1
|
Song YL, Yao YY, Liu X, Tian TT, Ye JM, Zhang YA, Zhang XJ. Preparation of the monoclonal antibody against Nile tilapia Igλ and study on the Igλ + B cell subset in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108705. [PMID: 36958505 DOI: 10.1016/j.fsi.2023.108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Immunoglobulins (Igs) are important effector molecules that mediate humoral immunity. A typical Ig consists of two heavy and two light chains. In teleosts, three Ig heavy chain isotypes (Igμ, Igδ and Igτ) and three Ig light chain isotypes (Igκ, Igλ and Igσ) have been identified. Compared to the heavy chains, teleost Ig light chains have been poorly studied due to the lack of antibodies. In this study, a mouse anti-Nile tilapia Igλ monoclonal antibody (mAb) was prepared, which could specifically recognize Igλ in serum and Igλ+ B cells in tissues. Further, the composition of IgM+ and Igλ+ B cell subsets was analyzed using this antibody and a mouse anti-tilapia IgM heavy chain mAb. The ratio of IgM+Igλ+ B cells to total IgM+ B cells in head kidney and peripheral blood was about 30%, while that in spleen was about 50%; the ratio of IgM-Igλ+ B cells to total Igλ+ B cells in head kidney and peripheral blood was about 45%, while that in spleen was about 25%. The IgM-Igλ+ B cells was speculated to be IgT+ B cells. Finally, we detected an increase in the level of specific antibodies against the surface antigen-Sip of Streptococcus agalactiae in serum after S. agalactiae infection, indicating that mouse anti-tilapia Igλ mAb can be used to detect the antibody level after immunization of Nile tilapia, which lays a foundation for the evaluation of immunization effect of tilapia vaccine.
Collapse
Affiliation(s)
- Yan-Ling Song
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuan-Yuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xun Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tian-Tian Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jian-Min Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Edholm ES, Fenton CG, Mondot S, Paulssen RH, Lefranc MP, Boudinot P, Magadan S. Profiling the T Cell Receptor Alpha/Delta Locus in Salmonids. Front Immunol 2021; 12:753960. [PMID: 34733285 PMCID: PMC8559430 DOI: 10.3389/fimmu.2021.753960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
In jawed vertebrates, two major T cell populations have been characterized. They are defined as α/β or γ/δ T cells, based on the expressed T cell receptor. Salmonids (family Salmonidae) include two key teleost species for aquaculture, rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) which constitute important models for fish immunology and important targets for vaccine development. The growing interest to decipher the dynamics of adaptive immune responses against pathogens or vaccines has resulted in recent efforts to sequence the immunoglobulin (IG) or antibodies and T cell receptor (TR) repertoire in these species. In this context, establishing a comprehensive and coherent locus annotation is the fundamental basis for the analysis of high-throughput repertoire sequencing data. We therefore decided to revisit the description and annotation of TRA/TRD locus in Atlantic salmon and two strains of rainbow trout (Swanson and Arlee) using the now available high-quality genome assemblies. Phylogenetic analysis of functional TRA/TRD V genes from these three genomes led to the definition of 25 subgroups shared by both species, some with particular feature. A total of 128 TRAJ genes were identified in Salmo, the majority with a close counterpart in Oncorhynchus. Analysis of expressed TRA repertoire indicates that most TRAV gene subgroups are expressed at mucosal and systemic level. The present work on TRA/TRD locus annotation along with the analysis of TRA repertoire sequencing data show the feasibility and advantages of a common salmonid TRA/TRD nomenclature that allows an accurate annotation and analysis of high-throughput sequencing results, across salmonid T cell subsets.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Faculty of Biosciences, Fisheries & Economics, Norwegian College of Fishery Science, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Christopher Graham Fenton
- Clinical Bioinformatics Research Group, Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ruth H Paulssen
- Clinical Bioinformatics Research Group, Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System (IMGT), Laboratoire d´ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), CNRS, University of Montpellier, Montpellier Cedex, France
| | - Pierre Boudinot
- Université Paris Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Susana Magadan
- Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.,Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| |
Collapse
|
3
|
Perdiguero P, Morel E, Díaz-Rosales P, Tafalla C. Individual B cells transcribe multiple rearranged immunoglobulin light chains in teleost fish. iScience 2021; 24:102615. [PMID: 34142062 PMCID: PMC8188548 DOI: 10.1016/j.isci.2021.102615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 11/01/2022] Open
Abstract
B cells express a unique antibody protein which comprises two pairs of immunoglobulin (Ig) heavy (H) and light (L) chains. In addition to an invariable constant (C) region, IgH and IgL chains encompass a variable (V) region mediating antigen binding. This unique region stems from Ig V(D)J gene recombination, which generates diversity by assembling these gene segments into VHDJH and VLJL genes. To ensure that one B cell only expresses one antibody, VHDJH rearrangement occurs only in one IgH locus (allelic exclusion), whereas VLJL rearrangement only in either the κ or λ locus (isotype exclusion). However, teleosts express multiple IgLs encoded by distinct CL genes. Using single-cell transcriptomics, we have demonstrated the transcription of distinct rearranged VLJLCL genes in single rainbow trout B cells. Our results highlight the laxity of isotype exclusion in teleosts and strongly suggest that fish B cells can produce antibodies of different specificities.
Collapse
Affiliation(s)
- Pedro Perdiguero
- Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid 28130, Spain
| | - Esther Morel
- Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid 28130, Spain
| | | | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid 28130, Spain
| |
Collapse
|
4
|
Rego K, Hansen JD, Bromage ES. Genomic architecture and repertoire of the rainbow trout immunoglobulin light chain genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103776. [PMID: 32702357 DOI: 10.1016/j.dci.2020.103776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The genomic loci encoding the four immunoglobulin light chains (IgL1, IgL2, IgL3, and IgL4) in the Swanson trout genome assembly were annotated in order to provide a measurement of the potential IgL repertoire. IgL1 and IgL3 gene segments are co-localized on chromosomes 21, 18, 15, and 7 while IgL2 and IgL4 were found on chromosomes 13 and 17, respectively. In total, 48 constant (CL), 87 variable (VL), and 59 joining (JL) productive genes are described. Pairwise alignment of the VL segments revealed that they belong to nine different families, three of which (kappa IV, V, and VI) are described for the first time in this study. VL and CL sequences on chromosome 15 and 21 and those on chromosomes 7 and 18 clustered together in phylogenetic analysis. PCR was used to examine IgL CL and VL genes in 9 lines of rainbow trout. IgL4 in the Hot Creek and Golden trout lines was missing 42 nucleotides resulting in a loss of 14 amino acids. The sigma IV variable family was completely absent from the Swanson, Arlee, Hot Creek, and wild type lines and silenced in the Skamania line with the addition of 176 bp mini-satellite insert. Similarly, the Whale Rock, Arlee, and wild type lines were all found to encode two sigma II products, a functional 252 bp product and a larger 425 bp product that contained a 172 bp insert. Results from this study indicate that there are genomic differences in IgL repertoire between different lines of trout that could affect humoral immune responses post vaccination and during disease.
Collapse
Affiliation(s)
- Katherine Rego
- Department of Biology University of Massachusetts Dartmouth, USA
| | - John D Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - Erin S Bromage
- Department of Biology University of Massachusetts Dartmouth, USA.
| |
Collapse
|
5
|
Rego K, Bengtén E, Wilson M, Hansen JD, Bromage ES. Characterization of immunoglobulin light chain utilization and variable family diversity in rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103566. [PMID: 31837380 DOI: 10.1016/j.dci.2019.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
This study characterizes immunoglobulin light chain (IgL) expression and variable family usage in rainbow trout. IgL transcripts were generated by 5' RACE from both immune and TNP-KLH immunized fish. Phylogenetic analysis revealed that the IgL variable regions clustered into seven different families: three kappa families (two newly described in this study), three sigma families, and a single lambda family. IgL1 and IgL3 transcripts expressing identical variable regions were identified and genomic analysis revealed that the two isotypes are co-localized on chromosomes 7, 15, 18, and 21 allowing for potential rearrangement between clusters. Fish were immunized with TNP-KLH (n = 5) and percent expression of IgL1, IgL2, IgL3, and IgL4 measured by qRT-PCR from immune tissues and magnetically sorted TNP-specific lymphocyte populations. In all samples IgL1 constituted 80-95% of the transcripts. The percentage of anti-TNP specific IgL1 transcripts was measured in naïve, unsorted, and TNP-specific cell populations of TNP-KLH fish (n = 3) and found to be significantly higher in the TNP positive cell population (21%) compared to the naïve population (1%; p = 0.02) suggesting that there is a selection of TNP specific IgL sequences.
Collapse
Affiliation(s)
- Katherine Rego
- Department of Biology University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - John D Hansen
- US Geological Survey, Western Fisheries Research Center, Seattle, WA, USA; Interdisciplinary Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Erin S Bromage
- Department of Biology University of Massachusetts Dartmouth, North Dartmouth, MA, USA.
| |
Collapse
|
6
|
Immunoglobulin light chain (IGL) genes in torafugu: Genomic organization and identification of a third teleost IGL isotype. Sci Rep 2017; 7:40416. [PMID: 28098239 PMCID: PMC5241823 DOI: 10.1038/srep40416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/06/2016] [Indexed: 02/05/2023] Open
Abstract
Here, we report a genome-wide survey of immunoglobulin light chain (IGL) genes of torafugu (Takifugu rubripes) revealing multi-clusters spanning three separate chromosomes (v5 assembly) and 45 scaffolds (v4 assembly). Conventional sequence similarity searches and motif scanning approaches based on recombination signal sequence (RSS) motifs were used. We found that three IGL isotypes (L1, L2, and L3) exist in torafugu and that several loci for each isotype are present. The transcriptional orientations of the variable IGL (VL) segments were found to be either the same (in the L2 isotype) or opposite (in the L1 and L3 isotypes) to the IGL joining (JL) and constant (CL) segments, suggesting they can undergo rearrangement by deletion or inversion when expressed. Alignments of expressed sequence tags (ESTs) to corresponding germline gene segments revealed expression of the three IGL isotypes in torafugu. Taken together, our findings provide a genomic framework for torafugu IGL genes and show that the IG diversity of this species could be attributed to at least three distinct chromosomal regions.
Collapse
|
7
|
Kim YK, Lee JS, Jung JW, Hikima JI, Ohtani M, Jang HB, Nho SW, Cha IS, Park SB, Lee JH, Aoki T, Jung TS. Characterization of a specific monoclonal antibody against immunoglobulin light kappa/L1 chain in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2017; 60:88-96. [PMID: 27840171 DOI: 10.1016/j.fsi.2016.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Immunoglobulins (Ig) are heterodimeric proteins that play critical roles in the adaptive immune system of vertebrates. Because of their plasticity, teleostean Igs are more diverse, and thus do not conform to mammalian classifications. Because of this, mammalian-based Ig cell markers cannot be used successfully to study immune responses in fish. There is therefore a need to produce Ig-specific cell markers for fish. Here, we attempted to identify the specific isotype detected by an Ig light chain-specific monoclonal antibody (anti-olive flounder IgL-mAb: M7C3-4) that we had previously produced [11]. Three newly identified sequences of the Ig light chain from olive flounder were classified according to their isotypes. Subsequent analyses revealed that M7C3-4 was able to specifically detect lymphocytes expressing one of the κ chains (Igκ-a) in olive flounder. Interestingly, Igκ-a+ B cells were more abundant in spleen and trunk-kidney than in peripheral blood, indicating a distribution different from that of IgM+ B cells. Our work reveals interesting aspects of B cell distribution and differentiation, and may aid in the production of suitable and effective cell markers for olive flounder.
Collapse
Affiliation(s)
- Young Kyu Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
| | - Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
| | - Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Maki Ohtani
- Department of Veterinary Diseases Biology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen 13626, Denmark
| | - Ho Bin Jang
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
| | - Seong Won Nho
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
| | - In Seok Cha
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
| | - Seong Bin Park
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
| | - Jeong Ho Lee
- Inland Aquaculture Research Center, National Institute of Fisheries Science (NIFS), Changwon 51688, South Korea
| | - Takashi Aoki
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea.
| |
Collapse
|
8
|
Mashoof S, Criscitiello MF. Fish Immunoglobulins. BIOLOGY 2016; 5:E45. [PMID: 27879632 PMCID: PMC5192425 DOI: 10.3390/biology5040045] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023]
Abstract
The B cell receptor and secreted antibody are at the nexus of humoral adaptive immunity. In this review, we summarize what is known of the immunoglobulin genes of jawed cartilaginous and bony fishes. We focus on what has been learned from genomic or cDNA sequence data, but where appropriate draw upon protein, immunization, affinity and structural studies. Work from major aquatic model organisms and less studied comparative species are both included to define what is the rule for an immunoglobulin isotype or taxonomic group and what exemplifies an exception.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, TX 77807, USA.
| |
Collapse
|
9
|
Zhang N, Zhang XJ, Song YL, Lu XB, Chen DD, Xia XQ, Sunyer JO, Zhang YA. Preferential combination between the light and heavy chain isotypes of fish immunoglobulins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:169-179. [PMID: 27057962 DOI: 10.1016/j.dci.2016.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Immunoglobulin light chain (IgL) is necessary for the assembly of an Ig molecule, which plays important roles in the immune response. IgL genes were identified in various teleost species, but the basic functions of different IgL isotypes and the preferential combination between IgL and IgH (Ig heavy chain) isotypes remain unclear. In the current study, by EST database searching and cDNA cloning in rainbow trout, 8 IgL sequences were obtained, which could be classified into the IgLκF, IgLκG, IgLσ and IgLλ isotypes, respectively. Trout IgL isotypes were highly expressed in the immune-related tissues, and participated in the immune responses in spleen and gut by stimulation with LPS and poly (I:C). The results of FACS and LC-MS/MS indicated that the IgLκG and IgLσ isotypes preferentially bonded with the heavy chains of IgM and IgT, respectively, in trout B cells and serum. In addition, the genomic organization of trout IgL isotypes and the utilization of recombination signal sequences were studied.
Collapse
Affiliation(s)
- Nu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yu-Long Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Bing Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan-Dan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qin Xia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong-An Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
10
|
Weir H, Chen PL, Deiss TC, Jacobs N, Nabity MB, Young M, Criscitiello MF. DNP-KLH Yields Changes in Leukocyte Populations and Immunoglobulin Isotype Use with Different Immunization Routes in Zebrafish. Front Immunol 2015; 6:606. [PMID: 26648935 PMCID: PMC4664633 DOI: 10.3389/fimmu.2015.00606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/13/2015] [Indexed: 01/22/2023] Open
Abstract
Distinct methods are required for inducing mucosal versus systemic immunity in mammals for vaccine protection at the tissues most commonly breached by pathogens. Understanding of mucosal immunization in teleost fish is needed to combat aquaculture disease, understand emerging ecological threats, and know how vertebrate adaptive immunity evolved. Here, we quantitatively measured expression levels of IgM as well as the teleost mucosal immunoglobulin, IgZ/IgT, in zebrafish given an antigen systemically via intraperitoneal (i.p.) injection or mucosally via bath immersion. Both immunoglobulin isotypes and the B cell activating factor gene transcription was induced in fish injected with antigen as compared to saline injected or antigen immersed fish, though these failed to reach statistical significance. Here we provide additional reference hematology for this model species. Differential blood counts revealed a greater lymphocyte percentage in both i.p. and immersed fish, with increase in large lymphocyte counts and decrease in neutrophils. These humoral adaptive gene transcription and cytological data should provide a foundation for more studies connecting immunology in this dominant developmental and genetic fish model to other species where mucosal immunization is of greater commercial importance.
Collapse
Affiliation(s)
- Heather Weir
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Science, A&M Consolidated High School , College Station, TX , USA
| | - Patricia L Chen
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Natalie Jacobs
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Mary B Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Matt Young
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Science, A&M Consolidated High School , College Station, TX , USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| |
Collapse
|
11
|
Spatio-temporal expression of blunt snout bream (Megalobrama amblycephala) mIgD and its immune response to Aeromonas hydrophila. Cent Eur J Immunol 2015; 40:132-41. [PMID: 26557025 PMCID: PMC4637386 DOI: 10.5114/ceji.2015.52825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/06/2015] [Indexed: 01/08/2023] Open
Abstract
The function of IgD in fish and mammals has not been fully understood since its discovery. In this study, we have isolated and characterized the cDNA that encodes membrane-bound form of the immunoglobulin D heavy chain gene (mIgD) of blunt snout bream (Megalobrama amblycephala) using RT-PCR and rapid amplification of cDNA ends (RACE). The full-length cDNA of mIgD consisted of 3313 bp, encoding a putative protein of 943 amino acids. The structure of blunt snout bream mIgD is VDJ-μ1-δ1-δ2-δ3-δ4-δ5-δ6-δ7-TM. Multiple alignment and phylogenetic analyses indicated that blunt snout bream mIgD clusters with the homologues of cyprinid fish and that its highest identity is with that of C. idella (82%). The mIgD expression in early different developmental stages showed that the level of mIgD mRNA decreased dramatically from the unfertilized egg stage to the 32-cell stage, suggesting that mIgD mRNA was maternally transferred. As cell differentiation initially took place in the blastula stage, the mIgD expression increased significantly from the blastula stage to prelarva, which might be attributed to embryonic stem cell differentiation processes. Compared with juvenile fish, the expression and tissue distribution patterns of mIgD in adult individuals exhibited considerable variation. After the injection of Aeromonas hydrophila, mIgD expression was up-regulated in various tissues, reaching the peak expression at 5 d, 14 d or 21 d (depending on the tissue type). The present study provides a theoretical basis for further research of the teleost immune system.
Collapse
|
12
|
Abstract
As in mammals, cartilaginous and teleost fishes possess adaptive immune systems based on antigen recognition by immunoglobulins (Ig), T cell receptors (TCR), and major histocompatibility complex molecules (MHC) I and MHC II molecules. Also it is well established that fish B cells and mammalian B cells share many similarities, including Ig gene rearrangements, and production of membrane Ig and secreted Ig forms. This chapter provides an overview of the IgH and IgL chains in cartilaginous and bony fish, including their gene organizations, expression, diversity of their isotypes, and development of the primary repertoire. Furthermore, when possible, we have included summaries of key studies on immune mechanisms such as allelic exclusion, somatic hypermutation, affinity maturation, class switching, and mucosal immune responses.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
13
|
Iwanami N. Zebrafish as a model for understanding the evolution of the vertebrate immune system and human primary immunodeficiency. Exp Hematol 2014; 42:697-706. [PMID: 24824573 DOI: 10.1016/j.exphem.2014.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/21/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023]
Abstract
Zebrafish is an important vertebrate model that provides the opportunity for the combination of genetic interrogation with advanced live imaging in the analysis of complex developmental and physiologic processes. Among the many advances that have been achieved using the zebrafish model, it has had a great impact on immunology. Here, I discuss recent work focusing on the genetic underpinnings of the development and function of lymphocytes in fish. Lymphocytes play critical roles in vertebrate-specific acquired immune systems of jawless and jawed fish. The unique opportunities afforded by the ability to carry out forward genetic screens and the rapidly evolving armamentarium of reverse genetics in fish usher in a new immunologic research that complements the traditional models of chicken and mouse. Recent work has greatly increased our understanding of the molecular components of the zebrafish immune system, identifying evolutionarily conserved and fish-specific functions of immune-related genes. Interestingly, some of the genes whose mutations underlie the phenotypes in immunodeficient zebrafish were also identified in immunodeficient human patients. In addition, because of the generally conserved structure and function of immune facilities, the zebrafish also provides a versatile model to examine the functional consequences of genetic variants in immune-relevant genes in the human population. Thus, I propose that genetic approaches using the zebrafish hold great potential for a better understanding of molecular mechanisms of human primary immunodeficiencies and the evolution of vertebrate immune systems.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
14
|
Magadán-Mompó S, Zimmerman AM, Sánchez-Espinel C, Gambón-Deza F. Immunoglobulin light chains in medaka (Oryzias latipes). Immunogenetics 2013; 65:387-96. [PMID: 23417322 DOI: 10.1007/s00251-013-0678-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/11/2013] [Indexed: 11/26/2022]
Abstract
The gene segments encoding antibodies have been studied in many capacities and represent some of the best-characterized gene families in traditional animal disease models (mice and humans). To date, multiple immunoglobulin light chain (IgL) isotypes have been found in vertebrates and it is unclear as to which isotypes might be more primordial in nature. Sequence data emerging from an array of fish genome projects is a valuable resource for discerning complex multigene assemblages in this critical branch point of vertebrate phylogeny. Herein, we have analyzed the genomic organization of medaka (Oryzias latipes) IgL gene segments based on recently released genome data. The medaka IgL locus located on chromosome 11 contains at least three clusters of IgL gene segments comprised of multiple gene assemblages of the kappa light chain isotype. These data suggest that medaka IgL gene segments may undergo both intra- and inter-cluster rearrangements as a means to generate additional diversity. Alignments of expressed sequence tags to concordant gene segments which revealed each of the three IgL clusters are expressed. Collectively, these data provide a genomic framework for IgL genes in medaka and indicate that Ig diversity in this species is achieved from at least three distinct chromosomal regions.
Collapse
Affiliation(s)
- Susana Magadán-Mompó
- Virologie et Immunologie Moleculaires, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France.
| | | | | | | |
Collapse
|
15
|
Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, Boudinot P. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front Immunol 2013; 4:28. [PMID: 23408183 PMCID: PMC3570791 DOI: 10.3389/fimmu.2013.00028] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/24/2013] [Indexed: 12/17/2022] Open
Abstract
With lymphoid tissue anatomy different than mammals, and diverse adaptations to all aquatic environments, fish constitute a fascinating group of vertebrate to study the biology of B cell repertoires in a comparative perspective. Fish B lymphocytes express immunoglobulin (Ig) on their surface and secrete antigen-specific antibodies in response to immune challenges. Three antibody classes have been identified in fish, namely IgM, IgD, and IgT, while IgG, IgA, and IgE are absent. IgM and IgD have been found in all fish species analyzed, and thus seem to be primordial antibody classes. IgM and IgD are normally co-expressed from the same mRNA through alternative splicing, as in mammals. Tetrameric IgM is the main antibody class found in serum. Some species of fish also have IgT, which seems to exist only in fish and is specialized in mucosal immunity. IgM/IgD and IgT are expressed by two different sub-populations of B cells. The tools available to investigate B cell responses at the cellular level in fish are limited, but the progress of fish genomics has started to unravel a rich diversity of IgH and immunoglobulin light chain locus organization, which might be related to the succession of genome remodelings that occurred during fish evolution. Moreover, the development of deep sequencing techniques has allowed the investigation of the global features of the expressed fish B cell repertoires in zebrafish and rainbow trout, in steady state or after infection. This review provides a description of the organization of fish Ig loci, with a particular emphasis on their heterogeneity between species, and presents recent data on the structure of the expressed Ig repertoire in healthy and infected fish.
Collapse
Affiliation(s)
- Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, Leibniz Institute Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Zimmerman AM, Romanowski KE, Maddox BJ. Targeted annotation of immunoglobulin light chain (IgL) genes in zebrafish from BAC clones reveals kappa-like recombining/deleting elements within IgL constant regions. FISH & SHELLFISH IMMUNOLOGY 2011; 31:697-703. [PMID: 20933599 DOI: 10.1016/j.fsi.2010.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 05/30/2023]
Abstract
Genomic organization, composition, and microsynteny of immunoglobulin light chain (IgL) gene segments in the zebrafish were analyzed through the identification and annotation of overlapping BAC clone insert sequences and an Illumina de novo assembly. The resultant gap-free IgL annotation confirmed a number of previous conclusions about teleost IgL including: suites of (V(L)-J(L)-C(L)) clusters on multiple chromosomes; V(L) in the same or opposite transcriptional orientation as J(L) and C(L); and the apparent absence of lambda IgL in the zebrafish model. In addition, palindromic heptamers (CACAGTG or CACTGTG) within the 3' region of zebrafish C(L) were identified. In mammals, heptamers within J(κ)-C(κ) introns can recombine with downstream kappa deleting elements (Kde) to ablate C(κ) regions prior to rearrangements of V(λ)-J(λ) gene segments. The presence of palindromic heptamers within zebrafish C(L) is intriguing as their recombination with intact RSS might result in the deletion of a large portion of the C(L) thereby permanently silencing C(L) exons within the IgL locus. Given that bony fish have appreciably more C(L) spread over more chromosomes than mice and humans, it is plausible the presence of recombining sequences within C(L) may be tied to a need for heightened mechanisms to facilitate allelic exclusion or receptor editing. Collectively, with this report, gap-free annotations of the heavy and light chain Ig loci have now been completed for Danio rerio, the only teleost for which this has been accomplished, thereby strengthening the overall utility of zebrafish as a model organism for both comparative immunology and biomedical research.
Collapse
Affiliation(s)
- Anastasia M Zimmerman
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA.
| | | | | |
Collapse
|
17
|
Hikima JI, Jung TS, Aoki T. Immunoglobulin genes and their transcriptional control in teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:924-936. [PMID: 21078341 DOI: 10.1016/j.dci.2010.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/27/2010] [Accepted: 10/28/2010] [Indexed: 05/30/2023]
Abstract
Immunoglobulin (Ig), which exists only in jawed vertebrates, is one of the most important molecules in adaptive immunity. In the last two decades, many teleost Ig genes have been identified by in silico data mining from the enormous gene and EST databases of many fish species. In this review, the organization of Ig gene segments, the expressed Ig isotypes and their transcriptional controls are discussed. The Ig heavy chain (IgH) locus in teleosts encodes the variable (V), the diversity (D), the joining (J) segments and three different isotypic constant (C) regions including Cμ, Cδ, and Cζ/τ genes, and is organized as a "translocon" type like the IgH loci of higher vertebrates. In contrast, the Ig light (L) chain locus is arranged in a "multicluster" or repeating set of VL, JL, and CL segments. The IgL chains have four isotypes; two κ L1/G and L3/F), σ (L2) and λ. The transcription of IgH genes in teleosts is regulated by a VH promoter and the Eμ3' enhancer, which both function in a B cell-specific manner. The location of the IgH locus, structure and transcriptional function of the Eμ3' enhancer are important to our understanding of the evolutional changes that have occurred in the IgH gene locus.
Collapse
Affiliation(s)
- Jun-ichi Hikima
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| | | | | |
Collapse
|
18
|
Edholm ES, Wilson M, Bengten E. Immunoglobulin light (IgL) chains in ectothermic vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:906-915. [PMID: 21256861 DOI: 10.1016/j.dci.2011.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/16/2011] [Accepted: 01/16/2011] [Indexed: 05/30/2023]
Abstract
Four major ancesteral IgL isotypes have been identified κ, λ, σ and σ-cart. However, depending on the vertebrate class the genomic representation of these isotypes differs in regards to what is encoded in the germline and how these genes are organized. Also, the relative contribution of each isotype in immune responses varies. This review focuses on the IgL chains of ectothermic vertebrates, specifically the number of different isotypes, their phylogenetic relationship, genomic organizations and expression.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | | | | |
Collapse
|
19
|
Zimmerman AM, Moustafa FM, Romanowski KE, Steiner LA. Zebrafish immunoglobulin IgD: unusual exon usage and quantitative expression profiles with IgM and IgZ/T heavy chain isotypes. Mol Immunol 2011; 48:2220-3. [PMID: 21820179 DOI: 10.1016/j.molimm.2011.06.441] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 11/20/2022]
Abstract
The zebrafish is an emerging model for comparative immunology and biomedical research. In contrast to the five heavy chain isotype system of mice and human (IgD, IgM, IgA, IgG, IgE), zebrafish harbor gene segments for IgD, IgM, and novel heavy chain isotype called IgZ/T which appears restricted to bony fishes. The purpose of this study was to design and validate a suite of quantitative real time RT-PCR protocols to measure IgH expression in a vertebrate model which has considerable promise for modeling both pathogenic infection and chronic conditions leading to immune dysfunction. Specific primers were designed and following verification of their specificty, relative expression levels of IgD, IgM, and IgZ/T were measured in triplicate for zebrafish raised under standard laboratory conditions. During embryonic stages, low levels of each heavy chain isotype (IgH) were detected with each increasing steadily between 2 and 17 weeks post fertilization. Overall IgM>IgZ>IgD throughout zebrafish development with the copy number of IgM being several fold higher than that of IgD or IgZ/T. IgD exon usage was also characterized, as its extremely long size and presence of a stop codon in the second IgD exon in zebrafish, raised questions as to how this antibody might be expressed. Zebrafish IgD was found to be a chimeric immunoglobulin, with the third IgD exon spliced to the first IgM constant exon thereby circumventing the first and second IgD exons. Collectively, the qRT-PCR results represent the first comparative profile of IgD, IgM, IgZ/T expression over the lifespan of any fish species and the primers and assay parameters reported should prove useful in enabling researchers to rapidly quantify changes in IgH expression in zebrafish models of disease where altered IgH expression is manifested.
Collapse
Affiliation(s)
- Anastasia M Zimmerman
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA.
| | | | | | | |
Collapse
|
20
|
Tian C, Ding Y, Ao J, Chen X. Three isotypes of immunoglobulin light chains in large yellow croaker, Pseudosciaena crocea: Molecular cloning, characterization, and expression analysis. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1249-1256. [PMID: 21496488 DOI: 10.1016/j.fsi.2011.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
Both cDNA library mining and transcriptome analysis were used to obtain 21 immunoglobulin light chain (IgL) sequences for the large yellow croaker, Pseudosciaena crocea. Full-length cDNA sequences are available for 10 of these, and they were identified as belonging to the three IgL isotypes of LycIgL1, LycIgL2, and LycIgL3. The LycIgL1 isotype is most abundant in the large yellow croaker IgL repertoire, as in the other teleosts. Tissue expression profile analysis revealed that the three LycIgL isotypes were constitutively expressed at different abundances in the kidney, spleen, liver, gill, heart, intestine, and muscle, although the heart did not express LycIgL3. Real-time polymerase chain reaction revealed that expression of the three LycIgL isotypes in the kidney and spleen tissues was up-regulated during 72 h of inductions with poly(I:C) or bacterial vaccine at different intensities and in different manners. The LycIgL1 isotype responded to stimulations most intensely in the spleen, while the LycIgL3 isotype responded most quickly in the kidney. Compared to the LycIgL1 and LycIgL3 isotypes, the LycIgL2 isotype responded more slowly and weakly in both tissues. These results indicate different isotypes of LycIgL respond to immune stimuli in the spleen and kidney in an isotypic-specific manner.
Collapse
Affiliation(s)
- Chen Tian
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | | | | | | |
Collapse
|
21
|
Marianes AE, Zimmerman AM. Targets of somatic hypermutation within immunoglobulin light chain genes in zebrafish. Immunology 2010; 132:240-55. [PMID: 21070232 DOI: 10.1111/j.1365-2567.2010.03358.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In mammals, somatic hypermutation (SHM) of immunoglobulin (Ig) genes is critical for the generation of high-affinity antibodies and effective immune responses. Knowledge of sequence-specific biases in the targeting of somatic mutations can be useful for studies aimed at understanding antibody repertoires produced in response to infections, B-cell neoplasms, or autoimmune disease. To evaluate potential nucleotide targets of somatic mutation in zebrafish (Danio rerio), an enriched IgL cDNA library was constructed and > 250 randomly selected clones were sequenced and analysed. In total, 55 unique VJ-C sequences were identified encoding a total of 125 mutations. Mutations were most prevalent in V(L) with a bias towards single base transitions and increased mutation in the complementarity-determining regions (CDRs). Overall, mutations were overrepresented at WRCH/DGYW motifs suggestive of activation-induced cytidine deaminase (AID) targeting which is common in mice and humans. In contrast to mammalian models, N and P addition was not observed and mutations at AID hotspots were largely restricted to palindromic WRCH/DGYW motifs. Mutability indexes for di- and trinucleotide combinations confirmed C/G targets within WRCH/DGYW motifs to be statistically significant mutational hotspots and showed trinucleotides ATC and ATG to be mutation coldspots. Additive mutations in VJ-C sequences revealed patterns of clonal expansion consistent with affinity maturation responses seen in higher vertebrates. Taken together, the data reveal specific nucleotide targets of SHM in zebrafish and suggest that AID and affinity maturation contribute to antibody diversification in this emerging immunological model.
Collapse
Affiliation(s)
- Alexis E Marianes
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| | | |
Collapse
|
22
|
Wu Q, Wei Z, Yang Z, Wang T, Ren L, Hu X, Meng Q, Guo Y, Zhu Q, Robert J, Hammarström L, Li N, Zhao Y. Phylogeny, genomic organization and expression of lambda and kappa immunoglobulin light chain genes in a reptile, Anolis carolinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:579-589. [PMID: 20056120 DOI: 10.1016/j.dci.2009.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 12/23/2009] [Accepted: 12/30/2009] [Indexed: 05/28/2023]
Abstract
The reptiles are the last major taxon of jawed vertebrates in which immunoglobulin light chain isotypes have not been well characterized. Using the recently released genome sequencing data, we show in this study that the reptile Anolis carolinensis expresses both lambda and kappa light chain genes. The genomic organization of both gene loci is structurally similar to their respective counterparts in mammals. The identified lambda locus contains three constant region genes each preceded by a joining gene segment, and a total of 37 variable gene segments. In contrast, the kappa locus contains only a single constant region gene, and two joining gene segments with a single family of 14 variable gene segments located upstream. Analysis of junctions of the recombined VJ transcripts reveals a paucity of N and P nucleotides in both expressed lambda and kappa sequences. These results help us to understand the generation of the immunoglobulin repertoire in reptiles and immunoglobulin evolution in vertebrates.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 2009; 11:47-59. [PMID: 19997068 DOI: 10.1038/nrg2703] [Citation(s) in RCA: 610] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The adaptive immune system (AIS) in mammals, which is centred on lymphocytes bearing antigen receptors that are generated by somatic recombination, arose approximately 500 million years ago in jawed fish. This intricate defence system consists of many molecules, mechanisms and tissues that are not present in jawless vertebrates. Two macroevolutionary events are believed to have contributed to the genesis of the AIS: the emergence of the recombination-activating gene (RAG) transposon, and two rounds of whole-genome duplication. It has recently been discovered that a non-RAG-based AIS with similarities to the jawed vertebrate AIS - including two lymphoid cell lineages - arose in jawless fish by convergent evolution. We offer insights into the latest advances in this field and speculate on the selective pressures that led to the emergence and maintenance of the AIS.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
24
|
Abstract
Because of their extreme importance to human health, we probably know more about the structure and function of antibodies than practically any other molecule. Despite all the knowledge that has been accrued in the understanding of antibodies, modern approaches, especially comparative genomics, continue to yield novel findings regarding their underlying biology and evolution. In this review, we describe recent research that led to these revelations, and discuss the broad evolutionary implications of these findings. We have restricted our discussion to three vignettes. Considerable attention has been paid to the recent discovery that the teleost IgH locus is highly similar in organization to the Tcra-Tcrd locus, implicating an evolutionary common ancestor and parallels between the functions of B and T cells during development. Second, we discuss how a new type of antibody, recently discovered in jawless vertebrates, composed not of immunoglobulins but leucine-rich repeats, sheds new light on the overall forces driving evolution of all adaptive antigen receptors. Lastly, we discuss how accumulation of genomic sequences of various human subpopulations leads to better understanding of the directionality of antibody evolution. There is always more to learn from the unfolding saga of antibodies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
25
|
Identification of Igσ and Igλ in channel catfish, Ictalurus punctatus, and Igλ in Atlantic cod, Gadus morhua. Immunogenetics 2009; 61:353-70. [DOI: 10.1007/s00251-009-0365-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
|
26
|
Abstract
The adaptive immune system of jawed vertebrates is based on a vast, anticipatory repertoire of specific antigen receptors, immunoglobulins (Ig) in B-lymphocytes and T-cell receptors (TCR) in T-lymphocytes. The Ig and TCRdiversity is generated by a process called V(D)J recombination, which is initiated by the RAG recombinase. Although RAG activity is very well conserved, the regulated accessibility of the antigen receptor genes to RAG has evolved with the species' organizational structure, which differs most significantly between fishes and tetrapods. V(D)J recombination was primarily characterized in developing lymphocytes of mice and human beings and is often described as an ordered, two-stage program. Studies in rabbit, chicken and shark show that this process does not have to be ordered, nor does it need to take place in two stages to generate a diverse repertoire and enable the expression of a single species of antigen receptor per cell, a restriction called allelic exclusion.
Collapse
|
27
|
Coscia MR, Giacomelli S, De Santi C, Varriale S, Oreste U. Immunoglobulin light chain isotypes in the teleost Trematomus bernacchii. Mol Immunol 2008; 45:3096-106. [DOI: 10.1016/j.molimm.2008.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
|