C, Xu G. Cytokine release syndrome in COVID-19: a major mechanism of morbidity and mortality. Int Rev Immunol 2021; 41:217-230. [PMID: 33616462 PMCID: PMC7919105 DOI: 10.1080/08830185.2021.1884248] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) erupted in Hubei Province of China in December 2019 and has become a pandemic. Severe COVID-19 patients who suffer from acute respiratory distress syndrome (ARDS) and multi-organ dysfunction have high mortality. Several studies have shown that this is closely related to the cytokine release syndrome (CRS), often loosely referred to as cytokine storm. IL-6 is one of the key factors and its level is positively correlated with the severity of the disease. The molecular mechanisms for CRS in COVID-19 are related to the effects of the S-protein and N-protein of the virus and its ability to trigger NF-κB activation by disabling the inhibitory component IκB. This leads to activation of immune cells and the secretion of proinflammatory cytokines such as IL-6 and TNF-α. Other mechanisms related to IL-6 include its interaction with GM-CSF and interferon responses. The pivotal role of IL-6 makes it a target for therapeutic agents and studies on tocilizumab are already ongoing. Other possible targets of treating CRS in COVID-19 include IL-1β and TNF-α. Recently, reports of a CRS like illness called multisystem inflammatory syndrome in children (MIS-C) in children have surfaced, with a variable presentation which in some cases resembles Kawasaki disease. It is likely that the immunological derangement and cytokine release occurring in COVID-19 cases is variable, or on a spectrum, that can potentially be governed by genetic factors. Currently, there are no approved biological modulators for the treatment of COVID-19, but the urgency of the pandemic has led to numerous clinical trials worldwide. Ultimately, there is great promise that an anti-inflammatory modulator targeting a cytokine storm effect may prove to be very beneficial in reducing morbidity and mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Yifan Que
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Chao Hu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Kun Wan
- Medical Supplies Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Peng Hu
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Runsheng Wang
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jiang Luo
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Tianzhi Li
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Rongyu Ping
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Qinyong Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Lei Tu
- Division of Gastroenterology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yingzhen Du
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Christopher Chang
- Division of Pediatric Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Hollywood, Florida, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| | - Guogang Xu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
15
|
Földvári-Nagy L, Schnabel T, Dörnyei G, Korcsmáros T, Lenti K. On the role of bacterial metalloproteases in COVID-19 associated cytokine storm. Cell Commun Signal 2021; 19:7. [PMID: 33441142 PMCID: PMC7805260 DOI: 10.1186/s12964-020-00699-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
The cytokine release syndrome or cytokine storm, which is the hyper-induction of inflammatory responses has a central role in the mortality rate of COVID-19 and some other viral infections. Interleukin-6 (IL-6) is a key player in the development of cytokine storms. Shedding of interleukin-6 receptor (IL-6Rα) results in the accumulation of soluble interleukin-6 receptors (sIL-6R). Only relatively few cells express membrane-bound IL-6Rα. However, sIL-6R can act on potentially all cells and organs through the ubiquitously expressed gp130, the coreceptor of IL-6Rα. Through this, so-called trans-signaling, IL-6-sIL-6R is a powerful factor in the development of cytokine storms and multiorgan involvement. Some bacteria (e.g., Serratia marcescens, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes), commonly considered to cause co-infections during viral pneumonia, can directly induce the shedding of membrane receptors, including IL-6Rα, or enhance endogenous shedding mechanisms causing the increase of sIL-6R level. Here we hypothesise that bacteria promoting shedding and increase the sIL-6R level can be an important contributing factor for the development of cytokine storms. Therefore, inhibition of IL-6Rα shedding by drastically reducing the number of relevant bacteria may be a critical element in reducing the chance of a cytokine storm. Validation of this hypothesis can support the consideration of the prophylactic use of antibiotics more widely and at an earlier stage of infection to decrease the mortality rate of COVID-19. Video abstract.
Collapse
Affiliation(s)
- László Földvári-Nagy
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17. Vas str., Budapest, 1088 Hungary
| | - Tamás Schnabel
- I. Department of Internal Medicine and Gastroenterology, Department of Orthopaedics - COVID Quarantine, ÉKC New Saint John’s Hospital, 1-3. Diós árok, Budapest, 1125 Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17. Vas str., Budapest, 1088 Hungary
| | - Tamás Korcsmáros
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Katalin Lenti
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17. Vas str., Budapest, 1088 Hungary
| |
Collapse
|
16
|
Raiteri A, Piscaglia F, Granito A, Tovoli F. Tocilizumab: From Rheumatic Diseases to COVID-19. Curr Pharm Des 2021; 27:1597-1607. [PMID: 33719967 DOI: 10.2174/1381612827666210311141512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Tocilizumab is a humanised interleukin-6 receptor-inhibiting monoclonal antibody that is currently approved for the treatment of rheumatoid arthritis and other immune-related conditions. Recently, tocilizumab has been investigated as a possible treatment for severe coronavirus-induced disease 2019 (COVID-19). Despite the lack of direct antiviral effects, tocilizumab could reduce the immune-induced organ damage caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) infection. Until recently, most reports on tocilizumab for COVID-19 included a limited number of patients, preventing an overall evaluation of its efficacy and safety for this specific condition. Therefore, we reviewed the literature regarding the physiopathological rationale of tocilizumab for COVID-19 and its outcomes. We searched the MEDLINE database with the string "(SARS-CoV-2 OR coronavirus OR COVID-19 OR MERS- cov OR SARS-cov) AND (IL-6 OR interleukin 6 OR tocilizumab)". While the scientific rationale supporting tocilizumab for COVID-19 is solid, the evidence regarding the outcomes remains controversial. Available data and results from ongoing trials will provide useful information in the event of new COVID-19 outbreaks or future pandemics from different coronaviruses.
Collapse
Affiliation(s)
- Alberto Raiteri
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Italy
| | - Alessandro Granito
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Italy
| | - Francesco Tovoli
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Italy
| |
Collapse
|
17
|
Du P, Geng J, Wang F, Chen X, Huang Z, Wang Y. Role of IL-6 inhibitor in treatment of COVID-19-related cytokine release syndrome. Int J Med Sci 2021; 18:1356-1362. [PMID: 33628091 PMCID: PMC7893562 DOI: 10.7150/ijms.53564] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cytokine release syndrome (CRS) may be the key factor in the pathology of severe coronavirus disease 2019 (COVID-19). As a major driver in triggering CRS in patients with COVID-19, interleukin-6 (IL-6) appears to be a promising target for therapeutics. The results of inhibiting both trans- and classical- signaling with marketed IL-6 inhibitors (tocilizumab, siltuximab and sarilumab) in severe COVID-19 patients are effective based on several small studies and case reports thus far. In this review, we described the evidence of the IL-6 response in patients with COVID-19, clarified the pathogenesis of the role of IL-6-mediated CRS in severe COVID-19, and highlighted the rationale for the use of anti-IL-6 agents and key information regarding the potential features of these IL-6 inhibitors in COVID-19 patients.
Collapse
Affiliation(s)
- Peng Du
- Clinical Laboratory of Emergency Medicine, Tianjin Union Medical Centre, Tianjin, China
| | - Jie Geng
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaobo Chen
- Unicell Life Science Development Co., Ltd, Tianjin, China
| | - Zhiwei Huang
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Yuliang Wang
- Department of Clinical Laboratory Medicine, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| |
Collapse
|
18
|
Zidi I. Puzzling out the COVID-19: Therapy targeting HLA-G and HLA-E. Hum Immunol 2020; 81:697-701. [PMID: 33046268 PMCID: PMC7539797 DOI: 10.1016/j.humimm.2020.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 01/12/2023]
Abstract
SARS-CoV2 might conduce to rapid respiratory complications challenging healthcare systems worldwide. Immunological mechanisms associated to SARS-CoV2 infection are complex and not yet clearly elucidated. Arguments are in favour of a well host-adapted virus. Here I draw a systemic immunological representation linking actual SARS-CoV2 infection literature that hopefully might guide healthcare decisions to treat COVID-19. I suggest HLA-G and HLA-E, non classical HLA class I molecules, in the core of COVID-19 complications. These molecules are powerful in immune tolerance and might inhibit/suppress immune cells functions during SARS-CoV2 infection promoting virus subversion. Dosing soluble forms of these molecules in COVID-19 patients' plasma might help the identification of critical cases. I recommend also developing new SARS-CoV2 therapies based on the use of HLA-G and HLA-E or their specific receptors antibodies in combination with FDA approved therapeutics to combat efficiently COVID-19.
Collapse
Affiliation(s)
- Inès Zidi
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
19
|
Mahmud-Al-Rafat A, Muzammal Haque Asim M, Taylor-Robinson AW, Majumder A, Muktadir A, Muktadir H, Karim M, Khan I, Mainul Ahasan M, Morsaline Billah M. A combinational approach to restore cytokine balance and to inhibit virus growth may promote patient recovery in severe COVID-19 cases. Cytokine 2020; 136:155228. [PMID: 32822911 PMCID: PMC7428755 DOI: 10.1016/j.cyto.2020.155228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
The COVID-19 pandemic has led to twin public health and economic crises around the world. Not only has it cost hundreds of thousands of lives but also severely impacted livelihoods and placed enormous strain on community healthcare and welfare services. In this review, we explore the events associated with SARS-CoV-2 pathogenesis and host immunopathological reactivity due to the clinical manifestations of this coronavirus infection. We discuss that the metallopeptidase enzyme ADAM17, also known as tumor necrosis factor-α-converting enzyme, TACE, is responsible for shedding of angiotensin-converting enzyme 2 and membrane-bound interleukin (IL)-6 receptor. This leads to elevated pro-inflammatory responses that result in cytokine storm syndrome. We argue that cytokine balance may be restored by recovering an IL-6 trans-signaling neutralizing buffer system through the mediation of recombinant soluble glycoprotein 130 and recombinant ADAM17/TACE prodomain inhibitor. This cytokine restoration, possibly combined with inhibition of SARS-CoV-2 entry as well as replication and coagulopathy, could be introduced as a novel approach to treat patients with severe COVID-19. In cases of co-morbidity, therapies related to the management of associated disease conditions could ameliorate those clinical manifestations.
Collapse
Affiliation(s)
| | - Md Muzammal Haque Asim
- Research and Development Division, Incepta Vaccine Ltd., Zirabo, Savar, Dhaka 1341, Bangladesh
| | - Andrew W Taylor-Robinson
- School of Health, Medical & Applied Sciences, Central Queensland University, Brisbane, QLD 4000, Australia
| | - Apurba Majumder
- Department of Medicine, University of Illinois at Chicago, USA
| | - Abdul Muktadir
- Research and Development Division, Incepta Vaccine Ltd., Zirabo, Savar, Dhaka 1341, Bangladesh
| | - Hasneen Muktadir
- Research and Development Division, Incepta Vaccine Ltd., Zirabo, Savar, Dhaka 1341, Bangladesh
| | - Mahbubul Karim
- Research and Development Division, Incepta Vaccine Ltd., Zirabo, Savar, Dhaka 1341, Bangladesh
| | - Imran Khan
- Research and Development Division, Incepta Vaccine Ltd., Zirabo, Savar, Dhaka 1341, Bangladesh
| | - Mohammad Mainul Ahasan
- Research and Development Division, Incepta Vaccine Ltd., Zirabo, Savar, Dhaka 1341, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
20
|
E Costa RAP, Granato DC, Trino LD, Yokoo S, Carnielli CM, Kawahara R, Domingues RR, Pauletti BA, Neves LX, Santana AG, Paulo JA, Aragão AZB, Heleno Batista FA, Migliorini Figueira AC, Laurindo FRM, Fernandes D, Hansen HP, Squina F, Gygi SP, Paes Leme AF. ADAM17 cytoplasmic domain modulates Thioredoxin-1 conformation and activity. Redox Biol 2020; 37:101735. [PMID: 33011677 PMCID: PMC7513893 DOI: 10.1016/j.redox.2020.101735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The activity of Thioredoxin-1 (Trx-1) is adjusted by the balance of its monomeric, active and its dimeric, inactive state. The regulation of this balance is not completely understood. We have previously shown that the cytoplasmic domain of the transmembrane protein A Disintegrin And Metalloprotease 17 (ADAM17cyto) binds to Thioredoxin-1 (Trx-1) and the destabilization of this interaction favors the dimeric state of Trx-1. Here, we investigate whether ADAM17 plays a role in the conformation and activation of Trx-1. We found that disrupting the interacting interface with Trx-1 by a site-directed mutagenesis in ADAM17 (ADAM17cytoF730A) caused a decrease of Trx-1 reductive capacity and activity. Moreover, we observed that ADAM17 overexpressing cells favor the monomeric state of Trx-1 while knockdown cells do not. As a result, there is a decrease of cell oxidant levels and ADAM17 sheddase activity and an increase in the reduced cysteine-containing peptides in intracellular proteins in ADAM17cyto overexpressing cells. A mechanistic explanation that ADAM17cyto favors the monomeric, active state of Trx-1 is the formation of a disulfide bond between Cys824 at the C-terminal of ADAM17cyto with the Cys73 of Trx-1, which is involved in the dimerization site of Trx-1. In summary, we propose that ADAM17 is able to modulate Trx-1 conformation affecting its activity and intracellular redox state, bringing up a novel possibility for positive regulation of thiol isomerase activity in the cell by mammalian metalloproteinases.
Collapse
Affiliation(s)
- Rute A P E Costa
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Daniela C Granato
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Luciana D Trino
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Sami Yokoo
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | | | - Rebeca Kawahara
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Romênia R Domingues
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | | | | | - Aline G Santana
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Annelize Z B Aragão
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | | | | | - Francisco R M Laurindo
- Instituto Do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Denise Fernandes
- Instituto Do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Hinrich P Hansen
- Department of Internal Medicine I, University Hospital Cologne, CECAD Research Center, Cologne, Germany
| | - Fabio Squina
- Universidade de Sorocaba, Departamento de Processos Tecnológicos e Ambientais, São Paulo, Brazil
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Adriana F Paes Leme
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil.
| |
Collapse
|
21
|
Mohammed El Tabaa M, Mohammed El Tabaa M. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Biochem Pharmacol 2020; 178:114057. [PMID: 32470547 PMCID: PMC7250789 DOI: 10.1016/j.bcp.2020.114057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is an ongoing viral pandemic disease that is caused by SARS-CoV2, inducing severe pneumonia in humans. However, several classes of repurposed drugs have been recommended, no specific vaccines or effective therapeutic interventions for COVID-19 are developed till now. Viral dependence on ACE-2, as entry receptors, drove the researchers into RAS impact on COVID-19 pathogenesis. Several evidences have pointed at Neprilysin (NEP) as one of pulmonary RAS components. Considering the protective effect of NEP against pulmonary inflammatory reactions and fibrosis, it is suggested to direct the future efforts towards its potential role in COVID-19 pathophysiology. Thus, the review aimed to shed light on the potential beneficial effects of NEP pathways as a novel target for COVID-19 therapy by summarizing its possible molecular mechanisms. Additional experimental and clinical studies explaining more the relationships between NEP and COVID-19 will greatly benefit in designing the future treatment approaches.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
22
|
Cao YL, Han YJ, Chen P, Liu ZM, Mutar M, Gao Y, Shao ZW, Tong W, Liu Y. Surgical treatment of thoracolumbar fracture with incomplete lower limb paralysis in a patient with COVID-19. Chin J Traumatol 2020; 23:211-215. [PMID: 32571532 PMCID: PMC7241380 DOI: 10.1016/j.cjtee.2020.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 02/04/2023] Open
Abstract
Since December 2019, COVID-19, an acute infectious disease, has gradually become a global threat. We report a case of thoracolumbar fractures (T12 and L1) and incomplete lower limb paralysis in a patient with COVID-19. After a series of conservative treatment which did not work at all, posterior open reduction and pedicle screw internal fixation of the thoracolumbar fracture were performed in Wuhan Union Hospital. Three weeks later, the patient could stand up and the pneumonia is almost cured. We successfully performed a surgery in a COVID-19 patient, and to our knowledge it is the first operation for a COVID-19 patient ever reported.
Collapse
Affiliation(s)
- Yu-Lin Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan-Jiu Han
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ze-Ming Liu
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Muradil Mutar
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Orthopedics, Silk Road Hospital, Kashgar, Xinjiang, 844000, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeng-Wu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| |
Collapse
|
23
|
Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol 2020; 11:1708. [PMID: 32754163 PMCID: PMC7365923 DOI: 10.3389/fimmu.2020.01708] [Citation(s) in RCA: 712] [Impact Index Per Article: 142.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is the pathogen that causes coronavirus disease 2019 (COVID-19). As of 25 May 2020, the outbreak of COVID-19 has caused 347,192 deaths around the world. The current evidence showed that severely ill patients tend to have a high concentration of pro-inflammatory cytokines, such as interleukin (IL)-6, compared to those who are moderately ill. The high level of cytokines also indicates a poor prognosis in COVID-19. Besides, excessive infiltration of pro-inflammatory cells, mainly involving macrophages and T-helper 17 cells, has been found in lung tissues of patients with COVID-19 by postmortem examination. Recently, increasing studies indicate that the "cytokine storm" may contribute to the mortality of COVID-19. Here, we summarize the clinical and pathologic features of the cytokine storm in COVID-19. Our review shows that SARS-Cov-2 selectively induces a high level of IL-6 and results in the exhaustion of lymphocytes. The current evidence indicates that tocilizumab, an IL-6 inhibitor, is relatively effective and safe. Besides, corticosteroids, programmed cell death protein (PD)-1/PD-L1 checkpoint inhibition, cytokine-adsorption devices, intravenous immunoglobulin, and antimalarial agents could be potentially useful and reliable approaches to counteract cytokine storm in COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | | | - Jinjun Ji
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Pearce L, Davidson SM, Yellon DM. The cytokine storm of COVID-19: a spotlight on prevention and protection. Expert Opin Ther Targets 2020; 24:723-730. [PMID: 32594778 DOI: 10.1080/14728222.2020.1783243] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The cytokine release syndrome (CRS) of COVID-19 is associated with the development of critical illness requiring multi-organ support. Further research is required to halt progression of multi-organ injury induced by hyper-inflammation. AREAS COVERED PubMed/MEDLINETM databases were accessed between May 9th-June 9th, 2020, to review the latest perspectives on the treatment and pathogenesis of CRS. EXPERT OPINION Over-activity of chemotaxis triggers a macrophage activation syndrome (MAS) resulting in the release of pro-inflammatory cytokines. IL-6 and TNF- α are at the forefront of hyper-inflammation. The inflammatory cascade induces endothelial activation and capillary leak, leading to circulatory collapse and shock. As endothelial dysfunction persists, there is activation of the clotting cascade and microvascular obstruction. Continued endothelial activation results in multi-organ failure, regardless of pulmonary tissue damage. We propose that targeting the endothelium may interrupt this cycle. Immuno-modulating therapies have been suggested, however, further data is necessary to confirm that they do not jeopardize adaptive immunity. Inhibition of IL-6 and the Janus Kinase, signal transducer and activator of transcription proteins pathway (JAK/STAT), are favorable targets. Remote ischemic conditioning (RIC) reduces the inflammation of sepsis in animal models and should be considered as a low risk intervention, in combination with cardiovascular protection.
Collapse
Affiliation(s)
- Lucie Pearce
- The Hatter Cardiovascular Institute, University College London , London, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London , London, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London , London, UK
| |
Collapse
|
25
|
Smetana K, Brábek J. Role of Interleukin-6 in Lung Complications in Patients With COVID-19: Therapeutic Implications. In Vivo 2020; 34:1589-1592. [PMID: 32503815 DOI: 10.21873/invivo.11947] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
Abstract
COVID-19 is viral respiratory infection with frequently fatal lung complications in the elderly or in people with serious comorbidities. Lung destruction appears to be associated with a cytokine storm related to an increased level of interleukin-6 (IL6). Therapeutic targeting of the interleukin-6 signaling pathway can attenuate such a cytokine storm and can be beneficial for patients with COVID-19 in danger of pulmonary failure. This article demonstrates the importance of IL6 in progression of disease and the possibility of inhibition of IL6 signaling in COVID-19 therapy.
Collapse
Affiliation(s)
- Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic .,BIOCEV, Vestec, Czech Republic
| | - Jan Brábek
- BIOCEV, Vestec, Czech Republic .,Department of Cell Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| |
Collapse
|
26
|
Russell B, Moss C, Rigg A, Van Hemelrijck M. COVID-19 and treatment with NSAIDs and corticosteroids: should we be limiting their use in the clinical setting? Ecancermedicalscience 2020; 14:1023. [PMID: 32256706 PMCID: PMC7105332 DOI: 10.3332/ecancer.2020.1023] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Given the current SARS-CoV-2 (COVID-19) pandemic, the availability of reliable information for clinicians and patients is paramount. There have been a number of reports stating that non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids may exacerbate symptoms in COVID-19 patients. Therefore, this review aimed to collate information available in published articles to identify any evidence behind these claims with the aim of advising clinicians on how best to treat patients. This review found no published evidence for or against the use of NSAIDs in COVID-19 patients. Meanwhile, there appeared to be some evidence that corticosteroids may be beneficial if utilised in the early acute phase of infection, however, conflicting evidence from the World Health Organisation surrounding corticosteroid use in certain viral infections means this evidence is not conclusive. Given the current availability of literature, caution should be exercised until further evidence emerges surrounding the use of NSAIDs and corticosteroids in COVID-19 patients.
Collapse
Affiliation(s)
- Beth Russell
- Translational Oncology and Urology Research, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- Denotes joint first authorship
| | - Charlotte Moss
- Translational Oncology and Urology Research, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- Denotes joint first authorship
| | - Anne Rigg
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
27
|
Russell B, Moss C, George G, Santaolalla A, Cope A, Papa S, Van Hemelrijck M. Associations between immune-suppressive and stimulating drugs and novel COVID-19-a systematic review of current evidence. Ecancermedicalscience 2020; 14:1022. [PMID: 32256705 PMCID: PMC7105343 DOI: 10.3332/ecancer.2020.1022] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cancer and transplant patients with COVID-19 have a higher risk of developing severe and even fatal respiratory diseases, especially as they may be treated with immune-suppressive or immune-stimulating drugs. This review focuses on the effects of these drugs on host immunity against COVID-19. Methods Using Ovid MEDLINE, we reviewed current evidence for immune-suppressing or -stimulating drugs: cytotoxic chemotherapy, low-dose steroids, tumour necrosis factorα (TNFα) blockers, interlukin-6 (IL-6) blockade, Janus kinase (JAK) inhibitors, IL-1 blockade, mycophenolate, tacrolimus, anti-CD20 and CTLA4-Ig. Results 89 studies were included. Cytotoxic chemotherapy has been shown to be a specific inhibitor for severe acute respiratory syndrome coronavirus in in vitro studies, but no specific studies exist as of yet for COVID-19. No conclusive evidence for or against the use of non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment of COVID-19 patients is available, nor is there evidence indicating that TNFα blockade is harmful to patients in the context of COVID-19. COVID-19 has been observed to induce a pro-inflammatory cytokine generation and secretion of cytokines, such as IL-6, but there is no evidence of the beneficial impact of IL-6 inhibitors on the modulation of COVID-19. Although there are potential targets in the JAK-STAT pathway that can be manipulated in treatment for coronaviruses and it is evident that IL-1 is elevated in patients with a coronavirus, there is currently no evidence for a role of these drugs in treatment of COVID-19. Conclusion The COVID-19 pandemic has led to challenging decision-making about treatment of critically unwell patients. Low-dose prednisolone and tacrolimus may have beneficial impacts on COVID-19. The mycophenolate mofetil picture is less clear, with conflicting data from pre-clinical studies. There is no definitive evidence that specific cytotoxic drugs, low-dose methotrexate for auto-immune disease, NSAIDs, JAK kinase inhibitors or anti-TNFα agents are contraindicated. There is clear evidence that IL-6 peak levels are associated with severity of pulmonary complications.
Collapse
Affiliation(s)
- Beth Russell
- Translational Oncology and Urology Research, King's College London, London, UK.,All authors contributed equally
| | - Charlotte Moss
- Translational Oncology and Urology Research, King's College London, London, UK.,All authors contributed equally
| | - Gincy George
- Translational Oncology and Urology Research, King's College London, London, UK.,All authors contributed equally
| | - Aida Santaolalla
- Translational Oncology and Urology Research, King's College London, London, UK.,All authors contributed equally
| | - Andrew Cope
- Guy's and St. Thomas NHS Foundation Trust, London, UK.,Centre for Rheumatic Diseases, King's College London, London, UK
| | - Sophie Papa
- Guy's and St. Thomas NHS Foundation Trust, London, UK.,School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.,Both senior authors contributed equally
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research, King's College London, London, UK.,Both senior authors contributed equally
| |
Collapse
|
28
|
Limthongkul J, Mapratiep N, Apichirapokey S, Suksatu A, Midoeng P, Ubol S. Insect anionic septapeptides suppress DENV replication by activating antiviral cytokines and miRNAs in primary human monocytes. Antiviral Res 2019; 168:1-8. [PMID: 31075349 DOI: 10.1016/j.antiviral.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
Dengue viruses (DENVs) have threatened 2/3 of the world population for decades. Thus, combating DENV infection with either antiviral therapy or protective vaccination is an urgent goal. In the present study, we investigated the anti-DENV activity of insect cell-derived anionic septapeptides from C6/36 mosquito cell cultures persistently infected with DENV. These molecules were previously shown to protect C6/36 and Vero cells against DENV infection. We found that treatment with these septapeptides strongly and rapidly downregulated the multiplication of DENV-1 16007, DENV-3 16562, and DENV-4 1036 but not that of DENV-2 16681 in primary human monocytes. This inhibitory effect was likely mediated through various routes including the increased production of antiviral cytokines (IFN-I), activation of mononuclear cell migration, and upregulation of the expression of antiviral miRNAs (has-miR-30e*, has-miR-133a, and has-miR-223) and inflammation-related miRNAs (has-miR-146a and has-miR-147). In conclusion, anionic septapeptides exerted anti-DENV activity in human monocytes through the upregulation of innate immune responses and the activation of several previously reported antiviral and inflammation-related miRNAs.
Collapse
Affiliation(s)
- Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| | - Nithipong Mapratiep
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| | - Suttikarn Apichirapokey
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| | - Panuwat Midoeng
- Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand.
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|