1
|
Zhong Y, Zhang C, Li Y, Chen D, Tang C, Zheng X, Zhu Z. MicroRNA-669f-5p targeting deoxycytidinephosphate deaminase contributes to sevoflurane-induced cognitive impairments in aged mice via the TLR2/4-MyD88-NF-κB pathway. Brain Res Bull 2025:111381. [PMID: 40379035 DOI: 10.1016/j.brainresbull.2025.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/18/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common complication associated with sevoflurane anaesthesia in the aged population. MicroRNAs have been implicated in sevoflurane-induced cognitive deficits; however, the role and underlying mechanism of microRNA (miR)-669f-5p remain unclear. METHODS Eighteen-month-old mice and mouse hippocampal neurons (HT22) were exposed to sevoflurane. Cognitive function was assessed using the Morris water maze test. Neuroapoptosis and cellular proliferation were evaluated by terminal-deoxynucleotidyl transferase-mediated nick end-labelling staining and Cell Counting Kit-8 assays, respectively. The downstream molecular mechanisms of miR-669f-5p were investigated using bioinformatics analysis, western blotting, quantitative real-time polymerase chain reaction, immunofluorescence and dual-luciferase reporter assays. RESULTS Bioinformatics analysis of the Gene Expression Omnibus database revealed upregulation of miR-669f-5p in hippocampal tissue from mice with POCD. Inhibition of miR-669f-5p substantially improved sevoflurane-induced cognitive impairment in aged mice. Deoxycytidinephosphate deaminase (Dctd) was identified as a direct target of miR-669f-5p. Overexpression of Dctd reversed the effects of miR-669f-5p mimics on apoptosis and proliferation in HT22 cells and suppressed activation of the TLR2/4-MyD88-NF-κB signalling pathway. Moreover, Dctd overexpression ameliorated sevoflurane-induced cognitive impairment in aged mice. CONCLUSION MicroRNA-669f-5p contributes to sevoflurane-induced cognitive impairment in aged mice by targeting Dctd and activating the TLR2/4-MyD88-NF-κB pathway. These findings provide new insights into potential therapeutic strategies for anaesthesia-related POCD.
Collapse
Affiliation(s)
- Yuanping Zhong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, PR China
| | - Chao Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, PR China
| | - Yuan Li
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, PR China
| | - Dongqin Chen
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, PR China
| | - Chunchun Tang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, PR China
| | - Xue Zheng
- Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, 287#, Zhonghua Road, Zunyi 563000, Guizhou Province, PR China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, PR China; Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University,149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, PR China.
| |
Collapse
|
2
|
Cheng WY, Lee XZ, Lai MSL, Ho YS, Chang RCC. PKR modulates sterile systemic inflammation-triggered neuroinflammation and brain glucose metabolism disturbances. Front Immunol 2025; 16:1469737. [PMID: 40070845 PMCID: PMC11893411 DOI: 10.3389/fimmu.2025.1469737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Sterile systemic inflammation may contribute to neuroinflammation and accelerate the progression of neurodegenerative diseases. The double-stranded RNA-dependent protein kinase (PKR) is a key signaling molecule that regulates immune responses by regulating macrophage activation, various inflammatory pathways, and inflammasome formation. This study aims to study the role of PKR in regulating sterile systemic inflammation-triggered neuroinflammation and cognitive dysfunctions. Here, the laparotomy mouse model was used to study neuroimmune responses triggered by sterile systemic inflammation. Our study revealed that genetic deletion of PKR in mice potently attenuated the laparotomy-induced peripheral and neural inflammation and cognitive deficits. Furthermore, intracerebroventricular injection of rAAV-DIO-PKR-K296R to inhibit PKR in cholinergic neurons of ChAT-IRES-Cre-eGFP mice rescued the laparotomy-induced changes in key metabolites of brain glucose metabolism, particularly the changes in phosphoenolpyruvate and succinate levels, and cognitive impairment in short-term and spatial working memory. Our results demonstrated the critical role of PKR in regulating neuroinflammation, brain glucose metabolism and cognitive dysfunctions in a peripheral inflammation model. PKR could be a novel pharmacological target for treating systemic inflammation-induced neuroinflammation and cognitive dysfunctions.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Xin-Zin Lee
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Michael Siu-Lun Lai
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Arif S, Qazi TJ, Quan Z, Ni J, Li Z, Qiu Y, Qing H. Extracellular vesicle-packed microRNAs profiling in Alzheimer's disease: The molecular intermediary between pathology and diagnosis. Ageing Res Rev 2025; 104:102614. [PMID: 39626853 DOI: 10.1016/j.arr.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
MicroRNAs (miRNAs), referring to a type of non-coding RNAs functioning in various biological processes, participate in the pathophysiology of Alzheimer's disease (AD) through increasing amyloid-beta (Aβ) production, enhancing Tau phosphorylation, and inducing neuroinflammation. Meanwhile, extracellular vesicles (EVs) have been suggested as promising carriers of AD biomarkers as they possess the ability to transmit information from cerebral tissue to peripheral blood. Inspired by the above findings, we in this review systematically generalized the roles of miRNAs in AD and explored the potential of EV-packed miRNA as biomarkers for early diagnosis of AD. Through the detailed investigation, this review may highlight the promise of EV-packed miRNAs in advancing our understanding of AD, and underscore the imperative needs of further studies on their diagnostic potential.
Collapse
Affiliation(s)
- Sandila Arif
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Talal Jamil Qazi
- The Department of Biomedical Engineering, Balochistan University of Engineering & Technology, Khuzdar 89120, Pakistan
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhaohan Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
4
|
Yang D, Su J, Chen Y, Chen G. The NF-κB pathway: Key players in neurocognitive functions and related disorders. Eur J Pharmacol 2024; 984:177038. [PMID: 39369877 DOI: 10.1016/j.ejphar.2024.177038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgical anesthesia, yet its precise etiology remains unclear. Neuroinflammation is a key feature of PND, influenced by both patient -related and surgical variables. The nuclear factor-κB (NF-κB) transcription factor family plays a critical role in regulating the body's immunological proinflammatory response, which is pivotal in the development of PND. Surgery and anesthesia trigger the activation of the NF-κB signaling pathway, leading to the initiation of inflammatory cascades, disruption of the blood-brain barrier, and neuronal injury. Immune cells and glial cells are central to these pathological processes in PND. Furthermore, this study explores the interactions between NF-κB and various signaling molecules, including Tlr4, P2X, α7-nAChR, ROS, HIF-1α, PI3K/Ak, MicroRNA, Circular RNA, and histone deacetylases, within the context of PND. Targeting NF-κB as a therapeutic approach for PND shows promise as a potential treatment strategy.
Collapse
Affiliation(s)
- Danfeng Yang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junwei Su
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
5
|
Otis C, Cristofanilli KA, Frezier M, Delsart A, Martel-Pelletier J, Pelletier JP, Beaudry F, Lussier B, Boyer A, Troncy E. Predictive and concurrent validity of pain sensitivity phenotype, neuropeptidomics and neuroepigenetics in the MI-RAT osteoarthritic surgical model in rats. Front Cell Dev Biol 2024; 12:1400650. [PMID: 39175874 PMCID: PMC11338919 DOI: 10.3389/fcell.2024.1400650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Background Micro-RNAs could provide great insights about the neuropathological mechanisms associated with osteoarthritis (OA) pain processing. Using the validated Montreal Induction of Rat Arthritis Testing (MI-RAT) model, this study aimed to characterize neuroepigenetic markers susceptible to correlate with innovative pain functional phenotype and targeted neuropeptide alterations. Methods Functional biomechanical, somatosensory sensitization (peripheral-via tactile paw withdrawal threshold; central-via response to mechanical temporal summation), and diffuse noxious inhibitory control (via conditioned pain modulation) alterations were assessed sequentially in OA (n = 12) and Naïve (n = 12) rats. Joint structural, targeted spinal neuropeptides and differential expression of spinal cord micro-RNAs analyses were conducted at the sacrifice (day (D) 56). Results The MI-RAT model caused important structural damages (reaching 35.77% of cartilage surface) compared to the Naïve group (P < 0.001). This was concomitantly associated with nociceptive sensitization: ipsilateral weight shift to the contralateral hind limb (asymmetry index) from -55.61% ± 8.50% (D7) to -26.29% ± 8.50% (D35) (P < 0.0001); mechanical pain hypersensitivity was present as soon as D7 and persisting until D56 (P < 0.008); central sensitization was evident at D21 (P = 0.038); pain endogenous inhibitory control was distinguished with higher conditioned pain modulation rate (P < 0.05) at D7, D21, and D35 as a reflect of filtrated pain perception. Somatosensory profile alterations of OA rats were translated in a persistent elevation of pro-nociceptive neuropeptides substance P and bradykinin, along with an increased expression of spinal miR-181b (P = 0.029) at D56. Conclusion The MI-RAT OA model is associated, not only with structural lesions and static weight-bearing alterations, but also with a somatosensory profile that encompasses pain centralized sensitization, associated to active endogenous inhibitory/facilitatory controls, and corresponding neuropeptidomic and neuroepigenetic alterations. This preliminary neuroepigenetic research confirms the crucial role of pain endogenous inhibitory control in the development of OA chronic pain (not only hypersensitivity) and validates the MI-RAT model for its study.
Collapse
Affiliation(s)
- Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Katrine-Ann Cristofanilli
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marilyn Frezier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Aliénor Delsart
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Johanne Martel-Pelletier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Jean-Pierre Pelletier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et L’apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Bertrand Lussier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Alexandre Boyer
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Département de Biomédecine Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| |
Collapse
|
6
|
Wang S, Zhao J, Wang C, Yao Y, Song Z, Li L, Jiang J. miR-206-3p Targets Brain-Derived Neurotrophic Factor and Affects Postoperative Cognitive Function in Aged Mice. Neurochem Res 2024; 49:2005-2020. [PMID: 38814357 DOI: 10.1007/s11064-024-04174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Postoperative cognitive dysfunction (POCD) occurs after surgery and severely impairs patients' quality of life. Finding POCD-associated variables can aid in its diagnosis and prognostication. POCD is associated with noncoding RNAs, such as microRNAs (miRNAs), involved in metabolic function, immune response alteration, and cognitive ability impairment; however, the underlying mechanisms remain unclear. The aim of this study was to investigate hub miRNAs (i.e., miRNAs that have an important regulatory role in diseases) regulating postoperative cognitive function and the associated mechanisms. Hub miRNAs were identified by bioinformatics, and their expression in mouse hippocampus tissues was determined using real-time quantitative polymerase chain reaction. Hub miRNAs were overexpressed or knocked down in cell and animal models to test their effects on neuroinflammation and postoperative cognitive function. Six differentially expressed hub miRNAs were identified. miR-206-3p was the only broadly conserved miRNA, and it was used in follow-up studies and animal experiments. Its inhibitors reduced the release of proinflammatory cytokines in BV-2 microglia by regulating its target gene, brain-derived neurotrophic factor (BDNF), and the downstream signaling pathways. miR-206-3p inhibition suppressed microglial activation in the hippocampi of mice and improved learning and cognitive decline. Therefore, miR-206-3p significantly affects POCD, implying its potential as a therapeutic target.
Collapse
Affiliation(s)
- Shentong Wang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jia Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chengran Wang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuhan Yao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhiyao Song
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Longyun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Jinlan Jiang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
7
|
Hong J, Li Y, Chen L, Han D, Li Y, Mi X, Liu K, Wang Q, Song Y, Liu T, Yang N, Liu Y, Li Z, Guo X. A53T α-synuclein mutation increases susceptibility to postoperative delayed neurocognitive recovery via hippocampal Ang-(1-7)/MasR axis. Biochem Pharmacol 2024; 224:116261. [PMID: 38705534 DOI: 10.1016/j.bcp.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.
Collapse
Affiliation(s)
- Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Qian Wang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| |
Collapse
|
8
|
Zhong Y, Zhang Y, Zhu Z. Research progress on the association between MicroRNA and postoperative cognitive dysfunction. Minerva Anestesiol 2024; 90:191-199. [PMID: 38535971 DOI: 10.23736/s0375-9393.23.17614-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a significant complication following surgery. The precise mechanisms underlying POCD remain elusive, although it is speculated that they involve central nervous system inflammation, oxidative stress and cellular apoptosis. MicroRNAs (miRNAs), a class of non-coding RNAs widely distributed in eukaryotes, have been implicated in the pathogenesis of neurodegenerative disorders and could potentially impact POCD. This review explores the association between miRNAs and POCD and provides an overview of the progress of current research on miRNAs in the pathogenesis, diagnosis, and treatment of POCD.
Collapse
Affiliation(s)
- Yuanping Zhong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China -
| |
Collapse
|
9
|
Meng T, Liu X, Zhang J, Li S, He W, Li W. MicroRNA-181b attenuates lipopolysaccharide-induced inflammatory responses in pulpitis via the PLAU/AKT/NF-κB axis. Int Immunopharmacol 2024; 127:111451. [PMID: 38154211 DOI: 10.1016/j.intimp.2023.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE This study aimed to investigate the role and underlying mechanisms of microRNA (miRNA)-181b in the inflammatory response in pulpitis. METHODS Quantitative reverse-transcription polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), and immunofluorescence techniques were used to determine the miRNA-181b and urokinase-type plasminogen activator (PLAU) expression levels in inflamed human dental pulp tissues (HDPTs) and lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). The targets of miRNA-181b were identified and confirmed using a bioinformatics analysis, RNA sequencing, and dual-luciferase gene reporter assays. The effect of miRNA-181b or PLAU on proinflammatory cytokine expression in hDPCs was examined using qRT-PCR and western blotting. RNA sequencing was conducted to examine the signaling pathways implicated in miRNA-181b-mediated pulpitis. Western blotting and qRT-PCR were used to determine the miRNA-181b /PLAU/AKT/NF-κB signaling axis in pulpitis. A rat pulpitis model was created to observe the histopathological changes in the dental pulp tissue after the topical application of miRNA-181b agomir. RESULTS A significant decrease in miRNA-181b and an increase in PLAU were observed in HDPTs compared to the healthy controls, and these two factors showed a negative correlation. MiRNA-181b directly targeted PLAU. The miRNA-181b inhibitor resulted in a significant upregulation of IL-1β, IL-6 and TNF-α, whereas the knockdown of PLAU reversed this proinflammatory effect. Conversely, PLAU overexpression prevented the anti-inflammatory effects of the miRNA-181b mimics. Mechanistically, miRNA-181b inhibited the AKT/NF-κB pathway by targeting PLAU. In vivo application of the miRNA-181b agomir to inflamed pulp tissue alleviated inflammation. CONCLUSION MiRNA-181b targets PLAU, negatively regulating pro-inflammatory cytokine expression via the AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tiantian Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Xinpai Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Jing Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Song Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Wei He
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei 230032, Anhui, China.
| | - Wuli Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
10
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
11
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
12
|
Millán Solano MV, Salinas Lara C, Sánchez-Garibay C, Soto-Rojas LO, Escobedo-Ávila I, Tena-Suck ML, Ortíz-Butrón R, Choreño-Parra JA, Romero-López JP, Meléndez Camargo ME. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci 2023; 24:11902. [PMID: 37569277 PMCID: PMC10419139 DOI: 10.3390/ijms241511902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023] Open
Abstract
Central nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation. During neuroinflammation, the participation of glial cells (astrocytes, microglia, and oligodendrocytes) plays an important role. They release cytokines, chemokines, reactive oxygen species, nitrogen species, peptides, and even excitatory amino acids that lead to neuronal damage. The neurons undergo morphological and functional changes that could initiate functional alterations to neurodegenerative processes. The present work aims to explain these processes and the pathophysiological interactions involved in CNS damage in the absence of microbes or inflammatory cells.
Collapse
Affiliation(s)
- Mara Verónica Millán Solano
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - Citlaltepetl Salinas Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Carlos Sánchez-Garibay
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Luis O. Soto-Rojas
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Itzel Escobedo-Ávila
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Martha Lilia Tena-Suck
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Rocío Ortíz-Butrón
- Laboratorio de Neurobiología, Departamento de Fisiología de ENCB, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - José Pablo Romero-López
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Estela Meléndez Camargo
- Laboratorio de Farmacología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Manuel Luis Stampa S/N, U.P. Adolfo López Mateos, Mexico City 07738, Mexico;
| |
Collapse
|
13
|
Zhang M, Suo Z, Qu Y, Zheng Y, Xu W, Zhang B, Wang Q, Wu L, Li S, Cheng Y, Xiao T, Zheng H, Ni C. Construction and analysis of circular RNA-associated competing endogenous RNA network in the hippocampus of aged mice for the occurrence of postoperative cognitive dysfunction. Front Aging Neurosci 2023; 15:1098510. [PMID: 37051377 PMCID: PMC10084838 DOI: 10.3389/fnagi.2023.1098510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Circular RNAs are highly stable single-stranded circular RNAs and enriched in the brain. Previous studies showed that circRNAs, as part of competing endogenous RNAs (ceRNAs) network, play an important role in neurodegenerative and psychiatric diseases. However, the mechanism of circRNA-related ceRNA networks in postoperative cognitive dysfunction (POCD) has not been elucidated yet. POCD usually occurs in elderly patients and is characterized by hippocampal dysfunction. Here, aged C57BL/6 mice were subjected to exploratory laparotomy under sevoflurane anesthesia, and this POCD model was verified by Morris water maze test. Whole-transcriptome sequencing was performed on the hippocampus of control group (Con) and surgery group. One hundred and seventy-seven DEcircRNAs, 221 DEmiRNAs and 2,052 DEmRNAs were identified between two groups. A ceRNA network was established with 92 DEcircRNAs having binding sites with 76 DEmiRNAs and 549 target DEmRNAs. In functional enrichment analysis, a pathological pattern of POCD was highlighted in the ceRNA network: Abnormal metabolic process in neural cells, including oxygen metabolism, could promote apoptosis and then affect the synaptic function, which may undermine the neural plasticity and eventually lead to changes in cognitive function and other behavioral patterns. In conclusion, this specific ceRNA network of circRNAs–miRNAs–mRNAs has provided novel insights into the regulatory mechanisms of POCD and revealed potential therapeutic gene targets.
Collapse
Affiliation(s)
- Mingzhu Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linxin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaozhong Cheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Hui Zheng,
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cheng Ni,
| |
Collapse
|
14
|
Research Progress on Exosomes and MicroRNAs in the Microenvironment of Postoperative Neurocognitive Disorders. Neurochem Res 2022; 47:3583-3597. [DOI: 10.1007/s11064-022-03785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022]
|
15
|
Yang YS, He SL, Chen WC, Wang CM, Huang QM, Shi YC, Lin S, He HF. Recent progress on the role of non-coding RNA in postoperative cognitive dysfunction. Front Cell Neurosci 2022; 16:1024475. [PMID: 36313620 PMCID: PMC9608859 DOI: 10.3389/fncel.2022.1024475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD), especially in elderly patients, is a serious complication characterized by impairment of cognitive and sensory modalities after surgery. The pathogenesis of POCD mainly includes neuroinflammation, neuronal apoptosis, oxidative stress, accumulation of Aβ, and tau hyperphosphorylation; however, the exact mechanism remains unclear. Non-coding RNA (ncRNA) may play an important role in POCD. Some evidence suggests that microRNA, long ncRNA, and circular RNA can regulate POCD-related processes, making them promising biomarkers in POCD diagnosis, treatment, and prognosis. This article reviews the crosstalk between ncRNAs and POCD, and systematically discusses the role of ncRNAs in the pathogenesis and diagnosis of POCD. Additionally, we explored the possible mechanisms of ncRNA-associated POCD, providing new knowledge for developing ncRNA-based treatments for POCD.
Collapse
Affiliation(s)
- Yu-Shen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shi-Ling He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiao-Mei Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Chuan Shi
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Yan-Chuan Shi,
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Shu Lin,
| | - He-fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- He-fan He,
| |
Collapse
|
16
|
Biliverdin modulates the long non-coding RNA H19/microRNA-181b-5p/endothelial cell specific molecule 1 axis to alleviate cerebral ischemia reperfusion injury. Biomed Pharmacother 2022; 153:113455. [PMID: 36076490 DOI: 10.1016/j.biopha.2022.113455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
|
17
|
Lu B, Yuan H, Mo L, Sun D, Liu R, Zhou H, Zhai X, Wang R, Chen J, Meng B. Effects of different types of non-cardiac surgical trauma on hippocampus-dependent memory and neuroinflammation. Front Behav Neurosci 2022; 16:950093. [PMID: 36035019 PMCID: PMC9399929 DOI: 10.3389/fnbeh.2022.950093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Older individuals have been reported to suffer from cognitive disorders after surgery. Various types of surgical trauma have been used to establish postoperative cognitive dysfunction (POCD) animal models in preclinical studies. However, few comparative analyses of these animal models were conducted. Methods Tibial surgery, abdominal surgery, and extended abdominal surgery were performed on aged ICR mice to establish POCD models. Behavioral tests included open field, novel object recognition, fear conditioning, and Morris water maze tests. The Z-score methodology was adopted to obtain a comprehensive and integrated memory performance profile. The changes in hippocampal neuroinflammation were analyzed by ELISA, PCR, and immunofluorescence. Results In this study, we found that each type of non-cardiac surgical trauma has a different effects on locomotor activity. Tibial and extended abdominal surgeries led to more significant cognitive impairment than abdominal surgery. Inflammatory cytokines peaked on postoperative day 1 and decreased to control levels on days 3 and 7. Hippocampal neuroinflammation indicators between the three surgery types on postoperative day 1 had no statistical differences. Conclusion Overall, the type and intensity of non-cardiac surgical trauma can affect cognitive behavioral outcomes and central inflammation. The shortcomings and emerging issues of POCD animal research methods need to be further studied and solved.
Collapse
Affiliation(s)
- Bo Lu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Hui Yuan
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Lan Mo
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Daofan Sun
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Rongjun Liu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Han Zhou
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaojie Zhai
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Ruichun Wang
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Junping Chen,
| | - Bo Meng
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Bo Meng,
| |
Collapse
|
18
|
Shu J, Yang L, Wei W, Zhang L. Identification of programmed cell death-related gene signature and associated regulatory axis in cerebral ischemia/reperfusion injury. Front Genet 2022; 13:934154. [PMID: 35991562 PMCID: PMC9385974 DOI: 10.3389/fgene.2022.934154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Numerous studies have suggested that programmed cell death (PCD) pathways play vital roles in cerebral ischemia/reperfusion (I/R) injury. However, the specific mechanisms underlying cell death during cerebral I/R injury have yet to be completely clarified. There is thus a need to identify the PCD-related gene signatures and the associated regulatory axes in cerebral I/R injury, which should provide novel therapeutic targets against cerebral I/R injury. Methods: We analyzed transcriptome signatures of brain tissue samples from mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and matched controls, and identified differentially expressed genes related to the three types of PCD(apoptosis, pyroptosis, and necroptosis). We next performed functional enrichment analysis and constructed PCD-related competing endogenous RNA (ceRNA) regulatory networks. We also conducted hub gene analysis to identify hub nodes and key regulatory axes. Results: Fifteen PCD-related genes were identified. Functional enrichment analysis showed that they were particularly associated with corresponding PCD-related biological processes, inflammatory response, and reactive oxygen species metabolic processes. The apoptosis-related ceRNA regulatory network was constructed, which included 24 long noncoding RNAs (lncRNAs), 41 microRNAs (miRNAs), and 4 messenger RNAs (mRNAs); the necroptosis-related ceRNA regulatory network included 16 lncRNAs, 20 miRNAs, and 6 mRNAs; and the pyroptosis-related ceRNA regulatory network included 15 lncRNAs, 18 miRNAs, and 6 mRNAs. Hub gene analysis identified hub nodes in each PCD-related ceRNA regulatory network and seven key regulatory axes in total, namely, lncRNA Malat1/miR-181a-5p/Mapt, lncRNA Malat1/miR-181b-5p/Mapt, lncRNA Neat1/miR-181a-5p/Mapt, and lncRNA Neat1/miR-181b-5p/Mapt for the apoptosis-related ceRNA regulatory network; lncRNA Neat1/miR-181a-5p/Tnf for the necroptosis-related ceRNA regulatory network; lncRNA Malat1/miR-181c-5p/Tnf for the pyroptosis-related ceRNA regulatory network; and lncRNAMalat1/miR-181a-5p for both necroptosis-related and pyroptosis-related ceRNA regulatory networks. Conclusion: The results of this study supported the hypothesis that these PCD pathways (apoptosis, necroptosis, pyroptosis, and PANoptosis) and crosstalk among them might be involved in ischemic stroke and that the key nodes and regulatory axes identified in this study might play vital roles in regulating the above processes. This may offer new insights into the potential mechanisms underlying cell death during cerebral I/R injury and provide new therapeutic targets for neuroprotection.
Collapse
Affiliation(s)
| | | | - Wenshi Wei
- *Correspondence: Wenshi Wei, ; Li Zhang,
| | - Li Zhang
- *Correspondence: Wenshi Wei, ; Li Zhang,
| |
Collapse
|
19
|
Chen J, Ding Q, Jiao X, Wang B, Sun Z, Zhang Y, Zhao J. Dexmedetomidine attenuates hippocampal neuroinflammation in postoperative neurocognitive disorders by inhibiting microRNA-329-3p and activating the CREB1/IL1RA axis. Psychopharmacology (Berl) 2022; 239:2171-2186. [PMID: 35412062 DOI: 10.1007/s00213-022-06091-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Due to its anti-inflammatory effect, dexmedetomidine (DEX) can confer neuroprotection in postoperative neurocognitive disorders (NCD). Here, the mechanism responsible for this effect of DEX is rarely ascertained. OBJECTIVES Our research was implemented to figure out mechanism governing the protection of DEX against hippocampal neuroinflammation in postoperative NCD. METHODS Exploratory laparotomy was applied for generating a postoperative NCD mouse model before bilateral hippocampal injection with microRNA (miR)-329-3p-agomir and intraperitoneal injection with DEX. Cognitive function of mice was evaluated by water maze test and fear conditioning test. Immunofluorescence was performed to assess microglial activation in hippocampus. After cell transfection and DEX treatment, mouse microglial cells (BV-2) were stimulated by lipopolysaccharide (LPS). IL-1β, IL-6, and TNF-α levels and the number of phagocytes were assessed by ELISA and flow cytometry. Dual-luciferase reporter assay was adopted to assess the relationship between miR-329-3p and CREB1. RESULTS miR-329-3p expression was reduced in the postoperative NCD mice after DEX treatment. DEX treatment or miR-329-3p downregulation caused attenuated cognitive dysfunction and microglia activation as well as reduced IL-1β, IL-6, and TNF-α levels in the hippocampus of the postoperative NCD mice. Mechanistically, miR-329-3p inversely targeted CREB1 that activated IL1RA in LPS-induced BV-2 cells. DEX treatment, miR-329-3p inhibition, or CREB1 or IL1RA upregulation curtailed the release of proinflammatory proteins and the number of phagocytes in LPS-induced BV-2 cells. CONCLUSIONS Collectively, our data provided the novel insight of the neuroprotective mechanism of DEX in postoperative NCD pertaining to the miR-329-3p/CREB1/IL1RA axis.
Collapse
Affiliation(s)
- Jinquan Chen
- Anesthesia Operation Center, The First Peoples Hospital of Xianyang, Xianyang, 712000, People's Republic of China
| | - Qian Ding
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China
| | - Xiangxue Jiao
- Anesthesia Operation Center, The First Peoples Hospital of Xianyang, Xianyang, 712000, People's Republic of China
| | - Binrong Wang
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China
| | - Zhenzhong Sun
- Department of Anesthesiology, Guangdong Armed Police Corps Hospital, Guangzhou, 510507, People's Republic of China
| | - Yutao Zhang
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China
| | - Juan Zhao
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China.
| |
Collapse
|
20
|
Chen D, Fang X, Zhu Z. Progress in the correlation of postoperative cognitive dysfunction and Alzheimer's disease and the potential therapeutic drug exploration. IBRAIN 2022; 9:446-462. [PMID: 38680509 PMCID: PMC11045201 DOI: 10.1002/ibra.12040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 05/01/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a decrease in mental capacity that can occur days to weeks after a medical procedure and may become permanent and rarely lasts for a longer period of time. With the continuous development of research, various viewpoints in academic circles have undergone subtle changes, and the role of anesthesia depth and anesthesia type seems to be gradually weakened; Alzheimer's disease (AD) is a latent and progressive neurodegenerative disease in the elderly. The protein hypothesis and the synaptic hypothesis are well-known reasons. These changes will also lead to the occurrence of an inflammatory cascade. The exact etiology and pathogenesis need to be studied. The reasonable biological mechanism affecting brain protein deposition, neuroinflammation, and acetylcholine-like effect has a certain relationship between AD and POCD. Whereas there is still further uncertainty about the mechanism and treatment, and it is elusive whether POCD is a link in the continuous progress of AD or a separate entity, which has doubts about the diagnosis and treatment of the disease. Therefore, this review is based on the current common clinical characteristics of AD and POCD, and pathophysiological research, to search for their common points and explore the direction and new strategies for future treatment.
Collapse
Affiliation(s)
- Dong‐Qin Chen
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Xu Fang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
21
|
Zhai W, Zhao M, Zhang G, Wang Z, Wei C, Sun L. MicroRNA-Based Diagnosis and Therapeutics for Vascular Cognitive Impairment and Dementia. Front Neurol 2022; 13:895316. [PMID: 35592472 PMCID: PMC9110834 DOI: 10.3389/fneur.2022.895316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is a neurodegenerative disease that is recognized as the second leading cause of dementia after Alzheimer's disease (AD). The underlying pathological mechanism of VCID include crebromicrovascular dysfunction, blood-brain barrier (BBB) disruption, neuroinflammation, capillary rarefaction, and microhemorrhages, etc. Despite the high incidence of VCID, no effective therapies are currently available for preventing or delaying its progression. Recently, pathophysiological microRNAs (miRNAs) in VCID have shown promise as novel diagnostic biomarkers and therapeutic targets. Studies have revealed that miRNAs can regulate the function of the BBB, affect apoptosis and oxidative stress (OS) in the central nervous system, and modulate neuroinflammation and neurodifferentiation. Thus, this review summarizes recent findings on VCID and miRNAs, focusing on their correlation and contribution to the development of VCID pathology.
Collapse
|
22
|
Bazrgar M, Khodabakhsh P, Dargahi L, Mohagheghi F, Ahmadiani A. MicroRNA modulation is a potential molecular mechanism for neuroprotective effects of intranasal insulin administration in amyloid βeta oligomer induced Alzheimer's like rat model. Exp Gerontol 2022; 164:111812. [PMID: 35476966 DOI: 10.1016/j.exger.2022.111812] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Substantial evidence indicates that imbalance in the expression of miR-132-3p, miR-181b-5p, miR-125b-5p, miR-26a-5p, miR-124-3p, miR-146a-5p, miR-29a-3p, and miR-30a-5p in the AD brain are associated with amyloid-beta (Aβ) aggregation, tau pathology, neuroinflammation, and synaptic dysfunction, the major pathological hallmarks of Alzheimer's disease)AD(. Several studies have reported that intranasal insulin administration ameliorates memory in AD patients and animal models. However, the underlying molecular mechanisms are not yet completely elucidated. Therefore, the aim of this study was to determine whether insulin is involved in regulating the expression of AD-related microRNAs. Pursuing this objective, we first investigated the therapeutic effect of intranasal insulin on Aβ oligomer (AβO)-induced memory impairment in male rats using the Morris water maze task. Then, molecular and histological changes in response to AβO and/or insulin time course were assessed in the extracted hippocampi on days 1, 14, and 21 of the study using congo red staining, western blot and quantitative real-time PCR analyses. We observed memory impairment, Aβ aggregation, tau hyper-phosphorylation, neuroinflammation, insulin signaling dys-regulation, and down-regulation of miR-26a, miR-124, miR-29a, miR-181b, miR-125b, miR-132, and miR-146a in the hippocampus of AβO-exposed rats 21 days after AβO injection. Intranasal insulin treatment ameliorated memory impairment and concomitantly increased miR-132, miR-181b, and miR-125b expression, attenuated tau phosphorylation levels, Aβ aggregation, and neuroinflammation, and regulated the insulin signaling as well. In conclusion, our study suggest that the neuroprotective effects of insulin on memory observed in AD-like rats could be partially due to the restoration of miR-132, miR-181b, and miR-125b expression in the brain.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
23
|
Dexmedetomidine Mitigates Microglial Activation Associated with Postoperative Cognitive Dysfunction by Modulating the MicroRNA-103a-3p/VAMP1 Axis. Neural Plast 2022; 2022:1353778. [PMID: 35494481 PMCID: PMC9042642 DOI: 10.1155/2022/1353778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Surgery-induced microglial activation is critical in mediating postoperative cognitive dysfunction (POCD) in elderly patients, where the important protective effect of dexmedetomidine has been indicated. However, the mechanisms of action of dexmedetomidine during the neuroinflammatory response that underlies POCD remain largely unknown. We found that lipopolysaccharide (LPS) induced substantial inflammatory responses in primary and BV2 microglial cells. The screening of differentially expressed miRNAs revealed that miR-103a-3p was downregulated in these cell culture models. Overexpression of miR-103a-3p mimics and inhibitors suppressed and enhanced the release of inflammatory factors, respectively. VAMP1 expression was upregulated in LPS-treated primary and BV-2 microglial cells, and it was validated as a downstream target of miR-103-3p. VAMP1-knockdown significantly inhibited the LPS-induced inflammatory response. Dexmedetomidine treatment markedly inhibited LPS-induced inflammation and the expression of VAMP1, and miR-103a-3p expression reversed this inhibition. Moreover, dexmedetomidine mitigated microglial activation and the associated inflammatory response in a rat model of surgical trauma that mimicked POCD. In this model, dexmedetomidine reversed miR-103a-3p and VAMP1 expression; this effect was abolished by miR-103a-3p overexpression. Taken together, the data show that miR-103a-3p/VAMP1 is critical for surgery-induced microglial activation of POCD.
Collapse
|
24
|
Lian F, Cao C, Deng F, Liu C, Zhou Z. Propofol alleviates postoperative cognitive dysfunction by inhibiting inflammation via up-regulating miR-223-3p in aged rats. Cytokine 2022; 150:155783. [PMID: 34979347 DOI: 10.1016/j.cyto.2021.155783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Postoperative cognitive dysfunction (POCD) affects 15-25% of surgical patients and causes significant morbidity and mortality. This study aims to investigate the mechanism of propofol reducing POCD in aged rats. METHOD Rats in Operate group and Propofol group were anesthetized with isoflurane and propofol, respectively, and then underwent cardiac surgery. Rats in Antagomir group were anesthetized with propofol and underwent cardiac surgery with preoperative injection of miR-223-3p antagomir. Barnes maze and Morris water maze (MWM) were used to test spatial learning and memory of rats. Immunofluorescence was used to detect the level of microglial cell marker IBA1. In addition, qRT-PCR was performed to measure the expression of miR-223-3p and inflammatory factors TNF-α, IL-1β and IL-6. Western blotting was conducted to detect the protein expression of Foxo1, TNF-α, IL-1β and IL-6. RESULT Isoflurane-anesthetized rats undergoing cardiac surgery showed significantly reduced spatial learning and memory, promoted microglia activation, decreased miR-223-3p expression and increased inflammatory response in the hippocampus, while isoflurane-anesthetized rats without surgery showed insignificant changes in these indices. Compared to isoflurane anesthesia, propofol anesthesia exhibited less effect on spatial learning and memory of rats with cardiac surgery and contributed to a relative reduction in activated microglia in the hippocampus, a notable increase in miR-223-3p expression, and a decrease in inflammation. The results were reversed after miR-223-3p antagomir was injected into propofol-anesthetized surgical rats. miR-223-3p negatively regulated Foxo1 to suppress the expression of inflammatory factors. CONCLUSION Propofol reduced inflammation by up-regulating miR-223-3p, thereby reducing POCD in aged rats.
Collapse
Affiliation(s)
- Fang Lian
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Cao Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Fumou Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Chunfang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhidong Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
25
|
Yang Y, Liu Y, Zhu J, Song S, Huang Y, Zhang W, Sun Y, Hao J, Yang X, Gao Q, Ma Z, Zhang J, Gu X. Neuroinflammation-mediated mitochondrial dysregulation involved in postoperative cognitive dysfunction. Free Radic Biol Med 2022; 178:134-146. [PMID: 34875338 DOI: 10.1016/j.freeradbiomed.2021.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022]
Abstract
Neuroinflammation following peripheral surgery is a pivotal pathogenic mechanism of postoperative cognitive dysfunction (POCD). However, the key site of inflammation-mediated neural damage remains unclear. Impaired mitochondrial function is a vital feature of degenerated neurons. Dynamin-related protein 1 (DRP1), a crucial regulator of mitochondrial dynamics, has been shown to play an essential role in synapse formation. Here, we designed experiments to assess whether Drp1-regulated mitochondrial dynamics and function are involved in the pathological processes of POCD and elucidate its relationship with neuroinflammation. Aged mice were subjected to experimental laparotomy under isoflurane anesthesia. Primary neurons and SH-SY5Y cells were exposed to tumor necrosis factor (TNF). We found an increase in Drp1 activation as well as mitochondrial fragmentation both in the hippocampus of mice after surgery and primary neurons after TNF exposure. Pretreatment with Mdivi-1, a Drp1 specific inhibitor, reduced this mitochondrial fragmentation. Drp1 knockdown with small interfering RNA blocked TNF-induced mitochondrial fragmentation in SH-SY5Y cells. However, the application of Mdivi-1 exhibited a negative impact on mitochondrial function and neurite growth in primary neurons. Calcineurin activity was increased in primary neurons after TNF exposure and contributed to the Drp1 activation. The calcineurin inhibitor FK506 exhibited a Drp1-independent function that mitigated mitochondrial dysfunction. Finally, we found that FK506 pretreatment ameliorated the neurite growth in neurons treated with TNF and the learning ability of mice after surgery. Overall, our research indicated a crucial role of mitochondrial function in the pathological processes of POCD, and neuronal metabolic modulation may represent a novel and important target for POCD.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Yue Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Jixiang Zhu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210093, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Yu'e Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Jing Hao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Xuli Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210093, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China.
| | - Juan Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China.
| |
Collapse
|
26
|
Dong J, Fu T, Yang Y, Mu Z, Li X. Long Noncoding RNA SNHG1 Promotes Lipopolysaccharide-Induced Activation and Inflammation in Microglia via Targeting miR-181b. Neuroimmunomodulation 2021; 28:255-265. [PMID: 34496364 DOI: 10.1159/000514549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/19/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Long noncoding RNA small nuclear host gene 1 (SNHG1) was involved in neuroinflammation in microglial BV-2 cells; however, its interaction with microRNA (miR)-181b in lipopolysaccharide (LPS)-induced BV-2 cells remained poor. METHODS BV-2 cells were treated with LPS and then were subjected to observation on morphology and immunofluorescence staining. After transfection, levels of inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were determined with enzyme-linked immunosorbent assay (ELISA). The potential binding sites between SNHG1 and miR-181b were confirmed using dual-luciferase reporter assay. Quantitative real-time polymerase chain reaction and Western blot were applied for detecting the mRNA and protein expressions of proinflammatory cytokines, ionized calcium-binding adapter molecule 1 (Iba1), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). RESULTS LPS led to the morphological changes and activation of BV-2 cells. The transfection of SNHG1 overexpression vector further promoted LPS-induced SNHG1 upregulation, inflammatory cytokines (IL-1β, IL-6, and TNF-α) generation and Iba-1, COX-2, and iNOS expressions, whereas silencing SNHG1 did the opposite. miR-181b functions as a downstream miRNA of SNHG1. In LPS-treated cells, the inhibition of miR-181b induced by SNHG1 promoted inflammation response and the expressions of Iba-1, COX-2, and iNOS. CONCLUSION SNHG1 was involved in LPS-induced microglial activation and inflammation response via targeting miR-181b, providing another evidence of the roles of SNHG1 implicated in neuroinflammation of microglia.
Collapse
Affiliation(s)
- Jun Dong
- Department of Neurosurgery, People's Hospital of Rizhao, Rizhao, China
| | - Tingkai Fu
- Department of Neurosurgery, People's Hospital of Rizhao, Rizhao, China
| | - Yunxue Yang
- Department of Neurosurgery, People's Hospital of Rizhao, Rizhao, China
| | - Zhenxin Mu
- Department of Neurosurgery, People's Hospital of Rizhao, Rizhao, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
27
|
Muscat SM, Barrientos RM. The Perfect Cytokine Storm: How Peripheral Immune Challenges Impact Brain Plasticity & Memory Function in Aging. Brain Plast 2021; 7:47-60. [PMID: 34631420 PMCID: PMC8461734 DOI: 10.3233/bpl-210127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Precipitous declines in cognitive function can occur in older individuals following a variety of peripheral immune insults, such as surgery, infection, injury, and unhealthy diet. Aging is associated with numerous changes to the immune system that shed some light on why this abrupt cognitive deterioration may occur. Normally, peripheral-to-brain immune signaling is tightly regulated and advantageous; communication between the two systems is bi-directional, via either humoral or neural routes. Following an immune challenge, production, secretion, and translocation of cytokines into the brain is critical to the development of adaptive sickness behaviors. However, aging is normally associated with neuroinflammatory priming, notably microglial sensitization. Microglia are the brain's innate immune cells and become sensitized with advanced age, such that upon immune stimulation they will mount more exaggerated neuroimmune responses. The resultant elevation of pro-inflammatory cytokine expression, namely IL-1β, has profound effects on synaptic plasticity and, consequentially, cognition. In this review, we (1) investigate the processes which lead to aberrantly elevated inflammatory cytokine expression in the aged brain and (2) examine the impact of the pro-inflammatory cytokine IL-1β on brain plasticity mechanisms, including its effects on BDNF, AMPA and NMDA receptor-mediated long-term potentiation.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Naloxone Protects against Lipopolysaccharide-Induced Neuroinflammation and Microglial Activation via Inhibiting ATP-Sensitive Potassium Channel. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7731528. [PMID: 34373698 PMCID: PMC8349287 DOI: 10.1155/2021/7731528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023]
Abstract
Aim The aim of this study was to evaluate the anti-inflammatory effects and underlying mechanism of naloxone on lipopolysaccharide- (LPS-) induced neuronal inflammation and microglial activation. Methods LPS-treated microglial BV-2 cells and mice were used to investigate the anti-inflammatory effects of naloxone. Results The results showed that naloxone dose-dependently promoted cell proliferation in LPS-induced BV-2 cells, downregulated the expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and proinflammatory enzymes iNOS and COX-2 as well as the expression of free radical molecule NO, and reduced the expression of Iba-1-positive microglia in LPS-stimulated BV-2 cells and mouse brain. Moreover, naloxone improved LPS-induced behavior degeneration in mice. Mechanically, naloxone inhibited LPS-induced activation in the ATP-sensitive potassium (KATP) channel. However, the presence of glibenclamide (Glib), an antagonist of KATP channel, ameliorated the suppressive effects of naloxone on inflammation and microglial activation. Conclusion Naloxone prevented LPS-induced neuroinflammation and microglial activation partially through the KATP channel. These findings might highlight the potential of naloxone in neuroinflammation therapy.
Collapse
|
29
|
Huang W, Yu C, Liang S, Wu H, Zhou Z, Liu A, Cai S. Long non-coding RNA TUG1 promotes airway remodeling and mucus production in asthmatic mice through the microRNA-181b/HMGB1 axis. Int Immunopharmacol 2021; 94:107488. [PMID: 33640857 DOI: 10.1016/j.intimp.2021.107488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
MicroRNA-181b (miR-181b) has been well noted with anti-inflammatory properties in several pathological conditions. It has also been suggested to be downregulated in patients with asthma. In this study, we explored the function of miR-181b in airway remodeling in asthmatic mice and the molecular mechanism. A mouse model with asthma was induced by ovalbumin (OVA) challenge, and miR-181b was found to be downregulated in lung tissues in the OVA-challenged mice. Overexpression of miR-181b was introduced in mice, after which the respiratory resistance, inflammatory infiltration, mucus production, and epithelial-mesenchymal transition (EMT) and fibrosis in mouse airway tissues were decreased. The integrated bioinformatics analysis suggested long non-coding RNA (lncRNA) TUG1 as a sponge for miR-181b. miR-181 directly targeted high mobility group box 1 (HMGB1) mRNA. HMGB1 was suggested to enhance activation of the nuclear factor kappa B (NF-κB) signaling. Further upregulation of lncRNA TUG1 blocked the protective functions of miR-181b in asthmatic mice. To conclude, this study evidenced that lncRNA TUG1 reinforces HMGB1 expression through sequestering microRNA-181b, which activates the NF-κB signaling pathway and promotes airway remodeling in asthmatic mice. This study may provide novel ideas in asthma management.
Collapse
Affiliation(s)
- Wufeng Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Shixiu Liang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Hong Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Zili Zhou
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Aihua Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
30
|
Liu Y, Sun H, Sun Y. LncRNA p21, downregulating miR-181b, aggravates neuropathic pain by upregulating Tnfaip1 and inhibit the AKT/CREB axis. Brain Res Bull 2021; 171:150-161. [PMID: 33774143 DOI: 10.1016/j.brainresbull.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
Recently, there is evidence that long non-coding RNA p21 may play a regulatory role in the development of neuropathic pain (NPP), but it remains to be studied. In this study, we found that lncRNA p21 and tumor necrosis factor alpha-induced protein 1 (Tnfaip1) expression were up-regulated and miR-181b expression was down-regulated in lipopolysaccharide (LPS)-induced and activated BV-2 microglia. The results of flow cytometry and ELISA suggested that overexpression of lncRNA p21 or Tnfaip1 promoted apoptosis and inflammatory factors secretion, and miR-181b overexpression inhibited apoptosis and secretion of inflammatory factors. Luciferase reporter gene analysis validated the adsorption of miR-181b by lncRNA p21. In addition, the targeting relationship between miR-181b and Tnfaip1 was determined. Next, the up-regulation of lncRNA p21 and miR-181b was used as a reversal experiment, and the results suggested that the up-regulation of miR-181b attenuated the promoting effect of lncRNA p21 and Tnfaip1 on apoptosis and inflammatory response, which may be related to the activation of AKT/cAMP response element binding protein (CREB) axis. Finally, the rat model of SNL with lncRNA p21 knockdown was constructed, and the results of paw retraction mechanical threshold (PWMT) and paw retraction thermal latency (PWTL) measurements showed that knockdown of lncRNA p21 alleviated neuropathic pain in rats. In conclusion, our study found that the lncRNA p21/miR-181b/Tnfaip1 axis probably plays an important role in the progression of neuropathic pain, among which lncRNA p21 may become a new insight in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hai Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
31
|
Ishikawa M, Iwasaki M, Sakamoto A, Ma D. Anesthetics may modulate cancer surgical outcome: a possible role of miRNAs regulation. BMC Anesthesiol 2021; 21:71. [PMID: 33750303 PMCID: PMC7941705 DOI: 10.1186/s12871-021-01294-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background microRNAs (miRNAs) are single-stranded and noncoding RNA molecules that control post-transcriptional gene regulation. miRNAs can be tumor suppressors or oncogenes through various mechanism including cancer cell biology, cell-to-cell communication, and anti-cancer immunity. Main Body Anesthetics can affect cell biology through miRNA-mediated regulation of messenger RNA (mRNA). Indeed, sevoflurane was reported to upregulate miR-203 and suppresses breast cancer cell proliferation. Propofol reduces matrix metalloproteinase expression through its impact on miRNAs, leading to anti-cancer microenvironmental changes. Propofol also modifies miRNA expression profile in circulating extracellular vesicles with their subsequent anti-cancer effects via modulating cell-to-cell communication. Conclusion Inhalational and intravenous anesthetics can alter cancer cell biology through various cellular signaling pathways induced by miRNAs’ modification. However, this area of research is insufficient and further study is needed to figure out optimal anesthesia regimens for cancer patients.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan. .,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK.
| | - Masae Iwasaki
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan.,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK
| |
Collapse
|
32
|
Liu F, Qiu F, Chen H. miR-124-3p Ameliorates Isoflurane-Induced Learning and Memory Impairment via Targeting STAT3 and Inhibiting Neuroinflammation. Neuroimmunomodulation 2021; 28:248-254. [PMID: 34392240 DOI: 10.1159/000515661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Substantial evidence has indicated that isoflurane leads to learning and memory impairment. This study was designed to investigate the potential role of microRNA-124-3p (miR-124-3p) in isoflurane-induced learning and memory impairment in rats. METHODS Spatial learning and memory of rats were estimated by the Morris water maze (MWM) test after the construction of isoflurane-treated models. qRT-PCR was performed to assess the expression levels of miR-124-3p. The levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampal tissues were determined by enzyme-linked immunosorbent assay. The luciferase activity was determined by using a dual-luciferase reporter assay system. RESULTS The higher escape latency and lower time spent in the original quadrant were shown in isoflurane-treated rats compared with the control rats. Moreover, treatment with isoflurane could induce neuroinflammation, and miR-124-3p was poorly expressed in the hippocampal tissue of isoflurane-treated rats. Furthermore, STAT3 is a functional target of miR-124-3p, and inflammatory cytokine level was downregulated by miR-124-3p. DISCUSSION/CONCLUSION Combining the results of the current study demonstrates that miR-124-3p may have pivotal roles in improving isoflurane-induced learning and memory impairment via targeting STAT3 and inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Fenghua Liu
- Department of Anesthesiology, Yidu Central Hospital of Weifang, Weifang, China
| | - Fengyu Qiu
- Department of Anesthesiology, Yidu Central Hospital of Weifang, Weifang, China
| | - Huayong Chen
- Department of Anesthesiology, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|
33
|
Muscat SM, Barrientos RM. Lifestyle modifications with anti-neuroinflammatory benefits in the aging population. Exp Gerontol 2020; 142:111144. [PMID: 33152515 DOI: 10.1016/j.exger.2020.111144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/28/2020] [Indexed: 01/03/2023]
Abstract
Aging-associated microglial priming results in the potential for an exaggerated neuroinflammatory response to a subsequent inflammatory challenge in regions of the brain known to support learning and memory. This excessive neuroinflammation in the aging brain is known to occur following a variety of peripheral insults, including infection and surgery, where it has been associated with precipitous declines in cognition and memory. As the average lifespan increases worldwide, identifying interventions to prevent and treat aging-associated excessive neuroinflammation and ensuing cognitive impairments is of critical importance. Lifestyle has emerged as a potential non-pharmacological target in this endeavor. Here, we review important and recent preclinical and clinical literature demonstrating the anti-inflammatory effects of lifestyle modifications such as exercise, diet, and environmental enrichment in the context of aging and memory. Importantly, we focus on research indicating that these lifestyle modifications do not need to be lifelong, suggesting that such interventions may be efficacious in the prevention and treatment of aging- and neuroinflammation-associated cognitive impairment, even when initiated in older age.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
34
|
Chen SL, Cai GX, Ding HG, Liu XQ, Wang ZH, Jing YW, Han YL, Jiang WQ, Wen MY. JAK/STAT signaling pathway-mediated microRNA-181b promoted blood-brain barrier impairment by targeting sphingosine-1-phosphate receptor 1 in septic rats. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1458. [PMID: 33313203 PMCID: PMC7723536 DOI: 10.21037/atm-20-7024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Blood-brain barrier (BBB) impairment plays a significant role in the pathogenesis of sepsis-associated encephalopathy (SAE). However, the molecular mechanisms are poorly understood. In the present study, we aimed to investigate the regulatory relationship between the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway, microRNA (miR)-181b and its target genes in sepsis in vivo and in vitro. Methods Four rat models (sham, sepsis, sepsis plus STAT3 inhibitor (Stattic), and sepsis plus miR-181b inhibitor [sepsis + anta-miR-181b]) were established. For the in vitro experiments, rat brain microvascular endothelial cells (rBMECs) and rat brain astrocytes (rAstrocytes) were cultured with 10% serum harvested from sham, sepsis, and sepsis + anta-miR-181b rats. Chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-QPCR) analysis was carried out to detect the binding and enrichment of the JAK/STAT3 signal core transcription complex in the miR-181b promoter region. Dual-luciferase reporter gene assay was conducted to test miR-181b and its target genes. The cell adhesion rate of rBMECs was also measured. Results During our investigations, the expression levels of miR-181b, p-JAK2, p-STAT3, and C/EBPβ were found to be significantly increased in the septic rats compared with the sham rats. STAT3 inhibitor halted BBB damage by downregulating the expression of miR-181b. In addition, miR-181b targeted sphingosine-1-phosphate receptor 1 (S1PR1) and neurocalcin delta (NCALD). The up-regulated miR-181b significantly decreased the cell adhesion rate of rBMECs. The administration of miR-181b inhibitor reduced damage to the BBB through increasing the expression of S1PR1 and NCALD, which again proved that miR-181b negatively regulates SIPR1 and NCALD to induce BBB damage. Conclusions Our study demonstrated that JAK2/STAT3 signaling pathway induced expression of miR-181b, which promoted BBB impairment in rats with sepsis by downregulating S1PR1 and decreasing BBB cell adhesion. These findings strongly suggest JAK2/STAT3/miR-181b axis as therapeutic target in protecting against sepsis-induced BBB damage.
Collapse
Affiliation(s)
- Sheng-Long Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Geng-Xin Cai
- South China University of Technology School of Medicine, Guangzhou, China
| | - Hong-Guang Ding
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin-Qiang Liu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhong-Hua Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuan-Wen Jing
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong-Li Han
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Qiang Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Miao-Yun Wen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,South China University of Technology School of Medicine, Guangzhou, China.,Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Long noncoding RNA small nucleolar RNA host gene 1 contributes to sevoflurane-induced neurotoxicity through negatively modulating microRNA-181b. Neuroreport 2020; 31:416-424. [PMID: 32150149 DOI: 10.1097/wnr.0000000000001430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sevoflurane has been reported to promote learning and memory disabilities by promoting neuroinflammation and neuroapoptosis. However, the precise mechanism by which sevoflurane mediating neurotoxicity remains to be determined. Cell viability, reactive oxygen species (ROS) generation, inflammation and apoptosis were measured by cell counting kit-8 assay, ROS kit, ELISA, flow cytometry and western blot assay. The abundance of small nucleolar RNA host gene 1 (SNHG1) and microRNA-181b (miR-181b) was measured by quantitative real-time PCR in HT22 cells. The binding sites between miR-181b and SNHG1 were predicted by Starbase, and this combination was verified by dual-luciferase reporter assay, RNA immunoprecipitation and RNA-pull down assays. Sevoflurane treatment promoted ROS generation, inflammation and apoptosis while impeded the viability of HT22 cells via upregulating long noncoding RNA (lncRNA) SNHG1. MiR-181b was a direct target of SNHG1, and it was inversely regulated by SNHG1 in HT22 cells. The overexpression of miR-181b counteracted the neurotoxicity of sevoflurane treatment in HT22 cells. MiR-181b depletion abolished the inhibitory effects of SNHG1 intervention on the ROS generation, inflammation and apoptosis and the promoting impact on the viability of HT22 cells. LncRNA SNHG1 contributed neurotoxicity in sevoflurane-stimulated HT22 cells via downregulating miR-181b. The SNHG1/miR-181b axis was a target for the prevention of sevoflurane-induced neurotoxicity.
Collapse
|
36
|
Zhang N, Ye W, Wang T, Wen H, Yao L. Up-regulation of miR-106a targets LIMK1 and contributes to cognitive impairment induced by isoflurane anesthesia in mice. Genes Genomics 2020; 42:405-412. [PMID: 31933141 DOI: 10.1007/s13258-019-00913-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) had a great relationship with anesthesia during surgery, and miRNAs have been found involved in anesthesia-induced cognitive impairment. OBJECTIVE To explore the role and potential mechanism of miR-106a in isoflurane anesthesia-induced cognitive impairment. METHODS Adult male mice were treated with isoflurane anesthesia; Morris water maze tests and fear conditioning tests were performed; and expression levels of miR-106a and LIMK1 were determined by quantitative real-time PCR (qRT-PCR) and western blot. Dual luciferase reporter assay was used to determine the binding of miR-106a and 3'UTR of LIMK1. To verify the role of miR-106a, antagomir of miR-106a were intrahippocampally injected. Finally, expression of BCL2 apoptosis regulator (Bcl-2), LIM domain kinase 1 (LIMK1), BCL2-associated X, apoptosis regulator (Bax) and cleaved caspase3 was determined by western blot. RESULTS In isoflurane anesthesia-treated group (IS), the percentage of target quadrant dwell time was significantly lower and the escape latency was significantly higher than in the control group (sham), and the freezing behavior of IS was significantly less in contextual fear conditioning tests. Expression levels of miR-106a were increased and those of LIMK1 were decreased in response to IS. Dual luciferase reporter assay showed that miR-106a could bind with the 3'UTR of LIMK1. Decreased expression levels of miR-106a improved the cognitive impairment of the mice treated with isoflurane. Intrahippocampally injected antagomir of miR-106a also increased LIMK1 and Bcl-2 levels, decreased the BAX and cleaved caspase3 expression levels in the mice treated with isoflurane. CONCLUSION Decrease of LIMK1 expression by miR-106a played an important role in isoflurane anesthesia-induced cognitive impairment.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Anesthesia, Peking University International Hospital, No. 1, Life Garden Road, Zhongguancun Life Garden, Changping District, Beijing, China
| | - Weiguang Ye
- Department of Anesthesia, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Tianlong Wang
- Department of Anesthesia, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Hui Wen
- Department of Anesthesia, Peking University International Hospital, No. 1, Life Garden Road, Zhongguancun Life Garden, Changping District, Beijing, China
| | - Lan Yao
- Department of Anesthesia, Peking University International Hospital, No. 1, Life Garden Road, Zhongguancun Life Garden, Changping District, Beijing, China.
| |
Collapse
|
37
|
Wang Y, An X, Zhang X, Liu J, Wang J, Yang Z. Lithium chloride ameliorates cognition dysfunction induced by sevoflurane anesthesia in rats. FEBS Open Bio 2019; 10:251-258. [PMID: 31867790 PMCID: PMC6996326 DOI: 10.1002/2211-5463.12779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/05/2019] [Accepted: 12/17/2019] [Indexed: 01/21/2023] Open
Abstract
Postoperative cognitive dysfunction is a common complication in elderly patients after surgeries involving anesthesia, but the underlying mechanisms are poorly understood. Lithium is a conventional treatment for bipolar disorder, which exerts a neuroprotective role in various diseases by inhibiting glycogen synthase kinase‐3β (GSK‐3β) in the brain and spinal cord. However, it is not known whether lithium chloride (LiCl) can protect against cognitive dysfunction induced by sevoflurane (SEV) anesthesia. Here, we examined the effects of LiCl on SEV‐induced cognitive dysfunction in rats and on SEV‐induced neuron apoptosis. We report that anesthesia with SEV significantly impaired memory performance, induced oxidative stress and hippocampal neuron apoptosis, and stimulated GSK‐3β activity. Treatment with LiCl ameliorated SEV‐induced cognitive disorder in rats by inhibiting the GSK‐3β/β‐catenin signaling pathway. In addition, LiCl reduced hippocampal neuron apoptosis and oxidative stress induced by SEV anesthesia. These results suggest that LiCl may have potential for development into a therapeutic agent for treatment of SEV anesthesia‐induced cognitive dysfunction.
Collapse
Affiliation(s)
- Yilong Wang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, China.,Shanghai Key Laboratory of Embryo Original Diseases, China.,Shanghai Municipal Key Clinical Specialty, China
| | - Xiaohu An
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, China.,Shanghai Key Laboratory of Embryo Original Diseases, China.,Shanghai Municipal Key Clinical Specialty, China
| | - Xiaoqing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jianwei Wang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, China.,Shanghai Key Laboratory of Embryo Original Diseases, China.,Shanghai Municipal Key Clinical Specialty, China
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, China.,Shanghai Key Laboratory of Embryo Original Diseases, China.,Shanghai Municipal Key Clinical Specialty, China
| |
Collapse
|
38
|
Nuzziello N, Liguori M. The MicroRNA Centrism in the Orchestration of Neuroinflammation in Neurodegenerative Diseases. Cells 2019; 8:cells8101193. [PMID: 31581723 PMCID: PMC6829202 DOI: 10.3390/cells8101193] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a unique ability to regulate the transcriptomic profile by binding to complementary regulatory RNA sequences. The ability of miRNAs to enhance (proinflammatory miRNAs) or restrict (anti-inflammatory miRNAs) inflammatory signalling within the central nervous system is an area of ongoing research, particularly in the context of disorders that feature neuroinflammation, including neurodegenerative diseases (NDDs). Furthermore, the discovery of competing endogenous RNAs (ceRNAs) has led to an increase in the complexity of miRNA-mediated gene regulation, with a paradigm shift from a unidirectional to a bidirectional regulation, where miRNA acts as both a regulator and is regulated by ceRNAs. Increasing evidence has revealed that ceRNAs, including long non-coding RNAs, circular RNAs, and pseudogenes, can act as miRNA sponges to regulate neuroinflammation in NDDs within complex cross-talk regulatory machinery, which is referred to as ceRNA network (ceRNET). In this review, we discuss the role of miRNAs in neuroinflammatory regulation and the manner in which cellular and vesicular ceRNETs could influence neuroinflammatory dynamics in complex multifactorial diseases, such as NDDs.
Collapse
Affiliation(s)
- Nicoletta Nuzziello
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy.
| | - Maria Liguori
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy.
| |
Collapse
|
39
|
Wu Y, Dou J, Wan X, Leng Y, Liu X, Chen L, Shen Q, Zhao B, Meng Q, Hou J. Histone Deacetylase Inhibitor MS-275 Alleviates Postoperative Cognitive Dysfunction in Rats by Inhibiting Hippocampal Neuroinflammation. Neuroscience 2019; 417:70-80. [PMID: 31430527 DOI: 10.1016/j.neuroscience.2019.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022]
Abstract
Neuroinflammation in the hippocampus plays essential roles in postoperative cognitive dysfunction (POCD). Histone deacetylases (HDACs) have recently been identified as key regulators of neuroinflammation. MS-275, an inhibitor of HDAC, has been reported to have neuroprotective effects. Therefore, the present study aimed to test the hypothesis that pretreatment with MS-275 prevents POCD by inhibiting neuroinflammation in rats. In this study, anesthesia/surgery impaired cognition, demonstrated by an increase escape latency and reduction in the number of platform crossings in Morris water maze (MWM) trials, through activating microglia neuroinflammation and decreasing PSD-95 expression. However, pretreatment with MS-275 attenuated postoperative cognitive impairment severity. Furthermore, pretreatment with MS-275 decreased activated microglia levels and increased PSD95 protein expression in the hippocampus. Pretreatment with MS-275 reduced NF-κB-p65 protein expression and nuclear accumulation as well as the neuroinflammatory response (production of proinflammatory cytokines including TNF-α and IL-1β) in the hippocampus. Additionally, MS-275 reduced HDAC2 expression and HDAC activity in the hippocampus, which were enhanced in vehicle-treated rats. These results suggest that MS-275 alleviates postoperative cognitive dysfunction by reducing neuroinflammation in the hippocampus of rats via HDAC inhibition.
Collapse
Affiliation(s)
- Yang Wu
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Juan Dou
- Sterilization and Supply Center, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Xing Wan
- Operating Room, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Xuke Liu
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China.
| |
Collapse
|