1
|
Pan K, Li Q, Guo Z, Li Z. Healing action of Interleukin-4 (IL-4) in acute and chronic inflammatory conditions: Mechanisms and therapeutic strategies. Pharmacol Ther 2025; 265:108760. [PMID: 39615600 DOI: 10.1016/j.pharmthera.2024.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Interleukin-4 (IL-4), which is traditionally associated with inflammation, has emerged as a key player in tissue regeneration. Produced primarily by T-helper 2 (Th2) and other immune cells, IL-4 activates endogenous lymphocytes and promotes M2 macrophage polarization, both of which are crucial for tissue repair. Moreover, IL-4 stimulates the proliferation and differentiation of various cell types, contributing to efficient tissue regeneration, and shows promise for promoting tissue regeneration after injury. This review explores the multifaceted roles of IL-4 in tissue repair, summarizing its mechanisms and potential for clinical application. This review delves into the multifaceted functions of IL-4, including its immunomodulatory effects, its involvement in tissue regeneration, and its potential therapeutic applications. We discuss the mechanisms underlying IL-4-induced M2 macrophage polarization, a crucial process for tissue repair. Additionally, we explore innovative strategies for delivering IL-4, including gene therapy, protein-based therapies, and cell-based therapies. By leveraging the regenerative properties of IL-4, we can potentially develop novel therapies for various diseases, including chronic inflammatory disorders, autoimmune diseases, and organ injuries. While early research has shown promise for the application of IL-4 in regenerative medicine, further studies are needed to fully elucidate its therapeutic potential and optimize its use.
Collapse
Affiliation(s)
- Kai Pan
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China.
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zongjin Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Boyd JT, Khanwalkar AR. Biologics in Chronic Rhinosinusitis: Current and Emerging. Immunol Allergy Clin North Am 2024; 44:657-671. [PMID: 39389716 DOI: 10.1016/j.iac.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chronic rhinosinusitis (CRS) is categorized phenotypically into CRS with and without nasal polyps (CRSwNP, CRSsNP). Endotyping categorizes the disease based on immune cell activity and inflammatory mechanisms into Type 1, Type 2, and Type 3. The Type 2 endotype is the most researched and associated with asthma, atopic disease, and severe CRSwNP. For patients with poorly controlled CRSwNP, there are 3 approved biologic treatments: omalizumab, dupilumab, and mepolizumab. Many other biologics are being tested in Type 2, non-Type 2, and mixed endotypes in CRSwNP and CRSsNP. These studies will play a significant role in shaping the future of CRS management.
Collapse
Affiliation(s)
- Jacob T Boyd
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz School of Medicine, 12631 East 17th Avenue, MSB 205 Room 3001, Aurora, CO 80045, USA
| | - Ashoke R Khanwalkar
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz School of Medicine, 12631 East 17th Avenue, MSB 205 Room 3001, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Pelaia C, Melhorn J, Hinks TS, Couillard S, Vatrella A, Pelaia G, Pavord ID. Type 2 severe asthma: pathophysiology and treatment with biologics. Expert Rev Respir Med 2024; 18:485-498. [PMID: 38994712 DOI: 10.1080/17476348.2024.2380072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION The hallmark of most patients with severe asthma is type 2 inflammation, driven by innate and adaptive immune responses leading to either allergic or non-allergic eosinophilic infiltration of airways. The cellular and molecular pathways underlying severe type 2 asthma can be successfully targeted by specific monoclonal antibodies. AREAS COVERED This review article provides a concise overview of the pathophysiology of type 2 asthma, followed by an updated appraisal of the mechanisms of action and therapeutic efficacy of currently available biologic treatments used for management of severe type 2 asthma. Therefore, all reported information arises from a wide literature search performed on PubMed. EXPERT OPINION The main result of the recent advances in the field of anti-asthma biologic therapies is the implementation of a personalized medicine approach, aimed to achieve clinical remission of severe asthma. Today this accomplishment is made possible by the right choice of the most beneficial biologic drug for the pathologic traits characterizing each patient, including type 2 severe asthma and its comorbidities.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Calabria, Italy
| | - James Melhorn
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| | - Timothy Sc Hinks
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| | - Simon Couillard
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Ian D Pavord
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Wang JP, Hung CH, Liou YH, Liu CC, Yeh KH, Wang KY, Lai ZS, Chatterjee B, Hsu TC, Lee TL, Shyu YC, Hsiao PW, Chen LY, Chuang TJ, Yu CHA, Liao NS, Shen CKJ. Long-term hematopoietic transfer of the anti-cancer and lifespan-extending capabilities of a genetically engineered blood system by transplantation of bone marrow mononuclear cells. eLife 2024; 12:RP88275. [PMID: 38752723 PMCID: PMC11098557 DOI: 10.7554/elife.88275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.
Collapse
Affiliation(s)
- Jing-Ping Wang
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Chun-Hao Hung
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Ching-Chen Liu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Keh-Yang Wang
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | | | - Biswanath Chatterjee
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Tzu-Chi Hsu
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Tung-Liang Lee
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Chang Gung Memorial HospitalKeelungTaiwan
- Pro-Clintech Co. LtdKeelungTaiwan
| | - Yu-Chiau Shyu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Department of Nursing, Chang Gung University of Science and TechnologyTaoyuanTaiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung BranchKeelungTaiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | | | | | - Nan-Shih Liao
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - C-K James Shen
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| |
Collapse
|
5
|
Saad EE, Michel R, Borahay MA. Immunosuppressive tumor microenvironment and uterine fibroids: Role in collagen synthesis. Cytokine Growth Factor Rev 2024; 75:93-100. [PMID: 37839993 PMCID: PMC10922281 DOI: 10.1016/j.cytogfr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Uterine fibroids (UF), also called uterine leiomyoma, is one of the most prevalent uterine tumors. UF represents a serious women's health global problem with a significant physical, emotional, and socioeconomic impact. Risk factors for UF include racial disparities, age, race, hormonal factors, obesity, and lifestyle (diet, physical activity, and stress. There are several biological contributors to UF pathogenesis such as cellular proliferation, angiogenesis, and extracellular matrix (ECM) accumulation. This review addresses tumor immune microenvironment as a novel mediator of ECM deposition. Polarization of immune microenvironment towards the immunosuppressive phenotype has been associated with ECM deposition. Immunosuppressive cells include M2 macrophage, myeloid-derived suppressor cells (MDSCs), and Th17 cells, and their secretomes include interleukin 4 (IL-4), IL-10, IL-13, IL-17, IL-22, arginase 1, and transforming growth factor-beta (TGF-β1). The change in the immune microenvironment not only increase tumor growth but also aids in collagen synthesis and ECM disposition, which is one of the main hallmarks of UF pathogenesis. This review invites further investigations on the change in the UF immune microenvironment as well as a novel targeting approach instead of the traditional UF hormonal and supportive treatment.
Collapse
Affiliation(s)
- Eslam E Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Quarato CMI, Tondo P, Lacedonia D, Soccio P, Fuso P, Sabato E, Hoxhallari A, Foschino Barbaro MP, Scioscia G. Clinical Remission in Patients Affected by Severe Eosinophilic Asthma on Dupilumab Therapy: A Long-Term Real-Life Study. J Clin Med 2024; 13:291. [PMID: 38202298 PMCID: PMC10780210 DOI: 10.3390/jcm13010291] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Background. Nowadays, highly selective biological drugs offer the possibility of treating severe type 2 asthma. However, in the real-life setting, it is crucial to confirm the validity of the chosen biological treatment by evaluating the achievement of clinical remission. Study purpose. The main aims of this real-life study were to evaluate the efficacy of dupilumab in terms of clinical, functional, and inflammatory outcomes at 6, 12, 18, and 24 months of treatment and to estimate the percentage of patients achieving partial or complete clinical remission at 12 and 24 months of treatment. In addition, we attempted to identify whether baseline clinical characteristics of patients could be associated with clinical remission at 24 months of treatment. Materials and methods. In this observational prospective study, 20 outpatients with severe uncontrolled eosinophilic asthma were prescribed dupilumab and followed-up after 6, 12, 18, and 24 months of treatment. At each patient visit, the need for oral corticosteroids (OCS) and corticosteroid required dose, number of exacerbations during the previous year or from the previous visit, asthma control test (ACT) score, pre-bronchodilator forced expiratory volume in the 1st second (FEV1), fractional exhaled nitric oxide at a flow rate of 50 mL/s (FeNO50), and blood eosinophil count were assessed. Results. The number of OCS-dependent patients was reduced from 10 (50%) at baseline to 5 (25%) at one year (T12) and 2 years (T24). The average dose of OCS required by patients demonstrated a significant reduction at T12 (12.5 ± 13.75 mg vs. 2.63 ± 3.94 mg, p = 0.015), remaining significant even at T24 (12.5 ± 13.75 mg vs. 2.63 ± 3.94 mg, p = 0.016). The number of exacerbators showed a statistically significant decrease at T24 (10 patients, 50% vs. 3 patients, 15%, p = 0.03). The mean number of exacerbations demonstrated a statistically significant reduction at T24 (1.45 ± 1.58 vs. 0.25 ± 0.43, p = 0.02). The ACT score improved in a statistically significant manner at T12 (15.30 ± 4.16 vs. 21.40 ± 2.35, p < 0.0001), improving further at T24 (15.30 ± 4.16 vs. 22.10 ± 2.59, p < 0.0001). The improvement in pre-bronchodilator FEV1 values reached statistical significance at T24 (79.5 ± 14.4 vs. 87.7 ± 13.8, p = 0.03). The reduction in flow at the level of the small airways (FEF25-75%) also demonstrated an improvement, although it did not reach statistical significance either at T12 or T24. A total of 11 patients (55%) showed clinical remission at T12 (6 complete + 5 partial) and 12 patients (60%) reached clinical remission at T24 (9 complete + 3 partial). Only obesity was associated with a negative odds ratio (OR) for achieving clinical remission at T24 (OR: 0.03, 95% CI: 0.002-0.41, p = 0.004). No other statistically significant differences in baseline characteristics emerged between patients who reached clinical remission at T24 and the group of patients who did not achieve this outcome. Conclusion. Dupilumab appears to be an effective drug in promoting achievement of clinical remission in patients with severe uncontrolled eosinophilic asthma. The achievement of clinical remission should be continuously evaluated during treatment. Further studies are needed to clarify whether certain baseline clinical characteristics can help predict dupilumab favorable outcomes.
Collapse
Affiliation(s)
- Carla Maria Irene Quarato
- Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, 71122 Foggia, Italy; (C.M.I.Q.); (M.P.F.B.)
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (P.S.)
| | - Donato Lacedonia
- Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, 71122 Foggia, Italy; (C.M.I.Q.); (M.P.F.B.)
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (P.S.)
| | - Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (P.S.)
| | - Paolo Fuso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (P.S.)
- Respiratory Diseases Unit, “A. Perrino” P.O di Brindisi, 72100 Brindisi, Italy
| | - Eugenio Sabato
- Respiratory Diseases Unit, “A. Perrino” P.O di Brindisi, 72100 Brindisi, Italy
| | - Anela Hoxhallari
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (P.S.)
| | - Maria Pia Foschino Barbaro
- Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, 71122 Foggia, Italy; (C.M.I.Q.); (M.P.F.B.)
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (P.S.)
| | - Giulia Scioscia
- Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, 71122 Foggia, Italy; (C.M.I.Q.); (M.P.F.B.)
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (P.S.)
| |
Collapse
|
7
|
Winikajtis-Burzyńska A, Brzosko M, Przepiera-Będzak H. Elevated Serum Levels of Soluble Transferrin Receptor Are Associated with an Increased Risk of Cardiovascular, Pulmonary, and Hematological Manifestations and a Decreased Risk of Neuropsychiatric Manifestations in Systemic Lupus Erythematosus Patients. Int J Mol Sci 2023; 24:17340. [PMID: 38139169 PMCID: PMC10743550 DOI: 10.3390/ijms242417340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to analyze the relationship between the serum levels of soluble transferrin receptor (sTfR) and interleukin 4 (IL-4), and the disease activity and organ manifestations in SLE patients. We studied 200 SLE patients and 50 controls. We analyzed disease activity, organ involvement, serum sTfR, IL-4 and interleukin-6 (IL-6) levels, and antinuclear and antiphospholipid antibody profiles. The median serum levels of sTfR (p > 0.000001) and IL-4 (p < 0.00001) were higher in the study group than in the controls. SLE patients, compared to the controls, had significantly lower HGB levels (p < 0.0001), a lower iron concentration (p = 0.008), a lower value of total iron-binding capacity (TIBC) (p = 0.03), and lower counts of RBC (p = 0.004), HCT (p = 0.0004), PLT (p = 0.04), neutrophil (p = 0.04), and lymphocyte (p < 0.0001). Serum sTfR levels were negatively correlated with lymphocyte (p = 0.0005), HGB (p = 0.0001) and HCT (p = 0.008), and positively correlated with IL-4 (p = 0.01). Elevated serum sTfR > 2.14 mg/dL was associated with an increased risk of myocardial infarction (OR: 10.6 95 CI 2.71-464.78; p = 0.001), ischemic heart disease (OR: 3.25 95 CI 1.02-10.40; p = 0.04), lung manifestations (OR: 4.48 95 CI 1.44-13.94; p = 0.01), and hematological manifestations (OR: 2.07 95 CI 1.13-3.79; p = 0.01), and with a reduced risk of neuropsychiatric manifestations (OR: 0.42 95 CI 0.22-0.80; p = 0.008). Serum IL-4 was negatively correlated with CRP (p = 0.003), and elevated serum IL-4 levels > 0.17 mg/L were associated with a reduced risk of mucocutaneous manifestations (OR: 0.48 95 CI 0.26-0.90; p = 0.02). In SLE patients, elevated serum levels of sTfR were associated with an increased risk of cardiovascular, pulmonary, and hematological manifestations, and with a decreased risk of neuropsychiatric manifestations. In contrast, elevated serum IL-4 levels were associated with a decreased risk of mucocutaneous manifestations.
Collapse
Affiliation(s)
- Agnieszka Winikajtis-Burzyńska
- Individual Laboratory for Rheumatologic Diagnostics, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Marek Brzosko
- Department of Rheumatology, Internal Medicine, Geriatrics and Clinical Immunology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Hanna Przepiera-Będzak
- Department of Rheumatology, Internal Medicine, Geriatrics and Clinical Immunology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| |
Collapse
|
8
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
9
|
Chen H, Guo Z, Sun Y, Dai X. The immunometabolic reprogramming of microglia in Alzheimer's disease. Neurochem Int 2023; 171:105614. [PMID: 37748710 DOI: 10.1016/j.neuint.2023.105614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder (NDD). In the central nervous system (CNS), immune cells like microglia could reprogram intracellular metabolism to alter or exert cellular immune functions in response to environmental stimuli. In AD, microglia could be activated and differentiated into pro-inflammatory or anti-inflammatory phenotypes, and these differences in cellular phenotypes resulted in variance in cellular energy metabolism. Considering the enormous energy requirement of microglia for immune functions, the changes in mitochondria-centered energy metabolism and substrates of microglia are crucial for the cellular regulation of immune responses. Here we reviewed the mechanisms of microglial metabolic reprogramming by analyzing their flexible metabolic patterns and changes that occurred in their metabolism during the development of AD. Further, we summarized the role of drugs in modulating immunometabolic reprogramming to prevent neuroinflammation, which may shed light on a new research direction for AD treatment.
Collapse
Affiliation(s)
- Hongli Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Zichen Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
10
|
Thomas S, Fiebig JE, Kuhn EM, Mayer DS, Filbeck S, Schmitz W, Krischke M, Gropp R, Mueller TD. Design of Glycoengineered IL-4 Antagonists Employing Chemical and Biosynthetic Glycosylation. ACS OMEGA 2023; 8:24841-24852. [PMID: 37483220 PMCID: PMC10357448 DOI: 10.1021/acsomega.3c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
Interleukin-4 (IL-4) plays a key role in atopic diseases. It coordinates T-helper cell differentiation to subtype 2, thereby directing defense toward humoral immunity. Together with Interleukin-13, IL-4 further induces immunoglobulin class switch to IgE. Antibodies of this type activate mast cells and basophilic and eosinophilic granulocytes, which release pro-inflammatory mediators accounting for the typical symptoms of atopic diseases. IL-4 and IL-13 are thus major targets for pharmaceutical intervention strategies to treat atopic diseases. Besides neutralizing antibodies against IL-4, IL-13, or its receptors, IL-4 antagonists can present valuable alternatives. Pitrakinra, an Escherichia coli-derived IL-4 antagonist, has been evaluated in clinical trials for asthma treatment in the past; however, deficits such as short serum lifetime and potential immunogenicity among others stopped further development. To overcome such deficits, PEGylation of therapeutically important proteins has been used to increase the lifetime and proteolytic stability. As an alternative, glycoengineering is an emerging strategy used to improve pharmacokinetics of protein therapeutics. In this study, we have established different strategies to attach glycan moieties to defined positions in IL-4. Different chemical attachment strategies employing thiol chemistry were used to attach a glucose molecule at amino acid position 121, thereby converting IL-4 into a highly effective antagonist. To enhance the proteolytic stability of this IL-4 antagonist, additional glycan structures were introduced by glycoengineering utilizing eucaryotic expression. IL-4 antagonists with a combination of chemical and biosynthetic glycoengineering could be useful as therapeutic alternatives to IL-4 neutralizing antibodies already used to treat atopic diseases.
Collapse
Affiliation(s)
- Sarah Thomas
- Department
of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, D-97082 Wuerzburg, Germany
| | - Juliane E. Fiebig
- Department
of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, D-97082 Wuerzburg, Germany
| | - Eva-Maria Kuhn
- Department
of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, D-97082 Wuerzburg, Germany
| | - Dominik S. Mayer
- Department
of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, D-97082 Wuerzburg, Germany
| | - Sebastian Filbeck
- Department
of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, D-97082 Wuerzburg, Germany
| | - Werner Schmitz
- Department
of Biochemistry and Molecular Biology, Biocenter
of the University Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | - Markus Krischke
- Department
of Pharmaceutical Biology, Julius-von-Sachs
Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, D-97082 Wuerzburg, Germany
| | - Roswitha Gropp
- Department
of General- Visceral-, Vascular- and Transplantation Surgery, Hospital of the LMU, Nussbaumstr. 20, 80336 Munich, Germany
| | - Thomas D. Mueller
- Department
of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, D-97082 Wuerzburg, Germany
| |
Collapse
|
11
|
Scioscia G, Nolasco S, Campisi R, Quarato CMI, Caruso C, Pelaia C, Portacci A, Crimi C. Switching Biological Therapies in Severe Asthma. Int J Mol Sci 2023; 24:ijms24119563. [PMID: 37298514 DOI: 10.3390/ijms24119563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Currently, three classes of monoclonal antibodies targeting type 2 inflammation pathways are available in Italy for the treatment of severe asthma: anti-IgE (Omalizumab), anti-IL-5/anti-IL-5Rα (Mepolizumab and Benralizumab), and anti-IL-4Rα (Dupilumab). Numerous randomized controlled trials (RCTs) and real-life studies have been conducted to define their efficacy and identify baseline patients' characteristics potentially predictive of favorable outcomes. Switching to another monoclonal antibody is recommended in case of a lack of benefits. The aim of this work is to review the current knowledge on the impact of switching biological therapies in severe asthma as well as on predictors of treatment response or failure. Almost all of the information about switching from a previous monoclonal antibody to another comes from a real-life setting. In the available studies, the most frequent initial biologic was Omalizumab and patients who were switched because of suboptimal control with a previous biologic therapy were more likely to have a higher baseline blood eosinophil count and exacerbation rate despite OCS dependence. The choice of the most suitable treatment may be guided by the patient's clinical history, biomarkers of endotype (mainly blood eosinophils and FeNO), and comorbidities (especially nasal polyposis). Due to overlapping eligibility, larger investigations characterizing the clinical profile of patients benefiting from switching to different monoclonal antibodies are needed.
Collapse
Affiliation(s)
- Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71121 Foggia, Italy
| | - Santi Nolasco
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
- Respiratory Medicine Unit, Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Raffaele Campisi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | | | - Cristiano Caruso
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Andrea Portacci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University "Aldo Moro" of Bari, 70121 Bari, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
- Respiratory Medicine Unit, Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| |
Collapse
|
12
|
Colonetti K, Pinto E Vairo F, Siebert M, Nalin T, Poloni S, Fernando Wurdig Roesch L, Fischinger Moura de Souza C, Cabral Pinheiro F, Vanessa Doederlein Schwartz I. Cytokine profiling in patients with hepatic glycogen storage disease: Are there clues for unsolved aspects? Cytokine 2023; 162:156088. [PMID: 36462220 DOI: 10.1016/j.cyto.2022.156088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Hepatic Glycogen Storage Diseases (GSD) are rare genetic disorders in which the gluconeogenesis pathway is impaired. Cytokines control virtually every aspect of physiology and may help to elucidate some unsolved questions about phenotypes presented by GSD patients. METHODS This was an exploratory study in which 27 GSD patients on treatment (Ia = 16, Ib = 06, III = 02, IXα = 03) and 24 healthy age- and sex-matched subjects had plasma samples tested for a panel of 20 cytokines (G-CSF,GM-CSF, IL-1α,IL-1β, IL-4, IL-6, IL-8, IL-10, IL-13, IL-17A, GRO, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, MDC/CCL22, IFN-γ, TNF-α, TNF-β, VEGF) through a multiplex kit and analyzed in comparison to controls and among patients, regarding to clinical features as anemia, hepatic adenocarcinoma and triglyceride levels. RESULTS Patients (GSD-Ia/III/IX) presented reduced levels of IL-4 (p = 0.040), MIP-1α/CCL3 (p = 0.003), MDC/CCL22 (p < 0.001), TNF-β (p = 0.045) and VEGF (p = 0.043) compared to controls. When different types of GSD were compared, G-CSF was higher in GSD-Ib than -Ia (p < 0.001) and than -III/IX (p = 0.033) patients; IL-10 was higher in GSD-Ib than in GSD-Ia patients (p = 0.019); and GSD-III/IX patients had increased levels of IP-10/CXCL10 than GSD-Ib patients (p = 0.019). When GSD-I patients were gathered into the same group and compared with GSD-III/IX patients, IP10/CXCL10 and MCP-1 were higher in the latter group (p = 0.005 and p = 0.013, respectively). GSD-I patients with anemia presented higher levels of IL-4 and MIP-1α in comparison with patients who had not. Triglyceride level was correlated with neutrophil count and MDC levels on GSD-Ia patients without HCA. CONCLUSION Altogether, altered levels of cytokines in GSD-I patients reflect an imbalance in immunoregulation process. This study also indicates that neutrophils and some cytokines are affected by triglyceride levels, and future studies on the theme should consider this variable.
Collapse
Affiliation(s)
- Karina Colonetti
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, PortoAlegre, RS, Brazil
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Marina Siebert
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, PortoAlegre, RS, Brazil; Post-Graduation Program in Sciences of Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratorial Research Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tatiéle Nalin
- Ultragenyx Brasil Farmacêutica Ltda, São Paulo, SP, Brazil
| | - Soraia Poloni
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, PortoAlegre, RS, Brazil
| | - Luiz Fernando Wurdig Roesch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Carolina Fischinger Moura de Souza
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Post-Graduation Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Franciele Cabral Pinheiro
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, PortoAlegre, RS, Brazil; Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, PortoAlegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Progneaux A, Evrard C, De Glas V, Fontaine A, Dotreppe C, De Vuyst E, Nikkels AF, García-González V, Dumoutier L, Lambert de Rouvroit C, Poumay Y. Keratinocytes activated by IL-4/IL-13 express IL-2Rγ with consequences on epidermal barrier function. Exp Dermatol 2023; 32:660-670. [PMID: 36645024 DOI: 10.1111/exd.14749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023]
Abstract
Atopic dermatitis (AD) is a Th2-type inflammatory disease characterized by an alteration of epidermal barrier following the release of IL-4 and IL-13. These cytokines activate type II IL-4Rα/IL-13Rα1 receptors in the keratinocyte. Whilst IL-2Rγ, that forms type I receptor for IL-4, is only expressed in haematopoietic cells, recent studies suggest its induction in keratinocytes, which questions about its role. We studied expression of IL-2Rγ in keratinocytes and its role in alteration of keratinocyte function and epidermal barrier. IL-2Rγ expression in keratinocytes was studied using both reconstructed human epidermis (RHE) exposed to IL-4/IL-13 and AD skin. IL-2Rγ induction by type II receptor has been analyzed using JAK inhibitors and RHE knockout (KO) for IL13RA1. IL-2Rγ function was investigated in RHE KO for IL2RG. In RHE, IL-4/IL-13 induce expression of IL-2Rγ at the mRNA and protein levels. Its mRNA expression is also visualized in keratinocytes of lesional AD skin. IL-2Rγ expression is low in RHE treated with JAK inhibitors and absent in RHE KO for IL13RA1. Exposure to IL-4/IL-13 alters epidermal barrier, but this alteration is absent in RHE KO for IL2RG. A more important induction of IL-13Rα2 is reported in RHE KO for IL2RG than in not edited RHE. These results demonstrate IL-2Rγ induction in keratinocytes through activation of type II receptor. IL-2Rγ is involved in the alteration of the epidermal barrier and in the regulation of IL-13Rα2 expression. Observation of IL-2Rγ expression by keratinocytes inside AD lesional skin suggests a role for this receptor subunit in the disease.
Collapse
Affiliation(s)
- Audrey Progneaux
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Céline Evrard
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Valérie De Glas
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Alix Fontaine
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Céline Dotreppe
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Evelyne De Vuyst
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Arjen F Nikkels
- Department of Dermatology, CHU of Sart Tilman, University of Liège, Liège, Belgium
| | | | - Laure Dumoutier
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Catherine Lambert de Rouvroit
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Yves Poumay
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
14
|
Denisenko YK, Novgorodtseva TP, Vitkina TI, Knyshova VV, Antonyuk MV, Bocharova NV, Kytikova OY. Associations Of Fatty Acid Composition In Leukocyte Membranes With Systemic Inflammation In Chronic Obstructive Pulmonary Disease Progression. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background — The development of systemic inflammation is a key pathogenetic mechanism in progression of chronic obstructive pulmonary disease (COPD). Fatty acids (FAs) and their oxidized derivatives serve as essential regulators of inflammation. The relationship between systemic inflammation and FA metabolism in COPD is poorly understood. In our research, we focused on examining the FA composition of the leukocyte membrane in COPD and the FA metabolism in association with systemic inflammation. Objective — We examined 137 patients with mild, moderate, or severe COPD. The control group comprised 32 healthy non-smokers. Methods — Blood cytokines and immune cell subpopulations were evaluated by flow cytometry. The FA composition of the leukocyte membranes was analyzed by gas chromatography. The concentrations of eicosanoids (thromboxane B2 (TXB2), leukotriene B4 (LTB4)) in plasma were measured by ELISA. Results — Our results implied systemic inflammation in all patients with COPD. The analysis of the FA composition of leukocyte membrane demonstrated increased level of saturated FAs and n-6 polyunsaturated fatty acids (PUFAs), along with reduced levels of monounsaturated FAs and n-3 PUFAs, in patients with COPD. The TXB2 and LTB4 content was increasing in COPD patients. We established a significant correlation with n-6 PUFAs, immune cells, and cytokines, which was indicative of an important role of FAs in the progress of systemic inflammation in COPD. Conclusion — Thus, FA modification of immune cells in patients with chronic pathologies of the bronchopulmonary system leads not only to disruption of the cell membrane structure, but also to the pathology of immune response regulation, and contributes to the development of the inflammatory process. The latter is a decisive factor in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Yulia K. Denisenko
- Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Tatyana P. Novgorodtseva
- Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Tatyana I. Vitkina
- Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Vera V. Knyshova
- Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Marina V. Antonyuk
- Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Nataliya V. Bocharova
- Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Oxana Yu. Kytikova
- Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| |
Collapse
|
15
|
Sorrentino C, D'Antonio L, Ciummo SL, Fieni C, Landuzzi L, Ruzzi F, Vespa S, Lanuti P, Lotti LV, Lollini PL, Di Carlo E. CRISPR/Cas9-mediated deletion of Interleukin-30 suppresses IGF1 and CXCL5 and boosts SOCS3 reducing prostate cancer growth and mortality. J Hematol Oncol 2022; 15:145. [PMID: 36224639 PMCID: PMC9559017 DOI: 10.1186/s13045-022-01357-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastatic prostate cancer (PC) is a leading cause of cancer death in men worldwide. Targeting of the culprits of disease progression is an unmet need. Interleukin (IL)-30 promotes PC onset and development, but whether it can be a suitable therapeutic target remains to be investigated. Here, we shed light on the relationship between IL30 and canonical PC driver genes and explored the anti-tumor potential of CRISPR/Cas9-mediated deletion of IL30. METHODS PC cell production of, and response to, IL30 was tested by flow cytometry, immunoelectron microscopy, invasion and migration assays and PCR arrays. Syngeneic and xenograft models were used to investigate the effects of IL30, and its deletion by CRISPR/Cas9 genome editing, on tumor growth. Bioinformatics of transcriptional data and immunopathology of PC samples were used to assess the translational value of the experimental findings. RESULTS Human membrane-bound IL30 promoted PC cell proliferation, invasion and migration in association with STAT1/STAT3 phosphorylation, similarly to its murine, but secreted, counterpart. Both human and murine IL30 regulated PC driver and immunity genes and shared the upregulation of oncogenes, BCL2 and NFKB1, immunoregulatory mediators, IL1A, TNF, TLR4, PTGS2, PD-L1, STAT3, and chemokine receptors, CCR2, CCR4, CXCR5. In human PC cells, IL30 improved the release of IGF1 and CXCL5, which mediated, via autocrine loops, its potent proliferative effect. Deletion of IL30 dramatically downregulated BCL2, NFKB1, STAT3, IGF1 and CXCL5, whereas tumor suppressors, primarily SOCS3, were upregulated. Syngeneic and xenograft PC models demonstrated IL30's ability to boost cancer proliferation, vascularization and myeloid-derived cell infiltration, which were hindered, along with tumor growth and metastasis, by IL30 deletion, with improved host survival. RNA-Seq data from the PanCancer collection and immunohistochemistry of high-grade locally advanced PCs demonstrated an inverse association (chi-squared test, p = 0.0242) between IL30 and SOCS3 expression and a longer progression-free survival of patients with IL30NegSOCS3PosPC, when compared to patients with IL30PosSOCS3NegPC. CONCLUSIONS Membrane-anchored IL30 expressed by human PC cells shares a tumor progression programs with its murine homolog and, via juxtacrine signals, steers a complex network of PC driver and immunity genes promoting prostate oncogenesis. The efficacy of CRISPR/Cas9-mediated targeting of IL30 in curbing PC progression paves the way for its clinical use.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Ruzzi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Simone Vespa
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Pier Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
16
|
The IL-4/IL-13 signaling axis promotes prostatic fibrosis. PLoS One 2022; 17:e0275064. [PMID: 36201508 PMCID: PMC9536598 DOI: 10.1371/journal.pone.0275064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022] Open
Abstract
Background Lower urinary tract symptoms (LUTS) are a costly and pervasive medical problem for millions of aging men. Recent studies have showed that peri-urethral tissue fibrosis is an untreated pathobiology contributing to LUTS. Fibrosis results from excessive extracellular matrix deposition which increases transition zone and peri-urethral tissue stiffness and compromises prostatic urethral flexibility and compliance, producing urinary obstructive symptoms. Inflammatory cells, including neutrophils, macrophages, and T-lymphocytes, secrete a medley of pro-fibrotic proteins into the prostatic microenvironment, including IFNγ, TNFα, CXC-type chemokines, and interleukins, all of which have been implicated in inflammation-mediated fibrosis. Among these, IL-4 and IL-13 are of particular interest because they share a common signaling axis that, as shown here for the first time, promotes the expression and maintenance of IL-4, IL-13, their cognate receptors, and ECM components by prostate fibroblasts, even in the absence of immune cells. Based on studies presented here, we hypothesize that the IL-4/IL-13 axis promotes prostate fibroblast activation to ECM-secreting cells. Methods N1 or SFT1 immortalized prostate stromal fibroblasts were cultured and treated, short- or long-term, with pro-fibrotic proteins including IL-4, IL-13, TGF-β, TNF-α, IFNγ, with or without prior pre-treatment with antagonists or inhibitors. Protein expression was assessed by immunohistochemistry, immunofluorescence, ELISA, immunoblot, or Sircoll assays. Transcript expression levels were determined by qRT-PCR. Intact cells were counted using WST assays. Results IL-4Rα, IL-13Rα1, and collagen are concurrently up-regulated in human peri-urethral prostate tissues from men with LUTS. IL-4 and IL-13 induce their own expression as well as that of their cognate receptors, IL-4Rα and IL-13Rα1. Low concentrations of IL-4 or IL-13 act as cytokines to promote prostate fibroblast proliferation, but higher (>40ng/ml) concentrations repress cellular proliferation. Both IL-4 and IL-13 robustly and specifically promote collagen transcript and protein expression by prostate stromal fibroblasts in a JAK/STAT-dependent manner. Moreover, IL-4 and IL-13-mediated JAK/STAT signaling is coupled to activation of the IL-4Rα receptor. Conclusions Taken together, these studies show that IL-4 and IL-13 signal through the IL-4Rα receptor to activate JAK/STAT signaling, thereby promoting their own expression, that of their cognate receptors, and collagens. These finding suggest that the IL-4/IL-13 signaling axis is a powerful, but therapeutically targetable, pro-fibrotic mechanism in the lower urinary tract.
Collapse
|
17
|
Naz S, Ashraf S, Parvez MK, Al-Dosari MS, Ul-Haq Z. Structure and ligand-based drug discovery of IL-4 inhibitors via interaction-energy-based learning approaches. J Biomol Struct Dyn 2022; 40:6503-6521. [PMID: 33618633 DOI: 10.1080/07391102.2021.1886172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Interleukin-4 (IL-4), an anti-inflammatory cytokine plays significant in the development of various diseases especially asthmatic allergies. Previous structural and functional studies of IL-4 with its receptor bring forth different types of inhibitors to block their interaction but each of them failed in clinical trials. Since, no synthetic molecules have been identified against IL-4, so far. Therefore, 21 in-house tested IL-4 inhibitors were blindly docked over the entire surface of IL-4 to predict a suitable and druggable binding site as the crystal structure of IL-4 protein in complex with ligand has not been reported yet. After binding site prediction, both ligand-based and structure-based pharmacophore were generated to screen three ZINC libraries (24.5 M) i.e. purchasable, natural product and natural derivative. A total 5,800 top-scored compounds were further subjected towards score-based screening to find the potential leads. Following protein-ligand interaction fingerprints (PLIF) and molecular visualization of selected hits, six top-scored compounds (five from purchasable and one from natural product library) were further moved towards their stability dynamics, followed by their absolute binding free energy and residue-based energy decomposition calculation by MM-GBSA method. These efforts help us to reveal the key factors responsible for ligand binding that might help to improve the binding and stability of these newly discovered hits by structural modifications.Communicated by Freddie R. Salsbury.
Collapse
Affiliation(s)
- Sehrish Naz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
18
|
Porcine reproductive and respiratory syndrome virus reinfection causes the distribution of porcine interleukin-4 in close proximity to B lymphocytes within lymphoid follicles and a reduction in B and T lymphocytes. Vet Microbiol 2022; 272:109498. [PMID: 35793585 DOI: 10.1016/j.vetmic.2022.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
Abstract
Interleukin 4 (IL-4) plays a major role in T-lymphocyte development and is thought to be a central regulator as a cofactor in resting B-lymphocyte proliferation. Primary infection with porcine reproductive and respiratory syndrome virus (PRRSV) induces minimal IL-4 production, whereas an IL-4 response occurs in the peripheral blood of piglets reinfected by PRRSV. The locations and interaction partners for the massive volume of IL-4 triggered by PRRSV reinfection remain unclear. This study aimed to investigate the characteristics of IL-4 secretion and location changes in peripheral immune organs induced by PRRSV infection and reinfection. Our results show that PRRSV reinfection induced higher levels of IL-4 mRNA and protein expression in the peripheral immune organs (e.g., lymph node and spleen) and peripheral blood compared with PRRSV primary infection. Importantly, we found that, following PRRSV reinfection, an obvious large-scale migration of IL-4 occurred in the lymph nodes. During PRRSV primary infection, IL-4 was mainly concentrated around the lymphoid follicles and paracortical regions of the lymph node and also located in the marginal area and periarterial lymphatic sheath region of the spleen. During PRRSV reinfection, the now abundant IL-4 gathered into the lymphoid follicles of the lymph node and spleen. Notably, IL-4 changed its location state from scattered and sparse during primary infection to clinging to B lymphocytes in the lymphoid follicles during reinfection. During reinfection, IL-4 was often co-localized with T and B lymphocytes; furthermore, the percentages of several T lymphocyte subsets, N protein-specific antibody levels, and viral load in the peripheral blood or lymph tissues underwent remarkable variation. Another important finding of this study was that the numbers of B lymphocytes and T lymphocytes in the lymphoid nodes were significantly reduced after PRRSV infection or reinfection, presumably due to PRRSV-induced acute bone marrow failure and autophagy in thymic epithelial cells. This study revealed the characteristics of IL-4 migration and distribution in the peripheral lymph organs induced by PRRSV reinfection and provides valuable clues for further exploration of the interactions between IL-4, B lymphocytes, and T lymphocytes during PRRSV infection and reinfection.
Collapse
|
19
|
Thisayakorn P, Thipakorn Y, Tantavisut S, Sirivichayakul S, Maes M. Delirium due to hip fracture is associated with activated immune-inflammatory pathways and a reduction in negative immunoregulatory mechanisms. BMC Psychiatry 2022; 22:369. [PMID: 35641947 PMCID: PMC9158285 DOI: 10.1186/s12888-022-04021-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The objectives of this study were to delineate whether delirium in older adults is associated with activation of the immune-inflammatory response system (IRS) as indicated by activation of M1, T helper (Th)1, and Th17 profiles, and/or by reduced activities of the compensatory immunoregulatory system (CIRS), including Th2 and T regulatory profiles. METHODS We recruited 65 older adult patients with a low energy impact hip fracture who underwent hip fracture operation. The CAM-ICU and the Delirium Rating Scale, Revised-98-Thai version (DRS-R-98) were assessed pre-operatively and 1, 2 and 3 days after surgery. Blood samples (day 1 and 2) post-surgery were assayed for cytokines/chemokines using a MultiPlex assay and the neutrophil/lymphocyte ratio. RESULTS We found that delirium and/or the DRS-R-98 score were associated with IRS activation as indicated by activated M1, Th1, Th17 and T cell growth profiles and by attenuated CIRS functions. The most important IRS biomarkers were CXCL8, interleukin (IL)-6, and tumor necrosis factor-α, and the most important CIRS biomarkers were IL-4 and soluble IL-1 receptor antagonist. We found that 42.5% of the variance in the actual changes in the DRS-R-98 score (averaged from day 1 to day 3) was explained by T cell growth factors, baseline DRS-R-98 scores and age. An increase in the NLR reflects overall IRS, M1, Th1, Th17, and Th2 activation. CONCLUSIONS Post-hip surgery delirium is associated with activated IRS pathways and appears especially in patients with lowered CIRS functions.
Collapse
Affiliation(s)
- Paul Thisayakorn
- Department of Psychiatry, Hip Fracture Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saran Tantavisut
- Department of Orthopedics, Hip Fracture Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Sirivichayakul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- IMPACT Strategic Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
20
|
Pelaia C, Pelaia G, Crimi C, Maglio A, Stanziola AA, Calabrese C, Terracciano R, Longhini F, Vatrella A. Novel Biological Therapies for Severe Asthma Endotypes. Biomedicines 2022; 10:1064. [PMID: 35625801 PMCID: PMC9138687 DOI: 10.3390/biomedicines10051064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Severe asthma comprises several heterogeneous phenotypes, underpinned by complex pathomechanisms known as endotypes. The latter are driven by intercellular networks mediated by molecular components which can be targeted by specific monoclonal antibodies. With regard to the biological treatments of either allergic or non-allergic eosinophilic type 2 asthma, currently available antibodies are directed against immunoglobulins E (IgE), interleukin-5 (IL-5) and its receptor, the receptors of interleukins-4 (IL-4) and 13 (IL-13), as well as thymic stromal lymphopoietin (TSLP) and other alarmins. Among these therapeutic strategies, the best choice should be made according to the phenotypic/endotypic features of each patient with severe asthma, who can thus respond with significant clinical and functional improvements. Conversely, very poor options so far characterize the experimental pipelines referring to the perspective biological management of non-type 2 severe asthma, which thereby needs to be the focus of future thorough research.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giulia Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Angelantonio Maglio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy; (A.M.); (A.V.)
| | - Anna Agnese Stanziola
- First Division of Pneumology, High Speciality Hospital “V. Monaldi” and University “Federico II” of Naples, Medical School, 80131 Naples, Italy;
| | - Cecilia Calabrese
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Federico Longhini
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy; (A.M.); (A.V.)
| |
Collapse
|
21
|
Espinosa Gonzalez M, Volk-Draper L, Bhattarai N, Wilber A, Ran S. Th2 cytokines IL-4, IL-13, and IL-10 promote differentiation of pro-lymphatic progenitors derived from bone marrow myeloid precursors. Stem Cells Dev 2022; 31:322-333. [PMID: 35442077 PMCID: PMC9232236 DOI: 10.1089/scd.2022.0004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myeloid-lymphatic endothelial cell progenitors (M-LECP) are a subset of bone marrow (BM)-derived cells characterized by expression of M2-type macrophage markers. We previously showed significant contribution of M-LECP to tumor lymphatic formation and metastasis in human clinical breast tumors and corresponding mouse models. Since M2-type is induced in macrophages by immunosuppressive Th2 cytokines IL-4, IL-13, and IL-10, we hypothesized that these factors might promote pro-lymphatic specification of M-LECP during their differentiation from BM myeloid precursors. To test this hypothesis, we analyzed expression of Th2 cytokines and their receptors in mouse BM cells under conditions leading to M-LECP differentiation, namely, CSF-1 treatment followed by activation of TLR4. We found that under these conditions, all three Th2 receptors were strongly upregulated in >95% of the cells that also secrete endogenous IL-10 but not IL-4 or IL-13 ligands. However, addition of any of the Th2 factors to CSF-1 primed cells significantly increased generation of myeloid-lymphatic progenitors as indicated by co-induction of lymphatic-specific (e.g., Lyve-1, integrin-a9, collectin-12, and stabilin-1) and M2-type markers (e.g., CD163, CD204, CD206, and PD-L1). Antibody-mediated blockade of either IL-10 receptor (IL-10R) or IL-10 ligand significantly reduced both immunosuppressive and lymphatic phenotypes. Moreover, tumor-recruited Lyve-1+ lymphatic progenitors in vivo expressed all Th2 receptors as well as corresponding ligands including IL-4 and IL-13 that were absent in BM cells. This study presents original evidence for the significant role of Th2 cytokines in co-development of immunosuppressive and lymphatic phenotypes in tumor-recruited M2-type myeloid cells. Progenitor-mediated increase in lymphatic vessels can enhance immunosuppression by physical removal of stimulatory immune cells. Thus, targeting Th2 pathways might simultaneously relieve immunosuppression and inhibit differentiation of pro-lymphatic progenitors that ultimately promote tumor spread.
Collapse
Affiliation(s)
- Maria Espinosa Gonzalez
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Lisa Volk-Draper
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Nihit Bhattarai
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Andrew Wilber
- Southern Illinois University School of Medicine, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Sophia Ran
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, 801 N. Rutledge, P.O. Box 19626, Springfield, Illinois, United States, 62794;
| |
Collapse
|
22
|
Pelaia C, Heffler E, Crimi C, Maglio A, Vatrella A, Pelaia G, Canonica GW. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets. Front Pharmacol 2022; 13:851940. [PMID: 35350765 PMCID: PMC8957960 DOI: 10.3389/fphar.2022.851940] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Interleukins (IL)-4 and -13 play a pivotal role in the pathobiology of type-2 asthma. Indeed, IL-4 is crucially involved in Th2 cell differentiation, immunoglobulin (Ig) class switching and eosinophil trafficking. IL-13 cooperates with IL-4 in promoting IgE synthesis, and also induces nitric oxide (NO) production, goblet cell metaplasia and fibroblast proliferation, as well as elicits contractile responses and hyperplasia of airway smooth muscle cells. IL-4 and IL-13 share common signaling pathways, activated by the binding of both cytokines to receptor complexes including the α-subunit of the IL-4 receptor (IL-4Rα). Therefore, the subsequent receptor dimerization is responsible for the pathophysiologic effects of IL-4 and IL-13. By selectively blocking IL-4Rα, the fully human IgG4 monoclonal antibody dupilumab behaves as a dual receptor antagonist of both IL-4 and IL-13. Through this mechanism of action, dupilumab exerts effective therapeutic actions in type-2 inflammation, thus decreasing asthma exacerbations, FeNO (fractional exhaled NO) levels, and the intake of oral corticosteroids (OCS). In addition to being approved for the add-on biological therapy of severe asthma, dupilumab has also been licensed for the treatment of nasal polyposis and atopic dermatitis.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angelantonio Maglio
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
23
|
Tian X, Huang Q, Liang J, Wang J, Zhang J, Yang Y, Ye Q, He S, Li J, Wu Z, Liu Y. A review of the mechanisms of keratinocytes damage caused by Staphylococcus aureus infection in patients with atopic dermatitis. J Leukoc Biol 2021; 110:1163-1169. [PMID: 34585438 DOI: 10.1002/jlb.3mr0921-030rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/15/2023] Open
Abstract
The dysregulation of skin microflora in patients with atopic dermatitis (AD) has become a research hotspot in recent years. Metagenomic studies have shown that microbial diversity is decreased, whereas the Staphylococcus aureus infection is increased in AD. Keratinocytes are the primary barrier against the invasion of external pathogenic microorganisms. Staphylococcus aureus infection can abnormally activate innate and adaptive immune responses in keratinocytes, resulting in a vicious cycle between Staphylococcus aureus infection and AD. This article reviews the mechanisms of inflammatory damage of keratinocytes induced by Staphylococcus aureus infection in patients with AD, providing a theoretical basis for the study of new targeted drugs. This review also suggests for the management of Staphylococcus aureus infection in patients with AD.
Collapse
Affiliation(s)
- Xin Tian
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Qiongxiao Huang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Jingyao Liang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Jianqin Wang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Jing Zhang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Yan Yang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Qianru Ye
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Suling He
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Junlong Li
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumei Liu
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| |
Collapse
|
24
|
Shi L, Kidder K, Bian Z, Chiang SKT, Ouellette C, Liu Y. SIRPα sequesters SHP-2 to promote IL-4 and IL-13 signaling and the alternative activation of macrophages. Sci Signal 2021; 14:eabb3966. [PMID: 34582250 DOI: 10.1126/scisignal.abb3966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lei Shi
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Koby Kidder
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Zhen Bian
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Samantha Kuon Ting Chiang
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Corbett Ouellette
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Georgia State University, Atlanta, GA 30302, USA.,Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Yuan Liu
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Georgia State University, Atlanta, GA 30302, USA.,Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
25
|
Ricciardolo FLM, Bertolini F, Carriero V. The Role of Dupilumab in Severe Asthma. Biomedicines 2021; 9:biomedicines9091096. [PMID: 34572281 PMCID: PMC8468984 DOI: 10.3390/biomedicines9091096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Dupilumab is a fully humanized monoclonal antibody, capable of inhibiting intracellular signaling of both interleukin (IL)-4 and IL-13. These are two molecules that, together with other proinflammatory cytokines such as IL-5 and eotaxins, play a pivotal role in orchestrating the airway inflammatory response defined as Type 2 (T2) inflammation, driven by Th2 or Type 2 innate lymphoid cells, which is the major feature of the T2 high asthma phenotype. The dual inhibition of IL-4 and IL-13 activities is due to the blockade of type II IL-4 receptor through the binding of dupilumab with the subunit IL-4Rα. This results in the repression of STAT6 and in the suppression of subsequent de novo formation of several molecules involved in the T2 inflammatory signature. Several clinical trials tested the efficacy and safety of dupilumab in large populations of uncontrolled severe asthmatics, revealing significant improvements in lung function, asthma control, and exacerbation rate. Similar results were reported when dupilumab was employed in patients harboring pathogenetic processes related to T2 immune response, such as atopic dermatitis and chronic rhinosinusitis. In this review, we provide an overview of the recent research in the field of respiratory medicine about dupilumab mechanism of action and its effects.
Collapse
|
26
|
Tan PS, Vaughan E, Islam J, Burke N, Iacopino D, Tierney JB. Laser Scribing Fabrication of Graphitic Carbon Biosensors for Label-Free Detection of Interleukin-6. NANOMATERIALS 2021; 11:nano11082110. [PMID: 34443939 PMCID: PMC8399033 DOI: 10.3390/nano11082110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 01/19/2023]
Abstract
Interleukin-6 (IL-6) is an important immuno-modulating cytokine playing a pivotal role in inflammatory processes in disease induction and progression. As IL-6 serves as an important indicator of disease state, it is of paramount importance to develop low cost, fast and sensitive improved methods of detection. Here we present an electrochemical immunosensor platform based on the use of highly porous graphitic carbon electrodes fabricated by direct laser writing of commercial polyimide tapes and chemically modified with capture IL-6 antibodies. The unique porous and 3D morphology, as well as the high density of edge planes of the graphitic carbon electrodes, resulted in a fast heterogeneous electron transfer (HET) rate, k0 = 0.13 cm/s. The resulting immunosensor showed a linear response to log of concentration in the working range of 10 to 500 pg/mL, and low limit of detection (LOD) of 5.1 pg/mL IL-6 in phosphate buffer saline. The total test time was approximately 90 min, faster than the time required for ELISA testing. Moreover, the assay did not require additional sample pre-concentration or labelling steps. The immunosensor shelf-life was long, with stable results obtained after 6 weeks of storage at 4 °C, and the selectivity was high, as no response was obtained in the presence of another inflammatory cytokine, Interlukin-4. These results show that laser-fabricated graphitic carbon electrodes can be used as selective and sensitive electrochemical immunosensors and offer a viable option for rapid and low-cost biomarker detection for point-of-care analysis.
Collapse
Affiliation(s)
- Pei Shee Tan
- Shannon Applied Biotechnology Centre, Munster Technological University, Tralee, V92KA43 Kerry, Ireland; (P.S.T.); (N.B.); (J.B.T.)
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Tralee, V92KA43 Kerry, Ireland
| | - Eoghan Vaughan
- Tyndall National Institute, University College Cork, Dyke Parade, T12R5CP Cork, Ireland; (E.V.); (J.I.)
| | - Jahidul Islam
- Tyndall National Institute, University College Cork, Dyke Parade, T12R5CP Cork, Ireland; (E.V.); (J.I.)
| | - Niall Burke
- Shannon Applied Biotechnology Centre, Munster Technological University, Tralee, V92KA43 Kerry, Ireland; (P.S.T.); (N.B.); (J.B.T.)
| | - Daniela Iacopino
- Tyndall National Institute, University College Cork, Dyke Parade, T12R5CP Cork, Ireland; (E.V.); (J.I.)
- Correspondence:
| | - Joanna B. Tierney
- Shannon Applied Biotechnology Centre, Munster Technological University, Tralee, V92KA43 Kerry, Ireland; (P.S.T.); (N.B.); (J.B.T.)
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Tralee, V92KA43 Kerry, Ireland
| |
Collapse
|
27
|
Sun J, Ogunnaike EA, Jiang X, Chen Z. Nanotechnology lights up the antitumor potency by combining chemotherapy with siRNA. J Mater Chem B 2021; 9:7302-7317. [PMID: 34382987 DOI: 10.1039/d1tb01379c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanotechnology-based combination anticancer therapy offers novel approaches to overcome the limitations of single-agent administration. The emerging siRNA technology combined with chemotherapy has shown considerable promise in anticancer therapy. There are three main challenges in the fabrication of siRNA/chemotherapeutic drug co-loaded nanovectors: adequate cargo protection, precise targeted delivery, and site-specific cargo release. This review presents a summary of the nanosystems that have recently been developed for co-delivering siRNA and chemotherapeutic drugs. Their combined therapeutic effects are also discussed.
Collapse
Affiliation(s)
- Jian Sun
- College of Nursing, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| | - Edikan Archibong Ogunnaike
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Xing Jiang
- College of Nursing, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou, P. R. China. and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
28
|
Evaluation of the level of serum Interleukins (IL-2, IL-4, IL-15 andIL-17) and its relationship with disease severity in patients with alopecia areata. An Bras Dermatol 2021; 96:551-557. [PMID: 34281739 PMCID: PMC8441470 DOI: 10.1016/j.abd.2021.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Alopecia areata (AA) is a hair disease that causes hair loss without scarring. The etiopathogenesis of AA has not been fully understood yet. Objective To determine serum interleukin levels (IL-2, IL-4, IL-15, and IL-17) in patients diagnosed with alopecia areata and to investigate the relationship of IL levels with the duration and severity of alopecia areata and the response to tofacitinib therapy. Methods Patients (≥16 years old) diagnosed with alopecia areata and healthy individuals as a control group was enrolled. Baseline serum interleukin levels of the patients and controls were measured. In the patient group receiving tofacitinib therapy, serum interleukin levels were measured again after 6 months. Disease severity for alopecia areata was assessed using the Severity of Alopecia Tool. Results Sixty-one AA patients and 30 healthy individuals were included; they were comparable regarding age and sex. The mean disease duration for AA was 7 ± 6 years and the baseline mean Severity of Alopecia Tool score was 71 ± 30 (range, 20–100). Baseline IL-2, IL-4 and IL-15 levels were significantly higher in the patient group than those in the control group (p < 0.001 for each). No significant correlation was found between the baseline interleukin levels and either disease duration or disease severity (baseline Severity of Alopecia Tool score). Among the patients receiving tofacitinib (n = 22), all interleukin levels significantly decreased after treatment. However, no significant relationship between the change in interleukin levels and the change in the Severity of Alopecia Tool scores was observed after tofacitinib treatment. Study limitations This is a monocentric study conducted in a single university hospital. Conclusion High interleukin levels in alopecia areata patients and the significant decrease with treatment support the idea that interleukins have a role in pathogenesis. Nevertheless, no relationship could be demonstrated between IL levels and disease duration or severity.
Collapse
|
29
|
Immunological Prognostic Factors in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22073587. [PMID: 33808304 PMCID: PMC8036885 DOI: 10.3390/ijms22073587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm characterized by an abnormal proliferation of clonal, terminally differentiated B lymphocytes. Current approaches for the treatment of MM focus on developing new diagnostic techniques; however, the search for prognostic markers is also crucial. This enables the classification of patients into risk groups and, thus, the selection of the most optimal treatment method. Particular attention should be paid to the possible use of immune factors, as the immune system plays a key role in the formation and course of MM. In this review, we focus on characterizing the components of the immune system that are of prognostic value in MM patients, in order to facilitate the development of new diagnostic and therapeutic directions.
Collapse
|
30
|
Pseurotin D Inhibits the Activation of Human Lymphocytes. Int J Mol Sci 2021; 22:ijms22041938. [PMID: 33669259 PMCID: PMC7920033 DOI: 10.3390/ijms22041938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Pseurotins, a family of secondary metabolites of different fungi characterized by an unusual spirocyclic furanone-lactam core, are suggested to have different biological activities including the modulation of immune response. Purpose: Complex characterization of the effects of pseurotin D on human lymphocyte activation in order to understand the potential of pseurotin to modulate immune response in humans. Methods: CD4+ and CD8+ T cells and CD19+ B cells isolated from human blood were activated by various activators simultaneously with pseurotin D treatment. The effects of pseurotin were tested on the basis of changes in cell viability, apoptosis, activation of signal transducers and activators of transcription (STAT) signaling pathways, production of tumor necrosis factor (TNF)-α by T cells, expression of activation markers CD69 and CD25 on T cells and Human Leukocyte Antigen–DR isotype (HLA-DR) on B cells, and the differentiation markers CD20, CD27, CD38, and immunoglobulin (Ig) D on B cells. Results: Pseurotin D significantly inhibited the activation of both CD4+ and CD8+ human T cells complemented by the inhibition of TNF-α production without significant acute toxic effects. The Pseurotin D-mediated inhibition of T-cell activation was accompanied by the induction of the apoptosis of T cells. This corresponded with the inhibited phosphorylation of STAT3 and STAT5. In human B cells, pseurotin D did not significantly inhibit their activation; however, it affected their differentiation. Conclusions: Our results advance the current mechanistic understanding of the pseurotin-induced inhibition of lymphocytes and suggest pseurotins as new attractive chemotypes for future research in the context of immune-modulatory drugs.
Collapse
|
31
|
Possible Roles of Interleukin-4 and -13 and Their Receptors in Gastric and Colon Cancer. Int J Mol Sci 2021; 22:ijms22020727. [PMID: 33450900 PMCID: PMC7828336 DOI: 10.3390/ijms22020727] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Interleukin (IL)-4 and -13 are structurally and functionally related cytokines sharing common receptor subunits. They regulate immune responses and, moreover, are involved in the pathogenesis of a variety of human neoplasms. Three different receptors have been described for IL-4, but only IL-4 receptor type II (IL-4Rα/IL-13Rα1) is expressed in solid tumors. While IL-13 can also bind to three different receptors, IL-13 receptor type I (IL-4Rα/IL-13Rα1/IL-13Rα2) and type II (IL-4Rα/IL-13Rα1) are expressed in solid tumors. After receptor binding, IL-4 and IL-13 can mediate tumor cell proliferation, survival, and metastasis in gastric or colon cancer. This review summarizes the results about the role of IL-4/IL-13 and their receptors in gastric and colon cancer.
Collapse
|
32
|
Kim KM, Hussein UK, Park SH, Moon YJ, Zhang Z, Ahmed AG, Ahn AR, Park HS, Kim JR, Jang KY. Expression of IL4Rα and IL13Rα1 are associated with poor prognosis of soft-tissue sarcoma of the extremities, superficial trunk, and retroperitoneum. Diagn Pathol 2021; 16:2. [PMID: 33419470 PMCID: PMC7796579 DOI: 10.1186/s13000-020-01066-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background IL4Rα and IL13Rα1 are constituents of the type II IL4 receptor. Recently, IL4Rα and IL13Rα1 were reported to have roles in cancer progression and suggested as potential prognostic markers. However, studies on IL4Rα and IL13Rα1 in soft-tissue sarcomas have been limited. Methods This study investigated the immunohistochemical expression of IL4Rα and IL13Rα1 in 89 soft-tissue sarcomas of the extremities, superficial trunk, and retroperitoneum. Immunohistochemical staining for IL4Rα and IL13Rα1 were scored according to a combination of staining intensity and staining area in tissue microarray samples. Positivity for the immunohistochemical expression of IL4Rα and IL13Rα1 were determined using receiver operating curve analysis. Statistical analysis was performed using regression analysis and a chi-square test. Results In human soft-tissue sarcomas, immunohistochemical expression of IL4Rα was significantly associated with IL13Rα1 expression. Nuclear and cytoplasmic expression of IL4Rα and IL13Rα1 were significantly associated with shorter survival of soft-tissue sarcoma patients in univariate analysis. Multivariate analysis indicated that nuclear expression of IL4Rα and IL13Rα1 were independent indicators of shorter overall survival (IL4Rα; p = 0.002, IL13Rα1; p = 0.016) and relapse-free survival (IL4Rα; p = 0.022, IL13Rα1; p < 0.001) of soft-tissue sarcoma patients. Moreover, the co-expression pattern of nuclear IL4Rα and IL13Rα1 was an independent indicator of shorter survival of soft-tissue sarcoma patients (overall survival; overall p < 0.001, relapse-free survival; overall p < 0.001). Conclusions This study suggests IL4Rα and IL13Rα1 are associated with the progression of soft-tissue sarcoma, and the expression of IL4Rα and IL13Rα1 might be novel prognostic indicators of soft-tissue sarcoma patients.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Usama Khamis Hussein
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Young Jae Moon
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.,Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Zhongkai Zhang
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea
| | - Asmaa Gamal Ahmed
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Faculty of Postgraduate Studies and Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ae-Ri Ahn
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Jung Ryul Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea. .,Department of Orthopedic Surgery, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea. .,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.
| |
Collapse
|
33
|
Li N, Zuo B, Huang S, Zeng B, Han D, Li T, Liu T, Wu Z, Wei H, Zhao J, Wang J. Spatial heterogeneity of bacterial colonization across different gut segments following inter-species microbiota transplantation. MICROBIOME 2020; 8:161. [PMID: 33208178 PMCID: PMC7677849 DOI: 10.1186/s40168-020-00917-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The microbiota presents a compartmentalized distribution across different gut segments. Hence, the exogenous microbiota from a particular gut segment might only invade its homologous gut location during microbiota transplantation. Feces as the excreted residue contain most of the large-intestinal microbes but lack small-intestinal microbes. We speculated that whole-intestinal microbiota transplantation (WIMT), comprising jejunal, ileal, cecal, and colonic microbiota, would be more effective for reshaping the entire intestinal microbiota than conventional fecal microbiota transplantation fecal microbiota transplantation (FMT). RESULTS We modeled the compartmentalized colonization of the gut microbiota via transplanting the microbiota from jejunum, ileum, cecum, and colon, respectively, into the germ-free mice. Transplanting jejunal or ileal microbiota induced more exogenous microbes' colonization in the small intestine (SI) of germ-free mice rather than the large intestine (LI), primarily containing Proteobacteria, Lactobacillaceae, and Cyanobacteria. Conversely, more saccharolytic anaerobes from exogenous cecal or colonic microbiota, such as Bacteroidetes, Prevotellaceae, Lachnospiraceae, and Ruminococcaceae, established in the LI of germ-free mice that received corresponding intestinal segmented microbiota transplantation. Consistent compartmentalized colonization patterns of microbial functions in the intestine of germ-free mice were also observed. Genes related to nucleotide metabolism, genetic information processing, and replication and repair were primarily enriched in small-intestinal communities, whereas genes associated with the metabolism of essential nutrients such as carbohydrates, amino acids, cofactors, and vitamins were mainly enriched in large-intestinal communities of germ-free mice. Subsequently, we compared the difference in reshaping the community structure of germ-free mice between FMT and WIMT. FMT mainly transferred LI-derived microorganisms and gene functions into the recipient intestine with sparse SI-derived microbes successfully transplanted. However, WIMT introduced more SI-derived microbes and associated microbial functions to the recipient intestine than FMT. Besides, WIMT also improved intestinal morphological development as well as reduced systematic inflammation responses of recipients compared with FMT. CONCLUSIONS Segmented exogenous microbiota transplantation proved the spatial heterogeneity of bacterial colonization along the gastrointestinal tract, i.e., the microbiota from one specific location selectively colonizes its homologous gut region. Given the lack of exogenous small-intestinal microbes during FMT, WIMT may be a promising alternative for conventional FMT to reconstitute the microbiota across the entire intestinal tract. Video Abstract.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Bin Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038 China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ting Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Hong Wei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701 USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
34
|
Aryaeian N, Hadidi M, Mahmoudi M, Asgari M, Hezaveh ZS, Sadehi SK. The effect of black barberry hydroalcoholic extract on immune mediators in patients with active rheumatoid arthritis: A randomized, double-blind, controlled clinical trial. Phytother Res 2020; 35:1062-1068. [PMID: 32914483 DOI: 10.1002/ptr.6874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease associated with inflammation. In this trial, we aimed to investigate the Immunomodulatory effect of hydroalcoholic extract of black barberry on immune mediators in patients with active rheumatoid arthritis. In this randomized, double-blind, placebo-controlled clinical trial, 80 women with active RA were randomly assigned into two groups of two capsules, each containing 1,000 mg black barberry extract (n = 40) or maltodextrin placebo (n = 40) daily for 12 weeks. Demographic indices, physical activity, dietary intake, and disease activity were investigated using suitable questionnaires. Concentration of cytokines IL-2, IL-4, IL-10, and IL-17 in blood sample were measured using PBMC method. Statistical analysis was performed using SPSS (version 22). At baseline, there were no differences between the two groups in terms of demographic indices, physical activity, and dietary intake (p > .05). Black barberry supplementation reduced the severity of RA. It showed no significant effect on IL-2 and IL-4 cytokines (p > .05). IL-17 levels decreased significantly after the intervention within the black barberry group, while IL-10 had a significant increase in this group (p < .05). Barberry extract may reduce inflammatory and increase anti-inflammatory cytokines in RA, and stimulates the immune response by increasing Th2 production.
Collapse
Affiliation(s)
- Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Hadidi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center of Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Asgari
- Rheumatology Research Center of Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Sajadi Hezaveh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Khorshidi Sadehi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Lieu R, Antonysamy S, Druzina Z, Ho C, Kang NR, Pustilnik A, Wang J, Atwell S. Rapid and robust antibody Fab fragment crystallization utilizing edge-to-edge beta-sheet packing. PLoS One 2020; 15:e0232311. [PMID: 32915778 PMCID: PMC7485759 DOI: 10.1371/journal.pone.0232311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/12/2020] [Indexed: 01/09/2023] Open
Abstract
Antibody therapeutics are one of the most important classes of drugs. Antibody structures have become an integral part of predicting the behavior of potential therapeutics, either directly or as the basis of modeling. Structures of Fab:antigen complexes have even greater value. While the crystallization and structure determination of Fabs is easy relative to many other protein classes, especially membrane proteins, broad screening and optimization of crystalline hits is still necessary. Through a comprehensive review of rabbit Fab crystal contacts and their incompatibility with human Fabs, we identified a small secondary structural element from the rabbit light chain constant domain potentially responsible for hindering the crystallization of human Fabs. Upon replacing the human kappa constant domain FG loop (HQGLSSP) with the two residue shorter rabbit loop (QGTTS), we dramatically improved the crystallization of human Fabs and Fab:antigen complexes. Our design, which we call "Crystal Kappa", enables rapid crystallization of human fabs and fab complexes in a broad range of conditions, with less material in smaller screens or from dilute solutions.
Collapse
Affiliation(s)
- Ricky Lieu
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, United States of America
| | - Stephen Antonysamy
- Discovery Chemistry Research and Technologies, Eli Lilly and Company Corporate Center, Indianapolis, IN, United States of America
| | - Zhanna Druzina
- Discovery Chemistry Research and Technologies, Eli Lilly and Company Corporate Center, Indianapolis, IN, United States of America
| | - Carolyn Ho
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, United States of America
| | - N. Rebecca Kang
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, United States of America
| | - Anna Pustilnik
- Discovery Chemistry Research and Technologies, Eli Lilly and Company Corporate Center, Indianapolis, IN, United States of America
| | - Jing Wang
- Discovery Chemistry Research and Technologies, Eli Lilly and Company Corporate Center, Indianapolis, IN, United States of America
| | - Shane Atwell
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Brodska P, Panzner P, Sedlacek D, Terl M, Cetkovska P. Use of dupilumab in a patient with atopic dermatitis, severe asthma, and HIV infection. Dermatol Ther 2020; 33:e14159. [PMID: 32776586 DOI: 10.1111/dth.14159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/01/2022]
Abstract
Dupilumab is a monoclonal antibody against interleukin 4 (IL-4) receptor α that blocks signaling from IL-4 and IL-13, essential mediators of T helper 2 (Th2) pathway. To date, all clinical trials investigating the use of dupilumab excluded patients with human immunodeficiency virus. Herein, we describe the safe and successful use of dupilumab in a patient with atopic dermatitis, severe therapy resistant asthma, and HIV infection.
Collapse
Affiliation(s)
- Petra Brodska
- Department of Dermatology and Venereology, Charles University, Pilsen, Czech Republic
| | - Petr Panzner
- Institute of Immunology and Allergology, Charles University, Pilsen, Czech Republic
| | - Dalibor Sedlacek
- Department of Infectious Diseases, Charles University, Pilsen, Czech Republic
| | - Milan Terl
- Department of Pneumology and Phthisiology, Charles University, Pilsen, Czech Republic
| | - Petra Cetkovska
- Department of Dermatology and Venereology, Charles University, Pilsen, Czech Republic
| |
Collapse
|
37
|
Ding J, Liu X, Tang B, Bai X, Wang Y, Li S, Li J, Liu M, Wang X. Murine hepatoma treatment with mature dendritic cells stimulated by Trichinella spiralis excretory/secretory products. Parasite 2020; 27:47. [PMID: 32692308 PMCID: PMC7373160 DOI: 10.1051/parasite/2020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/03/2020] [Indexed: 11/14/2022] Open
Abstract
Excretory/Secretory Products (ESPs) of the nematode Trichinella spiralis contain antitumor-active substances that inhibit tumor growth. Mature dendritic cells (DCs) play a critical role in the antitumor immunity of the organism. As pathogen-derived products, it ought to be discussed whether T. spiralis ESPs will reduce the antitumor effect of mature DCs from the host before it is applied to patients' tumors. Therefore, the aim of this work was to evaluate the immunological effect of DCs stimulated by T. spiralis ESPs in H22 tumor-bearing mice. H22 tumor model mice in this study were randomly divided into four groups according to the treatment: PBS control group, ESP group, DCs group, and DCs stimulated with T. spiralis ESP (ESP+DCs group). The antitumor effect was evaluated by tumor inhibition rate and cytokine detection using ELISA. The results showed significant inhibition in tumor growth in the ESP+DCs, DCs and ESP groups when compared with the PBS control group (p < 0.01, p < 0.01, and p < 0.05, respectively). However, no significant difference was observed on tumor inhibition rates between the ESP+DCs and DCs groups. The decrease in IL-4, IL-6, and IL-10, and the increase in IFN-γ between the DCs and ESP+DCs groups were also not significant. Therefore, DCs stimulated by ESP did not reduce the antitumor effect of mature DCs, which demonstrated that the T. spiralis ESP would not affect the antitumor effect of mature DCs by modulating the immune response of the host, and that ESPs are safe in antitumor immunology when applied in a tumor model mice.
Collapse
Affiliation(s)
- Jing Ding
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region Changchun 130062 P.R. China
| | - Xiaolei Liu
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region Changchun 130062 P.R. China
| | - Bin Tang
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region Changchun 130062 P.R. China
| | - Xue Bai
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region Changchun 130062 P.R. China
| | - Yang Wang
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region Changchun 130062 P.R. China
| | - Shicun Li
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region Changchun 130062 P.R. China
| | - Jian Li
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region Changchun 130062 P.R. China
| | - Mingyuan Liu
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region Changchun 130062 P.R. China
| | - Xuelin Wang
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region Changchun 130062 P.R. China
| |
Collapse
|
38
|
Vašíček O, Fedr R, Skoroplyas S, Chalupa D, Sklenář M, Tharra PR, Švenda J, Kubala L. Natural pseurotins and analogs thereof inhibit activation of B-cells and differentiation into the plasma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153194. [PMID: 32146299 DOI: 10.1016/j.phymed.2020.153194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/29/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The frequency of allergic diseases is constantly rising. Dysregulated production of isotype E immunoglobulins is one of the key factors behind allergic reactions and its modulation is therefore an important target for pharmacological intervention. Natural products of the pseurotin family were reported to be inhibitors of IgE production in B-cells. Mechanistic details underlying these effects are however not well understood. PURPOSE In the present study, we synthesized new analogs of natural pseurotins and extensively investigated their inhibitory effects on activation, proliferation and differentiation of B-cells, as well as on the production of IgE. STUDY DESIGN Effects of two natural pseurotins (pseurotins A and D) and a collection of fully synthetic pseurotin analogs were studied on mouse B-cells stimulated by the combination of IL-4 and E. coli lipopolysaccharide. The IgE production was determined along with cell viability and cell proliferation. The phosphorylation of selected members of the STAT transcription factor family was subsequently investigated. Finally, the in vivo effect of pseurotin D on the ovalbumin-induced delayed type hypersensitivity response was tested in mice. RESULTS We discovered that several fully synthetic pseurotin analogs were able to decrease the production of IgE in stimulated B-cells with potency comparable to that of pseurotins A and D. We found that the two natural pseurotins and the active synthetic analogs inhibited the phosphorylation of STAT3, STAT5 and STAT6 proteins in stimulated B-cells, resulting in the inhibition of B-cell proliferation and differentiation into the plasma cells. In vivo, pseurotin D decreased ovalbumin-induced foot pad edema. CONCLUSION Our results advance the current mechanistic understanding of the pseurotin-induced inhibition of IgE production in B-cells by linking the effect to STAT signaling, and associated modulation of B-cell proliferation and differentiation. Together with our finding that structurally simpler pseurotin analogs were able to reproduce the effects of natural pseurotins, the presented work has implications for the future research on these secondary metabolites in the context of allergic diseases.
Collapse
Affiliation(s)
- Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Brno 612 65, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Brno 612 65, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Svitlana Skoroplyas
- Institute of Biophysics of the Czech Academy of Sciences, Brno 612 65, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - David Chalupa
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Matěj Sklenář
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Prabhakara Rao Tharra
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Jakub Švenda
- International Clinical Research Center, St. Anne's University Hospital, Brno 656 91, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic.
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Brno 612 65, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 656 91, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic.
| |
Collapse
|
39
|
Liu Z, Chen J, Cheng L, Li H, Liu S, Lou H, Shi J, Sun Y, Wang D, Wang C, Wang X, Wei Y, Wen W, Yang P, Yang Q, Zhang G, Zhang Y, Zhao C, Zhu D, Zhu L, Chen F, Dong Y, Fu Q, Li J, Li Y, Liu C, Liu F, Lu M, Meng Y, Sha J, She W, Shi L, Wang K, Xue J, Yang L, Yin M, Zhang L, Zheng M, Zhou B, Zhang L. Chinese Society of Allergy and Chinese Society of Otorhinolaryngology-Head and Neck Surgery Guideline for Chronic Rhinosinusitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:176-237. [PMID: 32009319 PMCID: PMC6997287 DOI: 10.4168/aair.2020.12.2.176] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023]
Abstract
The current document is based on a consensus reached by a panel of experts from the Chinese Society of Allergy and the Chinese Society of Otorhinolaryngology-Head and Neck Surgery, Rhinology Group. Chronic rhinosinusitis (CRS) affects approximately 8% of Chinese adults. The inflammatory and remodeling mechanisms of CRS in the Chinese population differ from those observed in the populations of European descent. Recently, precision medicine has been used to treat inflammation by targeting key biomarkers that are involved in the process. However, there are no CRS guidelines or a consensus available from China that can be shared with the international academia. The guidelines presented in this paper cover the epidemiology, economic burden, genetics and epigenetics, mechanisms, phenotypes and endotypes, diagnosis and differential diagnosis, management, and the current status of CRS in China. These guidelines-with a focus on China-will improve the abilities of clinical and medical staff during the treatment of CRS. Additionally, they will help international agencies in improving the verification of CRS endotypes, mapping of eosinophilic shifts, the identification of suitable biomarkers for endotyping, and predicting responses to therapies. In conclusion, these guidelines will help select therapies, such as pharmacotherapy, surgical approaches and innovative biotherapeutics, which are tailored to each of the individual CRS endotypes.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Shixi Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dehui Wang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiangdong Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pingchang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qintai Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gehua Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Changqing Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li Zhu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Fenghong Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Dong
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingyun Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yanqing Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chengyao Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Feng Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Meiping Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yifan Meng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenyu She
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lili Shi
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuiji Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jinmei Xue
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Yin
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Lichuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Zheng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Bing Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
40
|
Eini P, Majzoobi MM, Ghasemi Basir HR, Moosavi Z, Moradi A. Comparison of the serum level of interleukin-4 in patients with brucellosis and healthy controls. J Clin Lab Anal 2020; 34:e23267. [PMID: 32100374 PMCID: PMC7370742 DOI: 10.1002/jcla.23267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Evaluation of cytokines such as interleukin-4 (IL-4) can be an important tool in examining immune responses to brucellosis. Also, determining the response rate to treatment is necessary for controlling and eradicating of disease. The review of previous studies reveals contradictory results that require further research in this regard. The aim of this study was to compare the serum level of IL-4 in patients with brucellosis and healthy controls. MATERIAL AND METHODS In this descriptive-analytical study for comparison of two groups, a total of 165 participants, including 83 patients with brucellosis and 82 non-infected people, were evaluated after matching of sex and age in Hamadan (northwest of Iran) in 2017 and the serum level of IL-4 was compared by ELISA method. The collected data were analyzed by SPSS software version 21 at 95% significant level. RESULTS Mean of age in the case and control groups were 50.25 ± 16.01 and 43.26 ± 15.6 years, respectively. The serum levels of IL-4 in the case and control groups were 1.42 ± 0.51 pg/mL and 1.31 ± 1.02 pg/mL, respectively. Based on the non-parametric Mann-Whitney test, the IL-4 level was significantly higher in the case group, compared with the control (P < .001), but no statistically significant relationship was found between serum levels of IL-4 with age, sex, and serologic titers of Wright and 2ME. CONCLUSION In patients with brucellosis, the level of IL-4 increases independently of the duration and severity of the disease, which indicates the role of this cytokine of immune system in this infectious disease.
Collapse
Affiliation(s)
- Peyman Eini
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Hamid Reza Ghasemi Basir
- Department of Pathology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Moosavi
- Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Moradi
- Department of Community Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
41
|
Lou H, Wang C, Zhang L. Endotype-driven precision medicine in chronic rhinosinusitis. Expert Rev Clin Immunol 2019; 15:1171-1183. [PMID: 31600458 DOI: 10.1080/1744666x.2020.1679626] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hongfei Lou
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Lázaro-Sastre M, García-Sánchez A, Gómez-Cardeñosa A, Dávila I. Dupilumab in Atopic Dermatitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-00218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Kim JE, Jung K, Kim JA, Kim SH, Park HS, Kim YS. Engineering of anti-human interleukin-4 receptor alpha antibodies with potent antagonistic activity. Sci Rep 2019; 9:7772. [PMID: 31123339 PMCID: PMC6533264 DOI: 10.1038/s41598-019-44253-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Development of antagonistic antibody (Ab) against interleukin-4 receptor alpha (IL-4Rα) subunit of IL-4/IL-13 receptors is a promising therapeutic strategy for T helper 2 (TH2)-mediated allergic diseases such as asthma and atopic dermatitis. Here we isolated anti-human IL-4Rα antagonistic Abs from a large yeast surface-displayed human Ab library and further engineered their complementarity-determining regions to improve the affinity using yeast display technology, finally generating a candidate Ab, 4R34.1.19. When reformatted as human IgG1 form, 4R34.1.19 specifically bound to IL-4Rα with a high affinity (KD ≈ 178 pM) and effectively blocked IL-4- and IL-13-dependent signaling in a reporter cell system at a comparable level to that of the clinically approved anti-IL-4Rα dupilumab Ab analogue. Epitope mapping by alanine scanning mutagenesis revealed that 4R34.1.19 mainly bound to IL-4 binding sites on IL-4Rα with different epitopes from those of dupilumab analogue. Further, 4R34.1.19 efficiently inhibited IL-4-dependent proliferation of T cells among human peripheral blood mononuclear cells and suppressed the differentiation of naïve CD4+ T cells from healthy donors and asthmatic patients into TH2 cells, the activities of which were comparable to those of dupilumab analogue. Our work demonstrates that both affinity and epitope are critical factors for the efficacy of anti-IL-4Rα antagonistic Abs.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jeong-Ah Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Seung-Hyun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
44
|
Abdulreda MH, Berman DM, Shishido A, Martin C, Hossameldin M, Tschiggfrie A, Hernandez LF, Hernandez A, Ricordi C, Parel JM, Jankowska-Gan E, Burlingham WJ, Arrieta-Quintero EA, Perez VL, Kenyon NS, Berggren PO. Operational immune tolerance towards transplanted allogeneic pancreatic islets in mice and a non-human primate. Diabetologia 2019; 62:811-821. [PMID: 30701283 PMCID: PMC6451664 DOI: 10.1007/s00125-019-4814-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Patients with autoimmune type 1 diabetes transplanted with pancreatic islets to their liver experience significant improvement in quality of life through better control of blood sugar and enhanced awareness of hypoglycaemia. However, long-term survival and efficacy of the intrahepatic islet transplant are limited owing to liver-specific complications, such as immediate blood-mediated immune reaction, hypoxia, a highly enzymatic and inflammatory environment and locally elevated levels of drugs including immunosuppressive agents, all of which are injurious to islets. This has spurred a search for new islet transplant sites and for innovative ways to achieve long-term graft survival and efficacy without life-long systemic immunosuppression and its complications. METHODS We used our previously established approach of islet transplant in the anterior chamber of the eye in allogeneic recipient mouse models and a baboon model of diabetes, which were treated transiently with anti-CD154/CD40L blocking antibody in the peri-transplant period. Survival of the intraocular islet allografts was assessed by direct visualisation in the eye and metabolic variables (blood glucose and C-peptide measurements). We evaluated longitudinally the cytokine profile in the local microenvironment of the intraocular islet allografts, represented in aqueous humour, under conditions of immune rejection vs tolerance. We also evaluated the recall response in the periphery of the baboon recipient using delayed-type hypersensitivity (DTH) assay, and in mice after repeat transplant in the kidney following initial transplant with allogeneic islets in the eye or kidney. RESULTS Results in mice showed >300 days immunosuppression-free survival of allogeneic islets transplanted in the eye or kidney. Notably, >70% of tolerant mice, initially transplanted in the eye, exhibited >400 days of graft survival after re-transplant in the kidney without immunosuppression compared with ~30% in mice that were initially transplanted in the kidney. Cytokine and DTH data provided evidence of T helper 2-driven local and peripheral immune regulatory mechanisms in support of operational immune tolerance towards the islet allografts in both models. CONCLUSIONS/INTERPRETATION We are currently evaluating the safety and efficacy of intraocular islet transplantation in a phase 1 clinical trial. In this study, we demonstrate immunosuppression-free long-term survival of intraocular islet allografts in mice and in a baboon using transient peri-transplant immune intervention. These results highlight the potential for inducing islet transplant immune tolerance through the intraocular route. Therefore, the current findings are conceptually significant and may impact markedly on clinical islet transplantation in the treatment of diabetes.
Collapse
Affiliation(s)
- Midhat H Abdulreda
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Dora M Berman
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander Shishido
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Christopher Martin
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Maged Hossameldin
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Ashley Tschiggfrie
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Luis F Hernandez
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Ana Hernandez
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Camillo Ricordi
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Diabetes Research Institute Federation, Hollywood, FL, USA
| | - Jean-Marie Parel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ewa Jankowska-Gan
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - William J Burlingham
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | | - Victor L Perez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Duke Ophthalmology, Duke University, Durham, NC, USA
| | - Norma S Kenyon
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Per-Olof Berggren
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-17176, Stockholm, Sweden.
| |
Collapse
|
45
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Schleiss C, Ilias W, Tahar O, Güler Y, Miguet L, Mayeur-Rousse C, Mauvieux L, Fornecker LM, Toussaint E, Herbrecht R, Bertrand F, Maumy-Bertrand M, Martin T, Fournel S, Georgel P, Bahram S, Vallat L. BCR-associated factors driving chronic lymphocytic leukemia cells proliferation ex vivo. Sci Rep 2019; 9:701. [PMID: 30679590 PMCID: PMC6345919 DOI: 10.1038/s41598-018-36853-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/21/2018] [Indexed: 01/18/2023] Open
Abstract
A chronic antigenic stimulation is believed to sustain the leukemogenic development of chronic lymphocytic leukemia (CLL) and most of lymphoproliferative malignancies developed from mature B cells. Reproducing a proliferative stimulation ex vivo is critical to decipher the mechanisms of leukemogenesis in these malignancies. However, functional studies of CLL cells remains limited since current ex vivo B cell receptor (BCR) stimulation protocols are not sufficient to induce the proliferation of these cells, pointing out the need of mandatory BCR co-factors in this process. Here, we investigated benefits of several BCR co-stimulatory molecules (IL-2, IL-4, IL-15, IL-21 and CD40 ligand) in multiple culture conditions. Our results demonstrated that BCR engagement (anti-IgM ligation) concomitant to CD40 ligand, IL-4 and IL-21 stimulation allowed CLL cells proliferation ex vivo. In addition, we established a proliferative advantage for ZAP70 positive CLL cells, associated to an increased phosphorylation of ZAP70/SYK and STAT6. Moreover, the use of a tri-dimensional matrix of methylcellulose and the addition of TLR9 agonists further increased this proliferative response. This ex vivo model of BCR stimulation with T-derived cytokines is a relevant and efficient model for functional studies of CLL as well as lymphoproliferative malignancies.
Collapse
Affiliation(s)
- Cédric Schleiss
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France
| | - Wassila Ilias
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France
| | - Ouria Tahar
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Yonca Güler
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France
| | - Laurent Miguet
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Caroline Mayeur-Rousse
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Mauvieux
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Luc-Matthieu Fornecker
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Service d'Hématologie Adulte, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elise Toussaint
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Service d'Hématologie Adulte, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Raoul Herbrecht
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Service d'Hématologie Adulte, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Frédéric Bertrand
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,Institut de Recherche Mathématique Avancée IRMA, CNRS UMR 7501, Strasbourg, France
| | - Myriam Maumy-Bertrand
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,Institut de Recherche Mathématique Avancée IRMA, CNRS UMR 7501, Strasbourg, France
| | - Thierry Martin
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,CNRS UPR 9021 - Immunologie et Chimie Thérapeutiques, Institut de Biologie Moléculaire et cellulaire (IBMC), Strasbourg, France
| | - Sylvie Fournel
- CNRS UMR7199, Université de Strasbourg, Illkirch, France
| | - Philippe Georgel
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France.
| | - Laurent Vallat
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France. .,Université de Strasbourg, INSERM, IRFAC UMR-S1113, and Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
47
|
Tokura Y, Phadungsaksawasdi P, Ito T. Atopic dermatitis as Th2 disease revisited. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2018. [DOI: 10.1002/cia2.12033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yoshiki Tokura
- Department of DermatologyHamamatsu University School of Medicine Hamamatsu Japan
| | | | - Taisuke Ito
- Department of DermatologyHamamatsu University School of Medicine Hamamatsu Japan
| |
Collapse
|
48
|
Formanowicz D, Gutowska K, Formanowicz P. Theoretical Studies on the Engagement of Interleukin 18 in the Immuno-Inflammatory Processes Underlying Atherosclerosis. Int J Mol Sci 2018; 19:E3476. [PMID: 30400655 PMCID: PMC6274968 DOI: 10.3390/ijms19113476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin 18 (IL-18) is one of the pro-inflammatory cytokines expressed by macrophages, suggesting that it plays important physiological and immunological functions, among the others: stimulation of natural killers (NKs) and T cells to interferon gamma (IFN- γ ) synthesis. IL-18 was originally identified as interferon gamma inducing factor and now it is recognized as multifunctional cytokine, which has a role in regulation of innate and adaptive immune responses. Therefore, in order to investigate IL-18 contribution to the immuno-inflammatory processes underlying atherosclerosis, a systems approach has been used in our studies. For this purpose, a model of the studied phenomenon, including selected pathways, based on the Petri-net theory, has been created and then analyzed. Two pathways of IL-18 synthesis have been distinguished: caspase 1-dependent pathway and caspase 1-independent pathway. The analysis based on t-invariants allowed for determining interesting dependencies between IL-18 and different types of macrophages: M1 are involved in positive regulation of IL-18, while M2 are involved in negative regulation of IL-18. Moreover, the obtained results showed that IL-18 is produced more often via caspase 1-independent pathway than caspase 1-dependent pathway. Furthermore, we found that this last pathway may be associated with caspase 8 action.
Collapse
Affiliation(s)
- Dorota Formanowicz
- Department of Clinical Biochemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland.
| | - Kaja Gutowska
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.
| | - Piotr Formanowicz
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
49
|
Colombo M, Mirandola L, Chiriva-Internati M, Basile A, Locati M, Lesma E, Chiaramonte R, Platonova N. Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu. Front Immunol 2018; 9:1823. [PMID: 30154786 PMCID: PMC6102368 DOI: 10.3389/fimmu.2018.01823] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Notch signaling is a well-known key player in the communication between adjacent cells during organ development, when it controls several processes involved in cell differentiation. Notch-mediated communication may occur through the interaction of Notch receptors with ligands on adjacent cells or by a paracrine/endocrine fashion, through soluble molecules that can mediate the communication between cells at distant sites. Dysregulation of Notch pathway causes a number of disorders, including cancer. Notch hyperactivation may be caused by mutations of Notch-related genes, dysregulated upstream pathways, or microenvironment signals. Cancer cells may exploit this aberrant signaling to "educate" the surrounding microenvironment cells toward a pro-tumoral behavior. This may occur because of key cytokines secreted by tumor cells or it may involve the microenvironment through the activation of Notch signaling in stromal cells, an event mediated by a direct cell-to-cell contact and resulting in the increased secretion of several pro-tumorigenic cytokines. Up to now, review articles were mainly focused on Notch contribution in a specific tumor context or immune cell populations. Here, we provide a comprehensive overview on the outcomes of Notch-mediated pathological interactions in different tumor settings and on the molecular and cellular mediators involved in this process. We describe how Notch dysregulation in cancer may alter the cytokine network and its outcomes on tumor progression and antitumor immune response.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Maurizio Chiriva-Internati
- Kiromic Biopharma Inc., Houston, TX, United States.,Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
50
|
Salvador P, Macías-Ceja DC, Gisbert-Ferrándiz L, Hernández C, Bernardo D, Alós R, Navarro-Vicente F, Esplugues JV, Ortiz-Masiá D, Barrachina MD, Calatayud S. CD16+ Macrophages Mediate Fibrosis in Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:589-599. [PMID: 29304229 DOI: 10.1093/ecco-jcc/jjx185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/29/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Fibrosis is a common complication of Crohn's disease [CD], and is related to dysregulated tissular repair following inflammation, in which macrophages play a central role. We have previously observed that STAT6-/- mice present delayed mucosal recovery after 2,4,6-trinitrobenzenesulfonic acid [TNBS]-induced colitis due to a deficiency in reparatory interleukin-4 [IL4]/STAT6-dependent M2 macrophages, which can be reverted by the exogenous transfer of this cell type. In the present study, we analyse the role of STAT6-dependent macrophages in intestinal fibrosis. METHODS Colitis was induced by weekly intra-rectal administration of TNBS [6 weeks] to STAT6-/- mice and wild-type [WT] animals. Colonic surgical resections were obtained from CD patients and from colon cancer patients. RESULTS Chronic colitis provoked a fibrogenic response in STAT6-/- mice, but not in WT animals. An accumulation of M2 macrophages, defined as CD206+ cells, was observed in WT mice, but not in STAT6-/- animals. Instead, the latter group showed an increase in CD16+ macrophages that correlated with the expression of fibrogenic markers. CD16+ macrophages were also increased in the damaged mucosa of Crohn's disease patients with stenotic or penetrating complications. Finally, administration of IL4-treated WT macrophages to STAT6-/- mice reduced TNBS-induced fibrosis. CONCLUSIONS Our study demonstrates that STAT6 deficiency dysregulates the macrophage response to inflammatory outbursts by increasing the presence of a population of CD16+ macrophages that seems to contribute to intestinal fibrosis.
Collapse
Affiliation(s)
- Pedro Salvador
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - Laura Gisbert-Ferrándiz
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - David Bernardo
- Unidad de Gastroenterología, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rafael Alós
- Servicio de Cirugía, Hospital de Sagunto, Sagunto, Valencia, Spain
| | | | - Juan Vicente Esplugues
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masiá
- Departamento de Medicina and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Maria Dolores Barrachina
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Sara Calatayud
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|