1
|
Sukkar D, Wagner L, Bonnefoy A, Falla-Angel J, Laval-Gilly P. Imidacloprid and amitraz differentially alter antioxidant enzymes in honeybee (Apis mellifera) hemocytes when exposed to microbial pathogen-associated molecular patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178868. [PMID: 39999704 DOI: 10.1016/j.scitotenv.2025.178868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Honeybees (Apis mellifera) are increasingly exposed to pesticides and microbial stressors, yet their combined effects on immune defenses remain unclear. Exposure to the neonicotinoid imidacloprid and the acaricide amitraz, alone and in combination, alters antioxidant enzyme activity in hemocytes when challenged with bacterial components such as lipopolysaccharide and peptidoglycan or the fungal-derived molecule zymosan A. The combination of pesticides with zymosan A synergistically suppresses superoxide dismutase and glutathione-S-transferase activity, while catalase activity remains unchanged. In contrast, lipopolysaccharide counteracts pesticide-induced oxidative stress, suggesting immune-pathway-specific modulation. The heightened vulnerability of honeybees to fungal-associated immune challenges in pesticide-contaminated environments compromises their ability to detoxify harmful substances and respond to infections. Such approaches that include comparison of different microbial interactions, pesticide cocktails, and immunity are needed. Understanding these interactions is essential for improving pesticide regulations and pollinator conservation efforts in the face of increasing environmental stressors.
Collapse
Affiliation(s)
- Dani Sukkar
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France.
| | - Lea Wagner
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Université de Lorraine, Department of Environmental Management, 57000 Metz, France
| | - Antoine Bonnefoy
- Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France
| | - Jairo Falla-Angel
- Université de Lorraine, Department of Environmental Management, 57000 Metz, France
| | | |
Collapse
|
2
|
Saab SA, Cardoso-Jaime V, Kefi M, Dimopoulos G. Advances in the dissection of Anopheles-Plasmodium interactions. PLoS Pathog 2025; 21:e1012965. [PMID: 40163471 PMCID: PMC11957333 DOI: 10.1371/journal.ppat.1012965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Malaria is a life-threatening mosquito-borne disease caused by the Plasmodium parasite, responsible for more than half a million deaths annually and principally involving children. The successful transmission of malaria by Anopheles mosquitoes relies on complex successive interactions between the parasite and various mosquito organs, host factors, and restriction factors. This review summarizes our current understanding of the mechanisms regulating Plasmodium infection of the mosquito vector at successive plasmodial developmental stages and highlights potential transmission-blocking targets and strategies.
Collapse
Affiliation(s)
- Sally A. Saab
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| |
Collapse
|
3
|
Cardoso-Jaime V, Dimopoulos G. Anopheles gambiae phagocytic hemocytes promote Plasmodium falciparum infection by regulating midgut epithelial integrity. Nat Commun 2025; 16:1465. [PMID: 39920122 PMCID: PMC11805967 DOI: 10.1038/s41467-025-56313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
For successful transmission, the malaria parasite must traverse tissue epithelia and survive attack from the insect's innate immune system. Hemocytes play a multitude of roles in mosquitoes, including defense against invading pathogens. Here, we show that hemocytes of the major malaria vector Anopheles gambiae promote Plasmodium falciparum infection by maintaining midgut epithelial integrity by controlling cell proliferation upon blood feeding. The mosquito's hemocytes also control the midgut microbiota and immune gene expression. Our study unveils novel hemocyte functions that are exploited by the human malaria parasite to evade the mosquito's immune system.
Collapse
Affiliation(s)
- Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Bergmann S, Graf E, Hoffmann P, Becker SC, Stern M. Localization of nitric oxide-producing hemocytes in Aedes and Culex mosquitoes infected with bacteria. Cell Tissue Res 2024; 395:313-326. [PMID: 38240845 PMCID: PMC10904431 DOI: 10.1007/s00441-024-03862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 03/01/2024]
Abstract
Mosquitoes are significant vectors of various pathogens. Unlike vertebrates, insects rely solely on innate immunity. Hemocytes play a crucial role in the cellular part of the innate immune system. The gaseous radical nitric oxide (NO) produced by hemocytes acts against pathogens and also functions as a versatile transmitter in both the immune and nervous systems, utilizing cyclic guanosine monophosphate (cGMP) as a second messenger. This study conducted a parallel comparison of NO synthase (NOS) expression and NO production in hemocytes during Escherichia coli K12 infection in four vector species: Aedes aegypti, Aedes albopictus, Culex pipiens molestus, and Culex pipiens quinquefasciatus. Increased NOS expression by NADPH diaphorase (NADPHd) staining and NO production by immunofluorescence against the by-product L-citrulline were observed in infected mosquito hemocytes distributed throughout the abdomens. NADPHd activity and citrulline labeling were particularly found in periostial hemocytes near the heart, but also on the ventral nerve chord (VNC). Pericardial cells of Ae. aegypti and Cx. p. molestus showed increased citrulline immunofluorescence, suggesting their involvement in the immune response. Oenocytes displayed strong NADPHd and citrulline labeling independent of infection status. This comparative study, consistent with findings in other species, suggests a widespread phenomenon of NO's role in hemocyte responses during E. coli infection. Found differences within and between genera highlight the importance of species-specific investigations.
Collapse
Affiliation(s)
- Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Emily Graf
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Pascal Hoffmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Stefanie C Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany.
| |
Collapse
|
5
|
Zhang T, García-Calderón D, Molina-Hernández M, Leitão J, Hesser J, Seco J. A theoretical study of H 2 O 2 as the surrogate of dose in minibeam radiotherapy, with a diffusion model considering radical removal process. Med Phys 2023; 50:5262-5272. [PMID: 37345373 DOI: 10.1002/mp.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/16/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Minibeam radiation therapy (MBRT) is an innovative dose delivery method with the potential to spare normal tissue while achieving similar tumor control as conventional radiotherapy. However, it is difficult to use a single dose parameter, such as mean dose, to compare different patterns of MBRT due to the spatially fractionated radiation. Also, the mechanism leading to the biological effects is still unknown. PURPOSE This study aims to demonstrate that the hydrogen peroxide (H2 O2 ) distribution could serve as a surrogate of dose distribution when comparing different patterns of MBRT. METHODS A free diffusion model (FDM) for H2 O2 developed with Fick's second law was compared with a previously published model based on Monte Carlo & convolution method. Since cells form separate compartments that can eliminate H2 O2 radicals diffusing inside the cell, a term describing the elimination was introduced into the equation. The FDM and the diffusion model considering removal (DMCR) were compared by simulating various dose rate irradiation schemes and uniform irradiation. Finally, the DMCR was compared with previous microbeam and minibeam animal experiments. RESULTS Compared with a previous Monte Carlo & Convolution method, this analytical method provides more accurate results. Furthermore, the new model shows H2 O2 concentration distribution instead of the time to achieve a certain H2 O2 uniformity. The comparison between FDM and DMCR showed that H2 O2 distribution from FDM varied with dose rate irradiation, while DMCR had consistent results. For uniform irradiation, FDM resulted in a Gaussian distribution, while the H2 O2 distribution from DMCR was close to the dose distribution. The animal studies' evaluation showed a correlation between the H2 O2 concentration in the valley region and treatment outcomes. CONCLUSION DMCR is a more realistic model for H2 O2 simulation than the FDM. In addition, the H2 O2 distribution can be a good surrogate of dose distribution when the minibeam effect could be observed.
Collapse
Affiliation(s)
- Tengda Zhang
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel García-Calderón
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Miguel Molina-Hernández
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Instrumentation and Experimental Particle Physics (LIP), Lisbon, Portugal
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Leitão
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Instrumentation and Experimental Particle Physics (LIP), Lisbon, Portugal
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jürgen Hesser
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
6
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
7
|
Sukkar D, Laval-Gilly P, Bonnefoy A, Malladi S, Azoury S, Kanso A, Falla-Angel J. Differential Production of Nitric Oxide and Hydrogen Peroxide among Drosophila melanogaster, Apis mellifera, and Mamestra brassicae Immune-Activated Hemocytes after Exposure to Imidacloprid and Amitraz. INSECTS 2023; 14:174. [PMID: 36835742 PMCID: PMC9966094 DOI: 10.3390/insects14020174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Invertebrates have a diverse immune system that responds differently to stressors such as pesticides and pathogens, which leads to different degrees of susceptibility. Honeybees are facing a phenomenon called colony collapse disorder which is attributed to several factors including pesticides and pathogens. We applied an in vitro approach to assess the response of immune-activated hemocytes from Apis mellifera, Drosophila melanogaster and Mamestra brassicae after exposure to imidacloprid and amitraz. Hemocytes were exposed to the pesticides in single and co-exposures using zymosan A for immune activation. We measured the effect of these exposures on cell viability, nitric oxide (NO) production from 15 to 120 min and on extracellular hydrogen peroxide (H2O2) production after 3 h to assess potential alterations in the oxidative response. Our results indicate that NO and H2O2 production is more altered in honeybee hemocytes compared to D. melanogaster and M. brassicae cell lines. There is also a differential production at different time points after pesticide exposure between these insect species as contrasting effects were evident with the oxidative responses in hemocytes. The results imply that imidacloprid and amitraz act differently on the immune response among insect orders and may render honeybee colonies more susceptible to infection and pests.
Collapse
Affiliation(s)
- Dani Sukkar
- Biology Department, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
- Laboratoire Sols et Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Lorraine, 54000 Nancy, France
| | - Philippe Laval-Gilly
- Laboratoire Sols et Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Lorraine, 54000 Nancy, France
| | - Antoine Bonnefoy
- Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), Institut Universitaire de Technologie de Thionville-Yutz, Université de Lorraine, 57970 Yutz, France
| | - Sandhya Malladi
- Laboratoire Sols et Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Lorraine, 54000 Nancy, France
| | - Sabine Azoury
- Biology Department, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Ali Kanso
- Biology Department, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Jairo Falla-Angel
- Laboratoire Sols et Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
8
|
Ramakrishnan A, Hillyer JF. Silencing Transglutaminase Genes TGase2 and TGase3 Has Infection-Dependent Effects on the Heart Rate of the Mosquito Anopheles gambiae. INSECTS 2022; 13:582. [PMID: 35886758 PMCID: PMC9315499 DOI: 10.3390/insects13070582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
Transglutaminases are pleiotropic enzymes that in mosquitoes participate in the formation of the mating plug and the wound-induced antimalarial response. Moreover, one transglutaminase, TGase3, negatively regulates the infection-induced aggregation of hemocytes on the heart. Given that TGase3 is an inhibitor of periostial hemocyte aggregation, we used RNAi-based gene silencing followed by intravital video imaging to scrutinize whether any of the three transglutaminases encoded in the genome of the mosquito, Anopheles gambiae, play a role in modulating the heart rate of uninfected and infected mosquitoes. Initially, we confirmed that an infection decreases the heart rate. Then, we uncovered that silencing TGase1 does not impact heart physiology, but silencing TGase2 results in a constant heart rate regardless of infection status, eliminating the infection-induced decrease in the heart rate. Finally, silencing TGase3 decreases the heart rate in uninfected mosquitoes but increases the heart rate in infected mosquitoes. We conclude that TGase2 and TGase3 modulate heart physiology and demonstrate that factors not classically associated with insect circulatory physiology are involved in the functional integration of the immune and circulatory systems of mosquitoes.
Collapse
Affiliation(s)
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA;
| |
Collapse
|
9
|
Wang F. Sending Out Alarms: A Perspective on Intercellular Communications in Insect Antiviral Immune Response. Front Immunol 2021; 12:613729. [PMID: 33708207 PMCID: PMC7940532 DOI: 10.3389/fimmu.2021.613729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Viral infection triggers insect immune response, including RNA interference, apoptosis and autophagy, and profoundly changes the gene expression profiles in infected cells. Although intracellular degradation is crucial for restricting viral infection, intercellular communication is required to mount a robust systemic immune response. This review focuses on recent advances in understanding the intercellular communications in insect antiviral immunity, including protein-based and virus-derived RNA based cell-cell communications, with emphasis on the signaling pathway that induces the production of the potential cytokines. The prospects and challenges of future work are also discussed.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Alvarado-Delgado A, Martínez-Barnetche J, Téllez-Sosa J, Rodríguez MH, Gutiérrez-Millán E, Zumaya-Estrada FA, Saldaña-Navor V, Rodríguez MC, Tello-López Á, Lanz-Mendoza H. Prediction of neuropeptide precursors and differential expression of adipokinetic hormone/corazonin-related peptide, hugin and corazonin in the brain of malaria vector Nyssorhynchus albimanus during a Plasmodium berghei infection. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100014. [PMID: 36003598 PMCID: PMC9387463 DOI: 10.1016/j.cris.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/02/2022]
Abstract
We describe precursors that predicted at least sixty neuropeptides in Ny. albimanus. At least 16 precursors are encoded in the Ny. albimanus brain. Myosuppressin neuropeptide precursor was identified in Ny albimanus. acp and hugin transcripts increased in Ny. albimanus brains infected with P. berghei.
Insect neuropeptides, play a central role in the control of many physiological processes. Based on an analysis of Nyssorhynchus albimanus brain transcriptome a neuropeptide precursor database of the mosquito was described. Also, we observed that adipokinetic hormone/corazonin-related peptide (ACP), hugin and corazonin encoding genes were differentially expressed during Plasmodium infection. Transcriptomic data from Ny. albimanus brain identified 29 pre-propeptides deduced from the sequences that allowed the prediction of at least 60 neuropeptides. The predicted peptides include isoforms of allatostatin C, orcokinin, corazonin, adipokinetic hormone (AKH), SIFamide, capa, hugin, pigment-dispersing factor, adipokinetic hormone/corazonin-related peptide (ACP), tachykinin-related peptide, trissin, neuropeptide F, diuretic hormone 31, bursicon, crustacean cardioactive peptide (CCAP), allatotropin, allatostatin A, ecdysis triggering hormone (ETH), diuretic hormone 44 (Dh44), insulin-like peptides (ILPs) and eclosion hormone (EH). The analysis of the genome of An. albimanus and the generated transcriptome, provided evidence for the identification of myosuppressin neuropeptide precursor. A quantitative analysis documented increased expression of precursors encoding ACP peptide, hugin and corazonin in the mosquito brain after Plasmodium berghei infection. This work represents an initial effort to characterize the neuropeptide precursors repertoire of Ny. albimanus and provides information for understanding neuroregulation of the mosquito response during Plasmodium infection.
Collapse
|
11
|
Batista KKDS, Vieira CS, Florentino EB, Caruso KFB, Teixeira PTP, Moraes CDS, Genta FA, de Azambuja P, de Castro DP. Nitric oxide effects on Rhodnius prolixus's immune responses, gut microbiota and Trypanosoma cruzi development. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104100. [PMID: 32822690 DOI: 10.1016/j.jinsphys.2020.104100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 05/21/2023]
Abstract
The immune system of Rhodnius prolixus comprehends the synthesis of different effectors that modulate the intestinal microbiota population and the life cycle of the parasite Trypanosoma cruzi inside the vector midgut. One of these immune responses is the production of reactive nitrogen species (RNS) derived by the action of nitric oxide synthase (NOS). Therefore, we investigated the effects of L-arginine, the substrate for nitric oxide (NO) production and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, added in the insect blood meal. We analyzed the impact of these treatments on the immune responses and development of intestinal bacteria and parasites on R. prolixus nymphs. The L-arginine treatment in R. prolixus nymphs induced a higher NOS gene expression in the fat body and increased NO production, but reduced catalase and antimicrobial activities in the midgut. As expected, L-NAME treatment reduced NOS gene expression in the fat body. In addition, L-NAME treatment diminished catalase activity in the hemolymph and posterior midgut reduced phenoloxidase activity in the anterior midgut and increased the antimicrobial activity in the hemolymph. Both treatments caused a reduction in the cultivatable intestinal microbiota, especially in insects treated with L-NAME. However, T. cruzi development in the insect's digestive tract was suppressed after L-arginine treatment and the opposite was observed with L-NAME, which resulted in higher parasite counts. Therefore, we conclude that induction and inhibition of NOS and NO production are associated with other R. prolixus humoral immune responses, such as catalase, phenoloxidase, and antibacterial activities in different insect organs. These alterations reflect on intestinal microbiota and T. cruzi development.
Collapse
Affiliation(s)
| | - Cecília Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Karina Francine Bravo Caruso
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Caroline da Silva Moraes
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Fernando Ariel Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Patrícia de Azambuja
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Daniele Pereira de Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Estévez-Lao TY, Sigle LT, Gomez SN, Hillyer JF. Nitric oxide produced by periostial hemocytes modulates the bacterial infection-induced reduction of the mosquito heart rate. J Exp Biol 2020; 223:jeb225821. [PMID: 32561636 DOI: 10.1242/jeb.225821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
The circulatory and immune systems of mosquitoes are functionally integrated. An infection induces the migration of hemocytes to the dorsal vessel, and specifically, to the regions surrounding the ostia of the heart. These periostial hemocytes phagocytose pathogens in the areas of the hemocoel that experience the highest hemolymph flow. Here, we investigated whether a bacterial infection affects cardiac rhythmicity in the African malaria mosquito, Anopheles gambiae We discovered that infection with Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis, but not Micrococcus luteus, reduces the mosquito heart rate and alters the proportional directionality of heart contractions. Infection does not alter the expression of genes encoding crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F or short neuropeptide F, indicating that they do not drive the cardiac phenotype. Infection upregulates the transcription of two superoxide dismutase (SOD) genes, catalase and a glutathione peroxidase, but dramatically induces upregulation of nitric oxide synthase (NOS) in both the heart and hemocytes. Within the heart, nitric oxide synthase is produced by periostial hemocytes, and chemically inhibiting the production of nitric oxide using l-NAME reverses the infection-induced cardiac phenotype. Finally, infection induces the upregulation of two lysozyme genes in the heart and other tissues, and treating mosquitoes with lysozyme reduces the heart rate in a manner reminiscent of the infection phenotype. These data demonstrate an exciting new facet of the integration between the immune and circulatory systems of insects, whereby a hemocyte-produced factor with immune activity, namely nitric oxide, modulates heart physiology.
Collapse
Affiliation(s)
- Tania Y Estévez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Leah T Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Scherly N Gomez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
14
|
Ferreira PG, Tesla B, Horácio ECA, Nahum LA, Brindley MA, de Oliveira Mendes TA, Murdock CC. Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito-Zika Virus Interactions. Front Microbiol 2020; 11:901. [PMID: 32595607 PMCID: PMC7303344 DOI: 10.3389/fmicb.2020.00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquito-pathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28°C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20°C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.
Collapse
Affiliation(s)
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Elvira Cynthia Alves Horácio
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Promove College of Technology, Belo Horizonte, Brazil
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | - Courtney Cuinn Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Odum School of Ecology, University of Georgia, Athens, GA, United States.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States.,Center for Emerging and Global Tropical Diseases, University of Georgia, Athens, GA, United States.,River Basin Center, University of Georgia, Athens, GA, United States.,Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Medina-Gómez H, Farriols M, Santos F, González-Hernández A, Torres-Guzmán JC, Lanz H, Contreras-Garduño J. Pathogen-produced catalase affects immune priming: A potential pathogen strategy. Microb Pathog 2018; 125:93-95. [PMID: 30201591 DOI: 10.1016/j.micpath.2018.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/06/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022]
Abstract
Immune priming in invertebrates occurs when the first contact with a pathogen/parasite enhances resistance after a second encounter with the same strain or species. Although the mechanisms are not well understood, there is evidence that priming the immune response of some hosts leads to greater pro-oxidant production. Parasites, in turn, might counteract the host attack with antioxidants. Virulent pathogen strains may therefore mask invertebrate immune priming. For example, different parasite species overexpress catalase as a virulence factor to resist host pro-oxidants, possibly impairing the immune priming response. The aim of this study was firstly to evaluate the specificity of immune priming in Tenebrio molitor when facing homologous and heterologous challenges. Secondly, homologous challenges were carried out with two Metarhizium anisopliae strains (Ma10 and CAT). The more virulent strain (CAT) overexpresses catalase, an antioxidant that perhaps impairs a host immune response mediated by reactive oxygen species (ROS). Indeed, T. molitor larvae exhibited better immune priming (survival) in response to the Ma10 than CAT homologous challenge. Moreover, the administration of paraquat, an ROS-promoting agent, favoured survival of the host upon exposure to each fungal strain. We propose that some pathogens likely overcome pro-oxidant-mediated immune priming defences by producing antioxidants such as catalase.
Collapse
Affiliation(s)
- Héctor Medina-Gómez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Mónica Farriols
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Fernando Santos
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Angélica González-Hernández
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Juan Carlos Torres-Guzmán
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Humberto Lanz
- Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Jorge Contreras-Garduño
- ENES, unidad Morelia, UNAM, Antigua Carretera a Pátzcuaro No.8701, Col. Ex-Hacienda San José de la Huerta 58190, Morelia, Michoacán, Mexico.
| |
Collapse
|
16
|
Kumar M, Mohanty AK, Sreenivasamurthy SK, Dey G, Advani J, Pinto SM, Kumar A, Prasad TSK. Response to Blood Meal in the Fat Body of Anopheles stephensi Using Quantitative Proteomics: Toward New Vector Control Strategies Against Malaria. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:520-530. [PMID: 28873011 DOI: 10.1089/omi.2017.0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Malaria remains a grand challenge for disruptive innovation in global health therapeutics and diagnostics. Anopheles stephensi is one of the major vectors of malaria in Asia. Vector and transmission control are key focus areas in the fight against malaria, a field of postgenomics research where proteomics can play a substantive role. Moreover, to identify novel strategies to control the vector population, it is necessary to understand the vector life processes at a global and molecular scale. In this context, fat body is a vital organ required for vitellogenesis, vector immunity, vector physiology, and vector-parasite interaction. Given its central role in energy metabolism, vitellogenesis, and immune function, the proteome profile of the fat body and the impact of blood meal (BM) ingestion on the protein abundances of this vital organ have not been investigated so far. Therefore, using a proteomics approach, we identified the proteins expressed in the fat body of An. stephensi and their differential expression in response to BM ingestion. In all, we identified 3,218 proteins in the fat body using high-resolution mass spectrometry, of which 483 were found to be differentially expressed in response to the BM ingestion. Bioinformatics analysis of these proteins underscored their role in amino acid metabolism, vitellogenesis, lipid transport, signal peptide processing, mosquito immunity, and oxidation-reduction processes. Interestingly, we identified five novel genes, which were found to be differentially expressed upon BM ingestion. Proteins that exhibited altered expression in the present study are potential targets for vector control strategies and development of transmission blocking vaccines in the fight against malaria.
Collapse
Affiliation(s)
- Manish Kumar
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | | | | | - Gourav Dey
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | - Jayshree Advani
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | - Sneha M Pinto
- 4 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - Ashwani Kumar
- 3 National Institute of Malaria Research (ICMR) , Panjim, India
| | - Thottethodi Subrahmanya Keshava Prasad
- 1 Institute of Bioinformatics , Bangalore, India .,4 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India .,5 NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences , Bangalore, India
| |
Collapse
|
17
|
Hernández-Martínez S, Sánchez-Zavaleta M, Brito K, Herrera-Ortiz A, Ons S, Noriega FG. Allatotropin: A pleiotropic neuropeptide that elicits mosquito immune responses. PLoS One 2017; 12:e0175759. [PMID: 28426765 PMCID: PMC5398552 DOI: 10.1371/journal.pone.0175759] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Allatotropins (AT) are neuropeptides with pleotropic functions on a variety of insect tissues. They affect processes such as juvenile hormone biosynthesis, cardiac rhythm, oviduct and hindgut contractions, nutrient absorption and circadian cycle. The present work provides experimental evidence that AT elicits immune responses in two important mosquito disease vectors, Anopheles albimanus and Aedes aegypti. Hemocytes and an immune-competent mosquito cell line responded to AT by showing strong morphological changes and increasing bacterial phagocytic activity. Phenoloxidase activity in hemolymph was also increased in Ae. aegypti mosquitoes treated with AT but not in An. albimanus, suggesting differences in the AT-dependent immune activation in the two species. In addition, two important insect immune markers, nitric oxide levels and expression of antimicrobial peptide genes, were increased in An. albimanus guts after AT treatment. AT conjugated to quantum dot nanocrystals (QDots) specifically labeled hemocytes in vivo in both mosquito species, implying molecular interactions between AT and hemocytes. The results of our studies suggest a new role for AT in the modulation of the immune response in mosquitoes.
Collapse
Affiliation(s)
- Salvador Hernández-Martínez
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Minerva Sánchez-Zavaleta
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Kevin Brito
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Antonia Herrera-Ortiz
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos. Centro Regional de Estudios Genómicos. Universidad Nacional de La Plata. La Plata, Argentina
| | - Fernando G. Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University. Miami, FL, United States of America
| |
Collapse
|
18
|
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:53-64. [PMID: 26827888 DOI: 10.1016/j.dci.2016.01.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Alvarado-Delgado A, Perales Ortiz G, Tello-López ÁT, Encarnación S, Conde R, Martínez-Batallar ÁG, Moran-Francia K, Lanz-Mendoza H. Infection with Plasmodium berghei ookinetes alters protein expression in the brain of Anopheles albimanus mosquitoes. Parasit Vectors 2016; 9:542. [PMID: 27724938 PMCID: PMC5057407 DOI: 10.1186/s13071-016-1830-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/02/2016] [Indexed: 12/15/2022] Open
Abstract
Background The behaviour of Anopheles spp. mosquitoes, vectors for Plasmodium parasites, plays a crucial role in the propagation of malaria to humans. Consequently, it is important to understand how the behaviour of these mosquitoes is influenced by the interaction between the brain and immunological status. The nervous system is intimately linked to the immune and endocrine systems. There is evidence that the malaria parasite alters the function of these systems upon infecting the mosquito. Although there is a complex molecular interplay between the Plasmodium parasite and Anopheles mosquito, little is known about the neuronal alteration triggered by the parasite invasion. The aim of this study was to analyse the modification of the proteomic profile in the An. albimanus brain during the early phase of the Plasmodium berghei invasion. Results At 24 hours of the P. berghei invasion, the mosquito brain showed an increase in the concentration of proteins involved in the cellular metabolic pathway, such as ATP synthase complex alpha and beta, malate dehydrogenase, alanine transaminase, enolase and vacuolar ATP synthase. There was also a rise in the levels of proteins with neuronal function, such as calreticulin, mitofilin and creatine kinase. Concomitantly, the parasite invasion repressed the expression of synapse-associated proteins, including enolyl CoA hydratase, HSP70 and ribosomal S60 proteins. Conclusions Identification of upregulated and downregulated protein expression in the mosquito brain 24 hours after Plasmodium invaded the insect midgut paves the way to better understanding the regulation of the neuro-endocrine-immune system in an insect model during parasite infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1830-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Guillermo Perales Ortiz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Ángel T Tello-López
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | | | - Ken Moran-Francia
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Humberto Lanz-Mendoza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
20
|
Zhang N, Deng J, Wu F, Lu X, Huang L, Zhao M. Expression of arginase I and inducible nitric oxide synthase in the peripheral blood and lymph nodes of HIV‑positive patients. Mol Med Rep 2015; 13:731-43. [PMID: 26647762 PMCID: PMC4686052 DOI: 10.3892/mmr.2015.4601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 10/21/2015] [Indexed: 11/17/2022] Open
Abstract
Arginase I (Arg I) and inducible nitric oxide synthase (iNOS) are important in regulating immune functions through their metabolites. Previous studies have revealed that the expression of Arg I is increased and the expression of iNOS is reduced in the serum and peripheral blood mononuclear cells of human immunodeficiency virus (HIV)-infected patients. As one of the most important immune organs and HIV replication sites, whether similar changes are present in the lymph nodes following HIV infection remains to be elucidated. To investigate this, the present study collected lymph node and blood specimens from 52 HIV-infected patients to measure the expression levels of Arg I and iNOS by immunohistochemistry and fluoresence-based flow cytometry. Compared with control subjects without HIV infection, the patients with HIV had significantly higher expression levels of Arg I in the lymph nodes and higher frequencies of Arg I+ CD4+ T cells and CD8+ T cells in the blood and lymph nodes, and these results were contrary the those of iNOS in the corresponding compartments. The expression levels of Arg I in the lymph nodes and blood were negatively associated with peripheral CD4+ T cell count and positively associated with viral load. However, the expression levels of iNOS in the lymph nodes and blood were positively associated with peripheral CD4+ T cell count and negatively associated with viral load. These results showed that alterations in the expression levels of Arg I and iNOS in the peripheral T cells and peripheral nodes of HIV infected patients are associated with disease progression in these patients. These results indicate a potential to therapeutic strategy for delaying disease progression through regulating and manipulating the expression levels of Arg I and iNOS in patients infected with HIV.
Collapse
Affiliation(s)
- Naichun Zhang
- Treatment and Research Center for Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, P.R. China
| | - Jianning Deng
- AIDS Department, The 4th People's Hospital of Nanning/Guangxi AIDS Clinical Treatment Center, Nanning, Guangxi 530023, P.R. China
| | - Fengyao Wu
- AIDS Department, The 4th People's Hospital of Nanning/Guangxi AIDS Clinical Treatment Center, Nanning, Guangxi 530023, P.R. China
| | - Xiangchan Lu
- AIDS Department, The 4th People's Hospital of Nanning/Guangxi AIDS Clinical Treatment Center, Nanning, Guangxi 530023, P.R. China
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, P.R. China
| | - Min Zhao
- Treatment and Research Center for Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, P.R. China
| |
Collapse
|
21
|
Contreras-Garduño J, Rodríguez MC, Hernández-Martínez S, Martínez-Barnetche J, Alvarado-Delgado A, Izquierdo J, Herrera-Ortiz A, Moreno-García M, Velazquez-Meza ME, Valverde V, Argotte-Ramos R, Rodríguez MH, Lanz-Mendoza H. Plasmodium berghei induced priming in Anopheles albimanus independently of bacterial co-infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:172-181. [PMID: 26004500 DOI: 10.1016/j.dci.2015.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/20/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Priming in invertebrates is the acquired capacity to better combat a pathogen due to a previous exposure to sub-lethal doses of the same organism. It is proposed to be functionally analogous to immune memory in vertebrates. Previous studies with Anopheles gambiae mosquitoes provide evidence that the inhibitory response to a second challenge by the malaria parasite Plasmodium berghei resulted from a sustained activation of hemocytes by midgut bacteria. These bacteria probably accessed the hemolymph during a first aborted infection through lesions produced by parasites invading the midgut. Since the mosquito immune responses to midgut bacteria and Plasmodium overlap, it is difficult to determine the priming responses of each. We herein document priming induced in the aseptic An. albimanus midgut by P. berghei, probably independent of the immune response induced by midgut bacteria. This idea is further evidenced by experiments with Pbs 25-28 knock out parasites (having an impaired capacity for invading the mosquito midgut) and dead ookinetes. Priming protection against a homologous challenge with P. berghei lasted up to 12 days. There was greater incorporation of 5-bromo-2'-deoxyuridine into midgut cell nuclei (indicative of DNA synthesis without mitosis) and increased transcription of hnt (a gene required for the endocycle of midgut cells) in primed versus unprimed mosquitoes, suggesting that endoreplication was the underlying mechanism of priming. Moreover, the transcription of hnt and antimicrobial peptides related to an anti-Plasmodium response (attacin, cecropin and gambicin) was enhanced in a biphasic rather than sustained response after priming An. albimanus with P. berghei.
Collapse
Affiliation(s)
- Jorge Contreras-Garduño
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico; Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Noria Alta, 36050 Guanajuato, Guanajuato, Mexico
| | - María Carmen Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Salvador Hernández-Martínez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Javier Izquierdo
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Antonia Herrera-Ortiz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Miguel Moreno-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Maria Elena Velazquez-Meza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Veronica Valverde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Rocio Argotte-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico.
| | - Humberto Lanz-Mendoza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
22
|
Smith RC, Vega-Rodríguez J, Jacobs-Lorena M. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector. Mem Inst Oswaldo Cruz 2015. [PMID: 25185005 PMCID: PMC4156458 DOI: 10.1590/0074-0276130597] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Joel Vega-Rodríguez
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| |
Collapse
|
23
|
Chavez C, Recio-Tótoro B, Flores-Escobar B, Lanz-Mendoza H, Sanchez J, Soberón M, Bravo A. Nitric oxide participates in the toxicity of Bacillus thuringiensis Cry1Ab toxin to kill Manduca sexta larvae. Peptides 2015; 68:134-9. [PMID: 25063056 DOI: 10.1016/j.peptides.2014.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) produced by the nitric oxide synthase (NOS) enzyme is a reactive oxygen molecule widely considered as important participant in the immune system of different organisms to confront microbial infections. In insects the NO molecule has also been implicated in immune response against microbial pathogens. Bacillus thuringiensis (Bt) is an insect-pathogenic bacterium that produces insecticidal proteins such as Cry toxins. These proteins kill insects because they form pores in the larval-midgut cells. Here we show that intoxication of Manduca sexta larvae with Cry1Ab activates expression of NOS with a corresponding increase in NO. This effect is not observed with a non-toxic mutant toxin Cry1Ab-E129K that is affected in pore formation. The increased production of NO triggered by intoxication with LC50 dose of Cry1Ab toxin is not associated with higher expression of antimicrobial peptides. NO participates in Cry1Ab toxicity since inhibition of NOS by selective l-NAME inhibitor prevented NO production and resulted in reduced mortality of the larvae. The fact that mortality was not completely abolished by L-NAME indicates that other processes participate in toxin action and induction of NO production upon Cry1Ab toxin administration accounts only for a part of the toxicity of this protein to M. sexta larvae.
Collapse
Affiliation(s)
- Carolina Chavez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Benito Recio-Tótoro
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, Morelos 62100, Mexico; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Biviana Flores-Escobar
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, Morelos 62100, Mexico.
| | - Jorge Sanchez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| |
Collapse
|
24
|
Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, Pessoa FAC, Oliveira GA, Campos KMM, Villegas LM, Rodrigues NB, Nacif-Pimenta R, Simões RC, Monteiro WM, Amino R, Traub-Cseko YM, Lima JBP, Barbosa MGV, Lacerda MVG, Tadei WP, Secundino NFC. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz 2015; 110:23-47. [PMID: 25742262 PMCID: PMC4371216 DOI: 10.1590/0074-02760140266] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023] Open
Abstract
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Collapse
Affiliation(s)
- Paulo FP Pimenta
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | - Ana C Bahia
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Ana PM Duarte
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | - Fabrício F Melo
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | | | - Keillen MM Campos
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | | | | | - Rejane C Simões
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris,
France
| | | | - José BP Lima
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria GV Barbosa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Leônidas e Maria Deane-Fiocruz, Manaus, AM, Brasil
| | | | | |
Collapse
|
25
|
Moreno-García M, Recio-Tótoro B, Claudio-Piedras F, Lanz-Mendoza H. Injury and immune response: applying the danger theory to mosquitoes. FRONTIERS IN PLANT SCIENCE 2014; 5:451. [PMID: 25250040 PMCID: PMC4158974 DOI: 10.3389/fpls.2014.00451] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/20/2014] [Indexed: 05/28/2023]
Abstract
The insect immune response can be activated by the recognition of both non-self and molecular by-products of tissue damage. Since pathogens and tissue damage usually arise at the same time during infection, the specific mechanisms of the immune response to microorganisms, and to tissue damage have not been unraveled. Consequently, some aspects of damage caused by microorganisms in vector-borne arthropods have been neglected. We herein reassess the Anopheles-Plasmodium interaction, incorporating Matzinger's danger/damage hypothesis and George Salt's injury assumptions. The invasive forms of the parasite cross the peritrophic matrix and midgut epithelia to reach the basal lamina and differentiate into an oocyst. The sporozoites produced in the oocyst are released into the hemolymph, and from there enter the salivary gland. During parasite development, wounds to midgut tissue and the basement membrane are produced. We describe the response of the different compartments where the parasite interacts with the mosquito. In the midgut, the response includes the expression of antimicrobial peptides, production of reactive oxygen species, and possible activation of midgut regenerative cells. In the basal membrane, wound repair mainly involves the production of molecules and the recruitment of hemocytes. We discuss the susceptibility to damage in tissues, and how the place and degree of damage may influence the differential response and the expression of damage associated molecular patterns (DAMPs). Knowledge about damage caused by parasites may lead to a deeper understanding of the relevance of tissue damage and the immune response it generates, as well as the origins and progression of infection in this insect-parasite interaction.
Collapse
Affiliation(s)
- Miguel Moreno-García
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, México
| | - Benito Recio-Tótoro
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, México
- Instituto de Biotecnología, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de MéxicoCuernavaca, México
| | - Fabiola Claudio-Piedras
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, México
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoMéxico City, México
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, México
| |
Collapse
|
26
|
Cosentino-Gomes D, Rocco-Machado N, Meyer-Fernandes JR. Rhodnius prolixus: modulation of antioxidant defenses by Trypanosoma rangeli. Exp Parasitol 2014; 145:118-24. [PMID: 25131776 DOI: 10.1016/j.exppara.2014.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/07/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
Trypanosoma rangeli is a protozoan parasite of insects and mammals that is challenged by the constant action of reactive oxygen species, generated either by its own metabolism or through the host immune response. The aim of this work was to investigate whether T. rangeli is able to modify the redox state of its insect vector, Rhodnius prolixus, through the modulation of such antioxidant enzymes as superoxide dismutase (SOD), catalase, and GPx present in the midgut of the insect. We verified that in R. prolixus fed with blood infected with T. rangeli there is an increase in SOD activity in the anterior and posterior midguts. However, the activities of enzymes related to hydrogen peroxide and hydroperoxides metabolism, such as catalase and GPx, were decreased in relation to the insect control group, which was only fed blood. These changes in the redox state of the vector led to an increase in lipid peroxidation and thiol oxidation levels in the anterior and posterior midgut tissues. We also verified that the addition of 1 mM GSH in the blood meal of the infected insects increased the proliferation of these parasites by 50%. These results suggest that there is an increase in oxidative stress in the insect gut during T. rangeli infection, and this condition could contribute to the control of the proliferation of these parasites.
Collapse
Affiliation(s)
- Daniela Cosentino-Gomes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Nathália Rocco-Machado
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil.
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Murdock CC, Blanford S, Luckhart S, Thomas MB. Ambient temperature and dietary supplementation interact to shape mosquito vector competence for malaria. JOURNAL OF INSECT PHYSIOLOGY 2014; 67:37-44. [PMID: 24911425 PMCID: PMC4107084 DOI: 10.1016/j.jinsphys.2014.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 05/23/2023]
Abstract
The extent to which environmental factors influence the ability of Anopheles mosquitoes to transmit malaria parasites remains poorly explored. Environmental variation, such as change in ambient temperature, will not necessarily influence the rates of host and parasite processes equivalently, potentially resulting in complex effects on infection outcomes. As proof of principle, we used Anopheles stephensi and the rodent malaria parasite, Plasmodium yoelii, to examine the effects of a range of constant temperatures on one aspect of host defense (detected as alterations in expression of nitric oxide synthase gene - NOS) to parasite infection. We experimentally boosted mosquito midgut immunity to infection through dietary supplementation with the essential amino acid l-Arginine (l-Arg), which increases midgut nitric oxide (NO) levels by infection-induced NOS catalysis in A. stephensi. At intermediate temperatures, supplementation reduced oocyst prevalence, oocyst intensity, and sporozoite prevalence suggesting that the outcome of parasite infection was potentially dependent upon the rate of NOS-mediated midgut immunity. At low and high temperature extremes, however, infection was severely constrained irrespective of supplementation. The effects of l-Arg appeared to be mediated by NO-dependent negative feedback on NOS expression, as evidenced by depressed NOS expression in l-Arg treated groups at temperatures where supplementation decreased parasite infection. These results suggest the need to consider the direct (e.g. effects of mosquito body temperature on parasite physiology) and indirect effects (e.g. mediated through changes in mosquito physiology/immunity) of environmental factors on mosquito-malaria interactions in order to understand natural variation in vector competence.
Collapse
Affiliation(s)
- Courtney C Murdock
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, Merkle Lab, Orchard Road, University Park, PA 16802, United States.
| | - Simon Blanford
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, Merkle Lab, Orchard Road, University Park, PA 16802, United States.
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, United States.
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, Merkle Lab, Orchard Road, University Park, PA 16802, United States.
| |
Collapse
|
28
|
Moreno-García M, Condé R, Bello-Bedoy R, Lanz-Mendoza H. The damage threshold hypothesis and the immune strategies of insects. INFECTION GENETICS AND EVOLUTION 2014; 24:25-33. [PMID: 24614506 DOI: 10.1016/j.meegid.2014.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 12/30/2022]
Abstract
The insect immune response strategy has generally been considered bipolar: either resistance or death. Lately, a much broader and subtler landscape has emerged: occurrence of tolerance and resistance has been described as a host-regulated immune response. However, little is known about the interplay between the immune response strategy mounted by the insect during infection and the damage produced by the pathogen. Based on the Matzinger model of danger/damage, we propose a quantitative model to explain the occurrence of either resistance or tolerance. We discuss the features to be analyzed and describe the terms of reference by which, with basic models, we distinguish between immune strategies. Pathogen type and mixed infections are also contemplated. We hope this analysis will give new perspective, from an evolutionary ecology standpoint, on immune response measurements in the context of insect infection, and on the importance of (non-self or self) damage.
Collapse
Affiliation(s)
- Miguel Moreno-García
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avda. Universidad 655, Col. Sta. María Ahuacatitlán, 62100 Cuernavaca, Morelos, Mexico.
| | - Renaud Condé
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avda. Universidad 655, Col. Sta. María Ahuacatitlán, 62100 Cuernavaca, Morelos, Mexico
| | - Rafael Bello-Bedoy
- Facultad de Ciencias, Universidad Autónoma de Baja California, Km. 103 Carretera Tijuana - Ensenada, Pedregal Playitas, 22860 Ensenada, Baja California, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avda. Universidad 655, Col. Sta. María Ahuacatitlán, 62100 Cuernavaca, Morelos, Mexico
| |
Collapse
|
29
|
Pavón N, Buelna-Chontal M, Hernández-Esquivel L, Hernández S, Chávez E, Condé R, Lanz-Mendoza H. Mitochondrial inactivation by Anopheles albimanus cecropin 3: molecular mechanisms. Peptides 2014; 53:202-9. [PMID: 23880546 DOI: 10.1016/j.peptides.2013.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 01/14/2023]
Abstract
Cecropin 3 (Ccrp3) is an antimicrobial peptide from Anopheles albimanus, which is expressed during Plasmodium berghei infection. Here, we report that synthetic Ccrp3, aside from antibacterial activity, also shows cardio regulatory functions. In rats, Ccrp3 significantly diminishes blood pressure as well as the heartbeat frequency at nanomolar concentration. Ccrp3 affect the rat cardiac muscle mitochondria, inducing uncoupling of oxidative phosphorylation, oxygen consumption and transport of Ca(2). Ccrp3 treatment of the mitochondria causes mitochondrial damage promoting oxidative stress, causing overproduction of reactive oxygen species (ROS) and inhibition of superoxide dismutase. At nM concentration, Ccrp3 inhibits superoxide dismutase activity through direct interaction, diminishing by its enzymatic activity. Ccrp3 induces the release of the pro-apoptotic marker Bax from the mitochondria. Altogether, these results suggest that Ccrp3 pro-oxidative activity on cardiac muscle mitochondria could be responsible for triggering the heartbeat frequency and blood pressure lowering observed the Ccrp3 injected rats.
Collapse
Affiliation(s)
- Natalia Pavón
- Departamento de Farmacología. Dirección de investigación, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, CP 14080 Tlalpan, DF, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, CP 14080 Tlalpan, DF, Mexico
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, CP 14080 Tlalpan, DF, Mexico
| | - Sauri Hernández
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, CP 14080 Tlalpan, DF, Mexico
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, CP 14080 Tlalpan, DF, Mexico
| | - Renaud Condé
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62501 Cuernavaca, Morelos, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62501 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
30
|
Immunogenic and antioxidant effects of a pathogen-associated prenyl pyrophosphate in Anopheles gambiae. PLoS One 2013; 8:e73868. [PMID: 23967351 PMCID: PMC3742518 DOI: 10.1371/journal.pone.0073868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/31/2013] [Indexed: 01/31/2023] Open
Abstract
Despite efficient vector transmission, Plasmodium parasites suffer great bottlenecks during their developmental stages within Anopheles mosquitoes. The outcome depends on a complex three-way interaction between host, parasite and gut bacteria. Although considerable progress has been made recently in deciphering Anopheles effector responses, little is currently known regarding the underlying microbial immune elicitors. An interesting candidate in this sense is the pathogen-derived prenyl pyrophosphate and designated phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), found in Plasmodium and most eubacteria but not in higher eukaryotes. HMBPP is the most potent stimulant known of human Vγ9Vδ2 T cells, a unique lymphocyte subset that expands during several infections including malaria. In this study, we show that Vγ9Vδ2 T cells proliferate when stimulated with supernatants from intraerythrocytic stages of Plasmodium falciparum cultures, suggesting that biologically relevant doses of phosphoantigens are excreted by the parasite. Next, we used Anopheles gambiae to investigate the immune- and redox- stimulating effects of HMBPP. We demonstrate a potent activation in vitro of all but one of the signaling pathways earlier implicated in the human Vγ9Vδ2 T cell response, as p38, JNK and PI3K/Akt but not ERK were activated in the A. gambiae 4a3B cell line. Additionally, both HMBPP and the downstream endogenous metabolite isopentenyl pyrophosphate displayed antioxidant effects by promoting cellular tolerance to hydrogen peroxide challenge. When provided in the mosquito blood meal, HMBPP induced temporal changes in the expression of several immune genes. In contrast to meso-diaminopimelic acid containing peptidoglycan, HMBPP induced expression of dual oxidase and nitric oxide synthase, two key determinants of Plasmodium infection. Furthermore, temporal fluctuations in midgut bacterial numbers were observed. The multifaceted effects observed in this study indicates that HMBPP is an important elicitor in common for both Plasmodium and gut bacteria in the mosquito.
Collapse
|
31
|
Villanueva G, Lanz-Mendoza H, Hernández-Martínez S, Zavaleta MS, Manjarrez J, Contreras-Garduño JM, Contreras-Garduño J. In the monarch butterfly the juvenile hormone effect upon immune response depends on the immune marker and is sex dependent. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/oje.2013.31007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Al-Akl NS, Ismail M, Khaliefeh F, Usta J, Abdelnoor AM. Effects of catalase and 1400W on the number of interleukin-4 and interferon-γ secreting spleen cells in mice injected with ovalbumin and alum. Immunopharmacol Immunotoxicol 2012; 34:951-5. [DOI: 10.3109/08923973.2012.674530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|