1
|
Song Q, Li Q, Yang Y, Gao H, Han F. Antimicrobial Functions of Galectins from Fish, Mollusks, and Crustaceans: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24895-24907. [PMID: 39471068 DOI: 10.1021/acs.jafc.4c05412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Galectins are a member of the β-galactoside binding protein family, which play a pivotal role in the immune defense of vertebrates as a pattern recognition receptor and occupy an important position in the innate immune system of invertebrates. The study of galectins in aquatic organisms has only recently emerged. Galectins in aquatic animals exhibit agglutination activity toward bacteria, inhibit bacterial growth, and enhance phagocytosis of immune cells. Additionally, some galectins contribute to the antiviral immune defenses of aquatic animals. This review aims to review recent advancements in the antimicrobial mechanisms, molecular structures, and evolution of galectins from fish, mollusks, and crustaceans. The antimicrobial galectins, as crucial components in the innate immune defense, pave new avenues for developing innovative disease control strategies in aquaculture.
Collapse
Affiliation(s)
- Qing Song
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, Fujian, China
| | - Qiaoying Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Yao Yang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Haijun Gao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, Fujian, China
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
2
|
Yang Y, Wu B, Zou W, Han F. Unveiling the molecular characteristics and antibacterial activity of tandem-repeat-type Galectin-8 in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109849. [PMID: 39173981 DOI: 10.1016/j.fsi.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Galectin-8 (Gal-8) is a versatile carbohydrate-binding protein with pivotal roles in immune regulation and cellular processes. This study introduces a novel galectin-8 protein, LcGal-8, from the large yellow croaker (Larimichthys crocea), showcasing typical characteristics of tandem-repeat-type galectins, including the absence of a signal peptide or transmembrane region and the presence of conserved sugar-binding motifs. Phylogenetic analysis reveals its conservation among fish species. Expression profiling indicates widespread distribution in immune tissues, particularly the spleen, implicating involvement in immune processes. The subcellular localization analysis reveals that LcGal-8 is present in both the cytoplasm and nucleus. Upon bacterial challenge, LcGal-8 is up-regulated in immune tissues, suggesting a role in host defense. Functional assays demonstrate that LcGal-8 can agglutinate gram-negative bacteria. The recombinant LcGal-8 protein agglutinates red blood cells from the large yellow croaker independently of Ca2⁺, however, this activity is inhibited by lipopolysaccharide (LPS) at 2.5 μg/mL. Fluorescence detection kits and scanning electron microscopy (SEM) confirm the agglutination and bactericidal effects of LcGal-8 against various gram-negative bacteria, including Vibrio harveyi, Aeromondaceae hydrophila, Aeromondaceae veronii, Pseudomonas plecoglossicida, Edwardsiella tarda. These findings contribute valuable insights into the genetic basis of disease resistance in the large yellow croaker and could support molecular breeding strategies to enhance disease resistance.
Collapse
Affiliation(s)
- Yao Yang
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Baolan Wu
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Wenzheng Zou
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China.
| |
Collapse
|
3
|
Esteban MÁ. A review of soluble factors and receptors involved in fish skin immunity: The tip of the iceberg. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109311. [PMID: 38128682 DOI: 10.1016/j.fsi.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Chen S, Gao T, Li X, Huang K, Yuan L, Zhou S, Jiang J, Wang Y, Xie J. Molecular characterization and functional analysis of galectin-1 from silver pomfret (Pampus argenteus). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109209. [PMID: 37944682 DOI: 10.1016/j.fsi.2023.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Galectins, as members of lectin families, exhibit a high affinity for β-galactosides and play diverse roles in biological processes. They function as pattern recognition receptors (PRRs) with important roles in immune defense. In this study, galectin-1, designated as SpGal-1, was identified and characterized from silver pomfret (Pampus argenteus). The SpGal-1 comprises an open reading frame (ORF) spanning 396 base pairs (bp) and encodes a deduced amino acid (aa) sequence containing a single carbohydrate recognition domain (CRD). Sublocalization analysis revealed that SpGal-1 was mainly expressed in the cytoplasm. The mRNA transcripts of SpGal-1 were ubiquitously detected in various tissues, with a higher expression level in the intestine. In addition, when exposed to Photobacterium damselae subsp. damselae (PDD) infection, both the liver and head kidney exhibited significantly increased SpGal-1 mRNA expression. The recombinant protein of SpGal-1 (named as rSpGal-1) demonstrated hemagglutination against red blood cells (RBCs) from Larimichthys crocea and P. argenteus in a Ca2+ or β-Mercaptoethanol (β-ME)-independent manner. Notably, rSpGal-1 could bind with various pathogen-associated molecular patterns (PAMPs) including D-galactose, D-mannose, lipopolysaccharide (LPS), and peptidoglycan (PGN), with highest affinity to PGN. Moreover, rSpGal-1 effectively interacted with an array of bacterial types encompassing Gram-positive bacteria (Staphylococcus aureus and Nocardia seriolae) and Gram-negative bacteria (PDD and Escherichia coli, among others), with the most robust binding affinity towards PDD. Collectively, these findings highlight that SpGal-1 is a crucial PRR with involvement in the host immune defense of silver pomfret.
Collapse
Affiliation(s)
- Suyang Chen
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Tingting Gao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xionglin Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Kejing Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lu Yuan
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Suming Zhou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jianhu Jiang
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, 313001, China
| | - Yajun Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
5
|
Molecular Cloning and Functional Characterization of Galectin-1 in Yellow Drum ( Nibea albiflora). Int J Mol Sci 2023; 24:ijms24043298. [PMID: 36834706 PMCID: PMC9963236 DOI: 10.3390/ijms24043298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Galectins are proteins that are involved in the innate immune response against pathogenic microorganisms. In the present study, the gene expression pattern of galectin-1 (named as NaGal-1) and its function in mediating the defense response to bacterial attack were investigated. The tertiary structure of NaGal-1 protein consists of homodimers and each subunit has one carbohydrate recognition domain. Quantitative RT-PCR analysis indicated that NaGal-1 was ubiquitously distributed in all the detected tissues and highly expressed in the swim-bladder of Nibea albiflora, and its expression could be upregulated by the pathogenic Vibrio harveyi attack in the brain. Expression of NaGal-1 protein in HEK 293T cells was distributed in the cytoplasm as well as in the nucleus. The recombinant NaGal-1 protein by prokaryotic expression could agglutinate red blood cells from rabbit, Larimichthys crocea, and N. albiflora. The agglutination of N. albiflora red blood cells by the recombinant NaGal-1 protein was inhibited by peptidoglycan, lactose, D-galactose, and lipopolysaccharide in certain concentrations. In addition, the recombinant NaGal-1 protein agglutinated and killed some gram-negative bacteria including Edwardsiella tarda, Escherichia coli, Photobacterium phosphoreum, Aeromonas hydrophila, Pseudomonas aeruginosa, and Aeromonas veronii. These results set the stage for further studies of NaGal-1 protein in the innate immunity of N. albiflora.
Collapse
|
6
|
Abolfathi M, Akbarzadeh A, Hajimoradloo A, Joshaghani HR, Ross NW. Seasonal variations in the skin epidermal structure and mucosal immune parameters of rainbow trout skin (Oncorhynchus mykiss) at different stages of farming. FISH & SHELLFISH IMMUNOLOGY 2022; 127:965-974. [PMID: 35843528 DOI: 10.1016/j.fsi.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the seasonal changes in the epidermal structure and the innate immunity parameters of skin mucus in rainbow trout. The skin epidermis and mucus samples were collected over three consecutive seasons including winter, spring and late summer from three different weight groups i.e., 2-20 g (W1), 100-200 g (W2) and 400-600 g (W3) fish. The skin mucosal immunity analysis of rainbow trout showed that the haemagglutination activity increased significantly with increasing fish size from W1 to W3 in all three seasons, while no significant seasonal changes occurred in haemagglutination activity. Moreover, the bactericidal activity against fish pathogens increased significantly with increasing water bacterial load in late summer. The SDS-PAGE analysis of mucus showed a high amount of low molecular weight proteins (<35 kDa) in the late summer that was correlated with the increase in bactericidal activity. Histological analysis of the epidermis structure of rainbow trout skin showed that the density and size of goblet cells and consequently the mucus secretion significantly increased in W3 group in all seasons. In all three weight groups of fish, the density of goblet cells significantly increased from winter to spring and late summer along with increasing water temperature. Moreover, the goblet cell density showed a significant positive relationship with the soluble protein concentration and haemagglutination activity (p < 0.01). The results of this study demonstrated the more active immune role of the skin epidermal cells and mucus in rainbow trout during summer to protect fish against the pathogenic microorganisms. Given its potent bactericidal properties and the lack of haemolytic activity, the rainbow trout mucus might be used as a safe and inexpensive source for developing antimicrobial agents to prevent and treat some bacterial diseases in human and fish.
Collapse
Affiliation(s)
- Marzieh Abolfathi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Abdolmajid Hajimoradloo
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Department of Medical Laboratory Sciences, Golestan University of Medical Sciences School of Paramedicine, Gorgan, Iran
| | - Neil W Ross
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
7
|
Ahmmed MK, Bhowmik S, Giteru SG, Zilani MNH, Adadi P, Islam SS, Kanwugu ON, Haq M, Ahmmed F, Ng CCW, Chan YS, Asadujjaman M, Chan GHH, Naude R, Bekhit AEDA, Ng TB, Wong JH. An Update of Lectins from Marine Organisms: Characterization, Extraction Methodology, and Potential Biofunctional Applications. Mar Drugs 2022; 20:md20070430. [PMID: 35877723 PMCID: PMC9316650 DOI: 10.3390/md20070430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Lectins are a unique group of nonimmune carbohydrate-binding proteins or glycoproteins that exhibit specific and reversible carbohydrate-binding activity in a non-catalytic manner. Lectins have diverse sources and are classified according to their origins, such as plant lectins, animal lectins, and fish lectins. Marine organisms including fish, crustaceans, and mollusks produce a myriad of lectins, including rhamnose binding lectins (RBL), fucose-binding lectins (FTL), mannose-binding lectin, galectins, galactose binding lectins, and C-type lectins. The widely used method of extracting lectins from marine samples is a simple two-step process employing a polar salt solution and purification by column chromatography. Lectins exert several immunomodulatory functions, including pathogen recognition, inflammatory reactions, participating in various hemocyte functions (e.g., agglutination), phagocytic reactions, among others. Lectins can also control cell proliferation, protein folding, RNA splicing, and trafficking of molecules. Due to their reported biological and pharmaceutical activities, lectins have attracted the attention of scientists and industries (i.e., food, biomedical, and pharmaceutical industries). Therefore, this review aims to update current information on lectins from marine organisms, their characterization, extraction, and biofunctionalities.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Stephen G. Giteru
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Alliance Group Limited, Invercargill 9840, New Zealand
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Parise Adadi
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
| | - Shikder Saiful Islam
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston 7250, Australia;
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Osman N. Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, 620002 Yekaterinburg, Russia;
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | | | - Yau Sang Chan
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Md. Asadujjaman
- Department of Aquaculture, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh;
| | - Gabriel Hoi Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ryno Naude
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa;
| | - Alaa El-Din Ahmed Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| | - Tzi Bun Ng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jack Ho Wong
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, China
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| |
Collapse
|
8
|
Patel DM, Kitani Y, Korsnes K, Iversen MH, Brinchmann MF. A Truncated Galectin-3 Isolated from Skin Mucus of Atlantic Salmon Salmo salar Binds to and Modulates the Proteome of the Gram-Negative Bacteria Moritella viscosa. Mar Drugs 2020; 18:md18020102. [PMID: 32033203 PMCID: PMC7074318 DOI: 10.3390/md18020102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022] Open
Abstract
The mucus of fish skin plays a vital role in innate immune defense. Some mucus proteins have the potential to incapacitate pathogens and/or inhibit their passage through the skin. In this study the aim was to isolate and characterize galectin(s), β-galactosides binding proteins, present in skin mucus. A novel short form of galectin-3 was isolated from Atlantic salmon skin mucus by α-lactose agarose based affinity chromatography followed by Sephadex G-15 gel filtration. Mass spectrometric analysis showed that the isolated protein was the C-terminal half of galectin-3 (galectin-3C). Galectin-3C showed calcium independent and lactose inhabitable hemagglutination, and agglutinated the Gram-negative pathogenic bacteria Moritella viscosa. Galectin-3 mRNA was highly expressed in skin and gill, followed by muscle, hindgut, spleen, stomach, foregut, head kidney, and liver. Moritella viscosa incubated with galectin-3C had a modified proteome. Proteins with changed abundance included multidrug transporter and three ribosomal proteins L7/12, S2, and S13. Overall, this study shows the isolation and characterization of a novel galectin-3 short form involved in pathogen recognition and modulation, and hence in immune defense of Atlantic salmon.
Collapse
Affiliation(s)
- Deepti Manjari Patel
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; (D.M.P.); (Y.K.); (K.K.); (M.H.I.)
| | - Yoichiro Kitani
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; (D.M.P.); (Y.K.); (K.K.); (M.H.I.)
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa 927-0553, Japan
| | - Kjetil Korsnes
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; (D.M.P.); (Y.K.); (K.K.); (M.H.I.)
| | - Martin Haugmo Iversen
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; (D.M.P.); (Y.K.); (K.K.); (M.H.I.)
| | - Monica Fengsrud Brinchmann
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; (D.M.P.); (Y.K.); (K.K.); (M.H.I.)
- Correspondence:
| |
Collapse
|
9
|
Magnadóttir B, Kraev I, Guðmundsdóttir S, Dodds AW, Lange S. Extracellular vesicles from cod (Gadus morhua L.) mucus contain innate immune factors and deiminated protein cargo. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103397. [PMID: 31108150 DOI: 10.1016/j.dci.2019.103397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Extracellular vesicles are released from cells and participate in cell communication via transfer of protein and genetic cargo derived from the parent cells. EVs play roles in normal physiology and immunity and are also linked to various pathological processes. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes with physiological and pathophysiological roles. PADs cause post-translational protein deimination, resulting in structural and, in some cases, functional changes in target proteins and are also linked to EV biogenesis. This study describes for the first time EVs isolated from cod mucosa. Mucosal EVs were characterised by electron microscopy, nanoparticle tracking analysis and EV-specific surface markers. Cod mucosal EVs were found to carry PAD, complement component C3 and C-reactive proteins. C3 was found to be deiminated in both whole mucus and mucosal EVs, with some differences, and further 6 deiminated immune and cytoskeletal proteins were identified in EVs by LC-MS/MS analysis. As mucosal surfaces of teleost fish reflect human mucosal surfaces, these findings may provide useful insights into roles of EVs in mucosal immunity throughout phylogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, MK7 6AA, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
10
|
Shibuya K, Tsutsui S, Nakamura O. Fugu, Takifugu ruberipes, mucus keratins act as defense molecules against fungi. Mol Immunol 2019; 116:1-10. [PMID: 31561060 DOI: 10.1016/j.molimm.2019.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Keratin is a cytoskeletal protein that constitutes the intermediate filament. Its distribution is restricted to epithelial tissues in mammals, but is wider in fish. An interesting feature of fish keratin is that it is abundant in the cutaneous mucus. However, the biological function of keratin in the mucus has not been explored. In the present study, we hypothesized that mucus keratins of fugu Takifugu rubripes function as antimicrobial molecules. To verify this hypothesis, we first identified all of the keratins expressed in the epidermis and present in mucus. Five of 15 keratins including Tr-K4 expressed in the epidermis were identified in the mucus. Subsequently, we examined the interaction of keratin molecules present in fugu mucus with yeast. Affinity chromatography using yeast as a carrier and subsequent LC-MS/MS analysis revealed that three types of keratin were bound to the yeast. Furthermore, yeast incubated with fugu mucus was agglutinated, and this was inhibited by anti-recombinant Tr-K4 (rTr-K4) antibody. Immunohistochemical analysis also revealed that keratin was attached to the surface of agglutinated yeasts. These findings indicate that mucus keratin agglutinates yeast. Furthermore, we found insoluble clumps in fugu mucus, which were mainly comprised of keratin. After incubation of yeast with soluble mucus fraction, insoluble clumps incorporating yeast were formed. This observation suggests that fugu mucus keratin sequesters microbes into insoluble clumps, which are eventually eliminated from the mucus. Here, we present our finding of the novel function of keratin as a defense molecule in fish mucus.
Collapse
Affiliation(s)
- Ko Shibuya
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shigeyuki Tsutsui
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Osamu Nakamura
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
11
|
Patel DM, Bhide K, Bhide M, Iversen MH, Brinchmann MF. Proteomic and structural differences in lumpfish skin among the dorsal, caudal and ventral regions. Sci Rep 2019; 9:6990. [PMID: 31061513 PMCID: PMC6502863 DOI: 10.1038/s41598-019-43396-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/24/2019] [Indexed: 01/17/2023] Open
Abstract
Fish skin is a vital organ that serves a multitude of functions including mechanical protection, homeostasis, osmoregulation and protection against diseases. The expression of skin proteins changes under different physiological conditions. However, little is known about differences in protein expression among various body sites in naïve fish. The objectives of this work is to study potential differences in protein and gene expression among dorsal, caudal and ventral regions of lumpfish skin employing 2D gel based proteomics and real-time PCR and to assess structural differences between these regions by using Alcian blue and Periodic acid Schiff stained skin sections. The proteins collagen alfa-1, collagen alfa-2, heat shock cognate 71 kDa, histone H4, parvalbumin, natterin-2, 40S ribosomal protein S12, topoisomerase A and topoisomerase B were differentially expressed among the three regions. mRNA expression of apoa1, hspa8 and hist1h2b showed significant differences between regions. Skin photomicrographs showed differences in epidermal thickness and goblet cell counts. The ventral region showed relatively high protein expression, goblet cell count and epidermal thickness compared to dorsal and caudal regions. Overall, this study provides an important benchmark for comparative analysis of skin proteins and structure between different parts of the lumpfish body.
Collapse
Affiliation(s)
- Deepti M Patel
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway.,Laboratory of Biomedical Microbiology and Immunology, 73, 04181, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Katarina Bhide
- Laboratory of Biomedical Microbiology and Immunology, 73, 04181, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, 73, 04181, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Martin H Iversen
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Monica F Brinchmann
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway.
| |
Collapse
|
12
|
Magnadottir B, Gudmundsdottir S, Lange S. A novel ladder-like lectin relates to sites of mucosal immunity in Atlantic halibut (Hippoglossus hippoglossus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 87:9-12. [PMID: 30584906 DOI: 10.1016/j.fsi.2018.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
A novel 27 kDa ladder-lectin-like protein, showing a multimeric structure under non-reducing conditions, was isolated from halibut serum by binding to N-acetyl glucosamine. Mass-spectrometry analysis did not show significant homology with known proteins. Specific antibodies were produced and used in immunohistochemistry on tissue sections of early halibut ontogeny from 119 until 1050 °d post hatching. A strong positive response was detected in the mucosal cells of the skin, gills and gut, indicating a role in the mucosal immune defence at these sites. Further immunopositivity was detected in liver, myeloma of kidney and the brain at different developmental stages but predominant expression was found in mucosal surfaces at later stages of development tested (1050 °d). It is still uncertain whether this ladder-like lectin forms part of the complement pathway, as a lectin or ficolin, or if it belongs to galectins. A strong detection in mucosal surfaces on skin, gills and gut, show similar patterns of expression as both mucosal lectins and galectins in other fish. Detection in neuronal tissue may indicate putative roles in tissue remodelling of brain and in ongoing neurogenesis in the fish eye.
Collapse
Affiliation(s)
- Bergljot Magnadottir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112, Reykjavik, Iceland.
| | - Sigridur Gudmundsdottir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112, Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
13
|
Tsutsui S, Yoshinaga T, Watanabe S, Tsukamoto K, Nakamura O. Mucosal galectin genes in all freshwater eels of the genus Anguilla. JOURNAL OF FISH BIOLOGY 2019; 94:660-670. [PMID: 30779133 DOI: 10.1111/jfb.13936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
In this study, we determined the genomic DNA sequences of the mucosal galectin-encoding genes from all 19 species and subspecies of the genus Anguilla. The nucleotide sequences of the galectin genes were c. 2.3-2.5 kb long and the organisation of their four exons and three introns was conserved in all species. An unusual sequence was found in the fourth exon of Anguilla reinhardtii, resulting in a unique deduced amino-acid sequence at the C-terminus. All six amino-acid residues important for β-galactoside binding were conserved in three species, while one residue (R73 ) was substituted to K73 in the other 16 species-subspecies, including Anguilla marmorata. However, this substitution did not appear to affect the sugar-binding ability of galectins because the galectin of A. marmorata was previously shown to bind to lactose. We also discuss the molecular evolution of galectins among Anguilla spp. and the homologues previously identified in Conger myriaster.
Collapse
Affiliation(s)
- Shigeyuki Tsutsui
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Tatsuki Yoshinaga
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Shun Watanabe
- Faculty of Agriculture, Kindai University, Nara 631-0052, Japan
| | - Katsumi Tsukamoto
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Osamu Nakamura
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
14
|
Liu HH, Sun Q, Jiang YT, Fan MH, Wang JX, Liao Z. In-depth proteomic analysis of Boleophthalmus pectinirostris skin mucus. J Proteomics 2019; 200:74-89. [PMID: 30922736 DOI: 10.1016/j.jprot.2019.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 01/12/2023]
Abstract
Fish skin mucus serves as the first line of defence against pathogens and external stressors. The mudskipper Boleophthalmus pectinirostris inhabits intertidal mudflats containing abundant and diverse microbial populations; thus, the skin and mucus of B. pectinirostris are very important for immune defence. However, the molecules involved in the immune response and mucus secretion in the skin of this fish are poorly understood. To explore the proteomic profile of the skin mucus and understand the molecular mechanisms underlying B. pectinirostris adaption to amphibious environments, the microstructure of B. pectinirostris skin was analysed, and a series of histochemical procedures were employed for mucous glycoprotein localization and characterization. In addition, the antibacterial activity of B. pectinirostris skin mucus was studied, and the transcriptome of the skin and in-depth proteome of the mucus were determined. These studies revealed the hierarchical structure of B. pectinirostris skin and different types of glycoproteins (GPs) in the dermal bulge (DB) of the B. pectinirostris skin epidermis. The mucus has a broad antimicrobial spectrum and significant effects on the bacterial morphology. Furthermore, 93,914 unigenes were sequenced from B. pectinirostris skin tissue, and a total of 559 proteins were identified from B. pectinirostris skin mucus. SIGNIFICANCE.
Collapse
Affiliation(s)
- Hong-Han Liu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qi Sun
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Ting Jiang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mei-Hua Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jian-Xin Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
15
|
Chen J, Zhang L, Yang N, Tian M, Fu Q, Tan F, Li C. Expression profiling and microbial ligand binding analysis of galectin-4 in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 84:673-679. [PMID: 30359748 DOI: 10.1016/j.fsi.2018.10.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Galectins are a family of galactoside-binding proteins with an affinity for β-galactosides, involved in mediating fundamental processes including development, inflammation, cell migration and apoptosis. Galectin-4 is a member of tendem-repeat galectins, plays vital roles in intestinal epithelial barrier. Here, one galectin-4 gene was captured in turbot (SmLgals4) contains a 1197 bp open reading frame (ORF). In comparison to other species, SmLgals4 showed the highest similarity and identity both to large yellow croaker. The genomic structure analysis showed that SmLgals4 had conserved exons in the CRD domains compared to other vertebrate species. The syntenic analysis revealed that galectin-4 had the same neighboring genes across all the selected species, which suggested the synteny encompassing galectin-4 region during vertebrate evolution. Subsequently, SmLgals4 was widely expressed in all the examined tissues, with the highest expression level in intestine and the lowest expression level in skin. In addition, SmLgals4 was significantly down-regulated in intestine following both Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmLgals4 showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmLgals4 plays vital roles in fish intestinal immune responses against infection, but the detailed roles of galectin-4 in teleost are still lacking, further studies are needed to be carried out to characterize whether galectin-4 plays similar roles in teleost intestinal immunity.
Collapse
Affiliation(s)
- Jinghua Chen
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
16
|
Magnadóttir B, Hayes P, Hristova M, Bragason BT, Nicholas AP, Dodds AW, Guðmundsdóttir S, Lange S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny novel roles in tissue remodelling and mucosal immune defences? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:157-170. [PMID: 29908202 DOI: 10.1016/j.dci.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX, London, UK.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
17
|
Tsutsui S, Suzuki Y, Shibuya K, Nakamura O. Sacciform cells in the epidermis of fugu (Takifugu rubripes) produce and secrete kalliklectin, a novel lectin found in teleosts. FISH & SHELLFISH IMMUNOLOGY 2018; 80:311-318. [PMID: 29902562 DOI: 10.1016/j.fsi.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Kalliklectin is a novel lectin identified in the skin mucus and blood plasma of teleosts, including fugu (Takifugu rubripes). It has been found to exhibit sequence similarity to mammalian plasma kallikrein and coagulation factor XI. The objective of the present study was to clarify the cellular localization of kalliklectin using an antiserum specific to fugu kalliklectin. Immunohistochemical analysis showed that positive reactions were observed in the skin and liver, but not in other tested tissues. Several types of epidermal cells were stained by the antiserum; sacciform cells were one of the types of cells most densely stained by the antiserum in adult fugu skin, whereas mucous cells showed negative staining results. RT-PCR demonstrated that the kalliklectin gene was transcribed in the mucous cell-poor region of adult fugu skin, where sacciform cells were present. These results indicated that epidermal cells, including sacciform cells, produce kalliklectin and secrete it into the mucus.
Collapse
Affiliation(s)
- Shigeyuki Tsutsui
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Yuya Suzuki
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ko Shibuya
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Osamu Nakamura
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
18
|
Functional Aspects of Fish Mucosal Lectins-Interaction with Non-Self. Molecules 2018; 23:molecules23051119. [PMID: 29747390 PMCID: PMC6100423 DOI: 10.3390/molecules23051119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023] Open
Abstract
Mucosal surfaces are of key importance in protecting animals against external threats including pathogens. In the mucosal surfaces, host molecules interact with non-self to prevent infection and disease. Interestingly, both inhibition and stimulation of uptake hinder infection. In this review, the current knowledgebase on teleost mucosal lectins’ ability to interact with non-self is summarised with a focus on agglutination, growth inhibition, opsonisation, cell adhesion, and direct killing activities. Further research on lectins is essential, both to understand the immune system of fishes, since they rely more on the innate immune system than mammals, and also to explore these molecules’ antibiotic and antiparasitic activities against veterinary and human pathogens.
Collapse
|
19
|
Rajan B, Patel DM, Kitani Y, Viswanath K, Brinchmann MF. Novel mannose binding natterin-like protein in the skin mucus of Atlantic cod (Gadus morhua). FISH & SHELLFISH IMMUNOLOGY 2017; 68:452-457. [PMID: 28743623 DOI: 10.1016/j.fsi.2017.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
This study presents the first report of purification of natterin-like protein (Nlp) in a non-venomous fish. The peptide identities of purified cod Nlp were confirmed through LC-MSMS and matched to a cod expressed sequence tag (EST). A partial cod nlp nucleotide sequence was amplified and sequenced based on this EST. Multiple sequence alignment of cod Nlp showed considerable homology with other teleost Nlps and the presence of an N-terminal jacalin-like lectin domain coupled with a C-terminal toxin domain. nlp expression was higher in skin, head kidney, liver and spleen than in other tissues studied. Hemaggluttination of horse red blood cells by Nlp was calcium dependent and inhibited by mannose. A Vibrio anguillarum bath challenge however, did not alter the expression of cod nlp transcripts in the skin and gills. Further functional characterization is required to establish the significance of this unique protein in Atlantic cod and other teleosts.
Collapse
Affiliation(s)
- Binoy Rajan
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Deepti M Patel
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Yoichiro Kitani
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Kiron Viswanath
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway
| | | |
Collapse
|
20
|
Brinchmann MF. Immune relevant molecules identified in the skin mucus of fish using -omics technologies. MOLECULAR BIOSYSTEMS 2017; 12:2056-63. [PMID: 27173837 DOI: 10.1039/c5mb00890e] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review will give an overview of immune relevant molecules in fish skin mucus. The skin of fish is continuously exposed to a water environment, and unlike that of terrestrial vertebrates, it is a mucosal surface with a thin epidermis of live cells covered by a mucus layer. The mucosa plays an important role in maintaining the homeostasis of the fish and preventing the entry of invading pathogens. This review provides an overview of proteins, RNA, DNA, lipids and carbohydrates found in the skin mucus of studied species. Proteins such as actin, histones, lectins, lysozyme, mucin, and transferrin have extracellular immune relevant functions. Complement complement molecules, heat shock molecules and superoxide dismutase present in mucus show differential expression during pathogen challenge in some species, but their functions in mucus, if any, need to be shown. RNA, DNA, lipids, carbohydrates and metabolites in mucus have been studied to a limited extent in fish, the current knowledge is summarized and knowledge gaps are pointed out.
Collapse
|
21
|
Thulasitha WS, Umasuthan N, Wan Q, Nam BH, Kang TW, Lee J. A proto-type galectin-2 from rock bream (Oplegnathus fasciatus): Molecular, genomic, and expression analysis, and recognition of microbial pathogens by recombinant protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 71:70-81. [PMID: 28131766 DOI: 10.1016/j.dci.2017.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
A β-galactoside binding lectin, designated as galectin-2, was identified and characterized from rock bream Oplegnathus fasciatus (OfGal-2). The cDNA of OfGal-2 comprised of 692 bp with a coding sequence of 396 bp, encoding a putative polypeptide of 131 amino acids. Gene structure analysis of OfGal-2 revealed a four exon-three intron organization. A single carbohydrate-binding domain containing all seven important residues for carbohydrate binding was located in the third exon, which formed a carbohydrate-binding pocket. Homology screening and sequence analysis demonstrated that OfGal-2 is an evolutionarily conserved proto-type galectin. OfGal-2 transcripts were detected in several healthy fish tissues, with the highest level observed in the intestine, followed by the liver. The expression of OfGal-2 was elevated upon the injection of various mitogenic stimulants and pathogens in a time-dependent manner. Upregulated expression in the liver after tissue injury suggested its role as a damage-associated molecular pattern. Recombinant OfGal-2 protein had hemagglutinating potential and possessed affinity towards lactose and galactose. Moreover, the recombinant protein agglutinated and bound potential pathogenic bacteria and a ciliate. The results of this study indicate that the galectin-2 from rock bream has a potential role in immunity, particularly in the recognition of invading pathogens.
Collapse
Affiliation(s)
- William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Department of Zoology, University of Jaffna, Jaffna 40000, Sri Lanka
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8570, Japan
| | - Qiang Wan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 46083, Republic of Korea
| | - Tae-Wook Kang
- Insilicogen Inc., Giheung-gu, Yongin-si, Gyeonggi-do, 16954, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
22
|
Cordero H, Cuesta A, Meseguer J, Esteban MÁ. Changes in the levels of humoral immune activities after storage of gilthead seabream (Sparus aurata) skin mucus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:500-507. [PMID: 27697558 DOI: 10.1016/j.fsi.2016.09.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/25/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Skin mucus is increasingly used as a source for determining immunity-related proteins and enzymes. However, the ability to accurately measure some activities may be modified by inadequate handling and storage of the samples. This study aims to measure the effect of freezing and lyophilization at the time of collection on such activities. Fresh, frozen (immediately after collection at -20 °C and -80 °C) and lyophilized skin mucus samples obtained from the same groups of fish specimens of gilthead seabream (Sparus aurata L.) were analysed in the assays. The amount of total proteins and sugar residues (determined by lectin binding) present in skin mucus samples fell after both freezing and lyophilization of the samples. While no significant differences were exhibited in the levels of some proteins or enzymes (immunoglobulin M, antiprotease, peroxidase, esterase and alkaline phosphatase) determined in fresh or frozen mucus samples, protease and lysozyme activities were lower in frozen mucus samples than in fresh samples. Lyophilization of the mucus samples drastically decreased the total level of proteins obtained, as well as of protease, peroxidase, lysozyme and alkaline phosphatase activities. The results suggest that freezing skin mucus samples is more suitable than lyophilization if samples are stored before determining enzymatic activities.
Collapse
Affiliation(s)
- Héctor Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
23
|
Chen X, Wei J, Xu M, Yang M, Li P, Wei S, Huang Y, Qin Q. Molecular cloning and characterization of a galectin-1 homolog in orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2016; 54:333-341. [PMID: 27109200 DOI: 10.1016/j.fsi.2016.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
As a member of animal lectin family, galectin has the functions of pathogen recognition, anti-bacteria and anti-virus. In the present study, a galectin-1 homolog (EcGel-1) from grouper (Epinephelus coioides) was cloned and its possible role in fish immunity was analyzed. The full length cDNA of EcGel-1 is 504 bp, including a 408 bp open reading frame (ORF) which encodes 135 amino acids with a molecular mass of 15.19 kDa. Quantitative real-time PCR analysis indicated that EcGel-1 was constitutively expressed in all analyzed tissues of healthy grouper. The expression of EcGel-1 in the spleen of grouper was differentially up-regulated challenged with Singapore grouper iridovirus (SGIV), poly (I:C), and LPS. EcGel-1 was abundantly distributed in the cytoplasm in GS cells. Recombinant EcGel-1(rEcGel-1) protein can make chicken erythrocyte aggregation, and combine with gram negative bacteria and gram positive bacteria in the presence of 2-Mercaptoethanol (β-ME). Taken together, the results showed that EcGel-1 may be an important molecule involved in pathogen recognition and pathogen elimination in the innate immunity of grouper.
Collapse
Affiliation(s)
- Xiuli Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Meng Xu
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Min Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Pingfei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
24
|
Zhang DL, Lv CH, Yu DH, Wang ZY. Characterization and functional analysis of a tandem-repeat galectin-9 in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 52:167-178. [PMID: 26997199 DOI: 10.1016/j.fsi.2016.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Galectins are a family of endogenous lectins with β-galactosides affinity, playing significant roles in the innate immunity of vertebrates and invertebrates. In this report, a new galectin-9 cDNA was identified and characterized in large yellow croaker Larimichthys crocea (designated as LcGal-9). The complete cDNA sequence of LcGal-9 was 1795 bp, with an open reading frame (ORF) of 1032 bp encoding 343 amino acids. The putative LcGal-9 protein contained two carbohydrate recognition domains (CRDs) connected by a linker peptide, with each carrying two conserved β-galactoside binding motifs H-NPR and WG-EE-, and it possessed neither a signal peptide nor a transmembrane domain. LcGal-9 protein shared 43-74% identity with galectin-9 sequences from other species. The qRT-PCR analysis revealed that LcGal-9 mRNA was constitutively expressed in all tissues examined, predominately expressed in liver, spleen, gill, kidney, head-kidney and intestine. Western blot analysis showed that LcGal-9 protein was highly expressed in liver, spleen, intestine, kidney, head-kidney, skin, gill, and heart, but not detected in muscle and plasma. LcGal-9 mRNA transcripts were induced by poly I:C in the liver (from 6 h to 48 h), spleen (at 12 h) and head-kidney (at 12 h and 24 h). In contrast, Vibrio parahaemolyticus caused a significant down-regulation in these three tissues, except for in spleen of 48 h and head-kidney of 3 h. Post-infection with Cryptocaryon irritans, the transcripts were dramatically up-regulated in gill, skin, spleen and head-kidney during initial infection period, while significant down-regulation afterward was also observed both in spleen and head-kidney. The recombinant LcGal-9 (named as rLcGal-9) purified from Escherichia coli BL21 (DE3) demonstrated hemagglutination against human, rabbit and L. crocea in a Ca(2+)-independent manner, which was inhibited by α-Lactose and LPS. The results of bacterial agglutination assays showed that rLcGal-9 was able to agglutinate Gram-negative bacteria V. alginolyticus and Aeromonas hydrophila in a Ca(2+)-independent manner. By immunohistochemistry assay, significant increases of LcGal-9 protein appeared in the spleen stimulated with poly I:C (for 12 h) and V. parahaemolyticus (for 48 h) compared with the control. Based on the collective data, LcGal-9 might play an important role in innate immune responses, especially defense against Gram-negative bacteria in L. crocea.
Collapse
Affiliation(s)
- Dong Ling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Chang Huan Lv
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Da Hui Yu
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Zhi Yong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
25
|
Thulasitha WS, Umasuthan N, Whang I, Nam BH, Lee J. Antimicrobial response of galectin-1 from rock bream Oplegnathus fasciatus: Molecular, transcriptional, and biological characterization. FISH & SHELLFISH IMMUNOLOGY 2016; 50:66-78. [PMID: 26792759 DOI: 10.1016/j.fsi.2016.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
In this study, we describe the identification and characterization of a proto type galectin, galectin-1, from rock bream Oplegnathus fasciatus (OfGal-1). Galectins are evolutionarily conserved carbohydrate binding lectins that show a wide range of functions related to development and immune physiology. They have been identified as pattern recognition receptors of innate immune system that recognize a broad range of microbes. OfGal-1 cDNA comprised of 993 bp with an open reading frame of 408 bp that encodes 135 amino acids. A single carbohydrate recognition domain was present in the OfGal-1 amino acid sequence. The sequence comparison by multiple and pairwise alignments and the phylogenetic tree emphasized the strong evolutionary conservation of Gal-1. The typical β-sandwich structure was identified from the predicted tertiary structure. The constitutive expression of mRNA transcripts was detected in a wide range of tissues examined, with the highest expression in the heart. Immune challenges with live bacteria (Edwardsiella tarda and Streptococcus iniae), rock bream irido virus, and mitogens (lipopolysaccharide and poly I:C) modulated the expression of OfGal-1 mRNAs in the gills, head kidney, and liver. The recombinant OfGal-1 (rOfGal-1) strongly agglutinatinated the human erythrocytes, and this hemagglutination was inhibited by lactose and D-galactose. A wide range of bacteria (S. iniae, S. parauberis, Escherichia coli, Edwardsiella tarda, Vibrio anguillarum, Vibrio harveyi, and Vibrio tapetis) and a ciliate (Miamiensis avidus) were also effectively recognized by rOfGal-1. Significant antiviral activity against rock bream irido virus was also demonstrated by rOfGal-1. Collectively, results from the present study indicate that OfGal-1 can recognize a wide range of microbes and is a vital pattern recognition receptor in the innate immune system of rock bream.
Collapse
Affiliation(s)
- William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 690-756, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 690-756, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 619-705, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 690-756, Republic of Korea.
| |
Collapse
|
26
|
Zhou S, Zhao H, Thongda W, Zhang D, Su B, Yu D, Peatman E, Li C. Galectins in channel catfish, Ictalurus punctatus: Characterization and expression profiling in mucosal tissues. FISH & SHELLFISH IMMUNOLOGY 2016; 49:324-335. [PMID: 26767746 DOI: 10.1016/j.fsi.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Galectins, a family of β-galactoside-binding lectins with conserved CRDs, which can recognize the glycans on the surface of viruses, bacteria and protozoan parasites, are emerging as key players in many important pathological processes, including acute and chronic inflammatory diseases, autoimmunity and apoptosis. Although galectins have attracted great interest in mammals, they are still poorly-characterized in teleost. Previously, several studies have reported their high expression levels in mucosal tissues before and post infection. Given the important roles for galectins in mucosal immunity, therefore, we characterized the galectin gene family and profiled family member expression after challenge with two different Gram-negative bacterial pathogens. Here, twelve galectins genes were captured in channel catfish (Ictalurus punctatus), and phylogenetic analysis showed the strongest relationship to zebrafish and salmon, which is consistent with their phylogenetic relationships. Furthermore, the galectin genes were widely expressed in catfish tissues, while most of the galectin genes were strongly expressed in mucosal tissues (skin, gill and intestine). In addition, the expression profiles of galectins after bacterial infection varied depending on both pathogen and tissue type, suggesting that galectins may exert disparate functions or exhibit distinct tissue-selective roles in the host immune response to bacterial pathogens. Further studies are needed, however, to expand functional characterization and examine whether galectins may also play additional physiological roles in catfish immunity.
Collapse
Affiliation(s)
- Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongdong Zhang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Baofeng Su
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Dan Yu
- Library, Qingdao Agricultural University, Qingdao, 266109, China
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
27
|
Unajak S, Pholmanee N, Songtawee N, Srikulnath K, Srisapoome P, Kiataramkul A, Kondo H, Hirono I, Areechon N. Molecular characterization of Galectin-8 from Nile tilapia (Oreochromis niloticus Linn.) and its response to bacterial infection. Mol Immunol 2015; 68:585-96. [DOI: 10.1016/j.molimm.2015.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 10/22/2022]
|
28
|
Zhou B, Long Y, Song G, Li Q, Cui Z. Molecular characterization of the lgals1 gene in large scale loach Paramisgurnus dabryanus. Gene 2015; 577:65-74. [PMID: 26611526 DOI: 10.1016/j.gene.2015.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Galectins constitute a group of lectins with binding specificity for β-galactoside sugars. Galectin-1 is a prototype galectin and the multifunctionality of mammalian galectin-1s is well-known, but only a few of fish galectin-1s have been identified. In this study, we obtained the full-length cDNA and genomic sequence of the galectin-1 gene (designated as Pdlgals1) from large scale loach (Paramisgurnus dabryanus), performed phylogenetic analysis, and characterized the expression pattern and the transcriptional activity of its 5' flanking region. The Pdlgals1 gene contains 4 exons that encode a peptide of 132 amino acids with all the galectin signature motifs. Phylogenetic analysis and sequence alignment indicated that Pdlgals1 is a homologue of human LGALS1. RT-PCR and whole-mount in situ hybridization revealed that Pdlgals1 is mainly expressed in the skin, muscle, intestine and cavum oropharyngeum. Transcriptional activity assays demonstrated that the basal promoter of Pdlgals1 is located in a region from -500bp to its transcriptional start site. Potential binding sites for transcription factors including C/EBP, AP-1, GATA, Oct-1, δEF1, NF-κB, c-Myb, SP-1, AP-2, AML-1α, and AP-4 were identified in the basal promoter, suggesting that these factors are associated with the regulation of Pdlgals1. These results provided clues for further investigation of galectin-1 functions in loaches.
Collapse
Affiliation(s)
- Bolan Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of the Chinese Academy of Sciences, Beijing, PR China
| | - Yong Long
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.
| | - Guili Song
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Qing Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Zongbin Cui
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.
| |
Collapse
|
29
|
Cordero H, Brinchmann MF, Cuesta A, Meseguer J, Esteban MA. Skin mucus proteome map of European sea bass (Dicentrarchus labrax). Proteomics 2015; 15:4007-20. [PMID: 26376207 DOI: 10.1002/pmic.201500120] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/23/2022]
Abstract
Skin mucus is the first barrier of fish defence. Proteins from skin mucus of European sea bass (Dicentrarchus labrax) were identified by 2DE followed by LC-MS/MS. From all the identified proteins in the proteome map, we focus on the proteins associated with several immune pathways in fish. Furthermore, the real-time PCR transcript levels in skin are shown. Proteins found include apolipoprotein A1, calmodulin, complement C3, fucose-binding lectin, lysozyme and several caspases. To our knowledge, this is the first skin mucus proteome study and further transcriptional profiling of the identified proteins done on this bony fish species. This not only contributes knowledge on the routes involved in mucosal innate immunity, but also establishes a non-invasive technique based on locating immune markers with a potential use for prevention and/or diagnosis of fish diseases.
Collapse
Affiliation(s)
- Héctor Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | - Monica F Brinchmann
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María A Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
30
|
Molecular cloning, expression of a galectin gene in Pacific white shrimp Litopenaeus vannamei and the antibacterial activity of its recombinant protein. Mol Immunol 2015; 67:325-40. [DOI: 10.1016/j.molimm.2015.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/14/2022]
|
31
|
Arasu A, Kumaresan V, Sathyamoorthi A, Chaurasia MK, Bhatt P, Gnanam AJ, Palanisamy R, Marimuthu K, Pasupuleti M, Arockiaraj J. Molecular characterization of a novel proto-type antimicrobial protein galectin-1 from striped murrel. Microbiol Res 2014; 169:824-834. [PMID: 24780642 DOI: 10.1016/j.micres.2014.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 11/21/2022]
Abstract
In this study, we reported a molecular characterization of a novel proto-type galectin-1 from the striped murrel Channa striatus (named as CsGal-1). The full length CsGal-1 was identified from an established striped murrel cDNA library and further we confirmed the sequence by cloning. The complete cDNA sequence of CsGal-1 is 590 base pairs (bp) in length and its coding region encoded a poly peptide of 135 amino acids. The polypeptide contains a galactoside binding lectin domain at 4-135. The domain carries a sugar binding site at 45-74 along with its signatures (H(45)-X-Asn(47)-X-Arg(49) and Trp(69)-X-X-Glu(72)-X-Arg(74)). CsGal-1 shares a highly conserved carbohydrate recognition domain (CRD) with galectin-1 from other proto-type galectin of teleosts. The mRNA expressions of CsGal-1 in healthy and various immune stimulants including Aphanomyces invadans, Aeromonas hydrophila, Escherchia coli lipopolysaccharide and poly I:C injected tissues of C. striatus were examined using qRT-PCR. CsGal-1 mRNA is highly expressed in kidney and is up-regulated with different immune stimulants at various time points. To understand its biological activity, the coding region of CsGal-1 gene was expressed in an E. coli BL21 (DE3) cloning system and its recombinant protein was purified. The recombinant CsGal-1 protein was agglutinated with mouse erythrocytes at a concentration of 4μg/mL in a calcium independent manner. CsGal-1 activity was inhibited by d-galactose at 25mM(-1) and d-glucose and d-fructose at 100mM(-1). The results of microbial binding assay showed that the recombinant CsGal-1 protein agglutinated only with the Gram-negative bacteria. Interestingly, we observed no agglutination against Gram-positive bacteria. Overall, the study showed that CsGal-1 is an important immune gene involved in the recognition and elimination of pathogens in C. striatus.
Collapse
Affiliation(s)
- Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur 603203, Chennai, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Annie J Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Kasi Marimuthu
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India.
| |
Collapse
|
32
|
Lazado C, Caipang C. Bacterial viability differentially influences the immunomodulatory capabilities of potential host-derived probiotics in the intestinal epithelial cells of Atlantic cod Gadus morhua. J Appl Microbiol 2013; 116:990-8. [DOI: 10.1111/jam.12414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/31/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C.C. Lazado
- Aquaculture Genomics Research Unit; Faculty of Biosciences and Aquaculture; University of Nordland; Bodø Norway
| | - C.M.A. Caipang
- Aquaculture Genomics Research Unit; Faculty of Biosciences and Aquaculture; University of Nordland; Bodø Norway
- Disease and Pathogen Transmission Research Group; Institute of Marine Research; Bergen Norway
| |
Collapse
|