1
|
Zhang G, Yao Q, Long C, Yi P, Song J, Wu L, Wan W, Rao X, Lin Y, Wei G, Ying J, Hua F. Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies. Neural Regen Res 2025; 20:779-793. [PMID: 38886942 PMCID: PMC11433895 DOI: 10.4103/nrr.nrr-d-23-01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood-brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangyong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Qing Yao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Chubing Long
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Minote M, Sato W, Kimura K, Kimura A, Lin Y, Okamoto T, Takahashi R, Yamamura T. High frequency of circulating non-classical monocytes is associated with stable remission in relapsing-remitting multiple sclerosis. Immunol Med 2024; 47:151-165. [PMID: 38539051 PMCID: PMC11346389 DOI: 10.1080/25785826.2024.2331271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 08/23/2024] Open
Abstract
'No evidence of disease activity (NEDA)', judged by clinical and radiological findings, is a therapeutic goal in patients with multiple sclerosis (MS). It is, however, unclear if distinct biological mechanisms contribute to the maintenance of NEDA. To clarify the immunological background of long-term disease stability defined by NEDA, circulating immune cell subsets in patients with relapsing-remitting MS (RRMS) were analyzed using flow cytometry. Patients showing long-term NEDA (n = 31) had significantly higher frequencies of non-classical monocytes (NCMs) (6.1% vs 1.4%) and activated regulatory T cells (Tregs; 2.1% vs 1.6%) than those with evidence of disease activity (n = 8). The NCM frequency and NCMs to classical monocytes ratio (NCM/CM) positively correlated with activated Treg frequency and duration of NEDA. Co-culture assays demonstrated that NCMs could increase the frequency of activated Tregs and the expression of PD-L1, contributing to development of Tregs, was particularly high in NCMs from patients with NEDA. Collectively, NCMs contribute to stable remission in patients with RRMS, possibly by increasing activated Treg frequency. In addition, the NCM frequency and NCM/CM ratio had high predictive values for disease stability (AUC = 0.97 and 0.94, respectively), suggesting these markers are potential predictors of a long-term NEDA status in RRMS.
Collapse
Affiliation(s)
- Misako Minote
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Kodaira, Japan
- Section of Research and Development Strategy, Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kimitoshi Kimura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsuko Kimura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Tomoko Okamoto
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
3
|
Ma X, Ma R, Zhang M, Qian B, Wang B, Yang W. Recent Progress in Multiple Sclerosis Treatment Using Immune Cells as Targets. Pharmaceutics 2023; 15:pharmaceutics15030728. [PMID: 36986586 PMCID: PMC10057470 DOI: 10.3390/pharmaceutics15030728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated demyelinating disease of the central nervous system. The main pathological features are inflammatory reaction, demyelination, axonal disintegration, reactive gliosis, etc. The etiology and pathogenesis of the disease have not been clarified. The initial studies believed that T cell-mediated cellular immunity is the key to the pathogenesis of MS. In recent years, more and more evidence has shown that B cells and their mediated humoral immune and innate immune cells (such as microglia, dendritic cells, macrophages, etc.) also play an important role in the pathogenesis of MS. This article mainly reviews the research progress of MS by targeting different immune cells and analyzes the action pathways of drugs. The types and mechanisms of immune cells related to the pathogenesis are introduced in detail, and the mechanisms of drugs targeting different immune cells are discussed in depth. This article aims to clarify the pathogenesis and immunotherapy pathway of MS, hoping to find new targets and strategies for the development of therapeutic drugs for MS.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Baicheng Qian
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Baoliang Wang
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- Correspondence: (B.W.); (W.Y.)
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (B.W.); (W.Y.)
| |
Collapse
|
4
|
Mitsikostas DD, Moka E, Orrillo E, Aurilio C, Vadalouca A, Paladini A, Varrassi G. Neuropathic Pain in Neurologic Disorders: A Narrative Review. Cureus 2022; 14:e22419. [PMID: 35345699 PMCID: PMC8942164 DOI: 10.7759/cureus.22419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is defined as a painful condition caused by neurological lesions or diseases. Sometimes, neurological disorders may also be associated with neuropathic pain, which can be challenging to manage. For example, multiple sclerosis (MS) may cause chronic centralized painful symptoms due to nerve damage. Other chronic neuropathic pain syndromes may occur in the form of post-stroke pain, spinal cord injury pain, and other central pain syndromes. Chronic neuropathic pain is associated with dysfunction, disability, depression, disturbed sleep, and reduced quality of life. Early diagnosis may help improve outcomes, and pain control can be an important factor in restoring function. There are more than 100 different types of peripheral neuropathy and those involving sensory neurons can provoke painful symptoms. Accurate diagnosis of peripheral neuropathy is essential for pain control. Further examples are represented by gluten neuropathy, which is an extraintestinal manifestation of gluten sensitivity and presents as a form of peripheral neuropathy; in these unusual cases, neuropathy may be managed with diet. Neuropathic pain has been linked to CoronaVirus Disease (COVID) infection both during acute infection and as a post-viral syndrome known as long COVID. In this last case, neuropathic pain relates to the host’s response to the virus. However, neuropathic pain may occur after any critical illness and has been observed as part of a syndrome following intensive care unit hospitalization.
Collapse
|
5
|
Devi-Marulkar P, Moraes-Cabe C, Campagne P, Corre B, Meghraoui-Kheddar A, Bondet V, Llibre A, Duffy D, Maillart E, Papeix C, Pellegrini S, Michel F. Altered Immune Phenotypes and HLA-DQB1 Gene Variation in Multiple Sclerosis Patients Failing Interferon β Treatment. Front Immunol 2021; 12:628375. [PMID: 34113337 PMCID: PMC8185344 DOI: 10.3389/fimmu.2021.628375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background Interferon beta (IFNβ) has been prescribed as a first-line disease-modifying therapy for relapsing-remitting multiple sclerosis (RRMS) for nearly three decades. However, there is still a lack of treatment response markers that correlate with the clinical outcome of patients. Aim To determine a combination of cellular and molecular blood signatures associated with the efficacy of IFNβ treatment using an integrated approach. Methods The immune status of 40 RRMS patients, 15 of whom were untreated and 25 that received IFNβ1a treatment (15 responders, 10 non-responders), was investigated by phenotyping regulatory CD4+ T cells and naïve/memory T cell subsets, by measurement of circulating IFNα/β proteins with digital ELISA (Simoa) and analysis of ~600 immune related genes including 159 interferon-stimulated genes (ISGs) with the Nanostring technology. The potential impact of HLA class II gene variation in treatment responsiveness was investigated by genotyping HLA-DRB1, -DRB3,4,5, -DQA1, and -DQB1, using as a control population the Milieu Interieur cohort of 1,000 French healthy donors. Results Clinical responders and non-responders displayed similar plasma levels of IFNβ and similar ISG profiles. However, non-responders mainly differed from other subject groups with reduced circulating naïve regulatory T cells, enhanced terminally differentiated effector memory CD4+ TEMRA cells, and altered expression of at least six genes with immunoregulatory function. Moreover, non-responders were enriched for HLA-DQB1 genotypes encoding DQ8 and DQ2 serotypes. Interestingly, these two serotypes are associated with type 1 diabetes and celiac disease. Overall, the immune signatures of non-responders suggest an active disease that is resistant to therapeutic IFNβ, and in which CD4+ T cells, likely restricted by DQ8 and/or DQ2, exert enhanced autoreactive and bystander inflammatory activities.
Collapse
Affiliation(s)
- Priyanka Devi-Marulkar
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Carolina Moraes-Cabe
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Pascal Campagne
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Béatrice Corre
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Aida Meghraoui-Kheddar
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincent Bondet
- Translational Immunology Laboratory, Department of Immunology, Institut Pasteur, Paris, France
| | - Alba Llibre
- Translational Immunology Laboratory, Department of Immunology, Institut Pasteur, Paris, France
| | - Darragh Duffy
- Translational Immunology Laboratory, Department of Immunology, Institut Pasteur, Paris, France
| | | | - Caroline Papeix
- Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
| | - Sandra Pellegrini
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Frédérique Michel
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Johnson BM, Uchimura T, Gallovic MD, Thamilarasan M, Chou WC, Gibson SA, Deng M, Tam JW, Batty CJ, Williams J, Matsushima GK, Bachelder EM, Ainslie KM, Markovic-Plese S, Ting JPY. STING Agonist Mitigates Experimental Autoimmune Encephalomyelitis by Stimulating Type I IFN-Dependent and -Independent Immune-Regulatory Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2015-2028. [PMID: 33820855 PMCID: PMC8406342 DOI: 10.4049/jimmunol.2001317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The cGAS-cyclic GMP-AMP (cGAMP)-stimulator of IFN genes (STING) pathway induces a powerful type I IFN (IFN-I) response and is a prime candidate for augmenting immunity in cancer immunotherapy and vaccines. IFN-I also has immune-regulatory functions manifested in several autoimmune diseases and is a first-line therapy for relapsing-remitting multiple sclerosis. However, it is only moderately effective and can induce adverse effects and neutralizing Abs in recipients. Targeting cGAMP in autoimmunity is unexplored and represents a challenge because of the intracellular location of its receptor, STING. We used microparticle (MP)-encapsulated cGAMP to increase cellular delivery, achieve dose sparing, and reduce potential toxicity. In the C57BL/6 experimental allergic encephalomyelitis (EAE) model, cGAMP encapsulated in MPs (cGAMP MPs) administered therapeutically protected mice from EAE in a STING-dependent fashion, whereas soluble cGAMP was ineffective. Protection was also observed in a relapsing-remitting model. Importantly, cGAMP MPs protected against EAE at the peak of disease and were more effective than rIFN-β. Mechanistically, cGAMP MPs showed both IFN-I-dependent and -independent immunosuppressive effects. Furthermore, it induced the immunosuppressive cytokine IL-27 without requiring IFN-I. This augmented IL-10 expression through activated ERK and CREB. IL-27 and subsequent IL-10 were the most important cytokines to mitigate autoreactivity. Critically, cGAMP MPs promoted IFN-I as well as the immunoregulatory cytokines IL-27 and IL-10 in PBMCs from relapsing-remitting multiple sclerosis patients. Collectively, this study reveals a previously unappreciated immune-regulatory effect of cGAMP that can be harnessed to restrain T cell autoreactivity.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell-Derived Microparticles/immunology
- Cell-Derived Microparticles/metabolism
- Cells, Cultured
- Cytokines/immunology
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Humans
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Membrane Proteins/agonists
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Nucleotides, Cyclic/administration & dosage
- Nucleotides, Cyclic/immunology
- Nucleotides, Cyclic/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Mice
Collapse
Affiliation(s)
- Brandon M Johnson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Toru Uchimura
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew D Gallovic
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Madhan Thamilarasan
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sara A Gibson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Meng Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Oral and Craniofacial Biomedicine Program, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jason W Tam
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Cole J Batty
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jonathan Williams
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Glenn K Matsushima
- Neuroscience Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Eric M Bachelder
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kristy M Ainslie
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Silva Markovic-Plese
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC;
- Neuroscience Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Translational Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC; and
- Institute for Inflammatory Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
7
|
Monteiro A, Rosado P, Rosado L, Fonseca AM, Coucelo M, Paiva A. Alterations in peripheral blood monocyte and dendritic cell subset homeostasis in relapsing-remitting multiple sclerosis patients. J Neuroimmunol 2020; 350:577433. [PMID: 33176239 DOI: 10.1016/j.jneuroim.2020.577433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Antigen-presenting cells participate and are implicated in the pathogenesis of multiple sclerosis. In our study we assessed the frequency of plasmacytoid (pDC) and myeloid (mDC) dendritic cells and the classical, intermediate and non-classical monocytes subsets, as well as their phenotypic and functional profile. We evaluated peripheral blood from relapsing-remitting patients treated with IFN-β in remission and relapse phases and from healthy subjects. In remission, we observed a decrease of mDC/pDC ratio and a return to normal values in relapse. In both phases the frequency of non-classical monocytes decreases. Concerning the phenotypic characterization, an increased HLA-DR expression was observed in remission and a decrease in relapse, revealing alterations in monocytes and dendritic cells homeostasis.
Collapse
Affiliation(s)
- Andreia Monteiro
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Avenida Infante D. Henrique, Covilhã 6200-506, Portugal; Serviço Patologia Clínica, Centro Hospitalar Universitário Cova da Beira, Quinta do Alvito, 6200-251 Covilhã, Portugal
| | - Pedro Rosado
- Serviço de Neurologia, Centro Hospitalar Universitário Cova da Beira, Quinta do Alvito, 6200-251 Covilhã, Portugal
| | - Luiza Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Avenida Infante D. Henrique, Covilhã 6200-506, Portugal; Serviço de Neurologia, Centro Hospitalar Universitário Cova da Beira, Quinta do Alvito, 6200-251 Covilhã, Portugal
| | - Ana Mafalda Fonseca
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Margarida Coucelo
- Unidade de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3001-301 Coimbra, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3001-301 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculdade de Medicina, Universidade de Coimbra, Polo III-Health Sciences Campus Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Coimbra, Portugal.
| |
Collapse
|
8
|
Rashad NM, Amer MG, Reda Ashour WM, Hassanin HM. The pattern of thyroiditis in multiple sclerosis: a cross-sectional study in a tertiary care hospital in Egypt. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2020; 32:17. [PMID: 33132691 PMCID: PMC7588281 DOI: 10.1186/s43162-020-00017-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system with varied clinical features. Disease-modifying drugs (DMDs) of MS associated with different types of thyroiditis. In this cross-sectional study, we aimed to assess the prevalence of thyroid dysfunction in MS and to investigate the association between DMDs and the risk of thyroiditis in MS. A cross-sectional study included 100 patients with relapsing-remitting multiple sclerosis (RRMS) in relapse, and the diagnosed was according to revised McDonald's criteria 2010. RESULTS Our results revealed that the prevalence of thyroiditis was 40%; autoimmune (34%) and infective (6%) among patients with RRMS in relapse and cerebellar symptoms were significantly higher in patients with thyroiditis compared to patients without thyroiditis. Regarding the association between DMDs and thyroiditis, the prevalence of patients treated with interferon-beta-1b was higher in MS patients with thyroiditis compared to MS patients without thyroiditis. However, the prevalence of patients treated with interferon-beta-1a was lower in MS patients with thyroiditis compared to MS patients without thyroiditis. In addition, we found CMV infection was more common in patients treated by interferon beta-1b and candida infection was common in patients treated by fingolimod. CONCLUSIONS Thyroiditis is commonly observed in patients with RRMS in relapse and higher prevalence of patients treated with interferon-beta-1b which is commonly associated with thyroiditis and CMV infection; however, candida thyroid infection was common in MS patients treated by fingolimod.
Collapse
Affiliation(s)
- Nearmeen M. Rashad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa G. Amer
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Hassan M. Hassanin
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Severa M, Farina C, Salvetti M, Coccia EM. Three Decades of Interferon-β in Multiple Sclerosis: Can We Repurpose This Information for the Management of SARS-CoV2 Infection? Front Immunol 2020; 11:1459. [PMID: 32655578 PMCID: PMC7326001 DOI: 10.3389/fimmu.2020.01459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Salvetti
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy.,Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | | |
Collapse
|
10
|
Yaseen H, Butenko S, Polishuk-Zotkin I, Schif-Zuck S, Pérez-Sáez JM, Rabinovich GA, Ariel A. Galectin-1 Facilitates Macrophage Reprogramming and Resolution of Inflammation Through IFN-β. Front Pharmacol 2020; 11:901. [PMID: 32625094 PMCID: PMC7311768 DOI: 10.3389/fphar.2020.00901] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
During the resolution of acute inflammation, macrophages undergo reprogramming from pro-inflammatory, to anti-inflammatory/reparative, and eventually to pro-resolving macrophages. Galectin-1 (Gal-1) is a bona fide pro-resolving lectin while interferon β (IFN-β) was recently shown to facilitate macrophage reprogramming and resolution of inflammation. In this study, we found Gal-1null mice exhibit a hyperinflammatory phenotype during the resolution of zymosan A-induced peritonitis but not during the early inflammatory response. This phenotype was characterized by reduced macrophage numbers, increased secretion of pro-inflammatory cytokines, such as interleukin-12 (IL-12), and reduced secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10). In addition, we found a delayed expression of the pro-resolving enzyme 12/15-lipoxygenase in macrophages and heightened levels of the inflammatory protease proteinase-3 (PR3) in peritoneal fluids from Gal-1null mice. Moreover, we observed sex-dependent differences in the inflammatory profile of Gal-1null mice. Notably, we found that IFN-β levels were reduced in resolution-phase exudates from Gal-1null mice. Administration of IFN-β in vivo or ex vivo treatment was able to rescue, at least in part, the hyperinflammatory profile of Gal-1null mice. In particular, IFN-β recovered a subset of F4/80+GR-1+ macrophages, restored IL-12 and IL-10 secretion from macrophages to WT values and diminished abnormal peritoneal PR3 levels in Gal-1null mice. In conclusion, our results revealed a new Gal-1-IFN-β axis that facilitates the resolution of inflammation and might restrain uncontrolled inflammatory disorders.
Collapse
Affiliation(s)
- Hiba Yaseen
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Sergei Butenko
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | | | - Sagie Schif-Zuck
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Juan Manuel Pérez-Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriel Adrian Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amiram Ariel
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
11
|
Wahdan SA, El-Derany MO, Abdel-Maged AE, Azab SS. Abrogating doxorubicin-induced chemobrain by immunomodulators IFN-beta 1a or infliximab: Insights to neuroimmune mechanistic hallmarks. Neurochem Int 2020; 138:104777. [PMID: 32479984 DOI: 10.1016/j.neuint.2020.104777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 01/06/2023]
Abstract
Chemobrain is a well-established clinical syndrome that impairs patient's daily function, in particular attentiveness, coordination and multi-tasking. Thus, it interferes with patient's quality of life. The putative pharmacological intervention against chemobrain relies on understanding the molecular mechanisms underlying it. This study aimed to examine the potential neuroprotective effects of two immunomodulators: Interferon-β-1a (IFN-β-1a), as well as Tumor necrosis function-alpha (TNF-α) inhibitor; Infliximab in doxorubicin (DOX)-induced chemobrain in rats. Besides, the current study targets investigating the possible molecular mechanisms in terms of neuromodulation and interference with different death routes controlling neural homeostasis. Herein, the two immunomodulators IFN-β-1a at a dose of 300,000 units; s.c.three times per week, or Infliximab at a dose of 5 mg/kg/week; i.p. once per week were examined against DOX (2 mg/kg/w, i.p.) once per week for 4 consecutive weeks in rats.The consequent behavioral tests and markers for cognitive impairment, oxidative stress, neuroinflammation, apoptosis and neurobiological abnormalities were further evaluated. Briefly, IFN-β-1a or Infliximab significantly protected against DOX-induced chemobrain. IFN-β-1a or Infliximab ameliorated DOX-induced hippocampal histopathological neurodegenerative changes, halted DOX-induced cognitive impairment, abrogated DOX-induced mitochondrial oxidative, inflammatory and apoptotic stress, mitigated DOX-induced autophagic dysfunction and finally upregulated the mitophagic machineries. In conclusion, these findings suggest that either IFN-β-1a or Infliximab offers neuroprotection against DOX-induced chemobrain which could be explained by their antioxidant, anti-inflammatory, pro-autophagic, pro-mitophagic and antiapoptotic effects. Future clinical studies are recommended to personalize either use of IFN-β-1a or infliximab to ameliorate DOX-induced chemobrain.
Collapse
Affiliation(s)
- Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany E Abdel-Maged
- National Organization for Research and Control of Biologicals (NORCB), Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
12
|
Gharibi T, Babaloo Z, Hosseini A, Marofi F, Ebrahimi-Kalan A, Jahandideh S, Baradaran B. The role of B cells in the immunopathogenesis of multiple sclerosis. Immunology 2020; 160:325-335. [PMID: 32249925 DOI: 10.1111/imm.13198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is ongoing debate on how B cells contribute to the pathogenesis of multiple sclerosis (MS). The success of B-cell targeting therapies in MS highlighted the role of B cells, particularly the antibody-independent functions of these cells such as antigen presentation to T cells and modulation of the function of T cells and myeloid cells by secreting pathogenic and/or protective cytokines in the central nervous system. Here, we discuss the role of different antibody-dependent and antibody-independent functions of B cells in MS disease activity and progression proposing new therapeutic strategies for the optimization of B-cell targeting treatments.
Collapse
Affiliation(s)
- Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Jahandideh
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Vigo T, La Rocca C, Faicchia D, Procaccini C, Ruggieri M, Salvetti M, Centonze D, Matarese G, Uccelli A. IFNβ enhances mesenchymal stromal (Stem) cells immunomodulatory function through STAT1-3 activation and mTOR-associated promotion of glucose metabolism. Cell Death Dis 2019; 10:85. [PMID: 30692524 PMCID: PMC6349843 DOI: 10.1038/s41419-019-1336-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Administration of mesenchymal stem cells (MSC) ameliorate experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), at both clinical and neuropathological levels. The therapeutic properties of MSC in EAE are mainly mediated by the modulation of pathogenic immune response, but other neurotropic effects, including decreased demyelination and axonal loss as well as promotion of tissue repair, play also a role. Properly controlled phase II clinical trials to explore the potential of MSC transplantation as a treatment for MS are underway. Interferon beta (IFNβ) is an approved treatment for relapsing-remitting and secondary progressive MS. Here, we explored the possibility that IFNβ might influence the therapeutic potential of MSC, in view of possible synergistic effects as add-on therapy. IFNβ enhanced the immunomodulatory functions of MSC and induced the expression of secretory leukocyte protease inhibitor (Slpi) and hepatocyte growth factor (Hgf), two soluble mediators involved in immune and regenerative functions of MSC. At molecular level, IFNβ induced a rapid and transient phosphorylation of STAT1 and STAT3, the transcription factors responsible for Slpi and Hgf induction. Concomitantly, IFNβ dynamically affected the activity of mTOR, a key checkpoint in the control of metabolic pathways. Indeed, the impairment of mTOR activity observed early upon exposure to IFNβ, was followed by a long-lasting induction of mTOR signaling, that was associated with an increased glycolytic capacity in MSC. When induced to switch their energetic metabolism towards glycolysis, MSC showed an improved ability to control T-cell proliferation. These results suggest that modifications of MSC energetic metabolism induced by IFNβ may contribute to promote MSC immunomodulatory function and support a role for metabolic pathways in the therapeutic function of MSC. Altogether, these findings support the idea of a combined treatment for MS, in which the immunomodulatory and possibly regenerative activity of MSC could be enhanced by the administration of IFNβ.
Collapse
Affiliation(s)
- Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Deriggio Faicchia
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Maddalena Ruggieri
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Sapienza University, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Tor Vergata University, Rome, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy. .,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.
| | | |
Collapse
|
14
|
Annibali V, Umeton R, Palermo A, Severa M, Etna MP, Giglio S, Romano S, Ferraldeschi M, Buscarinu MC, Vecchione A, Annese A, Policano C, Mechelli R, Pizzolato Umeton R, Fornasiero A, Angelini DF, Guerrera G, Battistini L, Coccia EM, Salvetti M, Ristori G. Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients. J Neuroimmunol 2018; 324:165-171. [PMID: 30270021 DOI: 10.1016/j.jneuroim.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/15/2023]
Abstract
Several evidences emphasize B-cell pathogenic roles in multiple sclerosis (MS). We performed transcriptome analyses on peripheral B cells from therapy-free patients and age/sex-matched controls. Down-regulation of two transcripts (interferon response factor 1-IRF1, and C-X-C motif chemokine 10-CXCL10), belonging to the same pathway, was validated by RT-PCR in 26 patients and 21 controls. IRF1 and CXCL10 transcripts share potential seeding sequences for hsa-miR-424, that resulted up-regulated in MS patients. We confirmed this interaction and its functional effect by transfection experiments. Consistent findings indicate down-regulation of IRF1/CXCL10 axis, that may plausibly contribute to a pro-survival status of B cells in MS.
Collapse
Affiliation(s)
- Viviana Annibali
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Renato Umeton
- Department of Informatics, Dana-Farber Cancer Institute, Boston, MA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Antonia Palermo
- Department of Mathematics and Computer Science, University of Calabria
| | - Martina Severa
- Department of Infectious, Parasitic and Immune-mediated Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Marilena Paola Etna
- Department of Infectious, Parasitic and Immune-mediated Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Giglio
- Division of Pathology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Silvia Romano
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Michela Ferraldeschi
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Andrea Vecchione
- Division of Pathology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Anita Annese
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Claudia Policano
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Rosella Mechelli
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Arianna Fornasiero
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Eliana Marina Coccia
- Department of Infectious, Parasitic and Immune-mediated Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Salvetti
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed (M.S.), Pozzilli, IS, Italy.
| | - Giovanni Ristori
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Abstract
Multiple sclerosis is a heterogenous disease. Although several EMA-approved disease-modifying treatments including biopharmaceuticals are available, their efficacy is limited, and a certain percentage of patients are always nonresponsive. Drug efficacy monitoring is an important tool to identify these nonresponsive patients early on. Currently, detection of antidrug antibodies and quantification of biological activity are used as methods of efficacy monitoring for interferon beta and natalizumab therapies. For natalizumab and alemtuzumab treatments, drug level quantification could be an essential component of the overall disease management. Thus, utilization and development of strategies to determine treatment response are vital aspects of multiple sclerosis management given the tremendous clinical and economic promise of this tool.
Collapse
|
16
|
Deciphering the Role of B Cells in Multiple Sclerosis-Towards Specific Targeting of Pathogenic Function. Int J Mol Sci 2017; 18:ijms18102048. [PMID: 28946620 PMCID: PMC5666730 DOI: 10.3390/ijms18102048] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022] Open
Abstract
B cells, plasma cells and antibodies may play a key role in the pathogenesis of multiple sclerosis (MS). This notion is supported by various immunological changes observed in MS patients, such as activation and pro-inflammatory differentiation of peripheral blood B cells, the persistence of clonally expanded plasma cells producing immunoglobulins in the cerebrospinal fluid, as well as the composition of inflammatory central nervous system lesions frequently containing co-localizing antibody depositions and activated complement. In recent years, the perception of a respective pathophysiological B cell involvement was vividly promoted by the empirical success of anti-CD20-mediated B cell depletion in clinical trials; based on these findings, the first monoclonal anti-CD20 antibody—ocrelizumab—is currently in the process of being approved for treatment of MS. In this review, we summarize the current knowledge on the role of B cells, plasma cells and antibodies in MS and elucidate how approved and future treatments, first and foremost anti-CD20 antibodies, therapeutically modify these B cell components. We will furthermore describe regulatory functions of B cells in MS and discuss how the evolving knowledge of these therapeutically desirable B cell properties can be harnessed to improve future safety and efficacy of B cell-directed therapy in MS.
Collapse
|
17
|
Fourteen sequence variants that associate with multiple sclerosis discovered by meta-analysis informed by genetic correlations. NPJ Genom Med 2017; 2:24. [PMID: 29263835 PMCID: PMC5677966 DOI: 10.1038/s41525-017-0027-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022] Open
Abstract
A meta-analysis of publicly available summary statistics on multiple sclerosis combined with three Nordic multiple sclerosis cohorts (21,079 cases, 371,198 controls) revealed seven sequence variants associating with multiple sclerosis, not reported previously. Using polygenic risk scores based on public summary statistics of variants outside the major histocompatibility complex region we quantified genetic overlap between common autoimmune diseases in Icelanders and identified disease clusters characterized by autoantibody presence/absence. As multiple sclerosis-polygenic risk scores captures the risk of primary biliary cirrhosis and vice versa (P = 1.6 × 10−7, 4.3 × 10−9) we used primary biliary cirrhosis as a proxy-phenotype for multiple sclerosis, the idea being that variants conferring risk of primary biliary cirrhosis have a prior probability of conferring risk of multiple sclerosis. We tested 255 variants forming the primary biliary cirrhosis-polygenic risk score and found seven multiple sclerosis-associating variants not correlated with any previously established multiple sclerosis variants. Most of the variants discovered are close to or within immune-related genes. One is a low-frequency missense variant in TYK2, another is a missense variant in MTHFR that reduces the function of the encoded enzyme affecting methionine metabolism, reported to be dysregulated in multiple sclerosis brain. Combining studies and comparing across diseases turned up 14 novel gene variants linked to multiple sclerosis (MS). A team led by Kári Stefánsson and Ingileif Jónsdóttir from deCODE genetics in Reykjavík, Iceland, amalgamated data from a large international study of MS with three smaller ones from Sweden, Norway and Iceland. They conducted a meta-analysis on the combined data set — which encompassed around 21,000 MS patients and 372,000 population controls — and uncovered seven new genetic risk variants linked to MS. The researchers then compared the genetic overlap between various autoimmune diseases in the Icelandic cohort, and documented a close relationship between MS and primary biliary cirrhosis (PBC). They looked more closely at variants linked to PBC, and found that seven also increased the risk for MS, bringing the tally of novel gene variants up to fourteen.
Collapse
|
18
|
Furber KL, Van Agten M, Evans C, Haddadi A, Doucette JR, Nazarali AJ. Advances in the treatment of relapsing-remitting multiple sclerosis: the role of pegylated interferon β-1a. Degener Neurol Neuromuscul Dis 2017; 7:47-60. [PMID: 30050377 PMCID: PMC6053102 DOI: 10.2147/dnnd.s71986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive, neurodegenerative disease with unpredictable phases of relapse and remission. The cause of MS is unknown, but the pathology is characterized by infiltration of auto-reactive immune cells into the central nervous system (CNS) resulting in widespread neuroinflammation and neurodegeneration. Immunomodulatory-based therapies emerged in the 1990s and have been a cornerstone of disease management ever since. Interferon β (IFNβ) was the first biologic approved after demonstrating decreased relapse rates, disease activity and progression of disability in clinical trials. However, frequent dosing schedules have limited patient acceptance for long-term therapy. Pegylation, the process by which molecules of polyethylene glycol are covalently linked to a compound, has been utilized to increase the half-life of IFNβ and decrease the frequency of administration required. To date, there has been one clinical trial evaluating the efficacy of pegylated IFN. The purpose of this article is to provide an overview of the role of IFN in the treatment of MS and evaluate the available evidence for pegylated IFN therapy in MS.
Collapse
Affiliation(s)
- Kendra L Furber
- Laboratory of Molecular Cell Biology, .,College of Pharmacy and Nutrition, .,Neuroscience Research Cluster, University of Saskatchewan,
| | - Marina Van Agten
- Laboratory of Molecular Cell Biology, .,College of Pharmacy and Nutrition, .,Neuroscience Research Cluster, University of Saskatchewan,
| | - Charity Evans
- College of Pharmacy and Nutrition, .,Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital,
| | | | - J Ronald Doucette
- Neuroscience Research Cluster, University of Saskatchewan, .,Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, .,Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, .,College of Pharmacy and Nutrition, .,Neuroscience Research Cluster, University of Saskatchewan, .,Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital,
| |
Collapse
|
19
|
Marin‐Bañasco C, Benabdellah K, Melero‐Jerez C, Oliver B, Pinto‐Medel MJ, Hurtado‐Guerrero I, de Castro F, Clemente D, Fernández O, Martin F, Leyva L, Suardíaz M. Gene therapy with mesenchymal stem cells expressing IFN-ß ameliorates neuroinflammation in experimental models of multiple sclerosis. Br J Pharmacol 2017; 174:238-253. [PMID: 27882538 PMCID: PMC5241389 DOI: 10.1111/bph.13674] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Recombinant IFN-ß is one of the first-line treatments in multiple sclerosis (MS), despite its lack of efficacy in some patients. In this context, mesenchymal stem cells (MSCs) represent a promising therapeutic alternative due to their immunomodulatory properties and multipotency. Moreover, by taking advantage of their pathotropism, these cells can be genetically modified to be used as carriers for delivering or secreting therapeutic drugs into injured tissues. Here, we report the therapeutic effect of systemic delivery of adipose-derived MSCs (AdMSCs), transduced with the IFN-β gene, into mice with experimental autoimmune encephalomyelitis (EAE). EXPERIMENTAL APPROACH Relapsing-remitting and chronic progressive EAE were induced in mice. Cells were injected i.v. Disease severity, inflammation and tissue damage were assessed clinically, by flow cytometry of spleens and histopathological evaluation of the CNS respectively. KEY RESULTS Genetic engineering did not modify the biological characteristics of these AdMSCs (morphology, growth rate, immunophenotype and multipotency). Furthermore, the transduction of IFN-ß to AdMSCs maintained and, in some cases, enhanced the functional properties of AdMSCs by ameliorating the symptoms of MS in EAE models and by decreasing indications of peripheral and central neuro-inflammation. CONCLUSION AND IMPLICATIONS Gene therapy was found to be more effective than cell therapy in ameliorating several clinical parameters in both EAE models, presumably due to the continuous expression of IFN-β. Furthermore, it has significant advantages over AdMSC therapy, and also over systemic IFN-ß treatment, by providing long-term expression of the cytokine at therapeutic concentrations and reducing the frequency of injections, while minimizing dose-limiting side effects.
Collapse
MESH Headings
- Adipose Tissue/cytology
- Animals
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Flow Cytometry
- Genetic Therapy/methods
- Interferon-beta/genetics
- Mesenchymal Stem Cell Transplantation/methods
- Mesenchymal Stem Cells/cytology
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis, Chronic Progressive/genetics
- Multiple Sclerosis, Chronic Progressive/physiopathology
- Multiple Sclerosis, Chronic Progressive/therapy
- Multiple Sclerosis, Relapsing-Remitting/genetics
- Multiple Sclerosis, Relapsing-Remitting/physiopathology
- Multiple Sclerosis, Relapsing-Remitting/therapy
- Severity of Illness Index
Collapse
Affiliation(s)
- C Marin‐Bañasco
- Unidad de Gestión Clínica Inter‐centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de MálagaUniversidad de MálagaSpain
| | - K Benabdellah
- Cell and Gene Therapy Group, Genomic Medicine DepartmentGENYO, Centre for Genomics and Oncological Research, Pfizer‐University of Granada‐Andalusian Regional GovernmentGranadaSpain
| | - C Melero‐Jerez
- Grupo de Neurobiología del Desarrollo‐GNDeInstituto Cajal‐CSIC28002MadridSpain
- Grupo de Neuroinmuno‐ReparaciónHospital Nacional de Parapléjicos45071ToledoSpain
- Red Española de Esclerosis Múltiple (REEM)BarcelonaSpain
| | - B Oliver
- Unidad de Gestión Clínica Inter‐centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de MálagaUniversidad de MálagaSpain
- Red Española de Esclerosis Múltiple (REEM)BarcelonaSpain
| | - M J Pinto‐Medel
- Unidad de Gestión Clínica Inter‐centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de MálagaUniversidad de MálagaSpain
- Red Española de Esclerosis Múltiple (REEM)BarcelonaSpain
| | - I Hurtado‐Guerrero
- Unidad de Gestión Clínica Inter‐centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de MálagaUniversidad de MálagaSpain
| | - F de Castro
- Grupo de Neurobiología del Desarrollo‐GNDeInstituto Cajal‐CSIC28002MadridSpain
- Grupo de Neurobiología del Desarrollo‐GNDeHospital Nacional de Parapléjicos45071ToledoSpain
- Red Española de Esclerosis Múltiple (REEM)BarcelonaSpain
| | - D Clemente
- Grupo de Neuroinmuno‐ReparaciónHospital Nacional de Parapléjicos45071ToledoSpain
- Grupo de Neurobiología del Desarrollo‐GNDeHospital Nacional de Parapléjicos45071ToledoSpain
- Red Española de Esclerosis Múltiple (REEM)BarcelonaSpain
| | - O Fernández
- Unidad de Gestión Clínica Inter‐centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de MálagaUniversidad de MálagaSpain
- Red Española de Esclerosis Múltiple (REEM)BarcelonaSpain
| | - F Martin
- Cell and Gene Therapy Group, Genomic Medicine DepartmentGENYO, Centre for Genomics and Oncological Research, Pfizer‐University of Granada‐Andalusian Regional GovernmentGranadaSpain
| | - L Leyva
- Unidad de Gestión Clínica Inter‐centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de MálagaUniversidad de MálagaSpain
- Red Española de Esclerosis Múltiple (REEM)BarcelonaSpain
| | - M Suardíaz
- Unidad de Gestión Clínica Inter‐centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de MálagaUniversidad de MálagaSpain
- Red Española de Esclerosis Múltiple (REEM)BarcelonaSpain
| |
Collapse
|
20
|
Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function. Stem Cells Int 2017; 2017:2389753. [PMID: 28250776 PMCID: PMC5303870 DOI: 10.1155/2017/2389753] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS). Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs) in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs) suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS-) induced maturation of dendritic cells (DCs) in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG) E2 in this process. In vivo, early administration of murine and human ASCs (hASCs) ameliorated myelin oligodendrocyte protein- (MOG35-55-) induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+) DCs in draining lymph nodes (DLNs). In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.
Collapse
|
21
|
Abstract
Over the last decade, evidence condensed that B cells, B cell-derived plasma cells and antibodies play a key role in the pathogenesis and progression of multiple sclerosis (MS). In many patients with MS, peripheral B cells show signs of chronic activation; within the cerebrospinal fluid clonally expanded plasma cells produce oligoclonal immunoglobulins, which remain a hallmark diagnostic finding. Confirming the clinical relevance of these immunological alterations, recent trials testing anti-CD20-mediated depletion of peripheral B cells showed an instantaneous halt in development of new central nervous system lesions and occurrence of relapses. Notwithstanding this enormous success, not all B cells or B cell subsets may contribute in a pathogenic manner, and may, in contrast, exert anti-inflammatory and, thus, therapeutically desirable properties in MS. Naïve B cells, in MS patients similar to healthy controls, are a relevant source of regulatory cytokines such as interleukin-10, which dampens the activity of other immune cells and promotes recovery from acute disease flares in experimental MS models. In this review, we describe in detail pathogenic but also regulatory properties of B and plasma cells in the context of MS and its animal model experimental autoimmune encephalomyelitis. In the second part, we review what impact current and future therapies may have on these B cell properties. Within this section, we focus on the highly encouraging data on anti-CD20 antibodies as future therapy for MS. Lastly, we discuss how B cell-directed therapy in MS could be possibly advanced even further in regard to efficacy and safety by integrating the emerging information on B cell regulation in MS into future therapeutic strategies.
Collapse
Affiliation(s)
- Silke Kinzel
- Department of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
| | - Martin S Weber
- Department of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany.
- Department of Neurology, University Medical Center, 37075, Göttingen, Germany.
| |
Collapse
|
22
|
Recombinant soluble IFN receptor (sIFNAR2) exhibits intrinsic therapeutic efficacy in a murine model of Multiple Sclerosis. Neuropharmacology 2016; 110:480-492. [DOI: 10.1016/j.neuropharm.2016.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 11/23/2022]
|
23
|
Órpez-Zafra T, Pavía J, Hurtado-Guerrero I, Pinto-Medel MJ, Rodriguez Bada JL, Urbaneja P, Suardíaz M, Villar LM, Comabella M, Montalban X, Alvarez-Cermeño JC, Leyva L, Fernández Ó, Oliver-Martos B. Decreased soluble IFN-β receptor (sIFNAR2) in multiple sclerosis patients: A potential serum diagnostic biomarker. Mult Scler 2016; 23:937-945. [DOI: 10.1177/1352458516667564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: The soluble isoform of the interferon-β (IFN-β) receptor (sIFNAR2) could modulate the activity of both endogenous and systemically administered IFN-β. Previously, we described lower serum sIFNAR2 levels in untreated multiple sclerosis (MS) than in healthy controls (HCs). Objective: To assess sIFNAR2 levels in a new cohort of MS patients and HCs, as well as in patients with clinically isolated syndrome (CIS) and with other inflammatory neurological disorders (OIND) and to assess its ability as a diagnostic biomarker. Methods: The cross-sectional study included 148 MS (84 treatment naive and 64 treated), 87 CIS, 42 OIND, and 96 HCs. Longitudinal study included 94 MS pretreatment and after 1 year of therapy with IFN-β, glatiramer acetate (GA), or natalizumab. sIFNAR2 serum levels were measured by a quantitative ELISA developed and validated in our laboratory. Results: Naive MS and CIS patients showed significantly lower sIFNAR2 levels than HCs and OIND patients. The sensitivity and specificity to discriminate between MS and OIND, for a sIFNAR2 cutoff value of 122.02 ng/mL, were 70.1%, and 79.4%, respectively. sIFNAR2 increased significantly in IFN-β-treated patients during the first year of therapy in contrast to GA- and natalizumab-treated patients who showed non-significant changes. Conclusion: The results suggest that sIFNAR2 could be a potential diagnostic biomarker for MS.
Collapse
Affiliation(s)
- Teresa Órpez-Zafra
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Jose Pavía
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Biomedicina de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Isaac Hurtado-Guerrero
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Maria J Pinto-Medel
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain/Red Española de Esclerosis Múltiple (REEM)
| | - Jose Luis Rodriguez Bada
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Patricia Urbaneja
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Margarita Suardíaz
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain/Red Española de Esclerosis Múltiple (REEM)
| | - Luisa M Villar
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain/Red Española de Esclerosis Múltiple (REEM)
| | - Manuel Comabella
- Department de Neurología-Neuroinmunología, Centre d’Esclerosi Múltiple de Catalunya, Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain/Red Española de Esclerosis Múltiple (REEM)
| | - Xavier Montalban
- Department de Neurología-Neuroinmunología, Centre d’Esclerosi Múltiple de Catalunya, Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain/Red Española de Esclerosis Múltiple (REEM)
| | - Jose C Alvarez-Cermeño
- Servicio de Neurología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain/Red Española de Esclerosis Múltiple (REEM)
| | - Laura Leyva
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain/Red Española de Esclerosis Múltiple (REEM)
| | - Óscar Fernández
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain/Red Española de Esclerosis Múltiple (REEM)
| | - Begoña Oliver-Martos
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain/Red Española de Esclerosis Múltiple (REEM)
| |
Collapse
|
24
|
Kavrochorianou N, Markogiannaki M, Haralambous S. IFN-β differentially regulates the function of T cell subsets in MS and EAE. Cytokine Growth Factor Rev 2016; 30:47-54. [DOI: 10.1016/j.cytogfr.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/21/2016] [Indexed: 12/30/2022]
|
25
|
Interferon-β therapy specifically reduces pathogenic memory B cells in multiple sclerosis patients by inducing a FAS-mediated apoptosis. Immunol Cell Biol 2016; 94:886-894. [PMID: 27265253 DOI: 10.1038/icb.2016.55] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/06/2016] [Accepted: 05/29/2016] [Indexed: 12/27/2022]
Abstract
Growing evidences put B lymphocytes on a central stage in multiple sclerosis (MS) immunopathology. While investigating the effects of interferon-β (IFN-β) therapy, one of the most used first-line disease-modifying drugs for the treatment of relapsing-remitting MS, in circulating B-cell sub-populations, we found a specific and marked decrease of CD27+ memory B cells. Interestingly, memory B cells are considered a population with a great disease-driving relevance in MS and resulted to be also target of B-cell depleting therapies. In addition, Epstein-Barr virus (EBV), associated with MS etiopathogenesis, harbors in this cell type and an IFN-β-induced reduction of the memory B-cell compartment, in turn, resulted in a decreased expression of the EBV gene latent membrane protein 2A in treated patients. We found that in vivo IFN-β therapy specifically and highly induced apoptosis in memory B cells, in accordance with a strong increase of the apoptotic markers Annexin-V and active caspase-3, via a mechanism requiring the FAS-receptor/TACI (transmembrane activator and CAML interactor) signaling. Thus, efficacy of IFN-β therapy in MS may rely not only on its recognized anti-inflammatory activities but also on the specific depletion of memory B cells, considered to be a pathogenic cell subset, reducing their inflammatory impact in target organs.
Collapse
|
26
|
The Effects of IFN-β 1a on the Expression of Inflammasomes and Apoptosis-Associated Speck-Like Proteins in Multiple Sclerosis Patients. Mol Neurobiol 2016; 54:3031-3037. [DOI: 10.1007/s12035-016-9864-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 01/09/2023]
|
27
|
Development and validation of an ELISA for quantification of soluble IFN-β receptor: assessment in multiple sclerosis. Bioanalysis 2015; 7:2869-80. [DOI: 10.4155/bio.15.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: The soluble isoform of the IFN-β receptor (sIFNAR2) can bind IFN-β and modulate its activity, although its role in autoimmune diseases remains unknown. Methods: A recombinant human sIFNAR2 protein was cloned, expressed and purified after which we developed and validated an ELISA for its quantification in human serum. Serum sIFNAR2 were assessed in multiple sclerosis (MS) patients and healthy controls. Results: The ELISA has a dynamic range of 3.9–250 ng/ml and a detection limit of 2.44 ng/ml. Serum sIFNAR2 were significantly lower in untreated-MS patients than in healthy controls. Conclusion: The ELISA is suitable for quantification of sIFNAR2 in serum and should facilitate the study of sIFNAR2 in neuroimmunological diseases such as MS.
Collapse
|