1
|
Kim SA, Shin D, Ham H, Kim Y, Gu Y, Kim HJ, Na DL, Zetterberg H, Blennow K, Seo SW, Jang H. Physical Activity, Alzheimer Plasma Biomarkers, and Cognition. JAMA Netw Open 2025; 8:e250096. [PMID: 40042844 PMCID: PMC11883494 DOI: 10.1001/jamanetworkopen.2025.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 03/09/2025] Open
Abstract
Importance Physical activity (PA) is a nonpharmacological intervention for dementia prevention. The association between PA and Alzheimer disease (AD) plasma biomarkers remains underexplored. Objective To investigate the associations among PA; plasma biomarkers, including β-amyloid 42/40 (Aβ42/40), phosphorylated-tau217 (ptau217), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL); and cognition. Design, Setting, and Participants This cross-sectional study included participants with and without cognitive impairment recruited from multiple memory clinics in South Korea between May 2019 and May 2022. Data were analyzed from June to December 2024. Exposures PA was assessed as metabolic equivalent task minutes per week using the International Physical Activity Questionnaire and categorized into quartiles from the lowest (Q1) to the highest (Q4). Main Outcomes and Measures Plasma Aβ42/40, ptau217, GFAP, and NfL were measured. Cognition was assessed using the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating-Sum of Boxes (CDR-SB). Results Among 1144 participants (mean [SD] age 70.9 [8.7] years; 744 [65.0%] female), the highest PA quartile showed significantly lower ptau217 (estimate [SE], -0.14 [0.06]; P = .01) and NfL (estimate [SE], -0.12 [0.05]; P = .01) compared with the lowest quartile. Higher PA quartiles were associated with higher MMSE scores (estimate [SE]: Q2, 0.93 [0.31]; P = .003; Q3, 0.82 [0.32]; P = .009; Q4, 0.94 [0.32]; P = .004) and lower CDR-SB scores (estimate [SE]: Q2, -0.33 [0.16]; P = .04; Q3, -0.37 [0.16]; P = .02; Q4, -0.55 [0.16]; P = .001) after adjusting for age, sex, education years, and β-amyloid uptake. In subgroup analyses according to age and cognitive status, the associations of PA and plasma biomarkers with cognition were more pronounced in the older (age ≥65 years) and cognitively impaired groups compared with the younger and cognitively unimpaired groups. Conclusions and Relevance These findings suggest that PA may help delay cognitive decline by modulating neurodegeneration and AD-specific tau pathologies. However, the cross-sectional design limits causal inference, and longitudinal studies are needed to confirm and clarify these associations.
Collapse
Affiliation(s)
- Seung Ae Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Seoul National University College of Medicine, Seoul, South Korea
| | - Daeun Shin
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
| | - Hongki Ham
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Yeshin Kim
- Department of Neurology, Kangwon National University College of Medicine, Chuncheon, South Korea
| | - Yuna Gu
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Happymid Clinic, Seoul, South Korea
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin–Madison, Madison
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Hyemin Jang
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Jarchow M, Driscoll I, Breidenbach BM, Cook N, Gallagher CL, Johnson SC, Asthana S, Hermann BP, Sager MA, Blennow K, Zetterberg H, Carlsson CM, Kollmorgen G, Quijano-Rubio C, Cook DB, Dubal DB, Okonkwo OC. Older more fit KL-VS heterozygotes have more favorable AD-relevant biomarker profiles. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25323056. [PMID: 40093256 PMCID: PMC11908295 DOI: 10.1101/2025.02.27.25323056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
INTRODUCTION While hallmarked by the accumulation of β-amyloid plaques (Aβ) and neurofibrillary tangles (tau) in the brain, Alzheimer's disease (AD) is a multifactorial disorder that involves additional pathological events, including neuroinflammation, neurodegeneration and synaptic dysfunction. AD-associated biomolecular changes seem to be attenuated in carriers of the functionally advantageous variant of the KLOTHO gene (KL-VSHET). Independently, better cardiorespiratory fitness (CRF) is associated with better health outcomes, both in general and specifically with regard to AD pathology. Here we investigate whether the relationships between CRF (peak oxygen consumption (VO2peak)) and cerebrospinal fluid (CSF) core AD biomarkers and those of neuroinflammation, neurodegeneration, and synaptic dysfunction differ for KL-VSHET compared to non-carriers (KL-VSNC). METHODS The cohort, enriched for AD risk, consisted of cognitively unimpaired adults (N=136; MeanAGE(SD)=62.5(6.7)) from the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center. Covariate-adjusted (age, sex, parental AD history, APOE4+ status, and age difference between CSF sampling and exercise test) linear models examined the interaction between VO2peak and KLOTHO genotype on core AD biomarker levels in CSF [phosphorylated tau 181 (pTau181), Aβ42/Aβ40, pTau181/Aβ42]. Analyses were repeated for CSF biomarkers of neurodegeneration [total tau (tTau), α-synuclein (α-syn), neurofilament light polypeptide (NfL)], synaptic dysfunction [neurogranin (Ng)], and neuroinflammation [glial fibrillary acidic protein (GFAP), soluble triggering receptor expressed in myeloid cells (sTREM2), chitinase-3-like protein 1 (YKL-40), interleukin 6 (IL-6), S100 calcium-binding protein B (S100B)]. RESULTS The interaction between VO2peak and KL-VSHET was significant for tTau (P=0.05), pTau181 (P=0.03), Ng (P=0.02), sTREM2 (P=0.03), and YKL-40 (P=0.03), such that lower levels of each biomarker were observed for KL-VSHET who were more fit. No significant KL-VSxVO2peak interactions were observed for Aβ42/Aβ40, pTau181/Aβ42, α-syn, NfL, GFAP, IL-6 or S100B (all Ps>0.09). CONCLUSIONS We report a synergistic relationship between KL-VSHET and CRF with regard to pTau181, tTau, Ng, sTREM2 and YKL-40, suggesting a protective role for both KL-VSHET and better cardiovascular fitness against unfavorable AD-related changes. Their potentially shared biological mechanisms will require future investigations.
Collapse
Affiliation(s)
- Mackenzie Jarchow
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ira Driscoll
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Brianne M. Breidenbach
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Noah Cook
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine L. Gallagher
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| | - Bruce P. Hermann
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark A. Sager
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Henrik Zetterberg
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Roche Diagnostics GmbH, Penzberg, Germany
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Dane B. Cook
- Research Service, William S. Middleton VA Hospital, Madison, WI, USA
- Department of Kinesiology, School of Education, University of Wisconsin-Madison, Madison, WI, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| |
Collapse
|
3
|
Raffin J, Blennow K, Rolland Y, Cantet C, Guyonnet S, Vellas B, de Souto Barreto P. Associations between moderate-to-vigorous physical activity, p-tau181, and cognition in healthy older adults with memory complaints: a secondary analysis from the MAPT. THE LANCET. HEALTHY LONGEVITY 2025; 6:100678. [PMID: 40015298 DOI: 10.1016/j.lanhl.2024.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Physical activity provides benefits against cognitive decline but its associations with Alzheimer's disease pathophysiology are not fully understood. We investigated cross-sectional and longitudinal associations between moderate-to-vigorous physical activity and phosphorylated (p)-tau181 blood concentrations, and the role of p-tau181 in the associations between moderate-to-vigorous physical activity and cognition. METHODS In this post-hoc secondary analysis, we used data from a multicentre, randomised, placebo-controlled superiority trial (the Multidomain Alzheimer's Preventive Trial [MAPT]), in which adults aged 70 years and older were recruited from the community in 13 memory centres in France and Monaco. Individuals were eligible if they met at least one of the following criteria: spontaneous memory complaints, low gait speed (≤0·77 m/s), or limitation in at least one instrumental activity of daily living. Exclusion criteria included a dementia diagnosis, a Mini Mental State Examination score below 24, and having limitations in basic activities of daily living. For this secondary analysis, participants from MAPT were included if they had blood p-tau181 concentrations measured at baseline or at 3 years, or both timepoints. Self-reported moderate-to-vigorous physical activity (in metabolic equivalent of task min per week) and a cognitive composite score (calculated by averaging the Z scores of four cognitive tests) were assessed at baseline and at 6 months and at 1, 2, and 3 years. Mixed-effect models were used to examine the cross-sectional and longitudinal associations between moderate-to-vigorous physical activity and p-tau181 concentrations and to explore the mediating and moderating role of p-tau181 concentration on the association between moderate-to-vigorous physical activity and cognition. FINDINGS Between May 30, 2008, and Feb 24, 2011, 1679 individuals were enrolled in the MAPT, of whom 558 adults had measurements of p-tau181 concentrations at baseline, 3 years, or both timepoints. Higher levels of moderate-to-vigorous physical activity were associated with slower changes in p-tau181 concentrations over time. Compared with inactive individuals, those with low levels of activity (low moderate-to-vigorous physical activity × time: B = -0·109 [95% CI -0·206 to -0·012; p=0·028]) or high levels of activity (high moderate-to-vigorous physical activity × time: B=-0·114 [95% CI -0·208 to -0·020; p=0·018) had a slower increase in p-tau181 concentrations. We did not identify any association between baseline p-tau181 concentrations and baseline moderate-to-vigorous physical activity levels. The cross-sectional and longitudinal associations between moderate-to-vigorous physical activity and cognition were attenuated with increasing baseline p-tau181 concentrations. Specifically, moderate-to-vigorous physical activity was no longer favourably associated with the cognitive composite score when baseline p-tau181 concentration exceeded 9·36 pg/mL and 3·5 pg/mL for the cross-sectional association and longitudinal association, respectively. INTERPRETATION Our findings suggest that engaging in more moderate-to-vigorous physical activity might help to slow the age-related neurodegenerative process, although p-tau pathophysiology seems to mitigate the beneficial associations between moderate-to-vigorous physical activity and cognition in older adults. Verification of these findings in larger population samples will be needed. FUNDING Toulouse Gérontopôle, French Ministry of Health, and Pierre Fabre Research Institute.
Collapse
Affiliation(s)
- Jérémy Raffin
- IHU HealthAge, Toulouse, France; Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Yves Rolland
- IHU HealthAge, Toulouse, France; Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Christelle Cantet
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Sophie Guyonnet
- IHU HealthAge, Toulouse, France; Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Bruno Vellas
- IHU HealthAge, Toulouse, France; Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Philipe de Souto Barreto
- IHU HealthAge, Toulouse, France; Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|
4
|
Wang M, Hua Y, Bai Y. A review of the application of exercise intervention on improving cognition in patients with Alzheimer's disease: mechanisms and clinical studies. Rev Neurosci 2025; 36:1-25. [PMID: 39029521 DOI: 10.1515/revneuro-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.
Collapse
Affiliation(s)
- Man Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| |
Collapse
|
5
|
Sewell KR, Doecke JD, Xiong C, Benzinger T, Masters CL, Laske C, Jucker M, Lopera F, Gordon BA, Llibre‐Guerra J, Levin J, Huey ED, Hassenstab J, Schofield PR, Day GS, Fox NC, Chhatwal J, Ibanez L, Roh JH, Perrin R, Lee J, Allegri RF, Supnet‐Bell C, Berman SB, Daniels A, Noble J, Martins RN, Rainey‐Smith S, Peiffer J, Gardener SL, Bateman RJ, Morris JC, McDade E, Erickson KI, Sohrabi HR, Brown BM. Longitudinal associations between exercise and biomarkers in autosomal dominant Alzheimer's disease. Alzheimers Dement 2024; 20:7923-7939. [PMID: 39324510 PMCID: PMC11567864 DOI: 10.1002/alz.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION We investigated longitudinal associations between self-reported exercise and Alzheimer's disease (AD)-related biomarkers in individuals with autosomal dominant AD (ADAD) mutations. METHODS Participants were 308 ADAD mutation carriers aged 39.7 ± 10.8 years from the Dominantly Inherited Alzheimer's Network. Weekly exercise volume was measured via questionnaire and associations with brain volume (magnetic resonance imaging), cerebrospinal fluid biomarkers, and brain amyloid beta (Aβ) measured by positron emission tomography were investigated. RESULTS Greater volume of weekly exercise at baseline was associated with slower accumulation of brain Aβ at preclinical disease stages β = -0.16 [-0.23 to -0.08], and a slower decline in multiple brain regions including hippocampal volume β = 0.06 [0.03 to 0.08]. DISCUSSION Exercise is associated with more favorable profiles of AD-related biomarkers in individuals with ADAD mutations. Exercise may have therapeutic potential for delaying the onset of AD; however, randomized controlled trials are vital to determine a causal relationship before a clinical recommendation of exercise is implemented. HIGHLIGHTS Greater self-reported weekly exercise predicts slower declines in brain volume in autosomal dominant Alzheimer's disease (ADAD). Greater self-reported weekly exercise predicts slower accumulation of brain amyloid beta in ADAD. Associations varied depending on closeness to estimated symptom onset.
Collapse
Affiliation(s)
- Kelsey R. Sewell
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - James D. Doecke
- Australian E‐Health Research CentreCSIROHerstonQueenslandAustralia
| | | | | | - Colin L. Masters
- The Florey InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Christoph Laske
- German Center for Neurodegenerative DiseasesTubingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Mathias Jucker
- German Center for Neurodegenerative DiseasesTubingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Francisco Lopera
- Grupo de Neurociencias de AntioquiaFacultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | | | | | - Johannes Levin
- Department of NeurologyLMU University HospitalLMUMunichGermany
- German Center for Neurodegenerative DiseasesSite MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Edward D. Huey
- Department of Psychiatry and Human BehaviorWarren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Jason Hassenstab
- Department of Psychological & Brain SciencesWashington University in St. LouisSt. LouisMissouriUSA
- Department of NeurologyCharles F. and Joanne Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Gregory S. Day
- Department of NeurologyMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Nick C. Fox
- Dementia Research CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Jasmeer Chhatwal
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Laura Ibanez
- Washington University in St. LouisSt. LouisMissouriUSA
| | - Jee Hoon Roh
- Department of NeurologyKorea University Anam HospitalSeoulSouth Korea
- Department of PhysiologyKorea University College of MedicineSeoulSouth Korea
| | | | - Jae‐Hong Lee
- Department of NeurologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Ricardo F. Allegri
- Cognitive Neurology Service of the FLENI FoundationFoundation for Childhood Neurological DisordersCognitive NeurologyNeuropsychology and Neuropsychiatry Section (CONICET‐FLENI)Buenos AiresArgentina
| | | | - Sarah B. Berman
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alisha Daniels
- Department of NeurologyCharles F. and Joanne Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - James Noble
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Ralph N. Martins
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
- Centre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Stephanie Rainey‐Smith
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
- Centre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
| | - Jeremiah Peiffer
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Samantha L. Gardener
- Centre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
| | | | | | - Eric McDade
- Washington University in St. LouisSt. LouisMissouriUSA
| | | | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
- Centre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Belinda M. Brown
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
- Centre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
- Centre for Precision Health, Edith Cowan UniversityJoondalupWestern AustraliaAustralia
| | | |
Collapse
|
6
|
Jones AA, Ramos‐Miguel A, Gicas KM, Petyuk VA, Leurgans SE, De Jager PL, Schneider JA, Bennett DA, Honer WG, Casaletto KB. A multilayer network analysis of Alzheimer's disease pathogenesis: Roles for p-tau, synaptic peptides, and physical activity. Alzheimers Dement 2024; 20:8012-8027. [PMID: 39394857 PMCID: PMC11567865 DOI: 10.1002/alz.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION In the aging brain, cognitive abilities emerge from the coordination of complex pathways arising from a balance between protective lifestyle and environmental factors and accumulation of neuropathologies. METHODS As part of the Rush Memory and Aging Project (n = 440), we measured accelerometer-based actigraphy, cognitive performance, and after brain autopsy, selected reaction monitoring mass spectrometry. Multilevel network analysis was used to examine the relationships among the molecular machinery of vesicular neurotransmission, Alzheimer's disease (AD) neuropathology, cognition, and late-life physical activity. RESULTS Synaptic peptides involved in neuronal secretory function were the most influential contributors to the multilayer network, reflecting the complex interdependencies among AD pathology, synaptic processes, and late-life cognition. Older adults with lower physical activity evidenced stronger adverse relationships among phosphorylated tau peptides, markers of synaptic integrity, and tangle pathology. DISCUSSION Network-based approaches simultaneously model interdependent biological processes and advance understanding of the role of physical activity in age-associated cognitive impairment. HIGHLIGHTS Network-based approaches simultaneously model interdependent biological processes. Secretory synaptic peptides were influential contributors to the multilayer network. Older adults with lower physical activity had adverse relationships among pathology. There was interdependence among phosphorylated tau, synaptic integrity, and tangles. Network methods elucidate the role of physical activity in cognitive impairment.
Collapse
Affiliation(s)
- Andrea A. Jones
- Division of NeurologyDepartment of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Alfredo Ramos‐Miguel
- Department of PharmacologyCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)University of Basque Country (EHU/UPV)LeioaSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Kristina M. Gicas
- Department of PsychologyUniversity of the Fraser ValleyAbbotsfordBritish ColumbiaCanada
| | - Vladislav A. Petyuk
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Sue E. Leurgans
- Rush Alzheimer's Disease CenterRush UniversityChicagoIllinoisUSA
| | - Philip L. De Jager
- Department of Neurology and The Taub Institute for the Study of Alzheimer's Disease and the Aging BrainCenter for Translational and Computational NeuroimmunologyColumbia University Medical CenterNew YorkNew YorkUSA
| | | | - David A. Bennett
- Rush Alzheimer's Disease CenterRush UniversityChicagoIllinoisUSA
| | - William G. Honer
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- BC Mental Health and Substance Use Services Research InstituteVancouverBritish ColumbiaCanada
| | - Kaitlin B. Casaletto
- Department of NeurologyMemory and Aging CenterUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
7
|
Son HJ, Kim JS, Bateman RJ, Kim S, Llibre-Guerra JJ, Day GS, Chhatwal JP, Berman SB, Schofield PR, Jucker M, Levin J, Lee JH, Perrin RJ, Morris JC, Cruchaga C, Hassenstab J, Salloway SP, Lee JH, Daniels A. Association of Resilience-Related Life Experiences on Variability on Age of Onset in Dominantly Inherited Alzheimer Disease. Neurology 2024; 103:e209766. [PMID: 39270149 PMCID: PMC11399067 DOI: 10.1212/wnl.0000000000209766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/25/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES It remains unknown whether the associations between protective lifestyles and sporadic dementia risk reported in observational studies also affect age at symptom onset (AAO) in autosomal dominant Alzheimer disease (ADAD) with predominant genetic influences. We investigated the associations between resilience-related life experiences and interindividual AAO variability in ADAD. METHODS We performed a longitudinal and confirmatory analysis of the Dominantly Inherited Alzheimer Network prospective observational cohort (January 2009-June 2018, follow-up duration 2.13 ± 2.22 years), involving clinical, CSF, and lifestyle/behavioral assessments. We performed a 2-pronged comprehensive resilience assessment in each cohort. Cohort 1, incorporating the general resilience definition (cognitive maintenance [Clinical Dementia Rating = 0] despite high pathology), included carriers during the periods of significant CSFp-tau181 variability and grouped into resilience/resistance outcome bins according to the dichotomous pathologic and cognitive statuses, subcategorized by the estimated years from expected symptom onset (EYO). Cohort 2, focused on ADAD-specific genetically determined time frame characterizing the onset predictability, included asymptomatic participants with available preclinical lifestyle data and AAO outcomes and grouped into delayed or earlier AAO relative to the parental AAO. Associations of cognitive, CSFp-tau181, and lifestyle/behavioral predictors with binary outcomes were investigated using logistic regression. RESULTS Of 320 carriers (age 38.19 ± 10.94 years, female 56.25%), cohort 1 included 218 participants (39.00 ± 9.37 years, 57.34%) and cohort 2 included 28 participants (43.34 ± 7.40 years, 71.43%). In cohort 1, 218 carriers after -20 EYO, when the interindividual variability (SD) of CSFp-tau181 first became more than twice greater in carriers than in noncarriers, were grouped into low-risk control (asymptomatic, low pathology, n = 103), high-resilience (asymptomatic despite high pathology, n = 60), low-resilience (symptomatic despite low pathology, n = 15), and susceptible control (symptomatic, high pathology, n = 40) groups. Multivariable predictors of high resilience, controlling for age and depression, included higher conscientiousness (odds ratio 1.051 [95% CI 1.016-1.086], p = 0.004), openness to experience (1.068 [1.005-1.135], p = 0.03) (vs. susceptible controls), and agreeableness (1.082 [1.015-1.153], p = 0.02) (vs. low resilience). From 1 to 3 years before parental AAO (cohort 2), the multivariable predictor of delayed AAO, controlling for CSFp-tau181, was higher conscientiousness (0.916 [0.845-0.994], p = 0.036). DISCUSSION Among the cognitively and socially integrated life experiences associated with resilience, measures of conscientiousness were useful indicators for evaluating resilience and predicting future dementia onset in late preclinical ADAD.
Collapse
Affiliation(s)
- Hye Joo Son
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Jae Seung Kim
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Randall J Bateman
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Seonok Kim
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Jorge J Llibre-Guerra
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Gregory S Day
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Jasmeer P Chhatwal
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Sarah B Berman
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Peter R Schofield
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Mathias Jucker
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Johannes Levin
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Jae-Hong Lee
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Richard J Perrin
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - John C Morris
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Carlos Cruchaga
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Jason Hassenstab
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Stephen P Salloway
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Jai-Hyuen Lee
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| | - Alisha Daniels
- From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI
| |
Collapse
|
8
|
Bonanni R, Cariati I, Cifelli P, Frank C, Annino G, Tancredi V, D'Arcangelo G. Exercise to Counteract Alzheimer's Disease: What Do Fluid Biomarkers Say? Int J Mol Sci 2024; 25:6951. [PMID: 39000060 PMCID: PMC11241657 DOI: 10.3390/ijms25136951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases (NDs) represent an unsolved problem to date with an ever-increasing population incidence. Particularly, Alzheimer's disease (AD) is the most widespread ND characterized by an accumulation of amyloid aggregates of beta-amyloid (Aβ) and Tau proteins that lead to neuronal death and subsequent cognitive decline. Although neuroimaging techniques are needed to diagnose AD, the investigation of biomarkers within body fluids could provide important information on neurodegeneration. Indeed, as there is no definitive solution for AD, the monitoring of these biomarkers is of strategic importance as they are useful for both diagnosing AD and assessing the progression of the neurodegenerative state. In this context, exercise is known to be an effective non-pharmacological management strategy for AD that can counteract cognitive decline and neurodegeneration. However, investigation of the concentration of fluid biomarkers in AD patients undergoing exercise protocols has led to unclear and often conflicting results, suggesting the need to clarify the role of exercise in modulating fluid biomarkers in AD. Therefore, this critical literature review aims to gather evidence on the main fluid biomarkers of AD and the modulatory effects of exercise to clarify the efficacy and usefulness of this non-pharmacological strategy in counteracting neurodegeneration in AD.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Sports Engineering Laboratory, Department of Industrial Engineering, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Giovanna D'Arcangelo
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| |
Collapse
|
9
|
Raffin J. Does Physical Exercise Modify the Pathophysiology of Alzheimer's Disease in Older Persons? JAR LIFE 2024; 13:77-81. [PMID: 38803456 PMCID: PMC11129780 DOI: 10.14283/jarlife.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Physical exercise is well known for its benefits on brain health. However, the mechanisms through which these benefits occur remain discussed, especially in the context of cognitive conditions such as Alzheimer's disease. The present short review summarizes the findings of interventional studies that examined the effects of exercise training on the specific and non-specific biomarkers of Alzheimer's disease. Controlled exercise intervention studies published in the English language were selected if they assessed the effects of a physical exercise intervention of at least 2 weeks in middle-aged or older adults on one of the following biomarkers measured either in the brain, the cerebrospinal fluid or the blood: beta-amyloid, tau, neurofilament light chain, and glial fibrillary acidic protein. Overall, there was no strong evidence of significant effects of exercise interventions on any of the selected biomarkers. However, in specific populations, such as women with obesity, pre-diabetes, or depression, favorable changes in blood beta-amyloid concentrations were reported. Further benefits on cerebrospinal fluid beta-amyloid were also demonstrated in APOE-ε4 allele carriers with Alzheimer's disease. In conclusion, the current evidence suggests that physical exercise does not modulate the pathophysiology of Alzheimer's disease in the overall population of middle-aged and older adults. Nonetheless, some specific populations, such as women with metabolic disorders and Alzheimer's disease patients with APOE-ε4 genotype, seem to be favorably affected. Further studies, including long follow-ups, large sample sizes, and concomitantly assessing the effects of other factors such as sedentary behavior and diet, are required to bring further evidence to the field.
Collapse
Affiliation(s)
- J. Raffin
- Institut Hospitalo-Universitaire (IHU) HealthAge, Toulouse, France
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
10
|
Roccati E, Bindoff AD, Collins JM, Eastgate J, Borchard J, Alty J, King AE, Vickers JC, Carboni M, Logan C. Modifiable dementia risk factors and AT(N) biomarkers: findings from the EPAD cohort. Front Aging Neurosci 2024; 16:1346214. [PMID: 38384935 PMCID: PMC10879413 DOI: 10.3389/fnagi.2024.1346214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Modifiable risk factors account for a substantial proportion of Alzheimer's disease (AD) cases and we currently have a discrete AT(N) biomarker profile for AD biomarkers: amyloid (A), p-tau (T), and neurodegeneration (N). Here, we investigated how modifiable risk factors relate to the three hallmark AT(N) biomarkers of AD. Methods Participants from the European Prevention of Alzheimer's Dementia (EPAD) study underwent clinical assessments, brain magnetic resonance imaging, and cerebrospinal fluid collection and analysis. Generalized additive models (GAMs) with penalized regression splines were modeled in the AD Workbench on the NTKApp. Results A total of 1,434 participants were included (56% women, 39% APOE ε4+) with an average age of 65.5 (± 7.2) years. We found that modifiable risk factors of less education (t = 3.9, p < 0.001), less exercise (t = 2.1, p = 0.034), traumatic brain injury (t = -2.1, p = 0.036), and higher body mass index (t = -4.5, p < 0.001) were all significantly associated with higher AD biomarker burden. Discussion This cross-sectional study provides further support for modifiable risk factors displaying neuroprotective associations with the characteristic AT(N) biomarkers of AD.
Collapse
Affiliation(s)
- Eddy Roccati
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Aidan David Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jessica Marie Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Joshua Eastgate
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jay Borchard
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
- Royal Hobart Hospital, Hobart, TAS, Australia
| | - Anna Elizabeth King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - James Clement Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | | | - Chad Logan
- Roche Diagnostics GmbH, Penzberg, Germany
| | - EPAD Consortium
- Department of Radiology and Nuclear Medicine, University of Amsterdam, De Boelelaan, Amsterdam, Netherlands
| |
Collapse
|
11
|
Slee MG, Rainey‐Smith SR, Villemagne VL, Doecke JD, Sohrabi HR, Taddei K, Ames D, Dore V, Maruff P, Laws SM, Masters CL, Rowe CC, Martins RN, Erickson KI, Brown BM. Physical activity and brain amyloid beta: A longitudinal analysis of cognitively unimpaired older adults. Alzheimers Dement 2024; 20:1350-1359. [PMID: 37984813 PMCID: PMC10917015 DOI: 10.1002/alz.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION The current study evaluated the relationship between habitual physical activity (PA) levels and brain amyloid beta (Aβ) over 15 years in a cohort of cognitively unimpaired older adults. METHODS PA and Aβ measures were collected over multiple timepoints from 731 cognitively unimpaired older adults participating in the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Aging. Regression modeling examined cross-sectional and longitudinal relationships between PA and brain Aβ. Moderation analyses examined apolipoprotein E (APOE) ε4 carriage impact on the PA-Aβ relationship. RESULTS PA was not associated with brain Aβ at baseline (β = -0.001, p = 0.72) or over time (β = -0.26, p = 0.24). APOE ε4 status did not moderate the PA-Aβ relationship over time (β = 0.12, p = 0.73). Brain Aβ levels did not predict PA trajectory (β = -54.26, p = 0.59). DISCUSSION Our study did not identify a relationship between habitual PA and brain Aβ levels. HIGHLIGHTS Physical activity levels did not predict brain amyloid beta (Aβ) levels over time in cognitively unimpaired older adults (≥60 years of age). Apolipoprotein E (APOE) ε4 carrier status did not moderate the physical activity-brain Aβ relationship over time. Physical activity trajectories were not impacted by brain Aβ levels.
Collapse
Affiliation(s)
- Michael G. Slee
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Stephanie R. Rainey‐Smith
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- School of Psychological ScienceUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Victor L. Villemagne
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - James D. Doecke
- The Australian e‐Health Research CentreCSIROHerstonQueenslandAustralia
| | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Kevin Taddei
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
| | - David Ames
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- National Ageing Research InstituteParkvilleVictoriaAustralia
- Academic Unit for Psychiatry of Old AgeUniversity of MelbourneCarltonVictoriaAustralia
| | - Vincent Dore
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Cogstate LtdMelbourneVictoriaAustralia
| | - Simon M. Laws
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation GroupSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Christopher C. Rowe
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ralph N. Martins
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Kirk I. Erickson
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Belinda M. Brown
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
| |
Collapse
|
12
|
Gonzales MM, Kojis D, Spartano NL, Thibault EG, DeCarli CS, El Fakhri G, Johnson KA, Beiser AS, Seshadri S. Associations of Physical Activity Engagement with Cerebral Amyloid-β and Tau from Midlife. J Alzheimers Dis 2024; 100:935-943. [PMID: 39031362 DOI: 10.3233/jad-240322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Higher midlife physical activity engagement has been associated with lower dementia risk in late life. However, the underlying mechanisms contributing to the protective effect remain unclear. Objective The goal of the current study was to evaluate the associations of physical activity with cerebral amyloid-β (Aβ) and tau in a predominately middle-aged community-based cohort, as well as to explore whether the associations differ by sex or age. Methods Participants from the Framingham Heart Study underwent 11C-Pittsburgh Compound B amyloid and 18F-Flortaucipir tau positron emission tomography (PET) imaging. Total physical activity levels were evaluated by self-report using the Physical Activity Index (PAI). Cross-sectional associations between total PAI with regional Aβ and tau PET retention were evaluated using linear regression models adjusted for demographic and cardiovascular risk factors. Interactions with sex and age group were examined and stratified analyses were performed when significant. FDR-correction for multiple comparisons was applied. Results The sample included 354 participants (mean age 53±8 years, 51% female). Higher total PAI scores were associated with lower entorhinal cortex tau PET binding (β (SE) = -0.021(0.008), p = 0.049). There were significant interactions with sex. In men alone, total PAI inversely associated with entorhinal cortex (β (SE) = -0.035(0.009), p = 0.001), inferior temporal (β (SE) = -0.029(0.010), p = 0.012), and rhinal cortex tau(β (SE) = -0.033(0.010), p = 0.002). Conclusions The results suggest that higher midlife physical activity engagement may confer resistance to tau pathology. However, the effects may vary based on sex, highlighting the importance of better understanding and tailoring lifestyle interventions to address sex disparities.
Collapse
Affiliation(s)
- Mitzi M Gonzales
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daniel Kojis
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nicole L Spartano
- The Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Emma G Thibault
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles S DeCarli
- Department of Neurology, University of California Davis, Sacramento, CA, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Georges El Fakhri
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Yale University, New Haven, CT, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexa S Beiser
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
13
|
Tomaszewski Farias S, Fox J, Dulaney H, Chan M, Namboodiri S, Harvey DJ, Weakley A, Rahman S, Luna C, Beech BF, Campbell L, Schmitter-Edgecombe M. Memory support training and lifestyle modifications to promote healthy aging in persons at risk for Alzheimer's disease: a digital application supported intervention (Brain Boosters). BMC Geriatr 2023; 23:881. [PMID: 38129775 PMCID: PMC10740219 DOI: 10.1186/s12877-023-04574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Evidence-based interventions to protect against cognitive decline among older adults at risk for Alzheimer's disease and related dementias (ADRD) are urgently needed. Rehabilitation approaches to support memory and behavioral/lifestyle interventions are recognized as promising strategies for preserving or improving cognitive health, although few previous interventions have combined both approaches. This paper describes the protocol of the Brain Boosters intervention, which synergistically combines training in compensatory and healthy lifestyle behaviors and supports implementation and tracking of new behaviors with a digital application. METHODS The study utilizes a single-site, single-blinded, randomized controlled design to compare a structured lifestyle and compensatory aid intervention to an education-only self-guided intervention. We plan to enroll 225 community-dwelling adults (25% from underrepresented groups) aged 65 + who endorse subjective cognitive decline (SCD) and low baseline levels of healthy lifestyle behaviors. Both interventions will be administered in group format, consisting of 15 two-hour classes that occur weekly for ten weeks and taper to bi-monthly and monthly, for an intervention duration of 6 months. Participants in both interventions will receive education about a variety of memory support strategies and healthy lifestyle behaviors, focusing on physical and cognitive activity and stress management. The structured intervention will also receive support in adopting new behaviors and tracking set goals aided by the Electronic Memory and Management Aid (EMMA) digital application. Primary outcomes include global cognition (composite of memory, attention, and executive function tests) and everyday function (Everyday Cognition Questionnaire). Data will be collected at baseline and outcome visits, at approximately 6, 12, and 18 months. Qualitative interviews, self-report surveys (e.g., indicators of self-determination, health literacy) and EMMA data metrics will also be used to identify what components of the intervention are most effective and for whom they work. DISCUSSION Successful project completion will provide valuable information about how individuals with SCD respond to a compensation and preventative lifestyle intervention assisted by a digital application, including an understanding of factors that may impact outcomes, treatment uptake, and adherence. The work will also inform development, scaling, and personalization of future interventions that can delay disability in individuals at risk for ADRD. TRIAL REGISTRATION ClinicalTrials.gov. (NCT05027789, posted 8/30/2021).
Collapse
Affiliation(s)
| | - J Fox
- Department of Neurology, University of California, Davis, Sacramento, USA
| | - H Dulaney
- Department of Neurology, University of California, Davis, Sacramento, USA
| | - M Chan
- Department of Neurology, University of California, Davis, Sacramento, USA
| | - S Namboodiri
- Department of Neurology, University of California, Davis, Sacramento, USA
| | - D J Harvey
- Department of Biostatistics, University of California, Davis, Davis, USA
| | - A Weakley
- Department of Neurology, University of California, Davis, Sacramento, USA
| | - S Rahman
- Department of Psychology, Washington State University, Pullman, USA
| | - C Luna
- Department of Psychology, Washington State University, Pullman, USA
| | - B F Beech
- Department of Psychology, Washington State University, Pullman, USA
| | - L Campbell
- Department of Neurology, University of California, Davis, Sacramento, USA
| | | |
Collapse
|
14
|
Kimura N, Sasaki Y, Masuda T, Ataka T, Eguchi A, Kakuma T, Matsubara E. Objective sleep was longitudinally associated with brain amyloid burden in mild cognitive impairment. Ann Clin Transl Neurol 2023; 10:2266-2275. [PMID: 37776077 PMCID: PMC10723246 DOI: 10.1002/acn3.51912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE Understanding the longitudinal association of objective sleep and physical activity with brain amyloid burden and cortical glucose metabolism has critical clinical and public health implications for dementia prevention in later life. METHODS We enrolled 118 individuals aged ≥65 years with mild cognitive impairment, who were followed up on from August 2015 to September 2019. All participants continuously wore an accelerometer sensor for 7 consecutive days every 3 months and received annual 11 C-Pittsburgh compound-B and 18 F-fluorodeoxyglucose positron emission tomography (PET). Sleep and physical activity parameters were assessed using accelerometer sensor data and PET imaging was quantified using a standardized uptake-value ratio. Fifty-seven participants (48.3%) completed a lifestyle factor assessment and PET imaging over the 3-year period. A linear mixed-effects model was applied to examine the longitudinal association of sleep and physical activity parameters with PET imaging over the 3-year period, controlling for potential confounders. RESULTS Sleep efficiency was inversely associated with amyloid uptake in the frontal lobe. Although sleep duration was positively associated with global amyloid uptake, particularly in the frontal lobe, their impact was extremely small. However, physical activity parameters were not significantly associated with the 11 C-Pittsburgh compound-B-uptake. Furthermore, sleep and physical activity parameters were not significantly associated with cortical glucose metabolism. INTERPRETATION Lower sleep efficiency could be an early symptom of greater brain amyloid burden at the mild cognitive impairment stage. Therefore, the assessment of sleep may be useful for identifying individuals at higher risk for brain amyloid burden. Future longer term observational studies are required to confirm these findings.
Collapse
Affiliation(s)
- Noriyuki Kimura
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Yuuki Sasaki
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Teruaki Masuda
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Takuya Ataka
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Atsuko Eguchi
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | | | - Etsuro Matsubara
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| |
Collapse
|
15
|
Stojanovic M, Schindler SE, Morris JC, Head D. Effect of exercise engagement and cardiovascular risk on neuronal injury. Alzheimers Dement 2023; 19:4454-4462. [PMID: 37534906 PMCID: PMC10592382 DOI: 10.1002/alz.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Neuronal health as a potential underlying mechanism of the beneficial effects of exercise has been understudied in humans. Furthermore, there has been limited consideration of potential moderators (e.g., cardiovascular health) on the effects of exercise. METHODS Clinically normal middle-aged and older adults completed a validated questionnaire about exercise engagement over a 10-year period (n = 75; age 63 ± 8 years). A composite estimate of neuronal injury was formulated that included cerebrospinal fluid-based measures of visinin-like protein-1, neurogranin, synaptosomal-associated protein 25, and neurofilament light chain. Cardiovascular risk was estimated using the Framingham Risk Score. RESULTS Cross-sectional analyses showed that greater exercise engagement was associated with less neuronal injury in the group with lower cardiovascular risk (p = 0.008), but not the group with higher cardiovascular risk (p = 0.209). DISCUSSION Cardiovascular risk is an important moderator to consider when examining the effects of exercise on cognitive and neural health, and may be relevant to personalized exercise recommendations. HIGHLIGHTS We examined the association between exercise engagement and neuronal injury. Vascular risk moderated the association between exercise and neuronal injury. Cardiovascular risk may be relevant to personalized exercise recommendations.
Collapse
Affiliation(s)
- Marta Stojanovic
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63105
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
| | - Suzanne E. Schindler
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, 63110
| | - John C. Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, 63110
| | - Denise Head
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63105
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110
| |
Collapse
|
16
|
Stojanovic M, Waters AB, Kiselica AM, Benge JF. The impact of technology-based compensatory behaviors on subjective cognitive decline in older adults with a family history of dementia. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-9. [PMID: 37647340 DOI: 10.1080/23279095.2023.2247109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The current study examined whether greater use of technology to help with daily tasks is associated with less subjective cognitive decline (SCD), especially in individuals with a family history of Alzheimer's disease (AD). Individuals over the age of 50 (n = 102; age range 50-85) completed surveys about their digital and analog approaches to daily tasks, physical activity, and SCD. Participants with and without family histories of AD were matched on age, education, sex, and family history of AD using the R package MatchIt. There was no main effect of technology-based behavioral strategies on SCD (p = 0.259). However, a family history of AD moderated the association between technology use and SCD even when controlling for another protective lifestyle factor, physical activity. In individuals with a family history of AD, more reliance on technology-based behavioral strategies was associated with less SCD (p = 0.018), but this relationship was not significant in individuals without family history of AD (p = 0.511). Our findings suggest that technology-based behavioral strategies are associated with less SCD in individuals with a family history of AD, independent of another protective lifestyle factor. Future recommendations provided by healthcare providers to address SCD in cognitively unimpaired older adults might include focusing on technological assistance.
Collapse
Affiliation(s)
- Marta Stojanovic
- Department of Health Psychology, University of Missouri, Columbia, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, USA
| | - Abigail B Waters
- Department of Health Psychology, University of Missouri, Columbia, MO, USA
- Department of Psychology, Suffolk University, Boston, MA, USA
| | - Andrew M Kiselica
- Department of Health Psychology, University of Missouri, Columbia, MO, USA
| | - Jared F Benge
- Department of Neurology, University of Texas at Austin, Austin, TX, USA
- Mulva Clinic for the Neurosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
17
|
Quinlan C, Rattray B, Pryor D, Northey JM, Cherbuin N. Physical activity and cognitive function in middle-aged adults: a cross-sectional analysis of the PATH through life study. Front Psychol 2023; 14:1022868. [PMID: 37691791 PMCID: PMC10484531 DOI: 10.3389/fpsyg.2023.1022868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives Investigate the independent associations of objectively measured or self-reported physical activity at different intensities with cognitive performance in middle-aged adults. Design Cross-sectional. Methods 156 middle-aged adults (age: 40.6 ± 1.5, 58.3% female) participated in the physical activity sub-study of the Personality and Total Health through life (PATH) project. Physical activity was measured objectively with the SenseWear™ armband (SWA), worn for seven consecutive days, and measured via self-report with a Physical Activity Recall survey (PAR). Cognitive performance was assessed with the Symbol Digit Modalities Test, the Digit Span Backwards, and an Immediate and Delayed Recall task. Associations between physical activity intensity and cognitive function were investigated in general linear models, controlling for age, sex, and education. Results Neither objectively measured nor self-reported physical activity were associated with cognitive function at light-, moderate-, vigorous-, or combined moderate-to-vigorous intensity in this cohort of well educated, healthy middle-aged adults. Sensitivity analyses with additional moderators (e.g., body mass index, hypertension, alcohol intake) and the use of composite cognitive measures did not alter the results. Conclusion In this cohort of middle-aged adults, objectively measured and self-reported physical activity do not appear to be associated with cognitive function. Longitudinal follow-ups utilising objective physical activity measures may be important in determining the impact of mid-life behaviours on the trajectory of cognitive changes into older age.
Collapse
Affiliation(s)
- Clare Quinlan
- UC Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Faculty of Health, Charles Darwin University, Darwin, NT, Australia
| | - Ben Rattray
- UC Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Disa Pryor
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Joseph M. Northey
- UC Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
18
|
Wang Y, Han Q, Han X, Dong Y, Mao M, Wang C, Wang X, Tang S, Liu C, Li Y, Hou T, Cong L, Du Y, Qiu C. Objectively-measured movement behaviors, systemic low-grade inflammation, and plasma neurofilament light chain in older adults: a population-based study. Immun Ageing 2023; 20:36. [PMID: 37491244 PMCID: PMC10367375 DOI: 10.1186/s12979-023-00363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Evidence has linked self-reported sedentary behavior (SB) and physical activity (PA) with cognitive impairment; however, the underlying mechanisms are poorly understood. We examined the associations of the accelerometer-measured movement behaviors with plasma neurofilament light chain (NfL) among older adults and the role of systemic low-grade inflammation in the associations. RESULTS This population-based study included 1,029 dementia-free older adults (age ≥ 60 years, range 60-88 years; 59.48% women) who undertook the ActiGraph substudy (March 2018-December 2020) in MIND-China. There were nonlinear relationships of daily SB and PA time with plasma NfL concentration, such that more daily SB time or less time spent in daily light-intensity physical activity (LPA) and moderate-to-vigorous-intensity physical activity (MVPA) was significantly associated with increased plasma NfL only when SB time ≥ 8.00 h/day or LPA time < 5.00 h/day or MVPA time < 2.00 h/day. Furthermore, more daily SB time or less daily LPA and MVPA time was significantly associated with higher serum low-grade inflammation score, a composite measure generated from serum IL-6, IL-8, TNF-α, and ICAM-1 (P < 0.05). Finally, low-grade inflammation score accounted for 14.5% to 17.8% of the associations between movement behaviors and plasma NfL. CONCLUSIONS More daily SB and less PA time are associated with neurodegeneration and systemic low-grade inflammation in older adults. The association of movement behaviors with neurodegeneration is partially mediated by low-grade inflammation.
Collapse
Affiliation(s)
- Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, People's Republic of China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Karolinska Institutet, Tomtebodavägen 18A, 171 65, Solna, Stockholm, Sweden
| | - Qi Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, People's Republic of China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, People's Republic of China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
| | - Ming Mao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
| | - Chaoqun Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
| | - Xiaojie Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, People's Republic of China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, People's Republic of China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
| | - Yuanjing Li
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Karolinska Institutet, Tomtebodavägen 18A, 171 65, Solna, Stockholm, Sweden
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, People's Republic of China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, People's Republic of China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, People's Republic of China.
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People's Republic of China, Jinan, Shandong, People's Republic of China.
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, People's Republic of China.
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Karolinska Institutet, Tomtebodavägen 18A, 171 65, Solna, Stockholm, Sweden.
| |
Collapse
|
19
|
Dong R, Denier-Fields DN, Van Hulle CA, Kollmorgen G, Suridjan I, Wild N, Lu Q, Anderson RM, Zetterberg H, Blennow K, Carlsson CM, Johnson SC, Engelman CD. Identification of plasma metabolites associated with modifiable risk factors and endophenotypes reflecting Alzheimer's disease pathology. Eur J Epidemiol 2023; 38:559-571. [PMID: 36964431 PMCID: PMC11070200 DOI: 10.1007/s10654-023-00988-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/05/2023] [Indexed: 03/26/2023]
Abstract
Modifiable factors can influence the risk for Alzheimer's disease (AD) and serve as targets for intervention; however, the biological mechanisms linking these factors to AD are unknown. This study aims to identify plasma metabolites associated with modifiable factors for AD, including MIND diet, physical activity, smoking, and caffeine intake, and test their association with AD endophenotypes to identify their potential roles in pathophysiological mechanisms. The association between each of the 757 plasma metabolites and four modifiable factors was tested in the wisconsin registry for Alzheimer's prevention cohort of initially cognitively unimpaired, asymptomatic middle-aged adults. After Bonferroni correction, the significant plasma metabolites were tested for association with each of the AD endophenotypes, including twelve cerebrospinal fluid (CSF) biomarkers, reflecting key pathophysiologies for AD, and four cognitive composite scores. Finally, causal mediation analyses were conducted to evaluate possible mediation effects. Analyses were performed using linear mixed-effects regression. A total of 27, 3, 23, and 24 metabolites were associated with MIND diet, physical activity, smoking, and caffeine intake, respectively. Potential mediation effects include beta-cryptoxanthin in the association between MIND diet and preclinical Alzheimer cognitive composite score, hippurate between MIND diet and immediate learning, glutamate between physical activity and CSF neurofilament light, and beta-cryptoxanthin between smoking and immediate learning. Our study identified several plasma metabolites that are associated with modifiable factors. These metabolites can be employed as biomarkers for tracking these factors, and they provide a potential biological pathway of how modifiable factors influence the human body and AD risk.
Collapse
Affiliation(s)
- Ruocheng Dong
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Diandra N Denier-Fields
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Nutrition Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Carol A Van Hulle
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | | | | | - Norbert Wild
- Roche Diagnostics GmbH, 82377, Penzberg, Germany
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, S-43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1H 0AL, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, S-43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180, Mölndal, Sweden
| | - Cynthia M Carlsson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Sterling C Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA.
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53719, USA.
| |
Collapse
|
20
|
Yu F, Han SY, Salisbury D, Pruzin JJ, Geda Y, Caselli RJ, Li D. Feasibility and preliminary effects of exercise interventions on plasma biomarkers of Alzheimer's disease in the FIT-AD trial: a randomized pilot study in older adults with Alzheimer's dementia. Pilot Feasibility Stud 2022; 8:243. [PMID: 36461134 PMCID: PMC9716660 DOI: 10.1186/s40814-022-01200-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) biomarkers have provided a unique opportunity to understand AD pathogenesis and monitor treatment responses. However, exercise trials show mixed effects on imagining and cerebrospinal fluid biomarkers of AD. The feasibility and effects of exercise on plasma biomarkers remain unknown. The primary objective of this study was to examine the feasibility of recruitment, retention, and blood sample collection in community-dwelling older adults with mild-to-moderate AD dementia. Secondarily, it estimated the preliminary effects of 6-month aerobic and stretching exercise on plasma amyloid-β42 and Aβ40 (Aβ42/40) ratio, phosphorylated tau (p-tau) 181, and total tau (t-tau). METHODS This pilot study was implemented in year 2 of the 2-parallel group FIT-AD trial that randomized 96 participants on a 2:1 allocation ratio to moderate-intensity cycling or low-intensity stretching for 20-50 min, 3 times/week for 6 months with 6-month follow-up. Investigators (except for the statistician) and data collectors were blinded to group assignment. Fasting blood samples were collected from 26 participants at baseline and 3 and 6 months. Plasma Aβ42, Aβ40, p-tau181, and t-tau were measured using Simoa™ assays. Data were analyzed using intention-to-treat, Cohen's d, and linear mixed models. RESULTSS The sample averaged 77.6±6.99 years old and 15.4±3.00 years of education with 65% being male and 96.2% being apolipoprotein epsilon 4 gene carriers. The recruitment rate was 76.5%. The retention rate was 100% at 3 months and 96.2% at 6 months. The rate of blood collection was 88.5% at 3 months and 96.2% at 6 months. Means (standard deviation) of within-group 6-month difference in the stretching and cycling group were 0.001 (0.012) and -0.001 (0.010) for Aβ42/40 ratio, 0.609 (1.417) pg/mL and 0.101(1.579) pg/mL for p-tau181, and -0.020 (0.279) pg/mL and -0.075 (0.215) pg/mL for t-tau. Effect sizes for within-group 6-month difference were observed for p-tau181 in stretching (d=0.43 [-0.33, 1.19]) and t-tau in cycling (-0.35 [-0.87, 0.17]). CONCLUSIONS Blood collections with fasting were well received by participants and feasible with high recruitment and retention rates. Plasma biomarkers of AD may be modifiable by exercise intervention. Important design considerations are provided for future Phase III trials. TRIALS REGISTRATION ClinicalTrials.gov Identifier: NCT01954550 and posted on October 1, 2013.
Collapse
Affiliation(s)
- Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA.
| | - Seung Yong Han
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Dereck Salisbury
- Adult and Gerontological Health Cooperative, School of Nursing, University of Minnesota, Minneapolis, MN, USA
| | - Jeremy J Pruzin
- Department of Neurology, Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Yonas Geda
- Department of Neurology, and Franke Barrow Global Neuroscience Education Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Danni Li
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
21
|
Maasakkers CM, Weijs RWJ, Dekkers C, Gardiner PA, Ottens R, Olde Rikkert MGM, Melis RJF, Thijssen DHJ, Claassen JAHR. Sedentary behaviour and brain health in middle-aged and older adults: a systematic review. Neurosci Biobehav Rev 2022; 140:104802. [PMID: 35908592 DOI: 10.1016/j.neubiorev.2022.104802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Sedentary behaviour may increase the risk of dementia. Studying physiological effects of sedentary behaviour on cerebral health may provide new insights into the nature of this association. Accordingly, we reviewed if and how acute and habitual sedentary behaviour relate to brain health factors in middle-aged and older adults (≥45 years). Four databases were searched. Twenty-nine studies were included, with mainly cross-sectional designs. Nine studies examined neurotrophic factors and six studied functional brain measures, with the majority of these studies finding no associations with sedentary behaviour. The results from studies on sedentary behaviour and cerebrovascular measures were inconclusive. There was a tentative association between habitual sedentary behaviour and structural white matter health. An explanatory pathway for this effect might relate to the immediate vascular effects of sitting, such as elevation of blood pressure. Nevertheless, due to the foremost cross-sectional nature of the available evidence, reverse causality could also be a possible explanation. More prospective studies are needed to understand the potential of sedentary behaviour as a target for brain health.
Collapse
Affiliation(s)
- Carlijn M Maasakkers
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Reinier Postlaan 4, 6500 HB Nijmegen, the Netherlands
| | - Ralf W J Weijs
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Philips van Leydenlaan 15, 6500 HB Nijmegen, the Netherlands
| | - Claudia Dekkers
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Reinier Postlaan 4, 6500 HB Nijmegen, the Netherlands
| | - Paul A Gardiner
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, 34 Cornwall Street, 4102 Brisbane, Australia; School of Kinesiology, The University of Western Ontario, 1151 Richmond Street, N6A 3K7 London, Canada
| | - Romy Ottens
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Reinier Postlaan 4, 6500 HB Nijmegen, the Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatrics/Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB Nijmegen, the Netherlands
| | - René J F Melis
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Reinier Postlaan 4, 6500 HB Nijmegen, the Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Philips van Leydenlaan 15, 6500 HB Nijmegen, the Netherlands; Research Institute for Sport and Exercise Science, Liverpool John Moores University, Byrom Street, L3 3AF Liverpool, United Kingdom
| | - Jurgen A H R Claassen
- Department of Geriatrics/Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Kępka A, Ochocińska A, Borzym-Kluczyk M, Chojnowska S, Skorupa E, Przychodzeń M, Waszkiewicz N. Healthy Food Pyramid as Well as Physical and Mental Activity in the Prevention of Alzheimer’s Disease. Nutrients 2022; 14:nu14081534. [PMID: 35458096 PMCID: PMC9028231 DOI: 10.3390/nu14081534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
The ageing of the population is resulting in neurodegenerative diseases, including Alzheimer’s disease (AD), which are an increasing social, economic and medical problem. Diet and physical activity are now considered as important modifiable factors that help prevent or delay the development of AD and other dementia-related diseases. The pyramid of healthy nutrition and lifestyle is a way of presenting the principles, the implementation of which gives a chance for proper development and a long healthy life. The basis of the pyramid, in the first place, is physical activity. Our review of the literature in the PubMed database supports the hypothesis that complementary factors, such as proper diet, physical exercise and mental activity, have a positive impact on the prevention of neurodegenerative diseases. The nutritional recommendations for healthy adults primarily include the consumption of vegetables, fruits, cereals, legumes, vegetable oils and fishes. Therefore, the introduction of Mediterranean and Asian diets may reduce the risk of the neurodegenerative diseases associated with dementia, whereas dairy products and meat—the main sources of L-carnitine—should be consumed in moderate amounts. The aim of our work is to provide up-to-date knowledge about the appropriate dietary model and healthy lifestyle elements and their impact on good health and the long life of people.
Collapse
Affiliation(s)
- Alina Kępka
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute of Warsaw, 04-730 Warsaw, Poland;
- Correspondence: (A.K.); (A.O.); Tel.: +48-22-815-73-01 (A.O.)
| | - Agnieszka Ochocińska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute of Warsaw, 04-730 Warsaw, Poland;
- Correspondence: (A.K.); (A.O.); Tel.: +48-22-815-73-01 (A.O.)
| | - Małgorzata Borzym-Kluczyk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Sylwia Chojnowska
- Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Ewa Skorupa
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute of Warsaw, 04-730 Warsaw, Poland;
| | - Małgorzata Przychodzeń
- Department of Psychogeriatry, Independent Public Psychiatric Health Care Institution in Choroszcz, 16-070 Choroszcz, Poland;
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| |
Collapse
|
23
|
Pedrini S, Chatterjee P, Nakamura A, Tegg M, Hone E, Rainey-Smith SR, Rowe CC, Dore V, Villemagne VL, Ames D, Kaneko N, Gardener SL, Taddei K, Fernando B, Martins I, Bharadwaj P, Sohrabi HR, Masters CL, Brown B, Martins RN. The Association Between Alzheimer's Disease-Related Markers and Physical Activity in Cognitively Normal Older Adults. Front Aging Neurosci 2022; 14:771214. [PMID: 35418852 PMCID: PMC8996810 DOI: 10.3389/fnagi.2022.771214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have indicated that physical activity may be beneficial in reducing the risk for Alzheimer's disease (AD), although the underlying mechanisms are not fully understood. The goal of this study was to evaluate the relationship between habitual physical activity levels and brain amyloid deposition and AD-related blood biomarkers (i.e., measured using a novel high-performance mass spectrometry-based assay), in apolipoprotein E (APOE) ε4 carriers and noncarriers. We evaluated 143 cognitively normal older adults, all of whom had brain amyloid deposition assessed using positron emission tomography and had their physical activity levels measured using the International Physical Activity Questionnaire (IPAQ). We observed an inverse correlation between brain amyloidosis and plasma beta-amyloid (Aβ)1−42 but found no association between brain amyloid and plasma Aβ1−40 and amyloid precursor protein (APP)669−711. Additionally, higher levels of physical activity were associated with lower plasma Aβ1−40, Aβ1−42, and APP669−711 levels in APOE ε4 noncarriers. The ratios of Aβ1−40/Aβ1−42 and APP669−711/Aβ1−42, which have been associated with higher brain amyloidosis in previous studies, differed between APOE ε4 carriers and non-carriers. Taken together, these data indicate a complex relationship between physical activity and brain amyloid deposition and potential blood-based AD biomarkers in cognitively normal older adults. In addition, the role of APOE ε4 is still unclear, and more studies are necessary to bring further clarification.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Pratishtha Chatterjee
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Akinori Nakamura
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Michelle Tegg
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Eugene Hone
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Stephanie R. Rainey-Smith
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Vincent Dore
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- Academic Unit for Psychiatry of Old Age, St George's Hospital, University of Melbourne, Kew, VIC, Australia
| | - Naoki Kaneko
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Sam L. Gardener
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Kevin Taddei
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Binosha Fernando
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Ian Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Prashant Bharadwaj
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin L. Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Belinda Brown
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Ralph N. Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Ralph N. Martins
| |
Collapse
|
24
|
Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, Van Praag H, Ziaei M, Sando SB, Wisløff U, Tari AR. Can exercise training teach us how to treat Alzheimer's disease? Ageing Res Rev 2022; 75:101559. [PMID: 34999248 DOI: 10.1016/j.arr.2022.101559] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.
Collapse
Affiliation(s)
- Aleksi M Huuha
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cecilie S Norevik
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - José Bianco N Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan Scrimgeour
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miia Kivipelto
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Stockholm, Sweden; Karolinska University Hospital, Theme Aging and Inflammation, Stockholm, Sweden
| | - Henriette Van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Maryam Ziaei
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Atefe R Tari
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
25
|
Rodziewicz-Flis EA, Kawa M, Skrobot WR, Flis DJ, Wilczyńska D, Szaro-Truchan M, Bolek-Adamek J, Kaczor JJ. The positive impact of 12 weeks of dance and balance training on the circulating amyloid precursor protein and serotonin concentration as well as physical and cognitive abilities in elderly women. Exp Gerontol 2022; 162:111746. [PMID: 35217193 DOI: 10.1016/j.exger.2022.111746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The study aimed to compare the effectiveness of 12-weeks dance training with balance training on fall risk, physical and cognitive functions. The study's second aim was to evaluate the association between physical and cognitive functions with circulating markers of neurodegeneration and cognitive impairments in elders. MATERIALS AND METHODS 30 older women (aged 73.3 ± 4.5) were randomly assigned into three groups: balance training (BG), dance training (DG) and control group (CG). To assess the study aims Time up and go test (TUG), 6 minute walk test (6MWT), determination test (DT), blood amyloid precursor protein (APP) and serotonin concentration were performed. RESULTS The results showed an improvement in 6MWT (p = 0.0001 for DG and BD), walking speed (p = 0.0001 for DG and BG) and TUG, only for DG (p = 0.0013). The number of correct responses in DT increased in both groups (p = 0.014 and p = 0.005, for DG and BG, respectively). In DG the increase in the total number of reactions was observed (p = 0.013). The improvement in cognitive and physical functions was associated with an increase in APP (p = 0.036 and p = 0.014) and a decrease in serotonin concentrations (p = 0.042 and p = 0.049), respectively in DG and BG. CONCLUSION Dance training intervention could have more benefits on elders' physical and cognitive functions. However, both trainings may be important factors modifying the concentration of circulating proteins associated with neurodegenerative and cognitive disorders.
Collapse
Affiliation(s)
- Ewa Aleksandra Rodziewicz-Flis
- Department of Basic Physiotherapy, Gdansk University of Physical Education and Sport, K. Gorkiego 1 Street, 80-336 Gdansk, Poland.
| | - Małgorzata Kawa
- Department of Basic Physiotherapy, Gdansk University of Physical Education and Sport, K. Gorkiego 1 Street, 80-336 Gdansk, Poland.
| | - Wojciech Romuald Skrobot
- Department of Clinical Physiotherapy, Gdansk University of Physical Education and Sport, K. Gorkiego 1 Street, 80-336 Gdansk, Poland.
| | - Damian Józef Flis
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland.
| | - Dominika Wilczyńska
- Department of Psychology, Gdansk University of Physical Education and Sport, K. Gorkiego 1 Street, 80-336 Gdansk, Poland.
| | - Marzena Szaro-Truchan
- Department of Basic Physiotherapy, Gdansk University of Physical Education and Sport, K. Gorkiego 1 Street, 80-336 Gdansk, Poland.
| | - Justyna Bolek-Adamek
- Department of Fitness, Gdansk University of Physical Education and Sport, K. Gorkiego 1 Street, 80-336 Gdansk, Poland.
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdansk, J Bazynskiego 8 Street, 80-308 Gdansk, Poland.
| |
Collapse
|
26
|
Song H, Park JH. Effects of Changes in Physical Activity with Cognitive Decline in Korean Home-Dwelling Older Adults. J Multidiscip Healthc 2022; 15:333-341. [PMID: 35228804 PMCID: PMC8881931 DOI: 10.2147/jmdh.s326612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Hyunjong Song
- Department of Health Policy and Management, College of Health Sciences, Sangji University, Gangwon-do, Republic of Korea
| | - Jin-Hwa Park
- College of Nursing, Institute of Nursing Science, Daegu Catholic University, Daegu, Republic of Korea
- Correspondence: Jin-Hwa Park, Tel +82 53 650 4754, Fax +82 53 650 4392, Email
| |
Collapse
|
27
|
Pearce AM, Marr C, Dewar M, Gow AJ. Apolipoprotein E Genotype Moderation of the Association Between Physical Activity and Brain Health. A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 13:815439. [PMID: 35153725 PMCID: PMC8833849 DOI: 10.3389/fnagi.2021.815439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Possession of one or two e4 alleles of the apolipoprotein E (APOE) gene is associated with cognitive decline and dementia risk. Some evidence suggests that physical activity may benefit carriers of the e4 allele differently. Method We conducted a systematic review and meta-analysis of studies which assessed APOE differences in the association between physical activity and: lipid profile, Alzheimer's disease pathology, brain structure and brain function in healthy adults. Searches were carried out in PubMed, SCOPUS, Web of Science and PsycInfo. Results Thirty studies were included from 4,896 papers screened. Carriers of the e4 allele gained the same benefit from physical activity as non-carriers on most outcomes. For brain activation, e4 carriers appeared to gain a greater benefit from physical activity on task-related and resting-state activation and resting-state functional connectivity compared to non-carriers. Post-hoc analysis identified possible compensatory mechanisms allowing e4 carriers to maintain cognitive function. Discussion Though there is evidence suggesting physical activity may benefit e4 carriers differently compared to non-carriers, this may vary by the specific brain health outcome, perhaps limited to brain activation. Further research is required to confirm these findings and elucidate the mechanisms.
Collapse
|
28
|
Umegaki H, Sakurai T, Arai H. Active Life for Brain Health: A Narrative Review of the Mechanism Underlying the Protective Effects of Physical Activity on the Brain. Front Aging Neurosci 2021; 13:761674. [PMID: 34916925 PMCID: PMC8670095 DOI: 10.3389/fnagi.2021.761674] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
A growing body of evidence clearly indicates the beneficial effects of physical activity (PA) on cognition. The importance of PA is now being reevaluated due to the increase in sedentary behavior in older adults during the COVID-19 pandemic. Although many studies in humans have revealed that PA helps to preserve brain health, the underlying mechanisms have not yet been fully elucidated. In this review, which mainly focuses on studies in humans, we comprehensively summarize the mechanisms underlying the beneficial effects of PA or exercise on brain health, particularly cognition. The most intensively studied mechanisms of the beneficial effects of PA involve an increase in brain-derived neurotrophic factor (BDNF) and preservation of brain volume, especially that of the hippocampus. Nonetheless, the mutual associations between these two factors remain unclear. For example, although BDNF presumably affects brain volume by inhibiting neuronal death and/or increasing neurogenesis, human data on this issue are scarce. It also remains to be determined whether PA modulates amyloid and tau metabolism. However, recent advances in blood-based biomarkers are expected to help elucidate the beneficial effects of PA on the brain. Clinical data suggest that PA functionally modulates cognition independently of neurodegeneration, and the mechanisms involved include modulation of functional connectivity, neuronal compensation, neuronal resource allocation, and neuronal efficiency. However, these mechanisms are as yet not fully understood. A clear understanding of the mechanisms involved could help motivate inactive persons to change their behavior. More accumulation of evidence in this field is awaited.
Collapse
Affiliation(s)
- Hiroyuki Umegaki
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
29
|
Edmunds KJ, Okonkwo OC, Sigurdsson S, Lose SR, Gudnason V, Carraro U, Gargiulo P. Soft tissue radiodensity parameters mediate the relationship between self-reported physical activity and lower extremity function in AGES-Reykjavík participants. Sci Rep 2021; 11:20173. [PMID: 34635746 PMCID: PMC8505499 DOI: 10.1038/s41598-021-99699-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Although previous studies have highlighted the association between physical activity and lower extremity function (LEF) in elderly individuals, the mechanisms underlying this relationship remain debated. Our recent work has recognized the utility of nonlinear trimodal regression analysis (NTRA) parameters in characterizing changes in soft tissue radiodensity as a quantitative construct for sarcopenia in the longitudinal, population-based cohort of the AGES-Reykjavík study. For the present work, we assembled a series of prospective multivariate regression models to interrogate whether NTRA parameters mediate the 5-year longitudinal relationship between physical activity and LEF in AGES-Reykjavík participants. Healthy elderly volunteers from the AGES-Reykjavík cohort underwent mid-thigh X-ray CT scans along with a four-part battery of LEF tasks: normal gait speed, fastest-comfortable gait speed, isometric leg strength, and timed up-and-go. These data were recorded at two study timepoints which were separated by approximately 5 years: AGES-I (n = 3157) and AGES-II (n = 3098). Participants in AGES-I were likewise administered a survey to approximate their weekly frequency of engaging in moderate-to-vigorous physical activity (PAAGES-I). Using a multivariate mediation analysis framework, linear regression models were assembled to test whether NTRA parameters mediated the longitudinal relationship between PAAGES-I and LEFAGES-II; all models were covariate-adjusted for age, sex, BMI, and baseline LEF, and results were corrected for multiple statistical comparisons. Our first series of models confirmed that all four LEF tasks were significantly related to PAAGES-I; next, modelling the relationship between PAAGES-I and NTRAAGES-II identified muscle amplitude (Nm) and location (μm) as potential mediators of LEF to test. Finally, adding these two parameters into our PAAGES-I → LEFAGES-II models attenuated the prior effect of PAAGES-I; bootstrapping confirmed Nm and μm as significant partial mediators of the PAAGES-I → LEFAGES-II relationship, with the strongest effect found in isometric leg strength. This work describes a novel approach toward clarifying the mechanisms that underly the relationship between physical activity and LEF in aging individuals. Identifying Nm and μm as significant partial mediators of this relationship provides strong evidence that physical activity protects aging mobility through the preservation of both lean tissue quantity and quality.
Collapse
Affiliation(s)
- Kyle J Edmunds
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Ozioma C Okonkwo
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Sarah R Lose
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association (Hjartavernd), Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
- Department of Science, Landspítali, Reykjavík, Iceland
| |
Collapse
|
30
|
Yu F, Mathiason MA, Han S, Gunter JL, Jones D, Botha H, Jack C. Mechanistic Effects of Aerobic Exercise in Alzheimer's Disease: Imaging Findings From the Pilot FIT-AD Trial. Front Aging Neurosci 2021; 13:703691. [PMID: 34690736 PMCID: PMC8530186 DOI: 10.3389/fnagi.2021.703691] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Despite strong evidence from animal models of Alzheimer's disease (AD) supporting aerobic exercise as a disease-modifying treatment for AD, human mechanistic studies are limited with mixed findings. The objective of this pilot randomized controlled trial was to examine the effects of 6-month aerobic exercise on hippocampal volume, temporal meta-regions of interest (ROI) cortical thickness, white matter hyperintensity (WMH) volume, and network failure quotient (NFQ), measured with MRI, in community-dwelling older adults with AD dementia. Additionally, the relationships between 6- and 12-month changes in MRI biomarkers and the AD Assessment Scale-Cognition (ADAS-Cog) were examined. Sixty participants were randomized, but one was excluded because baseline MRI failed quality control: 38 randomized to cycling and 21 to stretching. The intervention was moderate-intensity cycling for 20-50 mins, three times a week for 6 months. Control was low-intensity stretching. The study outcomes include hippocampal volume, temporal meta-ROI cortical thickness, WMH volume, and NFQ. Outcomes were measured at baseline, 6 months, and 12 months. The sample averaged 77.3 ± 6.3 years old with 15.6 ± 2.9 years of education and 53% men. Both groups experienced significant declines over 6 months in hippocampal volume (2.64% in cycling vs. 2.89% in stretching) and temporal meta-ROI cortical thickness (0.94 vs. 1.54%), and over 12 months in hippocampal volume (4.47 vs. 3.84%) and temporal meta-ROI cortical thickness (2.27 vs. 1.79%). These declines did not differ between groups. WMH volume increased significantly with the cycling group increasing less (10.9%) than stretching (24.5%) over 6 months (f = 4.47, p = 0.04) and over 12 months (12.1 vs. 27.6%, f = 5.88, p = 0.02). NFQ did not change significantly over time. Pairwise correlational analyses showed a significant negative correlation between 6-month changes in hippocampal volume and ADAS-Cog (r = -0.34, p < 0.05). To conclude, aerobic exercise may reduce the decline in hippocampal volume and temporal meta-ROI cortical thickness during the intervention period, but the effect sizes are likely to be very small and dose-dependent and reverse once the intervention stops. Aerobic exercise is effective on slowing down WMH progression but has no effect on NFQ. Hippocampal atrophy was associated with cognitive decline during the intervention period. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT01954550.
Collapse
Affiliation(s)
- Fang Yu
- Arizona State University Edson College of Nursing and Health Innovation, Phoenix, AZ, United States
- University of Minnesota School of Nursing, Minneapolis, MN, United States
| | | | - SeungYong Han
- Arizona State University Edson College of Nursing and Health Innovation, Phoenix, AZ, United States
| | | | - David Jones
- Mayo Clinic Department of Radiology, Rochester, MN, United States
| | - Hugo Botha
- Mayo Clinic Department of Radiology, Rochester, MN, United States
| | - Clifford Jack
- Mayo Clinic Department of Radiology, Rochester, MN, United States
| |
Collapse
|
31
|
Desai P, Evans D, Dhana K, Aggarwal NT, Wilson RS, McAninch E, Rajan KB. Longitudinal Association of Total Tau Concentrations and Physical Activity With Cognitive Decline in a Population Sample. JAMA Netw Open 2021; 4:e2120398. [PMID: 34379124 PMCID: PMC8358733 DOI: 10.1001/jamanetworkopen.2021.20398] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
IMPORTANCE Tau is a brain protein located in neurons and develops abnormally in individuals with Alzheimer disease. New technology is convenient for measuring blood total tau concentrations and provides a unique and increased opportunity for early intervention to slow cognitive decline. OBJECTIVE To evaluate the association of physical activity and total tau concentrations with cognitive decline at baseline and over time. DESIGN, SETTING, AND PARTICIPANTS The Chicago Health and Aging Project is a population-based cohort study conducted in 4 Chicago communities. Data collection occurred in 3-year cycles between 1993 and 2012. Participants completed in-home interviews. Clinical evaluations, which included blood samples, were performed with a stratified random sample of 1159 participants. Statistical analyses were conducted from October 30, 2020, to May 25, 2021. EXPOSURES Physical activity and total serum tau concentrations. Data on physical activity were obtained through self-report items, and a sum of minutes per week was calculated. Little physical activity was defined as no participation in a minimum of 4 of the items on the physical activity measure. Medium activity was defined as participating in less than 150 minutes of physical activity per week, and high activity was defined as participating in 150 minutes or more of physical activity per week. MAIN OUTCOMES AND MEASURES The main outcome for this study is global cognitive function, measured through a battery of cognitive tests. The study hypothesis was developed after data were collected. RESULTS Of the 1159 participants in the study, 728 were women (63%), and 696 were African American (60%); the mean (SD) age was 77.4 (6.0) years, and the mean (SD) educational level was 12.6 (3.5) years. Participants with high total tau concentrations with medium physical activity had a 58% slower rate of cognitive decline (estimate, -0.028 standard deviation unit [SDU] per year [95% CI, -0.057 to 0.002 SDU per year]; difference, 0.038 SDU per year [95% CI, 0.011-0.065 SDU per year]), and those with high physical activity had a 41% slower rate of cognitive decline (estimate, -0.038 SDU per year [95% CI, -0.068 to -0.009 SDU per year]; difference, 0.027 SDU per year [95% CI, -0.002 to 0.056 SDU per year]), compared with those with little physical activity. Among participants with low total tau concentrations, medium physical activity was associated with a 2% slower rate of cognitive decline (estimate, -0.050 SDU per year [95% CI, -0.069 to -0.031 SDU per year]; difference, 0.001 SDU per year [95% CI, -0.019 to 0.021 SDU per year]), and high physical activity was associated with a 27% slower rate of cognitive decline (estimate, -0.037 SDU per year [95% CI, -0.055 to -0.019 SDU per year]; difference, 0.014 SDU per year [95% CI, -0.007 to 0.034 SDU per year]), compared with little physical activity. Individual tests of cognitive function showed similar results. CONCLUSIONS AND RELEVANCE This study suggests that, among participants with both high and low total tau concentrations, physical activity was associated with slower cognitive decline. Results support the potential utility of blood biomarkers in measuring the benefits associated with health behaviors and may contribute to specifying target populations or informing interventions for trials that focus on improving physical activity behavior. Future work should examine the association of total tau concentrations with other health behaviors and physical activity types.
Collapse
Affiliation(s)
- Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Denis Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Neelum T. Aggarwal
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Elizabeth McAninch
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Kumar B. Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
- Department of Neurology, University of California at Davis, Davis
| |
Collapse
|
32
|
Li B, Huang X, Meng C, Wan Q, Sun Y. Physical Activity and its Influencing Factors in Community-Dwelling Older Adults With Dementia: A Path Analysis. Clin Nurs Res 2021; 31:301-309. [PMID: 34293953 DOI: 10.1177/10547738211033928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dementia is prevalent in worldwide, and increases the care burden and potential costs. Physical activity (PA) has been increasingly shown to be beneficial for them. This was a cross-sectional observational study aiming to investigate the status of PA among community-dwelling older adults with dementia in Beijing or Hangzhou, China, and verify the relationships between neuropsychiatric symptoms, activities of daily living (ADL), caregivers' fear of patients' falling and their PA using a path analysis approach. The level of PA among 216 included people with dementia was low. PA was related to the neuropsychiatric symptoms, with ADL and caregivers' fear of patients' falling have mediation roles. The findings indicated that person-centered strategies related to the management of these symptoms might be helpful to improve ADL, relieve caregivers' concerns about them falling and consequently foster positive participation in PA.
Collapse
Affiliation(s)
- Bei Li
- Peking University First Hospital, Beijing, China
| | - Xiuxiu Huang
- Nursing School of Peking University, Beijing, China
| | | | - Qiaoqin Wan
- Nursing School of Peking University, Beijing, China
| | - Yongan Sun
- Peking University First Hospital, Beijing, China
| |
Collapse
|
33
|
Mercerón-Martínez D, Ibaceta-González C, Salazar C, Almaguer-Melian W, Bergado-Rosado JA, Palacios AG. Alzheimer’s Disease, Neural Plasticity, and Functional Recovery. J Alzheimers Dis 2021; 82:S37-S50. [DOI: 10.3233/jad-201178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is the most common and devastating neurodegenerative condition worldwide, characterized by the aggregation of amyloid-β and phosphorylated tau protein, and is accompanied by a progressive loss of learning and memory. A healthy nervous system is endowed with synaptic plasticity, among others neural plasticity mechanisms, allowing structural and physiological adaptations to changes in the environment. This neural plasticity modification sustains learning and memory, and behavioral changes and is severely affected by pathological and aging conditions, leading to cognitive deterioration. This article reviews critical aspects of AD neurodegeneration as well as therapeutic approaches that restore neural plasticity to provide functional recoveries, including environmental enrichment, physical exercise, transcranial stimulation, neurotrophin involvement, and direct electrical stimulation of the amygdala. In addition, we report recent behavioral results in Octodon degus, a promising natural model for the study of AD that naturally reproduces the neuropathological alterations observed in AD patients during normal aging, including neuronal toxicity, deterioration of neural plasticity, and the decline of learning and memory.
Collapse
Affiliation(s)
- Daymara Mercerón-Martínez
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Claudia Salazar
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - William Almaguer-Melian
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
34
|
Ord AS, Slogar SM, Sautter SW. Lifestyle Factors, Cognitive Functioning, and Functional Capacity in Older Adults. Int J Aging Hum Dev 2021; 94:387-414. [PMID: 33913787 DOI: 10.1177/00914150211009467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Research suggests that clinical management of cognitive impairment can occur through interventions targeting lifestyle factors, such as physical exercise and sleep quality. The present study examined the associations among lifestyle factors (exercise and sleep quality), cognition, and functional capacity in older adults (ages 56-94) who completed an outpatient neuropsychological evaluation (N = 356). Exercise habits and sleep quality were accessed using a self-report questionnaire and a clinical interview. Cognitive functioning was assessed using the Dementia Rating Scale-2 (DRS-2). Functional capacity was measured by the Texas Functional Living Scale (TFLS). Results indicated that physical exercise and sleep quality were positively associated with better cognitive functioning and functional capacity. Further research is needed to elucidate the relationship between lifestyle factors, cognition, and functional capacity in older adults.
Collapse
Affiliation(s)
- Anna S Ord
- 8212 Regent University, Virginia Beach, VA, USA.,W. G. Hefner VA Medical Center, Salisbury, NC, USA.,Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA.,Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Scott W Sautter
- 8212 Regent University, Virginia Beach, VA, USA.,Independent Practice, Virginia Beach, Virginia, USA
| |
Collapse
|
35
|
Hou XH, Xu W, Bi YL, Shen XN, Ma YH, Dong Q, Tan L, Yu JT. Associations of healthy lifestyles with cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact older adults: the CABLE study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:81. [PMID: 33875016 PMCID: PMC8056495 DOI: 10.1186/s13195-021-00822-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We aimed to investigate the associations between healthy lifestyles and Alzheimer's disease (AD) biomarkers in cerebrospinal fluid (CSF). METHODS A total of 1108 cognitively intact individuals from Chinese Alzheimer's Biomarker and LifestylE (CABLE) study were examined to evaluate the associations of AD biomarkers with healthy lifestyle factors, including no current smoking, no harmful drinking, absence of social isolation, and regular physical activity. The participants were categorized into groups of favorable, intermediate, and unfavorable lifestyles according to the lifestyle factors. The associations between overall lifestyle and CSF biomarkers were also analyzed. RESULTS Among cognitively intact older adults, those having more social engagement had lower CSF tau (p = 0.009) and p-tau (p < 0.001) than those who had social isolation. Regular physical activity was associated with higher CSF Aβ42 (p = 0.013) and lower levels of CSF tau (p = 0.036) and p-tau (p = 0.007). However, no significant associations were found of smoking status or alcohol intake with CSF biomarkers. When the overall lifestyle of the participants was evaluated by all the four lifestyle factors, favorable lifestyle profiles were related to lower levels of CSF tau (p < 0.001) and p-tau (p < 0.001). CONCLUSIONS These findings suggest that healthy lifestyles had a beneficial effect on AD pathology among cognitively intact elders.
Collapse
Affiliation(s)
- Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
36
|
Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22084052. [PMID: 33919972 PMCID: PMC8070923 DOI: 10.3390/ijms22084052] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
As life expectancy has increased, particularly in developed countries, due to medical advances and increased prosperity, age-related neurological diseases and mental health disorders have become more prevalent health issues, reducing the well-being and quality of life of sufferers and their families. In recent decades, due to reduced work-related levels of physical activity, and key research insights, prescribing adequate exercise has become an innovative strategy to prevent or delay the onset of these pathologies and has been demonstrated to have therapeutic benefits when used as a sole or combination treatment. Recent evidence suggests that the beneficial effects of exercise on the brain are related to several underlying mechanisms related to muscle–brain, liver–brain and gut–brain crosstalk. Therefore, this review aims to summarize the most relevant current knowledge of the impact of exercise on mood disorders and neurodegenerative diseases, and to highlight the established and potential underlying mechanisms involved in exercise–brain communication and their benefits for physiology and brain function.
Collapse
|
37
|
Zabetian-Targhi F, Srikanth VK, Beare R, Breslin M, Moran C, Wang W, Wu F, Smith KJ, Callisaya ML. The association between physical activity intensity, cognition and brain structure in people with type 2 diabetes. J Gerontol A Biol Sci Med Sci 2021; 76:2047-2053. [PMID: 33687062 DOI: 10.1093/gerona/glab067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Physical inactivity is a risk factor for type 2 diabetes (T2D) and dementia. However, it is unknown if physical activity (PA) intensity is associated with brain health in people with T2D. Therefore, this study aimed to determine 1) associations between PA intensity and step count with both cognition and brain structure and 2) if apolipoprotein E-ε4 (APOE-ε4) or insulin-therapy modifies any associations. METHODS Participants were people with T2D (n=220; aged 55-86 years). An accelerometer worn over the left hip was used to obtain step count and moderate-to-vigorous PA (MVPA) averaged over 7 days. Cognition in 7 domains was obtained using a battery of neuropsychological tests. Brain structure was measured by Magnetic Resonance Imaging (MRI). Linear regression models were used to examine associations between step count, MVPA and each cognitive and MRI measure. APOE-ε4 x PA and insulin-therapy x PA product terms were added to the models to examine effect modification. RESULTS The mean age of participants was 67.9 (SD 6.3). Higher step count was associated with greater hippocampal volume (β=0.028 95%CI 0.005, 0.051). Insulin-therapy modified the association between MVPA and attention-processing speed, such that associations were significant in people receiving insulin-therapy (P for interaction=0.019). There were no other significant associations. CONCLUSIONS Higher step count and greater time spent in MVPA may be associated with better hippocampal volume and attention-processing speed respectively in people with T2D. People with greater diabetes severity (receiving insulin-therapy) may get more cognitive benefit from MVPA.
Collapse
Affiliation(s)
- Fateme Zabetian-Targhi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Velandai K Srikanth
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richard Beare
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Monique Breslin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Chris Moran
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Aged Care, Peninsula Health, Melbourne, Victoria, Australia
| | - Wei Wang
- Cabrini Institute, Cabrini Health, Melbourne, Australia
| | - Feitong Wu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kylie J Smith
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Michele L Callisaya
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Lambertus M, Øverberg LT, Andersson KA, Hjelden MS, Hadzic A, Haugen ØP, Storm‐Mathisen J, Bergersen LH, Geiseler S, Morland C. L-lactate induces neurogenesis in the mouse ventricular-subventricular zone via the lactate receptor HCA 1. Acta Physiol (Oxf) 2021; 231:e13587. [PMID: 33244894 DOI: 10.1111/apha.13587] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
AIM Adult neurogenesis occurs in two major niches in the brain: the subgranular zone of the hippocampal formation and the ventricular-subventricular zone. Neurogenesis in both niches is reduced in ageing and neurological disease involving dementia. Exercise can rescue memory by enhancing hippocampal neurogenesis, but whether exercise affects adult neurogenesis in the ventricular-subventricular zone remains unresolved. Previously, we reported that exercise induces angiogenesis through activation of the lactate receptor HCA1. The aim of the present study is to investigate HCA1 -dependent effects on neurogenesis in the two main neurogenic niches. METHODS Wild-type and HCA1 knock-out mice received high intensity interval exercise, subcutaneous injections of L-lactate, or saline injections, five days per week for seven weeks. Well-established markers for proliferating cells (Ki-67) and immature neurons (doublecortin), were used to investigate neurogenesis in the subgranular zone and the ventricular-subventricular zone. RESULTS We demonstrated that neurogenesis in the ventricular-subventricular zone is enhanced by HCA1 activation: Treatment with exercise or lactate resulted in increased neurogenesis in wild-type, but not in HCA1 knock-out mice. In the subgranular zone, neurogenesis was induced by exercise in both genotypes, but unaffected by lactate treatment. CONCLUSION Our study demonstrates that neurogenesis in the two main neurogenic niches in the brain is regulated differently: Neurogenesis in both niches was induced by exercise, but only in the ventricular-subventricular zone was neurogenesis induced by lactate through HCA1 activation. This opens for a role of HCA1 in the physiological control of neurogenesis, and potentially in counteracting age-related cognitive decline.
Collapse
Affiliation(s)
- Marvin Lambertus
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Linda Thøring Øverberg
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
- Institute for Behavioural Sciences Faculty of Health Sciences OsloMet—Oslo Metropolitan University Oslo Norway
| | - Krister A. Andersson
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
- Division of Anatomy Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Malin S. Hjelden
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Alena Hadzic
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Øyvind P. Haugen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
| | - Jon Storm‐Mathisen
- Division of Anatomy Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Linda Hildegard Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
- Center for Healthy Aging Department of Neuroscience and Pharmacology Faculty of Health Sciences University of Copenhagen Copenhagen Denmark
| | - Samuel Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
- Institute for Behavioural Sciences Faculty of Health Sciences OsloMet—Oslo Metropolitan University Oslo Norway
| |
Collapse
|
39
|
Balea-Fernandez FJ, Martinez-Vega B, Ortega S, Fabelo H, Leon R, Callico GM, Bibao-Sieyro C. Analysis of Risk Factors in Dementia Through Machine Learning. J Alzheimers Dis 2021; 79:845-861. [DOI: 10.3233/jad-200955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Sociodemographic data indicate the progressive increase in life expectancy and the prevalence of Alzheimer’s disease (AD). AD is raised as one of the greatest public health problems. Its etiology is twofold: on the one hand, non-modifiable factors and on the other, modifiable. Objective: This study aims to develop a processing framework based on machine learning (ML) and optimization algorithms to study sociodemographic, clinical, and analytical variables, selecting the best combination among them for an accurate discrimination between controls and subjects with major neurocognitive disorder (MNCD). Methods: This research is based on an observational-analytical design. Two research groups were established: MNCD group (n = 46) and control group (n = 38). ML and optimization algorithms were employed to automatically diagnose MNCD. Results: Twelve out of 37 variables were identified in the validation set as the most relevant for MNCD diagnosis. Sensitivity of 100%and specificity of 71%were achieved using a Random Forest classifier. Conclusion: ML is a potential tool for automatic prediction of MNCD which can be applied to relatively small preclinical and clinical data sets. These results can be interpreted to support the influence of the environment on the development of AD.
Collapse
Affiliation(s)
| | - Beatriz Martinez-Vega
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Samuel Ortega
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Himar Fabelo
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Raquel Leon
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gustavo M. Callico
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cristina Bibao-Sieyro
- Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
40
|
Vidoni ED, Morris JK, Watts A, Perry M, Clutton J, Van Sciver A, Kamat AS, Mahnken J, Hunt SL, Townley R, Honea R, Shaw AR, Johnson DK, Vacek J, Burns JM. Effect of aerobic exercise on amyloid accumulation in preclinical Alzheimer's: A 1-year randomized controlled trial. PLoS One 2021; 16:e0244893. [PMID: 33444359 PMCID: PMC7808620 DOI: 10.1371/journal.pone.0244893] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Our goal was to investigate the role of physical exercise to protect brain health as we age, including the potential to mitigate Alzheimer's-related pathology. We assessed the effect of 52 weeks of a supervised aerobic exercise program on amyloid accumulation, cognitive performance, and brain volume in cognitively normal older adults with elevated and sub-threshold levels of cerebral amyloid as measured by amyloid PET imaging. METHODS AND FINDINGS This 52-week randomized controlled trial compared the effects of 150 minutes per week of aerobic exercise vs. education control intervention. A total of 117 underactive older adults (mean age 72.9 [7.7]) without evidence of cognitive impairment, with elevated (n = 79) or subthreshold (n = 38) levels of cerebral amyloid were randomized, and 110 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. We conducted 18F-AV45 PET imaging of cerebral amyloid and anatomical MRI for whole brain and hippocampal volume at baseline and Week 52 follow-up to index brain health. Neuropsychological tests were conducted at baseline, Week 26, and Week 52 to assess executive function, verbal memory, and visuospatial cognitive domains. Cardiorespiratory fitness testing was performed at baseline and Week 52 to assess response to exercise. The aerobic exercise group significantly improved cardiorespiratory fitness (11% vs. 1% in the control group) but there were no differences in change measures of amyloid, brain volume, or cognitive performance compared to control. CONCLUSIONS Aerobic exercise was not associated with reduced amyloid accumulation in cognitively normal older adults with cerebral amyloid. In spite of strong systemic cardiorespiratory effects of the intervention, the observed lack of cognitive or brain structure benefits suggests brain benefits of exercise reported in other studies are likely to be related to non-amyloid effects. TRIAL REGISTRATION NCT02000583; ClinicalTrials.gov.
Collapse
Affiliation(s)
- Eric D. Vidoni
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Jill K. Morris
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Amber Watts
- Department of Psychology, University of Kansas, Lawrence, KS, United States of America
| | - Mark Perry
- Department of Radiology, University of Kansas Health System, Kansas City, KS, United States of America
| | - Jon Clutton
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Angela Van Sciver
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Ashwini S. Kamat
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Jonathan Mahnken
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Suzanne L. Hunt
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Ryan Townley
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Robyn Honea
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Ashley R. Shaw
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - David K. Johnson
- Department of Neurology, University of California–Davis, Sacramento, CA, United States of America
| | - James Vacek
- Department of Cardiovascular Medicine, University of Kansas Health System, Kansas City, KS, United States of America
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| |
Collapse
|
41
|
Alausa A, Ogundepo S, Olaleke B, Adeyemi R, Olatinwo M, Ismail A. Chinese nutraceuticals and physical activity; their role in neurodegenerative tauopathies. Chin Med 2021; 16:1. [PMID: 33407732 PMCID: PMC7789572 DOI: 10.1186/s13020-020-00418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The onset of neurodegenerative disease has not only been a major cause of scientific worry, but of economic burden to the health system. This condition has been further attributed to mis-stability, deletion or mutation of tau protein, causing the onset of Corticobasal degeneration, Pick's diseases, Progressive supranuclear palsy, Argyrophilic grains disease, Alzheimer's diseases etc. as scientifically renowned. This is mainly related to dysregulation of translational machinery, upregulation of proinflammatory cytokines and inhibition of several essential cascades such as ERK signaling cascade, GSK3β, CREB, and PKA/PKB (Akt) signaling cascades that enhances protein processing, normal protein folding, cognitive function, and microtubule associated tau stability. Administration of some nutrients and/or bioactive compounds has a high tendency to impede tau mediated inflammation at neuronal level. Furthermore, prevention and neutralization of protein misfolding through modulation of microtubule tau stability and prevention of protein misfolding is by virtue few of the numerous beneficial effects of physical activity. Of utmost important in this study is the exploration of promising bioactivities of nutraceuticals found in china and the ameliorating potential of physical activity on tauopathies, while highlighting animal and in vitro studies that have been investigated for comprehensive understanding of its potential and an insight into the effects on human highly probable to tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Abdullahi Alausa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Sunday Ogundepo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Barakat Olaleke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Rofiat Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
| | - Mercy Olatinwo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Aminat Ismail
- Department of Science Laboratory Technology, Faculty of Pure & Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
42
|
Colovati MES, Novais IP, Zampol M, Mendes GD, Cernach MCS, Zanesco A. Interaction between physical exercise and APOE gene polymorphism on cognitive function in older people. ACTA ACUST UNITED AC 2020; 54:e10098. [PMID: 33331535 PMCID: PMC7727114 DOI: 10.1590/1414-431x202010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
We aimed to present an overview of the literature regarding the interaction between physical exercise and APOE gene polymorphism on cognitive function, particularly in patients with Alzheimer's disease (AD). Firstly, this review focused on the effect of the physical exercise on cognitive function, regardless of APOE gene polymorphism. Some studies have shown that a high level of cardiorespiratory fitness is associated with less neuronal damage with an improvement in memory score tests whereas other studies failed to detect any association between physical exercise and cognitive improvement either in healthy individuals or patients with AD. Taken together, standardized protocols and more longitudinal studies are required to provide a better insight into the effects of physical exercise on cognitive function. Although there is no agreement in the literature regarding the effects of physical exercise on cognitive function, it is well established that it improves social interaction and the feeling of well-being, thereby positively contributing to the quality of life of the elderly. Regarding the influence of physical exercise on cognitive function in APOE ε4 allele carriers, the data trend shows that the carriers of allele ε4 for APOE gene were more responsive to the beneficial effects of physical exercise on cognitive function compared with non-carriers. Nevertheless, studies with larger sample sizes will provide more accuracy about this relationship.
Collapse
Affiliation(s)
- M E S Colovati
- Laboratório de Fisiopatologia do Envelhecimento, Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade Metropolitana de Santos, Santos, SP, Brasil
| | - I P Novais
- Departamento de Saúde I, Programa de Pós-Graduação em Educação Física UESB/UESC, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brasil
| | - M Zampol
- Laboratório de Fisiopatologia do Envelhecimento, Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade Metropolitana de Santos, Santos, SP, Brasil
| | - G D Mendes
- Laboratório de Fisiopatologia do Envelhecimento, Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade Metropolitana de Santos, Santos, SP, Brasil
| | - M C S Cernach
- Laboratório de Fisiopatologia do Envelhecimento, Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade Metropolitana de Santos, Santos, SP, Brasil
| | - A Zanesco
- Laboratório de Fisiopatologia do Envelhecimento, Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade Metropolitana de Santos, Santos, SP, Brasil
| |
Collapse
|
43
|
McGurran H, Glenn JM, Madero EN, Bott NT. Prevention and Treatment of Alzheimer's Disease: Biological Mechanisms of Exercise. J Alzheimers Dis 2020; 69:311-338. [PMID: 31104021 DOI: 10.3233/jad-180958] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. With an aging population and no disease modifying treatments available, AD is quickly becoming a global pandemic. A substantial body of research indicates that lifestyle behaviors contribute to the development of AD, and that it may be worthwhile to approach AD like other chronic diseases such as cardiovascular disease, in which prevention is paramount. Exercise is an important lifestyle behavior that may influence the course and pathology of AD, but the biological mechanisms underpinning these effects remain unclear. This review focuses on how exercise can modify four possible mechanisms which are involved with the pathology of AD: oxidative stress, inflammation, peripheral organ and metabolic health, and direct interaction with AD pathology. Exercise is just one of many lifestyle behaviors that may assist in preventing AD, but understanding the systemic and neurobiological mechanisms by which exercise affects AD could help guide the development of novel pharmaceutical agents and non-pharmacological personalized lifestyle interventions for at-risk populations.
Collapse
Affiliation(s)
- Hugo McGurran
- Research Master's Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Nicholas T Bott
- Neurotrack Technologies Inc., Redwood City, CA, USA.,Clinical Excellence Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Psychology, PGSP-Stanford Consortium, Palo Alto University, Palo Alto, CA, USA
| |
Collapse
|
44
|
Stojanovic M, Jin Y, Fagan AM, Benzinger TL, Hassenstab J, Cruchaga C, Morris JC, Head D. Physical Exercise and Longitudinal Trajectories in Alzheimer Disease Biomarkers and Cognitive Functioning. Alzheimer Dis Assoc Disord 2020; 34:212-219. [PMID: 32520736 PMCID: PMC7483844 DOI: 10.1097/wad.0000000000000385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Associations of physical exercise with Alzheimer disease (AD) biomarkers and cognitive functioning have been observed cross-sectionally. However, the effects of exercise on longitudinal change in AD biomarkers have not been thoroughly investigated. The current study examined whether individuals with higher baseline exercise exhibited less longitudinal change in AD biomarkers and cognitive functioning, and whether APOE and/or brain-derived neurotrophic factor (BDNF) genotypes moderated the effects of exercise on longitudinal changes. METHODS Clinically normal individuals completed a questionnaire on physical exercise over the prior 10-year period at baseline. Ninety-five individuals had serial cerebrospinal fluid samples collected to examine Aβ42, ptau181 and total tau; 181 individuals underwent multiple assessments of amyloid positron emission tomography imaging with Pittsburgh Compound-B; 327 individuals underwent multiple cognitive assessments, including measures of episodic memory, executive functions, verbal fluency, and processing speed. RESULTS Greater exercise was associated with less steep decline in processing speed. Baseline exercise did not robustly impact longitudinal change for any other outcomes. Neither APOE nor BDNF genotype robustly moderated the effect of exercise on trajectories of AD biomarkers or cognitive decline. INTERPRETATION Results suggest that self-reported physical exercise may be limited as a moderator of changes in AD biomarkers.
Collapse
Affiliation(s)
| | | | - Anne M Fagan
- Knight Alzheimer Disease Research Center
- Hope Center for Neurological Disorders
- Department of Neurology
| | | | | | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, United States of America
| | - John C Morris
- Knight Alzheimer Disease Research Center
- Department of Neurology
| | - Denise Head
- Department of Psychological and Brain Sciences
- Knight Alzheimer Disease Research Center
- Department of Radiology
| |
Collapse
|
45
|
Kimura N, Aso Y, Yabuuchi K, Ishibashi M, Hori D, Sasaki Y, Nakamichi A, Uesugi S, Jikumaru M, Sumi K, Eguchi A, Obara H, Kakuma T, Matsubara E. Association of Modifiable Lifestyle Factors With Cortical Amyloid Burden and Cerebral Glucose Metabolism in Older Adults With Mild Cognitive Impairment. JAMA Netw Open 2020; 3:e205719. [PMID: 32515796 PMCID: PMC7284299 DOI: 10.1001/jamanetworkopen.2020.5719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPORTANCE Understanding the association of lifestyle factors with mild cognitive impairment enables the development of evidence-based interventions for delaying cognitive impairment. OBJECTIVE To explore whether objectively measured lifestyle factors, such as physical activity, conversation, and sleep, are associated with cortical amyloid burden and cerebral glucose metabolism in older adults with mild cognitive impairment. DESIGN, SETTING, AND PARTICIPANTS This cohort study included 855 community-dwelling adults in Usuki, Oita Prefecture, Japan, aged 65 years or older. Data were collected from August 2015 to December 2017. Participants were reviewed to examine risk and protective lifestyle factors for dementia. Data analysis was conducted in June 2019. EXPOSURES Wearable sensors, carbon-11 labeled Pittsburgh compound B positron emission tomography images, and fluorine-18 fluorodeoxyglucose positron emission tomography images. MAIN OUTCOMES AND MEASURES Wearable sensor data, such as walking steps, conversation time, and sleep, were collected from August 2015 to October 2017, and positron emission tomography images were collected from October 2015 to December 2017. A multiple regression model and change-point regression model were used to examine the association of lifestyle factors with mean amyloid or fluorodeoxyglucose uptake, assessed on the basis of a standardized uptake value ratio of the frontal lobes, temporoparietal lobes, and posterior cingulate gyrus with the cerebellar cortex as the reference region. The bootstrap method was used to obtain nonparametric 95% CIs on the associations of lifestyle factors with cognitive decline. RESULTS Of the 855 adults in the study, 118 (13.8%) were diagnosed with mild cognitive impairment, with a mean (SD) age of 75.7 (5.8) years and 66 (55.9%) women. Total sleep time was inversely associated with fluorodeoxyglucose uptake after adjusting for covariates (β = -0.287; 95% CI, -0.452 to -0.121, P < .001). Change-point regression showed an inverse association between total sleep time and mean amyloid uptake when sleep duration was longer than 325 minutes (B = -0.0018; 95% CI, -0.0031 to -0.0007). CONCLUSIONS AND RELEVANCE To our knowledge, this is the first study to demonstrate that total sleep time was associated with brain function in older adults with mild cognitive impairment. Sleep duration is a potentially modifiable risk factor for dementia at the mild cognitive impairment stage.
Collapse
Affiliation(s)
- Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yasuhiro Aso
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kenichi Yabuuchi
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masato Ishibashi
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Daiji Hori
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yuuki Sasaki
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Atsuhito Nakamichi
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Souhei Uesugi
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Mika Jikumaru
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kaori Sumi
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Atsuko Eguchi
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | | | | | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
46
|
Palta P, Heiss G, Sharrett AR, Gabriel KP, Walker K, Evenson KR, Knopman D, Mosley TH, Wong DF, Gottesman RF. Mid- and Late-Life Leisure-Time Physical Activity and Global Brain Amyloid Burden: The Atherosclerosis Risk in Communities (ARIC)-PET Study. J Alzheimers Dis 2020; 76:139-147. [PMID: 32444546 PMCID: PMC8011955 DOI: 10.3233/jad-200152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Physical activity (PA) may slow the development of dementia by reducing the accumulation of amyloid. OBJECTIVE We tested the hypothesis that higher levels of leisure-time PA in mid- or late-life were associated with lower brain amyloid burden in late-life among 326 non-demented participants from the Atherosclerosis Risk in Communities Study of brain florbetapir positron emission tomography (ARIC-PET) ancillary. METHODS Self-reported PA was quantified using a past-year recall, interviewer-administered questionnaire in mid-life (1987-1989, aged 45-64 years) and late-life (2011-2013, aged 67-89 years). Continuous PA estimates were classified as 1) any leisure-time PA participation (yes/no); 2) meeting the 2018 United States' PA guidelines (yes/no); and 3) per 1 standard deviation (SD) higher metabolic equivalent of task (MET) minutes per week (MET·min·wk-1). A brain magnetic resonance imaging scan with Florbetapir PET was performed in late-life. Adjusted odds ratios (OR) of elevated amyloid burden, defined as a global cortical standardized uptake value ratio (>1.2), compared to no elevated amyloid burden were estimated according to PA measures. RESULTS Among the 326 participants (mean age: 76 years, 42% male, 41% Black), 52% had elevated brain amyloid burden. Mid-life leisure-time PA did not show a statistically significant lower odds of elevated late-life amyloid burden (OR = 0.71, 95% CI: 0.43-1.18). A 1 SD (970 MET. min. wk-1) higher PA level in mid-life was also not significantly associated withelevated amyloid burden (OR = 0.89, 95% CI: 0.69-1.15). Similar estimates were observed for meeting versus not meeting PA guidelines in both mid- and late-life. CONCLUSION Self-reported higher mid- and late-life leisure-time PA were not significantly associated with lower amyloid burden. Data show a trend of an association, which is, however, imprecise, suggesting replication in larger studies.
Collapse
Affiliation(s)
- Priya Palta
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A. Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kelley Pettee Gabriel
- Department of Epidemiology, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Keenan Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly R. Evenson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Thomas H. Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Dean F. Wong
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Washington University in St. Louis, School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO, USA
| | - Rebecca F. Gottesman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Li B, Liu C, Wan Q, Yu F. An integrative review of exercise interventions among community-dwelling adults with Alzheimer's disease. Int J Older People Nurs 2019; 15:e12287. [PMID: 31750628 DOI: 10.1111/opn.12287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/20/2019] [Accepted: 10/24/2019] [Indexed: 12/01/2022]
Abstract
AIMS To synthesise the current research on exercise interventions and health-related outcomes among community-dwelling adults with Alzheimer's disease (AD). METHODS Integrative review of the literature reporting exercise interventions among people with AD living in the communities. RESULTS Seventeen studies presented in 24 quantitative papers with 1,068 participants diagnosed with Alzheimer's disease were reviewed. The interventions varied in intervention programme characteristics (e.g. baseline assessments, type of exercise, exercise dose, outcome measurements). Among them, (a) 13 studies appeared beneficial to physical fitness in different areas; (b) 9 studies reported the effects on cognitive ability and two studies showed the positive effects; (c) 12 studies reported the participants' adherence, but only 2 studies reported the participants' adherence using attendance and training intensity. CONCLUSION Exercise is proven to be effective in physical fitness among community-dwelling patients with AD. Future studies should verify the effects on cognitive function and possible mechanisms of different exercise types using more sensitive and objective outcome measurements. Additionally, treatment fidelity, cost-effectiveness and long-term effects should be explored. IMPLICATION FOR PRACTICE Exercise may be effective and feasible for community-dwelling people with AD, but its effects on cognition need to be verified in the future. This review provided recommendations for assisting nurses and other clinicians in developing, implementing, and/or evaluating exercise interventions for patients with AD.
Collapse
Affiliation(s)
- Bei Li
- School of Nursing, Peking University, Beijing, China
| | - Congying Liu
- School of Nursing, Peking University, Beijing, China
| | - Qiaoqin Wan
- School of Nursing, Peking University, Beijing, China
| | - Fang Yu
- School of Nursing, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
48
|
Berkowitz CL, Mosconi L, Rahman A, Scheyer O, Hristov H, Isaacson RS. Clinical Application of APOE in Alzheimer's Prevention: A Precision Medicine Approach. JPAD-JOURNAL OF PREVENTION OF ALZHEIMERS DISEASE 2019; 5:245-252. [PMID: 30298183 DOI: 10.14283/jpad.2018.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Population-attributable risk models estimate that up to one-third of Alzheimer's disease (AD) cases may be preventable through risk factor modification. The field of AD prevention has largely focused on addressing these factors through universal risk reduction strategies for the general population. However, targeting these strategies in a clinical precision medicine fashion, including the use of genetic risk factors, allows for potentially greater impact on AD risk reduction. Apolipoprotein E (APOE), and specifically the APOE ε4 variant, is one of the most well-established genetic influencers on late-onset AD risk. In this review, we evaluate the impact of APOE ε4 carrier status on AD prevention interventions, including lifestyle, nutrigenomic, pharmacogenomic, AD comorbidities, and other biological and behavioral considerations. Using a clinical precision medicine strategy that incorporates APOE ε4 carrier status may provide a highly targeted and distinct approach to AD prevention with greater potential for success.
Collapse
Affiliation(s)
- C L Berkowitz
- Richard S. Isaacson, MD, Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, 428 East 72nd St, Suite 500, Room 407, New York, NY, 10021; Tel: (212) 746-3645,
| | | | | | | | | | | |
Collapse
|
49
|
Zlatar ZZ, Hays CC, Mestre Z, Campbell LM, Meloy MJ, Bangen KJ, Liu TT, Kerr J, Wierenga CE. Dose-dependent association of accelerometer-measured physical activity and sedentary time with brain perfusion in aging. Exp Gerontol 2019; 125:110679. [PMID: 31382010 PMCID: PMC6719795 DOI: 10.1016/j.exger.2019.110679] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Age-related decreases in cerebral blood flow (CBF) may lead to cognitive decline, while physical activity (PA) can maintain CBF and cognition in aging. The intensity of PA needed to affect CBF in aging, and the independent effects of sedentary time on CBF are currently unknown. Moreover, research conducted in free-living environments with objective measures of PA (e.g., accelerometry) is lacking. METHODS This cross-sectional study used accelerometry to objectively measure sedentary time, all light PA [AllLightPA], moderate-to-vigorous PA [MVPA], and total activity counts [TAC] in 52 cognitively healthy older adults. Robust linear regressions investigated the association of CBF (using arterial spin labeling magnetic resonance imaging) in frontal and medial temporal regions, with each PA intensity and sedentary time. RESULTS Greater sedentary time was significantly associated with lower CBF in lateral and medial frontal regions after adjusting for MVPA, while higher AllLightPA (adjusted for MVPA), MVPA (adjusted for AllLightPA), and TAC were associated with greater CBF in lateral and medial frontal regions. DISCUSSION Lighter activities, as well as MVPA, are beneficial to CBF in brain regions typically affected by the aging process and malleable to exercise interventions (i.e., the frontal lobes), whereas sedentary time is an independent risk factor for neurovascular dysregulation in normal aging.
Collapse
Affiliation(s)
- Zvinka Z Zlatar
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093. USA.
| | - Chelsea C Hays
- San Diego State University, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92093, USA
| | - Zoe Mestre
- San Diego State University, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92093, USA
| | - Laura M Campbell
- San Diego State University, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92093, USA
| | - M J Meloy
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093. USA
| | - Katherine J Bangen
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093. USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego 92161, USA
| | - Thomas T Liu
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093. USA; Department of Radiology, University of California, San Diego, La Jolla, CA 92093. USA; Deaprtment of Bioengineering, University of California, San Diego, La Jolla, CA 92093. USA
| | - Jacqueline Kerr
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093. USA
| | - Christina E Wierenga
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093. USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego 92161, USA
| |
Collapse
|
50
|
Liu Y, Yan T, Chu JMT, Chen Y, Dunnett S, Ho YS, Wong GTC, Chang RCC. The beneficial effects of physical exercise in the brain and related pathophysiological mechanisms in neurodegenerative diseases. J Transl Med 2019; 99:943-957. [PMID: 30808929 DOI: 10.1038/s41374-019-0232-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Growing evidence has shown the beneficial influence of exercise on humans. Apart from classic cardioprotection, numerous studies have demonstrated that different exercise regimes provide a substantial improvement in various brain functions. Although the underlying mechanism is yet to be determined, emerging evidence for neuroprotection has been established in both humans and experimental animals, with most of the valuable findings in the field of mental health, neurodegenerative diseases, and acquired brain injuries. This review will discuss the recent findings of how exercise could ameliorate brain function in neuropathological states, demonstrated by either clinical or laboratory animal studies. Simultaneously, state-of-the-art molecular mechanisms underlying the exercise-induced neuroprotective effects and comparison between different types of exercise will be discussed in detail. A majority of reports show that physical exercise is associated with enhanced cognition throughout different populations and remains as a fascinating area in scientific research because of its universal protective effects in different brain domain functions. This article is to review what we know about how physical exercise modulates the pathophysiological mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Yan Liu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Tim Yan
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - John Man-Tak Chu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Ying Chen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Sophie Dunnett
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuen-Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| |
Collapse
|