1
|
Wang J, Gurupalli HV, Stafford JL. Teleost leukocyte immune-type receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104768. [PMID: 37414235 DOI: 10.1016/j.dci.2023.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Leukocyte immune-type receptors (LITRs) are a large family of teleost immunoregulatory receptor-types belonging to the immunoglobulin superfamily. These immune genes are phylogenetically and syntenically related to Fc receptor-like protein genes (fcrls) present in other vertebrates, including amphibians, birds, mice, and man. In vitro-based functional analyses of LITRs, using transfection approaches, have shown that LITRs have diverse immunoregulatory potentials including the activation and inhibition of several innate immune effector responses such as cell-mediated killing responses, degranulation, cytokine secretion, and phagocytosis. The purpose of this mini review is to provide an overview of fish LITR-mediated immunoregulatory potentials obtained from various teleost model systems, including channel catfish, zebrafish, and goldfish. We will also describe preliminary characterization of a new goldish LITR-specific polyclonal antibody (pAb) and discuss the significance of this tool for further investigation of the functions of fish LITRs.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | | | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta, Canada.
| |
Collapse
|
2
|
Crider J, Wilson M, Felch KL, Dupre RA, Quiniou SMA, Bengtén E. A subset of leukocyte immune-type receptors (LITRs) regulates phagocytosis in channel catfish (Ictalurus punctatus) leukocytes. Mol Immunol 2023; 154:33-44. [PMID: 36586386 DOI: 10.1016/j.molimm.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Channel catfish, Ictalurus punctatus, leukocyte immune-type receptors (LITRs) constitute a large family of paired, immunoregulatory receptors unique to teleosts. A role for LITRs in phagocytosis has been proposed based on studies in mammalian cell lines; however, LITR-mediated phagocytosis has not been examined in the catfish model. In this study, we use two anti-LITR monoclonal antibodies, CC41 and 125.2, to contrast the effects of crosslinking subsets of inhibitory and activating LITRs. Briefly, LITRs expressed by catfish γδ T cells, αβ T cells, and macrophage cell lines were crosslinked using mAb-conjugated fluorescent microbeads, and bead uptake was evaluated by flow cytometry and confirmed by confocal microscopy. A clear difference in the uptake of 125.2- and CC41-conjugated beads was observed. Crosslinking LITRs with mAb 125.2 resulted in efficient bead internalization, while mAb CC41 crosslinking of inhibitory LITRs resulted predominantly in a capturing phenotype. Pretreating catfish macrophages with mAb CC41 resulted in a marked decrease in LITR-mediated phagocytosis of 125.2-conjugated beads. Overall, these findings provide insight into fish immunobiology and validate LITRs as regulators of phagocytosis in catfish macrophages and γδ T cells.
Collapse
Affiliation(s)
- Jonathan Crider
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Melanie Wilson
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Kristianna L Felch
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Rebecca A Dupre
- Oak Ridge Institute for Science and Education, US Department of Energy, 1299 Bethel Valley Rd, Oak Ridge, TN 37831-0117, USA; Food Processing and Sensory Quality Unit, USDA-ARS, 1100 Allen Toussaint Blvd, New Orleans, LA 70124, USA.
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, USDA-ARS-WARU, P.O. BOX 38, Stoneville, MS 38776, USA.
| | - Eva Bengtén
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
3
|
Tong JF, Zhou L, Li S, Lu LF, Li ZC, Li Z, Gan RH, Mou CY, Zhang QY, Wang ZW, Zhang XJ, Wang Y, Gui JF. Two Duplicated Ptpn6 Homeologs Cooperatively and Negatively Regulate RLR-Mediated IFN Response in Hexaploid Gibel Carp. Front Immunol 2021; 12:780667. [PMID: 34899743 PMCID: PMC8662705 DOI: 10.3389/fimmu.2021.780667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 01/28/2023] Open
Abstract
Src homology region 2 domain-containing phosphatase 1 (SHP1), encoded by the protein tyrosine phosphatase nonreceptor type 6 (ptpn6) gene, belongs to the family of protein tyrosine phosphatases (PTPs) and participates in multiple signaling pathways of immune cells. However, the mechanism of SHP1 in regulating fish immunity is largely unknown. In this study, we first identified two gibel carp (Carassius gibelio) ptpn6 homeologs (Cgptpn6-A and Cgptpn6-B), each of which had three alleles with high identities. Then, relative to Cgptpn6-B, dominant expression in adult tissues and higher upregulated expression of Cgptpn6-A induced by polyinosinic-polycytidylic acid (poly I:C), poly deoxyadenylic-deoxythymidylic (dA:dT) acid and spring viremia of carp virus (SVCV) were uncovered. Finally, we demonstrated that CgSHP1-A (encoded by the Cgptpn6-A gene) and CgSHP1-B (encoded by the Cgptpn6-B gene) act as negative regulators of the RIG-I-like receptor (RLR)-mediated interferon (IFN) response via two mechanisms: the inhibition of CaTBK1-induced phosphorylation of CaMITA shared by CgSHP1-A and CgSHP1-B, and the autophagic degradation of CaMITA exclusively by CgSHP1-A. Meanwhile, the data support that CgSHP1-A and CgSHP1-B have sub-functionalized and that CgSHP1-A overwhelmingly dominates CgSHP1-B in the process of RLR-mediated IFN response. The current study not only sheds light on the regulative mechanism of SHP1 in fish immunity, but also provides a typical case of duplicated gene evolutionary fates.
Collapse
Affiliation(s)
- Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
4
|
Lu S, Peng X, Lin G, Xu K, Wang S, Qiu W, Du H, Chang K, Lv Y, Liu Y, Deng H, Hu C, Xu X. Grass carp (Ctenopharyngodon idellus) SHP2 suppresses IFN I expression via decreasing the phosphorylation of GSK3β in a non-contact manner. FISH & SHELLFISH IMMUNOLOGY 2021; 116:150-160. [PMID: 34265416 DOI: 10.1016/j.fsi.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
As a tyrosine phosphatase, Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) serves as an inhibitor in PI3K-Akt pathway. In mammals, SHP2 can phosphorylate GSK3β at Y216 site to control the expression of IFN. So far, the multiple functions of SHP2 have been reported in mammals. However, little is known about fish SHP2. In this study, we cloned and identified a grass carp (Ctenopharyngodon idellus) SHP2 gene (CiSHP2, MT373151). SHP2 is conserved among different vertebrates by amino acid sequences alignment and the phylogenetic tree analysis. CiSHP2 shared the closest homology with Danio rerio SHP2. Simultaneously, SHP2 was also tested in grass carp tissues and CIK (C. idellus kidney) cells. We found that it responded to poly I:C stimulation. CiSHP2 was located in the cytoplasm just as the same as those of mammals. Interestingly, it inhibited the phosphorylation level of GSK3β in a non-contact manner. Meanwhile CiGSK3β interacted with and directly phosphorylated CiTBK1. In addition, we found that CiSHP2 also reduced the phosphorylation level of CiTBK1 by CiGSK3β, and then it depressed the expression of IFN I via GSK3β-TBK1 axis. These results suggested that CiSHP2 was involved in CiGSK3β and CiTBK1 activity but not regulated their transcriptional level. At the same time, we also found that CiSHP2 also influenced the activity of CiIRF3. Therefore, fish SHP2 inhibited IFN I expression through blocking GSK3β-TBK1 signal axis.
Collapse
Affiliation(s)
- Shina Lu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaojue Peng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Gang Lin
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Kang Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Weihua Qiu
- Teaching Material Research Office of Jiangxi Provincial Education Department, Nanchang, 330046, Jiangxi, China
| | - Hailing Du
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Kaile Chang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yangfeng Lv
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yapeng Liu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hang Deng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
5
|
Identification of distinct LRC- and Fc receptor complex-like chromosomal regions in fish supports that teleost leukocyte immune-type receptors are distant relatives of mammalian Fc receptor-like molecules. Immunogenetics 2021; 73:93-109. [PMID: 33410929 DOI: 10.1007/s00251-020-01193-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/17/2020] [Indexed: 01/17/2023]
Abstract
Leukocyte immune-type receptors (LITRs) are a large family of immunoregulatory receptor-types originally identified in the channel catfish (Ictalurus punctatus (Ip)LITRs). Phylogenetic analyses of LITRs show that they share distant evolutionary relationships with important mammalian immunoregulatory receptors belonging to the Fc receptors family and the leukocyte receptor complex (LRC), but their syntenic relationships with these immunoglobulin superfamily members have not been investigated. To further examine the possible evolutionary connections between teleost LITRs and various mammalian immunoregulatory receptor-types, we surveyed the genomic databases of representative vertebrate taxa and our results show that teleost LITRs generally exist in large genomic clusters, which are linked to vangl2, arhgef11, and slam family genes, features that are also shared by amphibian and mammalian Fc receptor-like molecules (FCRLs). Moreover, detailed phylogenetic comparisons between the individual Ig-like domains of LITRs and mammalian FCRLs shows that these receptors share related Ig-like domains indicative of their common ancestry. However, contrary to our previous reports, no supportive evidence for phylogenetic relationships between the Ig-like domains of LITRs with the Ig-like domains of LRC-encoded mammalian immunoregulatory receptors was found. We also identified an LRC-like region in the zebrafish genome, but no expanded litr-related genes were located in this region. Similarly, no lilr-related genes were found in spotted gar, a representative basal ray-finned fish. Finally, two distantly related fcrls and an LRC-like gene were identified in the elephant shark genome, suggesting that the loss of an immunoregulatory receptor-containing LRC region may be unique to ray-finned fish.
Collapse
|
6
|
A Fish Leukocyte Immune-Type Receptor Uses a Novel Intracytoplasmic Tail Networking Mechanism to Cross-Inhibit the Phagocytic Response. Int J Mol Sci 2020; 21:ijms21145146. [PMID: 32708174 PMCID: PMC7404264 DOI: 10.3390/ijms21145146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/04/2023] Open
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are a family of immunoregulatory proteins shown to regulate several innate immune cell effector responses, including phagocytosis. The precise mechanisms of IpLITR-mediated regulation of the phagocytic process are not entirely understood, but we have previously shown that different IpLITR-types use classical as well as novel pathways for controlling immune cell-mediated target engulfment. To date, all functional assessments of IpLITR-mediated regulatory actions have focused on the independent characterization of select IpLITR-types in transfected cells. As members of the immunoglobulin superfamily, many IpLITRs share similar extracellular Ig-like domains, thus it is possible that various IpLITR actions are influenced by cross-talk mechanisms between different IpLITR-types; analogous to the paired innate receptor paradigm in mammals. Here, we describe in detail the co-expression of different IpLITR-types in the human embryonic AD293 cell line and examination of their receptor cross-talk mechanisms during the regulation of the phagocytic response using imaging flow cytometry, confocal microscopy, and immunoprecipitation protocols. Overall, our data provides interesting new insights into the integrated control of phagocytosis via the antagonistic networking of independent IpLITR-types that requires the selective recruitment of inhibitory signaling molecules for the initiation and sustained cross-inhibition of phagocytosis.
Collapse
|
7
|
Wang J, Belosevic M, Stafford JL. Identification of goldfish (Carassius auratus L.) leukocyte immune-type receptors shows alternative splicing as a potential mechanism for receptor diversification. Mol Immunol 2020; 125:83-94. [PMID: 32652363 DOI: 10.1016/j.molimm.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/31/2022]
Abstract
Leukocyte immune-type receptors (LITRs) are a multigene family of teleost immunoregulatory proteins that share structural, phylogenetic, and likely functional relationships with several innate immune receptor proteins in other vertebrates, including mammals. Originally discovered in channel catfish (Ictalurus punctatus), representative IpLITR-types have been shown to regulate diverse innate immune cell effector responses including phagocytosis, degranulation, and cytokine secretion. To date, IpLITRs have been primarily characterized using mammalian cell line expression systems, therefore many unanswered questions remain regarding their actual regulatory roles in fish immunity. In the present study, we report on the preliminary molecular characterization of five goldfish (Carassius auratus) CaLITR-types and the identification of several putative splice variants of these receptors cloned from various goldfish tissues and primary myeloid cell cultures. In general, CaLITR mRNA transcripts were detected in all goldfish tissues tested, and also in primary kidney macrophage and neutrophil cultures. Specifically, CaLITR1 is a functionally ambiguous receptor with no charged amino acids in its transmembrane (TM) segment and is devoid of tyrosine-based signaling motifs in its short cytoplasmic tail (CYT) region. CaLITR2 is a putative activating receptor-type that contains immunotyrosine-based activation motifs (ITAMs) within its long CYT region, and CaLITR3 has a positively charged TM segment, suggesting that it may recruit intracellular stimulatory adaptor signaling molecules. CaLITR4 and CaLITR5 appear to have diverse signaling capabilities since they contain various immunoregulatory signaling motifs within their CYT regions including putative Nck and STAT recruitment motifs as well as ITAM-like and ITIM sequences. We also identified putative CaLITR splice variants with altered extracellular Ig-like domain compositions and variable CYT regions. Interestingly, this suggests that alternative splicing-mediated diversification of CaLITRs can generate receptor forms with possible variable binding and/or intracellular signaling abilities. Overall, these findings reveal new information about the teleost LITRs and sets the stage for exploring how alternative splicing leads to the functional diversification of this complex multigene immunoregulatory receptor family.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta, Canada.
| |
Collapse
|
8
|
Wu L, Gao A, Lei Y, Li J, Mai K, Ye J. SHP1 tyrosine phosphatase gets involved in host defense against Streptococcus agalactiae infection and BCR signaling pathway in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 99:562-571. [PMID: 32109611 DOI: 10.1016/j.fsi.2020.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1), a kind of protein tyrosine phosphatases (PTPs), is a critical regulator of antigen receptor signal transduction. Signal transduction of BCR is regulated by phosphatases in teleost as in mammals. In this study, SHP1 from Nile tilapia (Oreochromis niloticus) (OnSHP1) was identified and characterized, including the expression pattern against bacterial infection and regulation function in BCR signaling pathway. The open reading frame of OnSHP1 contains 1749 bp of nucleotide sequence, encoding a protein of 582 amino acids. The OnSHP1 protein was highly conversed compared to that of other species, including two amino-terminal SH2 domains at the N terminus and a PTP catalytic domain. Transcriptional expression analysis revealed that OnSHP1 was detected in all examined tissues and highly expressed in spleen. The up-regulated OnSHP1 expression was observed in peripheral blood, spleen and anterior kidney following challenge with Streptococcus agalactiae or lipopolysaccharide (LPS) in vivo, as well as that displayed in leukocytes stimulated with S. agalactiae or LPS in vitro. Further, after induction with mouse anti-tilapia IgM monoclonal antibody in vitro, OnSHP1 was significantly up-regulated in leukocytes. When spleen leukocytes treated with PTP Inhibitor II in vitro, the phosphorylation level of OnSHP1 at the phosphorylation sites (Y535 and Y557) and the cytoplasmic free Ca2+ concentration were up-regulated significantly. Overall, the findings of this study indicate that SHP1 gets involved in host defense against bacterial infection and BCR signaling pathway in Nile tilapia.
Collapse
Affiliation(s)
- Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Yang Lei
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Kangsen Mai
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
9
|
Lillico DME, Pemberton JG, Niemand R, Stafford JL. Selective recruitment of Nck and Syk contribute to distinct leukocyte immune-type receptor-initiated target interactions. Cell Signal 2019; 66:109443. [PMID: 31626955 DOI: 10.1016/j.cellsig.2019.109443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 01/18/2023]
Abstract
The ability of phagocytes to recognize, immobilize, and engulf extracellular targets are fundamental immune cell processes that allow for the destruction of a variety of microbial intruders. The phagocytic process depends onsignalling events that initiate dynamic changes in the plasma membrane architecture that are required to accommodate the internalization of large particulate targets. To better understand fundamental molecular mechanisms responsible for facilitating phagocytic receptor-mediated regulation of cytoskeletal networks, our research has focused on investigating representative immunoregulatory proteins from the channel catfish (Ictalurus punctatus) leukocyte immune-type receptor family (IpLITRs). Specifically, we have shown that a specific IpLITR-type can regulate the constitutive deployment of filopodial-like structures to actively capture and secure targets to the phagocyte surface, which is followed by F-actin mediated membrane dynamics that are associated with the formation of phagocytic cup-like structures that precede target engulfment. In the present study, we use confocal imaging to examine the recruitment of mediators of the F-actin cytoskeleton during IpLITR-mediated regulation of membrane dynamics. Our results provide novel details regarding the dynamic recruitment of the signaling effectors Nck and Syk during classical as well as atypical IpLITR-induced phagocytic processes.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Rikus Niemand
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
11
|
Zwozdesky MA, Fei C, Lillico DME, Stafford JL. Imaging flow cytometry and GST pulldown assays provide new insights into channel catfish leukocyte immune-type receptor-mediated phagocytic pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:126-138. [PMID: 27984101 DOI: 10.1016/j.dci.2016.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) control various innate immune cell effector responses including the phagocytic process. This large immunoregulatory receptor family also consists of multiple receptor-types with variable signaling abilities that is dependent on their inherent or acquired tyrosine-containing cytoplasmic tail (CYT) regions. For example, IpLITR 2.6b associates with the immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptor molecule IpFcRγ-L, and when expressed in mammalian cells it activates phagocytosis using a similar profile of intracellular signaling mediators that also regulate the prototypical mammalian Fc receptor (FcR) phagocytic pathway. Alternatively, IpLITR 1.1b contains a long tyrosine-containing CYT with multifunctional capabilities including both inhibitory and stimulatory actions. Recently, we demonstrated that IpLITR 1.1b activates a unique phagocytic pathway involving the generation of multiple plasma membrane extensions that rapidly capture extracellular targets and secure them on the cell surface in phagocytic cup-like structures. Occasionally, these captured targets are completely engulfed albeit at a significantly lower rate than what was observed for IpLITR 2.6b. While this novel IpLITR 1.1b phagocytic activity is insensitive to classical blockers of phagocytosis, its distinct target capture and engulfment actions depend on the engagement of the actin polymerization machinery. However, it is not known how this protein translates target recognition into intracellular signaling events during this atypical mode of phagocytosis. Using imaging flow cytometry and GST pulldown assays, the aims of this study were to specifically examine what regions of the IpLITR 1.1b CYT trigger phagocytosis and to establish what profile of intracellular signaling molecules likely participate in its actions. Our results show that in stably transfected AD293 cells, the membrane proximal and distal CYT segments of IpLITR 1.1b independently regulate its phagocytic activities. These CYT regions were also shown to differentially recruit various SH2 domain-containing intracellular mediators, which provides new information about the dynamic immunoregulatory abilities of IpLITR 1.1b. Overall, this work further advances our understanding of how certain immunoregulatory receptor-types link extracellular target binding events to the actin polymerization machinery during a non-classical mode of phagocytosis.
Collapse
Affiliation(s)
- Myron A Zwozdesky
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chenjie Fei
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Lillico DME, Pemberton JG, Stafford JL. Trypsin differentially modulates the surface expression and function of channel catfish leukocyte immune-type receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:231-244. [PMID: 27461858 DOI: 10.1016/j.dci.2016.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are immunoregulatory proteins that control innate immune cellular responses. Previously, we demonstrated that two representative IpLITR forms, IpLITR 2.6b and IpLITR 1.1b, engage distinct components of the phagocytic machinery resulting in unique target capture and engulfment phenotypes. IpLITR-induced phagocytic mechanisms were also differentially susceptible to temperature and pharmacological inhibitors of canonical signaling mediators. In the present study, we examined the sensitivity of IpLITR-mediated phagocytosis to the endogenous serine-protease trypsin, a well-known mediator of immunoregulatory receptor functions. Trypsin selectively reduced IpLITR 1.1b cell surface expression and phagocytic activity in a dose-dependent manner. We also observed a significant alteration of the IpLITR 1.1b phagocytic phenotype post-trypsin exposure; whereas, the IpLITR 2.6b-mediated target engulfment phenotype was unchanged. Recovery experiments suggested that trypsin-induced inhibition of IpLITR 1.1b-dependent phagocytosis was reversible and that the re-establishment of phagocytic function was associated with a recovery of receptor surface expression. Cell-surface biotinylation and immunoprecipitation studies demonstrated that IpLITR 1.1b normally exists as a mature (∼70 kDa) protein on the cell surface. However, trypsin treatment reduced expression of the mature receptor and processed IpLITR 1.1b into an ∼60 kDa form. The trypsin-generated and putative immature IpLITR 1.1b form was not present on the cell surface; suggesting that the cleaved receptor may have been internalized, post-processing, by regulated endocytosis. Taken together, these results reveal a unique role for trypsin as a selective modulator of IpLITR-mediated phagocytosis and highlight a conserved role for serine proteases as potent immunomodulatory factors.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors. BIOLOGY 2016; 5:biology5010013. [PMID: 27005670 PMCID: PMC4810170 DOI: 10.3390/biology5010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/22/2022]
Abstract
Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s), and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs), which appear to be important regulators of several innate cellular responses via classical as well as unique biochemical signaling networks.
Collapse
|
14
|
Taylor EB, Moulana M, Stuge TB, Quiniou SMA, Bengten E, Wilson M. A Leukocyte Immune-Type Receptor Subset Is a Marker of Antiviral Cytotoxic Cells in Channel Catfish, Ictalurus punctatus. THE JOURNAL OF IMMUNOLOGY 2016; 196:2677-89. [PMID: 26856701 DOI: 10.4049/jimmunol.1502166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022]
Abstract
Channel catfish, Ictalurus punctatus, leukocyte immune type receptors (LITRs) represent a multigene family that encodes Ig superfamily proteins that mediate activating or inhibitory signaling. In this study, we demonstrate the use of mAb CC41 to monitor viral cytotoxic responses in catfish and determine that CC41 binds to a subset of LITRs on the surface of catfish clonal CTLs. Homozygous gynogenetic catfish were immunized with channel catfish virus (CCV)-infected MHC-matched clonal T cells (G14D-CCV), and PBL were collected at various times after immunization for flow cytometric analyses. The percentage of CC41(+) cells was significantly increased 5 d after primary immunization with G14D-CCV and at 3 d after a booster immunization as compared with control fish only injected with G14D. Moreover, CC41(+) cells magnetically isolated from the PBL specifically killed CCV-infected targets as measured by (51)Cr release assays and expressed messages for CD3γδ, perforin, and at least one of the CD4-like receptors as analyzed by RNA flow cytometry. When MLC effector cells derived from a G14D-CCV-immunized fish were preincubated with CC41 mAb, killing of G14D-CCV targets was reduced by ∼40%, suggesting that at least some LITRs have a role in target cell recognition and/or cytotoxicity. The availability of a LITR-specific mAb has allowed, to our knowledge for the first time, functional characterization of LITRs in an autologous system. In addition, the identification of an LITR subset as a cytotoxic cell marker will allow for more effective monitoring of catfish immune responses to pathogens.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Mohadetheh Moulana
- Warmwater Aquaculture Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Stoneville, MS 38776; and
| | - Tor B Stuge
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromso-Arctic University of Norway, N-9037 Tromso, Norway
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Stoneville, MS 38776; and
| | - Eva Bengten
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216;
| |
Collapse
|
15
|
Lillico DME, Zwozdesky MA, Pemberton JG, Deutscher JM, Jones LO, Chang JP, Stafford JL. Teleost leukocyte immune-type receptors activate distinct phagocytic modes for target acquisition and engulfment. J Leukoc Biol 2015; 98:235-48. [DOI: 10.1189/jlb.2a0215-039rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
|
16
|
Xie J, Belosevic M. Functional characterization of receptor-interacting serine/threonine kinase 2 (RIP2) of the goldfish (Carassius auratus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:76-85. [PMID: 25242011 DOI: 10.1016/j.dci.2014.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
We report on the functional characterization of RIP2 of the goldfish. Quantitative expression analysis of goldfish RIP2 revealed the greatest mRNA levels in the spleen, monocytes and splenocytes. We generated a recombinant form of the molecule (rgRIP2) and determined that anti-human RIP2 polyclonal antibody specifically recognized recombinant goldfish RIP2 (rgRIP2). Goldfish RIP2 activity was inhibited by the p38 MAPK pathway inhibitor SB203580. Treatment of goldfish macrophages with LPS, PGN, MDP, Poly I:C, heat-killed and live Mycobacterium marinum, and heat-killed Aeromonas salmonicida differentially changed the expression of RIP2 at both mRNA and protein levels. Co-immunoprecipitation assays indicated that RIP2 interacted with Nod1 and Nod2 receptors in eukaryotic cells. The results of dual luciferase reporter assay revealed that RIP2 over-expression caused the activation of the NF-κB signal pathway. In addition, RIP2 was involved in the regulation of the production of TNFα-2 and IL-1β1 in goldfish macrophages exposed to M. marinum.
Collapse
Affiliation(s)
- Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Rodríguez-Nunez I, Wcisel DJ, Litman GW, Yoder JA. Multigene families of immunoglobulin domain-containing innate immune receptors in zebrafish: deciphering the differences. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:24-34. [PMID: 24548770 PMCID: PMC4028400 DOI: 10.1016/j.dci.2014.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Five large multigene families encoding innate-type immune receptors that are comprised of immunoglobulin domains have been identified in bony fish, of which four do not possess definable mammalian orthologs. The members of some of the multigene families exhibit unusually extensive patterns of divergence and the individual family members demonstrate marked variation in interspecific comparisons. As a group, the gene families reveal striking differences in domain type and content, mechanisms of intracellular signaling, basic structural features, haplotype and allelic variation and ligand binding. The potential functional roles of these innate immune receptors, their relationships to immune genes in higher vertebrate species and the basis for their adaptive evolution are of broad interest. Ongoing investigations are expected to provide new insight into alternative mechanisms of immunity.
Collapse
Affiliation(s)
- Iván Rodríguez-Nunez
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA; Department of Molecular Genetics, All Children's Hospital, 501 6th Avenue South, St. Petersburg, FL 33701, USA; H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
18
|
Cortes HD, Lillico DME, Zwozdesky MA, Pemberton JG, O'Brien A, Montgomery BCS, Wiersma L, Chang JP, Stafford JL. Induction of phagocytosis and intracellular signaling by an inhibitory channel catfish leukocyte immune-type receptor: evidence for immunoregulatory receptor functional plasticity in teleosts. J Innate Immun 2014; 6:435-55. [PMID: 24504017 DOI: 10.1159/000356963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/01/2013] [Indexed: 12/21/2022] Open
Abstract
Immunoregulatory receptors are categorized as stimulatory or inhibitory based on their engagement of unique intracellular signaling networks. These proteins also display functional plasticity, which adds versatility to the control of innate immunity. Here we demonstrate that an inhibitory catfish leukocyte immune-type receptor (IpLITR) also displays stimulatory capabilities in a representative myeloid cell model. Previously, the receptor IpLITR 1.1b was shown to inhibit natural killer cell-mediated cytotoxicity. Here we expressed IpLITR 1.1b in rat basophilic leukemia-2H3 cells and monitored intracellular signaling and functional responses. Although IpLITR 1.1b did not stimulate cytokine secretion, activation of this receptor unexpectedly induced phagocytosis as well as extracellular signal-related kinase 1/2- and protein kinase B (Akt)-dependent signal transduction. This novel IpLITR 1.1b-mediated response was independent of an association with the FcRγ chain and was likely due to phosphotyrosine-dependent adaptors associating with prototypical signaling motifs within the distal region of its cytoplasmic tail. Furthermore, compared to a stimulatory IpLITR, IpLITR 1.1b displayed temporal differences in the induction of intracellular signaling, and IpLITR 1.1b-mediated phagocytosis had reduced sensitivity to EDTA and cytochalasin D. Overall, this is the first demonstration of functional plasticity for teleost LITRs, a process likely important for the fine-tuning of conserved innate defenses.
Collapse
Affiliation(s)
- Herman D Cortes
- Department of Biological Sciences, University of Alberta, Edmonton, Alta., Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa). In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptors, antimicrobial peptides, complements, lectins, cytokines, transferrin and gene expression profiling using microarrays and next generation sequencing technologies. This review will benefit the understanding of innate immune system in catfish and further efforts in studying the innate immune-related genes in fish.
Collapse
|
20
|
Montgomery BC, Cortes HD, Burshtyn DN, Stafford JL. Channel catfish leukocyte immune-type receptor mediated inhibition of cellular cytotoxicity is facilitated by SHP-1-dependent and -independent mechanisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:151-163. [PMID: 21945134 DOI: 10.1016/j.dci.2011.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are immunoregulatory proteins belonging to the immunoglobulin superfamily that likely play an important role in the regulation of teleost immune cell effector responses. IpLITRs are expressed by myeloid and lymphoid subsets and based on their structural features can be classified as either putative stimulatory or inhibitory forms. We have recently demonstrated at the biochemical and functional levels that stimulatory IpLITR-types induced intracellular signaling cascades resulting in immune cell activation. Alternatively, we have shown that putative inhibitory IpLITRs may abrogate immune cell responses by recruiting teleost Src homology 2 (SH2) domain-containing cytoplasmic phosphatases (SHP) to their tyrosine-containing cytoplasmic tails. In the present study, we used vaccinia virus to express recombinant chimeric proteins encoding the extracellular and transmembrane regions of human KIR2DL3 fused with the cytoplasmic tails of two putative inhibitory IpLITRs (i.e. IpLITR1.2a and IpLITR1.1b) in mouse spleen-derived cytotoxic lymphocytes. This approach allowed us to study the specific effects of IpLITR-induced signaling on lymphocyte killing of B cell targets (e.g. 721.221 cells) using a standard chromium release assay. Our results suggest that both IpLITR1.2a and IpLITR1.1b are potent inhibitors of lymphocyte-mediated cellular cytotoxicity. Furthermore, using a catalytically inactive SHP-1 mutant in combination with site-directed mutagenesis and co-immunoprecipitations, we also demonstrate that the IpLITR1.2a-mediated functional inhibitory response is SHP-1-dependent. Alternatively, IpLITR1.1b-mediated inhibition of cellular cytotoxicity is facilitated by both SHP-1-dependent and independent mechanisms, possibly involving the C-terminal Src kinase (Csk). The involvement of this inhibitory kinase requires binding to a tyrosine residue encoded in the unique membrane proximal cytoplasmic tail region of IpLITR1.1b. Overall, this represents the first functional information for inhibitory IpLITR-types and reveals that catfish LITRs engage SHP-dependent and -independent inhibitory signaling pathways to abrogate lymphocyte-mediated killing.
Collapse
|
21
|
Cortes HD, Montgomery BC, Verheijen K, García-García E, Stafford JL. Examination of the stimulatory signaling potential of a channel catfish leukocyte immune-type receptor and associated adaptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:62-73. [PMID: 21703302 DOI: 10.1016/j.dci.2011.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 05/31/2023]
Abstract
Expressed by various subsets of myeloid and lymphoid immune cells, channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are predicted to play a key role in the initiation and termination of teleost cellular effector responses. These type I transmembrane proteins belong to the immunoglobulin superfamily and display features of immunoregulatory receptors with inhibitory and/or stimulatory signaling potential. Expanding on our previous work, which demonstrated that putative stimulatory IpLITR-types associated with the catfish adaptor proteins IpFcRγ and FcRγ-L, this study focuses on the functional significance of this immune receptor-adaptor signaling complex. Specifically, we generated an epitope-tagged chimeric receptor construct by fusing the extracellular domain of IpLITR 2.6b with the transmembrane region and cytoplasmic tail of IpFcRγ-L. This chimera was stably expressed in a rat basophilic leukemia (RBL) cell line, RBL-2H3, and following cross-linking of the surface receptor with an anti-hemagglutinin monoclonal antibody or opsonized microspheres, the chimeric teleost receptor induced cellular degranulation and phagocytic responses, respectively. Site-directed mutagenesis of the immunoreceptor tyrosine-based activation motif encoded within the cytoplasmic tail of the chimera confirmed that these functional responses were dependent on the phosphorylated tyrosines within this motif. Using a combination of phospho-specific antibodies and pharmacological inhibitors, we also demonstrate that the IpLITR/IpFcRγ-L-induced degranulation response requires the activity of Src homology 2 domain containing protein tyrosine phosphatases, phosphatidylinositol 3-kinase, protein kinase C, and mitogen-activated protein kinases but appears independent of the c-Jun N-terminal kinase and p38 MAP kinase pathways. In addition to this first look at stimulatory IpLITR-mediated signaling and its influence on cellular effector responses, the advantage of generating RBL-2H3 cells stably expressing a functional IpLITR-adaptor chimera will be discussed.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antibodies, Monoclonal/pharmacology
- Basophils/drug effects
- Basophils/immunology
- Basophils/metabolism
- Basophils/pathology
- Cell Degranulation/drug effects
- Cell Line, Tumor
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Ictaluridae
- Immunity, Cellular
- Mutagenesis, Site-Directed
- Phagocytosis
- Phosphorylation
- Protein Structure, Tertiary/genetics
- Rats
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Transgenes/genetics
- src Homology Domains/genetics
Collapse
Affiliation(s)
- Herman D Cortes
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
22
|
Montgomery BC, Cortes HD, Mewes-Ares J, Verheijen K, Stafford JL. Teleost IgSF immunoregulatory receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1223-1237. [PMID: 21414352 DOI: 10.1016/j.dci.2011.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/14/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
In all animals innate immunity is the first line of immune defense from invading pathogens. The prototypical innate cellular responses such as phagocytosis, degranulation, and cellular cytotoxicity are elicited by leukocytes in a diverse range of animals including fish, amphibians, birds and mammals reinforcing the importance of such primordial defense mechanisms. In mammals, these responses are intricately controlled and coordinated at the cellular level by distinct subsets of immunoregulatory receptors. Many of these surface proteins belong to the immunoglobulin superfamily and in mammals elaborate immunoregulatory receptor networks play a major role in the control of infectious diseases. Recent examination of teleost immunity has begun to further illustrate the complexities of these receptor networks in lower vertebrates. However, little is known about the mechanisms that control how immunoregulatory receptors influence cellular decision making in ectothermic vertebrates. This review focuses on several families of recently discovered immunoglobulin superfamily members in fish that share structural, phylogenetic and in some cases functional relationships with mammalian immunoregulatory receptors. Further characterization of these teleost innate immune receptor families will provide detailed information regarding the conservation and importance of innate immune defense strategies throughout vertebrate evolution.
Collapse
|
23
|
The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 2010; 63:123-41. [PMID: 21191578 DOI: 10.1007/s00251-010-0506-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/16/2010] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells affect a form of innate immunity that recognizes and eliminates cells that are infected with certain viruses or have undergone malignant transformation. In mammals, this recognition can be mediated through immunoglobulin- (Ig) and/or lectin-type NK receptors (NKRs). NKR genes in mammals range from minimally polymorphic single-copy genes to complex multigene families that exhibit high levels of haplotypic complexity and exhibit significant interspecific variation. Certain single-copy NKR genes that are present in one mammal are present as expanded multigene families in other mammals. These observations highlight NKRs as one of the most rapidly evolving eukaryotic gene families and likely reflect the influence of pathogens, especially viruses, on their evolution. Although well characterized in human and mice, cytotoxic cells that are functionally similar to NK cells have been identified in species ranging from birds to reptiles, amphibians and fish. Although numerous receptors have been identified in non-mammalian vertebrates that share structural relationships with mammalian NKRs, functionally defining these lower vertebrate molecules as NKRs is confounded by methodological and interpretive complexities. Nevertheless, several lines of evidence suggest that NK-type function or its equivalent has sustained a long evolutionary history throughout vertebrate species.
Collapse
|
24
|
Mewes J, Verheijen K, Montgomery BC, Stafford JL. Stimulatory catfish leukocyte immune-type receptors (IpLITRs) demonstrate a unique ability to associate with adaptor signaling proteins and participate in the formation of homo- and heterodimers. Mol Immunol 2009; 47:318-31. [DOI: 10.1016/j.molimm.2009.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 01/20/2023]
|