1
|
Queiroz V, Arizza V, Vazzana M, Custódio MR. Comparative evaluation of coelomocytes in Paracentrotus sea urchins: Description of new cell types and insights on spherulocyte maturation and sea urchin physiology. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Queiroz V, Muxel SM, Inguglia L, Chiaramonte M, Custódio MR. Comparative study of coelomocytes from Arbacia lixula and Lythechinus variegatus: Cell characterization and in vivo evidence of the physiological function of vibratile cells. FISH & SHELLFISH IMMUNOLOGY 2021; 110:1-9. [PMID: 33378698 DOI: 10.1016/j.fsi.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The knowledge on echinoderm coelomocytes has increased in recent years, but researchers still face a complex problem: how to obtain purified cells. Even flow cytometry being useful to address coelomocytes in suspension, the need for a method able to provide isolated cells is still noteworthy. Here, we use Imaging Flow Cytometry (IFC) to characterize the coelomocytes of two sea urchin species - Arbacia lixula and Lytechinus variegatus - and obtain gates to isolate cell populations. Then, we used these gates to study the physiological response of A. lixula coelomocytes during an induced immune challenge with Escherichia coli. An analysis of area and aspect ratio parameters of the flow cytometer allowed the identification of two main cell populations in the coelomic fluid: circular and elongated cells. A combination of this method with nucleus labeling using propidium iodide allowed the determination of gates containing isolated subpopulations of vibratile cells, red spherulocytes, and two phagocytes subpopulations in both species. We observed that during an induced bacterial immune challenge, A. lixula was able to modulate coelomocyte frequencies, increasing the phagocytes and decreasing red spherulocytes and vibratile cells. These results indicate that vibratile cells and red spherulocytes act by immobilizing and stoping bacterial growth, respectively, cooperating with phagocytes in the immune response. The use of IFC was fundamental not only to identify specific gates for the main coelomic subpopulations but also allowed the investigation on how echinoids modulate their physiological responses during immune challenges. Furthermore, we provide the first experimental evidence about the role of vibratile cells, corroborating its involvement with the immune system.
Collapse
Affiliation(s)
- Vinicius Queiroz
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| | - Sandra M Muxel
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Luigi Inguglia
- Dept. STEBICEF, University of the Study of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Marco Chiaramonte
- Dept. STEBICEF, University of the Study of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Márcio R Custódio
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
DeFilippo J, Ebersole J, Beck G. Comparison of phagocytosis in three Caribbean Sea urchins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:14-25. [PMID: 28916267 DOI: 10.1016/j.dci.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/24/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
In 1983 large numbers of the sea urchin Diadema antillarum unexplainably began showing signs of illness and dying in the Caribbean, and over the next year they came close to extinction, making it one of the worst mass mortality events on record. Present evidence suggests a water-borne pathogen as the etiological agent. Decades later Diadema densities remain low, and its near extinction has been a major factor in transforming living coral reefs in the Caribbean to barren algae-covered rock. In the ensuing decades, no solid explanation has been found to the questions: what killed Diadema; why did Diadema succumb while other species of urchins on the same reefs did not; and why has Diadema still not recovered? A recent hypothesis posited by our lab as to Diadema's vulnerability was directed at possible compromised immunity in Diadema, and experimental results found a significantly impaired humoral response to a key component of gram-negative bacteria. Here we use flow cytometry to examine the cellular arm of invertebrate immunity. We performed cytotoxicity and phagocytosis assays as a measure of the cellular immune responses of cells from Diadema and two other species of sea urchins not affected by the die-off. Despite our previous findings of in impaired humoral response, our study found no apparent difference in the cellular phagocytic response of Diadema compared to the other urchin species studied.
Collapse
Affiliation(s)
- John DeFilippo
- Department of Biology, University of Massachusetts at Boston, Boston, MA, 02125-3393, USA
| | - John Ebersole
- Department of Biology, University of Massachusetts at Boston, Boston, MA, 02125-3393, USA
| | - Gregory Beck
- Department of Biology, University of Massachusetts at Boston, Boston, MA, 02125-3393, USA.
| |
Collapse
|
4
|
Barca A, Vacca F, Vizioli J, Drago F, Vetrugno C, Verri T, Pagliara P. Molecular and expression analysis of the Allograft inflammatory factor 1 (AIF-1) in the coelomocytes of the common sea urchin Paracentrotus lividus. FISH & SHELLFISH IMMUNOLOGY 2017; 71:136-143. [PMID: 28986218 DOI: 10.1016/j.fsi.2017.09.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Allograft inflammatory factor 1 (AIF-1) is a highly conserved gene involved in inflammation, cloned and characterized in several evolutionary distant animal species. Here, we report the molecular identification, characterization and expression of AIF-1 from the common sea urchin Paracentrotus lividus. In this species, AIF-1 encodes a predicted 151 amino acid protein with high similarity to vertebrate AIF-1 proteins. Immunocytochemical analyses on coelomocytes reveal localization of the AIF-1 protein in amoebocytes (perinuclear cytoplasmic zone) and red sphaerulocytes (inside granules), but not in vibratile cells and colorless sphaerula cells. The significant increase of AIF-1 expression (mRNA and protein) found in the coelomocytes of the sea urchin after Gram + bacterial challenge suggests the involvement of AIF-1 in the inflammatory response. Our analysis on P. lividus AIF-1 contributes to elucidate AIF-1 function along the evolutionary scale and consolidate the key evolutionary position of echinoderms throughout metazoans with respect to the common immune paths.
Collapse
Affiliation(s)
- Amilcare Barca
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università Del Salento, Complesso Ecotekne Pal. A, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Francesca Vacca
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università Del Salento, Complesso Ecotekne Pal. A, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Jacopo Vizioli
- Laboratoire PRISM (Protéomique, Réponse Inflammatoire, Spectrométrie de Masse), INSERM U1192 Université Lille 1 Sciences et Technologies, Bât. SN3, Cité Scientifique, 59650 Villeneuve D'Ascq, France.
| | - Francesco Drago
- Laboratoire PRISM (Protéomique, Réponse Inflammatoire, Spectrométrie de Masse), INSERM U1192 Université Lille 1 Sciences et Technologies, Bât. SN3, Cité Scientifique, 59650 Villeneuve D'Ascq, France.
| | - Carla Vetrugno
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università Del Salento, Complesso Ecotekne Pal. A, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Tiziano Verri
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università Del Salento, Complesso Ecotekne Pal. A, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Patrizia Pagliara
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università Del Salento, Complesso Ecotekne Pal. A, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
5
|
TRICAINE METHANESULFONATE (MS-222) SEDATION AND ANESTHESIA IN THE PURPLE-SPINED SEA URCHIN (ARBACIA PUNCTULATA). J Zoo Wildl Med 2017; 47:1025-1033. [PMID: 28080914 DOI: 10.1638/2015-0288.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purple-spined sea urchin ( Arbacia punctulata ) is commonly found in shallow waters of the western Atlantic Ocean from the New England area of the United States to the Caribbean. Sea urchins play a major role in ocean ecology, echinoculture, and biomedical research. Additionally, sea urchins are commonly displayed in public aquaria. Baseline parameters were developed in unanesthetized urchins for righting reflex (time to regain oral recumbency) and spine response time to tactile stimulus. Tricaine methanesulfonate (MS-222) was used to sedate and anesthetize purple-spined sea urchins and assess sedation and anesthetic parameters, including adhesion to and release from a vertical surface, times to loss of response to tactile stimulus and recovery of righting reflex, and qualitative observations of induction of spawning and position of spines and pseudopodia. Sedation and anesthetic parameters were evaluated in 11 individuals in three circumstances: unaltered aquarium water for baseline behaviors, 0.4 g/L MS-222, and 0.8 g/L MS-222. Induction was defined as the release from a vertical surface with the loss of righting reflex, sedation as loss of righting reflex with retained tactile spine response, anesthesia as loss of righting reflex and loss of tactile spine response, and recovery as voluntary return to oral recumbency. MS-222 proved to be an effective sedative and anesthetic for the purple-spined sea urchin at 0.4 and 0.8 g/L, respectively. Sodium bicarbonate used to buffer MS-222 had no measurable sedative effects when used alone. Anesthesia was quickly reversed with transfer of each individual to anesthesia-free seawater, and no anesthetic-related mortality occurred. The parameters assessed in this study provide a baseline for sea urchin anesthesia and may provide helpful comparisons to similar species and populations that are in need of anesthesia for surgical procedures or research.
Collapse
|
6
|
Prompoon Y, Weerachatyanukul W, Withyachumnarnkul B, Vanichviriyakit R, Wongprasert K, Asuvapongpatana S. Lectin-Based Profiling of Coelomocytes in Holothuria scabra and Expression of Superoxide Dismutase in Purified Coelomocytes. Zoolog Sci 2015; 32:345-51. [PMID: 26245221 DOI: 10.2108/zs140285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coelomocytes are the first line of immune defense in marine animals. Their distributions are greatly variable even in the close animal species. In this study, we used lectin staining to aid in the classification and purification of these cells for further investigation of SOD distribution among coelomocytes of H. scraba. We classified coelomocytes into four types: type 1, lymphocytes; type 2, phagocytes; type 3, spherulocytes; and type 4, giant cells. Among four lectins used, Con A appeared to give a broad reactivity against most coelomocytes, except for giant cells. In addition, phagocytes usually engaged the highest fluorescent intensity with most lectins, with the exception of PNA, for which spherulocytes possessed the highest fluorescent intensity. Using FACS for fraction collection, it was found that F1 fraction contained the purest phagocyte population (> 95%), which was highly reactive with anti- superoxide dismutase (SOD) as revealed by immunoblotting and immunofluorescence staining, although some minor staining was also detected in spherulocytes. Our results thus provide a fundamental platform for comparing alterations that may happen to the population and SOD contents of coelomocytes when the sea cucumber is subjected to environmental changes that would activate their immune responses.
Collapse
Affiliation(s)
| | | | - Boonsirm Withyachumnarnkul
- 1 Department of Anatomy;,2 Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,3 Shrimp Genetic Improvement Center, Chaiya, Nakhon Sri Thammarat, 84110, Thailand
| | - Rapeepun Vanichviriyakit
- 1 Department of Anatomy;,2 Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | | |
Collapse
|
7
|
Ultrastructural localization of highly variable 185/333 immune response proteins in the coelomocytes of the sea urchin, Heliocidaris erythrogramma. Immunol Cell Biol 2011; 89:861-9. [PMID: 21577232 DOI: 10.1038/icb.2011.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 185/333 proteins of sea urchins represent a family of highly variable immune response molecules with unknown functions. In this study, we show that 185/333 proteins are expressed by three cell types: amoebocytes, colourless spherule cells and gut-associated amoebocytes. A sub-population of amoebocytes express 185/333 proteins on the membranes of vesicles emanating from the trans-Golgi and which later fuse with the plasma membranes of the cells. The previously uncharacterized gut-associated amoebocytes also show a high level of 185/333 protein expression on their internal vesicles and plasma membranes. Colourless spherule cells contain 185/333 proteins within large spherules (specialized intracellular vesicles). In the presence of bacteria and yeast, the ultrastucture of colourless spherule cells changes and 185/333 proteins disappear. In contrast, 185/333 proteins were not found in the phagosomes of coelomocytes. The 185/333-positive gut amoebocytes were often associated with anuclear bodies, which appeared to incorporate material of microbial origin that was surrounded by 185/333 proteins. The association between 185/333 proteins on gut amoebocytes and anuclear bodies suggests that these proteins may be involved in the phagocytosis of microbes in the gut epithelium.
Collapse
|