1
|
Shi C, Lin TH, Qu C. The role of pattern recognition receptors in the innate immune system of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109946. [PMID: 39370020 DOI: 10.1016/j.fsi.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Eriocheir sinensis (Chinese mitten crab) is one of the main economic species in China, which has evolved an extremely sophisticated innate immune system to fend off disease invasions. However, bacterial and viral infections have caused significant financial losses for the E. sinensis aquaculture in recent years. Making well-informed judgments for the control microbial infections would require a thorough understanding and clarification of the intricate innate immune system of E. sinensis. Innate immunity is essential for the host's defense against invasive pathogens. Pattern recognition receptors (PRRs) initially recognize pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response, causing the generation of inflammatory cytokine and promoting the clearance and control of pathogens. In E. sinensis, Toll/Toll-like receptors, lipopolysaccharide and β-1,3-glucan binding proteins, C-type lectins, galactoside-binding lectins, L-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified to be PRRs that are involved in the recognition of bacteria, fungi, and viruses. In this review, we give a comprehensive overview of the literature regarding PRRs' roles in the immunological defenses of E. sinensis, with the aim of providing clues to the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| | - Chen Qu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Peng B, Lin J, Wan H, Zou P, Zhang Z, Wang Y. Identification of toll-like receptor family and the immune function of new Sptlr-6 gene of Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109609. [PMID: 38705549 DOI: 10.1016/j.fsi.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/25/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
As a crucial member of pattern-recognition receptors (PRRs), the Tolls/Toll-like receptors (TLRs) gene family has been proven to be involved in innate immunity in crustaceans. In this study, nine members of TLR gene family were identified from the mud crab (Scylla paramamosain) transcriptome, and the structure and phylogeny of different SpTLRs were analyzed. It was found that different SpTLRs possessed three conserved structures in the TIR domain. Meanwhile, the expression patterns of different Sptlr genes in examined tissues detected by qRT-PCR had wide differences. Compared with other Sptlr genes, Sptlr-6 gene was significantly highly expressed in the hepatopancreas and less expressed in other tissues. Therefore, the function of Sptlr-6 was further investigated. The expression of the Sptlr-6 gene was up-regulated by Poly I: C, PGN stimulation and Vibrio parahaemolyticus infection. In addition, the silencing of Sptlr-6 in hepatopancreas mediated by RNAi technology resulted in the significant decrease of several conserved genes involved in innate immunity in mud crab after V. parahaemolyticus infection, including relish, myd88, dorsal, anti-lipopolysaccharide factor (ALF), anti-lipopolysaccharide factor 2 (ALF-2) and glycine-rich antimicrobial peptide (glyamp). This study provided new knowledge for the role of the Sptlr-6 gene in defense against V. parahaemolyticus infection in S. paramamosain.
Collapse
Affiliation(s)
- Bohao Peng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Jiaming Lin
- Xiamen Ocean Vocational College, Xiamen, 361100, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
3
|
Deng Y, Xie S, Zhan W, Peng H, Cao H, Tang Z, Tian Y, Zhu T, Jin M, Zhou Q. Dietary Astaxanthin Can Promote the Growth and Motivate Lipid Metabolism by Improving Antioxidant Properties for Swimming Crab, Portunus trituberculatus. Antioxidants (Basel) 2024; 13:522. [PMID: 38790627 PMCID: PMC11117615 DOI: 10.3390/antiox13050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to assess the influence of varying dietary levels of astaxanthin (AST) on the growth, antioxidant capacity and lipid metabolism of juvenile swimming crabs. Six diets were formulated to contain different AST levels, and the analyzed concentration of AST in experimental diets were 0, 24.2, 45.8, 72.4, 94.2 and 195.0 mg kg-1, respectively. Juvenile swimming crabs (initial weight 8.20 ± 0.01 g) were fed these experimental diets for 56 days. The findings indicated that the color of the live crab shells and the cooked crab shells gradually became red with the increase of dietary AST levels. Dietary 24.2 mg kg-1 astaxanthin significantly improved the growth performance of swimming crab. the lowest activities of glutathione (GSH), total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and peroxidase (POD) were found in crabs fed without AST supplementation diet. Crabs fed diet without AST supplementation showed lower lipid content and the activity of fatty acid synthetase (FAS) in hepatopancreas than those fed diets with AST supplementation, however, lipid content in muscle and the activity of carnitine palmitoyl transferase (CPT) in hepatopancreas were not significantly affected by dietary AST levels. And it can be found in oil red O staining that dietary 24.2 and 45.8 mg kg-1 astaxanthin significantly promoted the lipid accumulation of hepatopancreas. Crabs fed diet with 195.0 mg kg-1 AST exhibited lower expression of ampk, foxo, pi3k, akt and nadph in hepatopancreas than those fed the other diets, however, the expression of genes related to antioxidant such as cMn-sod, gsh-px, cat, trx and gst in hepatopancreas significantly down-regulated with the increase of dietary AST levels. In conclusion, dietary 24.2 and 45.8 mg kg-1 astaxanthin significantly promoted the lipid accumulation of hepatopancreas and im-proved the antioxidant and immune capacity of hemolymph.
Collapse
Affiliation(s)
- Yao Deng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Wenhao Zhan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Hongyu Peng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Haiqing Cao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Zheng Tang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Yinqiu Tian
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| |
Collapse
|
4
|
Madushani KP, Shanaka KASN, Jung S, Kim MJ, Lee J. Ablation of myd88 alters the immune gene expression and immune cell recruitment during VHSV infection in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109006. [PMID: 37598733 DOI: 10.1016/j.fsi.2023.109006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Myeloid differentiation primary response protein-88 (MYD88) is an essential adaptor molecule in pathogen-related pattern recognition signaling pathways. Toll-like and interleukin receptors recognize numerous signals and are funneled through MyD88 to express genes responsible for the innate and adaptive immune systems. In the present study, the relevance of MyD88 in viral hemorrhagic septicemia virus (VHSV) was investigated by generating myd88-/- zebrafish. The model was challenged with VHSV, and viral propagation was quantified by evaluating clinical symptoms, mortality, and VHSV copy number. The infected fish showed abnormal morphologies, such as subcutaneous hemorrhages, abdominal swelling, and bulging eyes, which were comparatively more intense in myd88-/- fish than in the wild-type. An injury infection experiment conducted in zebrafish larvae indicated a substantial spread of VHSV in the wound site. The number of neutrophils and macrophages recruited to the wounded area were markedly reduced in myd88-/- fish. According to gene expression analysis, VHSV NP gene expression was considerably upregulated in myd88-/- fish. Substantial gene expression and immune cell marker modulation were observed in the mutant model compared to that in the wild-type. These results suggest that the lack of a significant adaptor protein for immune signal transduction results in enhanced VHSV replication.
Collapse
Affiliation(s)
- K P Madushani
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea; Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
5
|
Gul I, Abbas MN, Kausar S, Luo J, Gao X, Mu Y, Fan W, Cui H. Insight into crustacean cathepsins: Structure-evolutionary relationships and functional roles in physiological processes. FISH & SHELLFISH IMMUNOLOGY 2023:108852. [PMID: 37295735 DOI: 10.1016/j.fsi.2023.108852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Cathepsins belong to a group of proteins that are present in both prokaryotic and eukaryotic organisms and have an extremely high degree of evolutionary conservation. These proteins are functionally active in extracellular environments as soluble enzymatic proteins or attached to plasma membrane receptors. In addition, they occur in cellular secretory vesicles, mitochondria, the cytosol, and within the nuclei of eukaryotic cells. Cathepsins are classified into various groups based on their sequence variations, leading to their structural and functional diversification. The molecular understanding of the physiology of crustaceans has shown that proteases, including cathepsins, are expressed ubiquitously. They also contain one of the central regulatory systems for crustacean reproduction, growth, and immune responses. This review focuses on various aspects of the crustaceans cathepsins and emphasizes their biological roles in different physiological processes such as reproduction, growth, development, and immune responses. We also describe the bioactivity of crustaceans cathepsins. Because of the vital biological roles that cathepsins play as cellular proteases in physiological processes, they have been proposed as potential novel targets for the development of management strategies for the aquaculture industries.
Collapse
Affiliation(s)
- Isma Gul
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Muhammad Nadeem Abbas
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Saima Kausar
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Jili Luo
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Xinyue Gao
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yuhang Mu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Wenhui Fan
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Department of Neurology, Chongqing Ninth People's Hospital, Chongqing, 400700, China.
| | - Honghuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
6
|
Amparyup P, Sungkaew S, Charoensapsri W, Chumtong P, Yocawibun P, Tapaneeyaworawong P, Wongpanya R, Imjongjirak C. RNA-seq transcriptome analysis and identification of the theromacin antimicrobial peptide of the copepod Apocyclops royi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104464. [PMID: 35691054 DOI: 10.1016/j.dci.2022.104464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Copepods, including Apocyclops royi, are small aquatic crustaceans and one of the important foods for fish and shellfish larvae. However, studies of the host-pathogen interactions and understanding of infectious disease in copepods are still very limited, yet they are likely to be a significant factor in the sustainable development of copepod aquaculture. In the present study, we performed de novo RNA sequence analysis of A. royi-TH (a Thai isolate of A. royi), which yielded 4.80 Gb bases of clean data and a total of 29,786 unigenes. Annotation was then performed by comparison against seven functional databases, yielding 17,617 (NR: 59.15%), 2,969 (NT: 9.97%), 15,023 (SwissProt: 50.44%), 14,543 (KOG: 48.82%), 15,077 (KEGG: 50.62%), 6,763(GO: 22.71%), and 15,841 (InterPro: 53.18%) unigenes. In comparison to the components of the shrimp Toll pathway, LGBP, Spätzle, Toll receptors, MyD88, Pelle, TRAF6, Dorsal, and Cactus homologs were successfully identified in A. royi-TH. Additionally, a novel antimicrobial peptide (Theromacin-like) was characterized in A. royi (ArTM-like). The ArTM-like ORF was 279 bp and predicted to encode for 92 amino acid residues, with a mature peptide of 75 amino acids and a molecular mass of 8.56 kDa. The genomic organization of the ArTM-like gene consisted of three exons and two introns. Expression analysis indicated that ArTM-like mRNA was abundantly expressed in copepodid and adult stages as an immune responsive gene after infection with the pathogenic Vibrio parahaemolyticus-(AHPND)-causing strain. Altogether, the knowledge obtained in this study will provide a basis for future functional studies of the molecular mechanisms in copepod immunity that may eventually be applied for disease prevention in copepod aquaculture.
Collapse
Affiliation(s)
- Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Supakarn Sungkaew
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Parichat Chumtong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Patchari Yocawibun
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Paveena Tapaneeyaworawong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok, 10900, Thailand
| | - Chanprapa Imjongjirak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Alradi MF, Lu S, Wang L, Han Z, Elradi SA, Khogali MK, Liu X, Wei X, Chen K, Li S, Feng C. Characterization and functional analysis of a myeloid differentiation factor 88 in Ostrinia furnacalis Guenée larvae infected by Bacillus thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104489. [PMID: 35781013 DOI: 10.1016/j.dci.2022.104489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a pivotal adapter protein involved in activating nuclear factor NF-κB of the Toll pathway in insect innate immunity. MyD88 has been extensively studied in vertebrates and Drosophila. However, the information ascribed to MyD88 in Lepidoptera is scarce. In the present study, an Ostrinia furnacalis MyD88 (OfMyD88) cDNA was cloned and functionally characterized (GenBank accession no. MN906311). The complete cDNA sequence of OfMyD88 is 804 bp, and contains a 630 bp open reading frame encoding 209 amino acid residues. OfMyD88 has the death domain (DD), an intermediate domain, and the Toll/interleukin 1 receptor (TIR) domain. OfMyD88 was widely expressed in immune-related tissues such as hemocytes, fat body, midgut, and integument, with the highest expression level in hemocytes, and the lowest expression level in integument. To clarify the immune function of MyD88, O. furnacalis larvae were challenged with Bacillus thuringiensis (Bt) through feeding. Bt oral infection had significantly up-regulated the expression of OfMyD88 and immune genes, including PPO2 (prophenoloxidase 2), Attacin, Gloverin, Cecropin, Moricin, GRP3 (β-1, 3-Glucan recognition protein 3), and Lysozyme, and increased the activities of PO and lysozyme in hemolymph of O. furnacalis larvae. Knockdown of OfMyD88 by RNA interference suppressed the expression levels of immune related genes, but not PPO2 in the larvae orally infected with Bt, suggesting that OfMyD88 is involved in defending against Bt invasion through the Toll signaling pathway, but does not affect the PPO expression in O. furnacalis larvae.
Collapse
Affiliation(s)
- Mohamed F Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Medical Entomology, College of Public and Environmental Health, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Shiqi Lu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Sana A Elradi
- Department of Physiology, College of Medicine, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shuzhong Li
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
8
|
Wang X, Lei XY, Guo ZX, Wang S, Wan JW, Liu HJ, Chen YK, Wang GQ, Wang QJ, Zhang DM. The immuneoreaction and antioxidant status of Chinese mitten crab (Eriocheir sinensis) involve protein metabolism and the response of mTOR signaling pathway to dietary methionine levels. FISH & SHELLFISH IMMUNOLOGY 2022; 127:703-714. [PMID: 35817364 DOI: 10.1016/j.fsi.2022.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To study the effects of dietary methionine on growth performance, immunity, antioxidant capacity, protein metabolism, inflammatory response and apoptosis factors in Chinese mitten crabs (Eriocheir sinensis). Five diets with different methionine levels (0.63%, 0.85%, 1.06%, 1.25% and 1.47%) were fed to E. sinensis for 8 weeks. Results showed that in the 1.25% Met group, both growth performance and feed utilization were significantly increased. The crude protein content of crab muscle in the 1.06% and 1.25% Met groups was significantly higher than that in the control group. The immune and antioxidant enzyme activities, as well as gene expression levels of anti-lipopolysaccharide factor 1 (ALF1), Crustin-1, prophenoloxidase (proPO), cap 'n' collar isoform C (CncC) in 1.25% Met group were significantly higher than other groups. The activities of adenosine deaminase (ADA) and glutamate transaminase (GPT) in serum decreased first and then increased with the increase of methionine content, while the changes of ADA and GPT in hepatopancreas increased first and then decreased. 1.25% Met group exhibited significantly increased levels of GOT, GPT, and ADA compared to the control group. 1.25% Met diet group significantly up-regulated protein synthesis and anti-apoptotic factors, and significantly down-regulated inflammatory and pro-apoptotic factors in hepatopancreas. At 1.25% in the diet, methionine was found to boost E. sinensis growth, muscle protein deposition and immunity, as well as its antioxidant capacity. Combined with the above results, based on the expression of factors involved in the mammalian target of rapamycin (mTOR) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway, it is proved that methionine can not only promote protein metabolism, improve feed utilization, but also alleviate the inflammatory response and apoptosis caused by oxidative stress in the body.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xin-Yu Lei
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhi-Xin Guo
- Tonghua Normal University, College of Life Science, Jilin, Tonghua, 134001, China
| | - Sen Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ji-Wu Wan
- Aquatic Product Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Hong-Jian Liu
- Aquatic Product Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Yu-Ke Chen
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Qin Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qiu-Ju Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Dong-Ming Zhang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
9
|
The Effects of Bamboo Leaf Flavonoids on Growth Performance, Immunity, Antioxidant Status, and Intestinal Microflora of Chinese Mitten Crab (Eriocheir sinensis). Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Punginelli D, Schillaci D, Mauro M, Deidun A, Barone G, Arizza V, Vazzana M. The potential of antimicrobial peptides isolated from freshwater crayfish species in new drug development: A review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104258. [PMID: 34530039 DOI: 10.1016/j.dci.2021.104258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The much-publicised increased resistance of pathogenic bacteria to conventional antibiotics has focused research effort on the characterization of new antimicrobial drugs. In this context, antimicrobial peptides (AMPs) extracted from animals are considered a promising alternative to conventional antibiotics. In recent years, freshwater crayfish species have emerged as an important source of bioactive compounds. In fact, these invertebrates rely on an innate immune system based on cellular responses and on the production of important effectors in the haemolymph, such as AMPs, which are produced and stored in granules in haemocytes and released after stimulation. These effectors are active against both Gram-positive and Gram-negative bacteria. In this review, we summarise the recent progress on AMPs isolated from the several species of freshwater crayfish and their prospects for future pharmaceutical applications to combat infectious agents.
Collapse
Affiliation(s)
- Diletta Punginelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Alan Deidun
- Department of Geosciences, Faculty of Science, University of Malta, Msida MSD, 2080, Malta
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy.
| |
Collapse
|
11
|
Liu S, Wang X, Bu X, Zhang C, Qiao F, Qin C, Li E, Qin JG, Chen L. Influences of dietary vitamin D 3 on growth, antioxidant capacity, immunity and molting of Chinese mitten crab (Eriocheir sinensis) larvae. J Steroid Biochem Mol Biol 2021; 210:105862. [PMID: 33675950 DOI: 10.1016/j.jsbmb.2021.105862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
This study investigates the effects of vitamin D3 (VD3) on growth performance, antioxidant capacity, immunity and molting of larval Chinese mitten crab Eriocheir sinensis. A total of 6,000 larvae (7.52 ± 0.10 mg) were fed with six isonitrogenous and isolipidic experimental diets with different levels of dietary VD3 (0, 3000, 6000, 9000, 12000 and 36000 IU/kg) respectively for 23 days. The highest survival and molting frequency were found in crabs fed 6000 IU/kg VD3. Weight gain, specific growth rate, and carapace growth significantly increased in crabs fed 3000 and 6000 IU/kg VD3 compared to the control. Broken-line analysis of molting frequency, weight gain and specific growth rate against dietary VD3 levels indicates that the optimal VD3 requirement for larval crabs is 4825-5918 IU/kg. The highest whole-body VD3 content occurred in the 12000 IU/kg VD3 group, and the 25-dihydroxy VD3 content decreased with the increase of dietary VD3. The malonaldehyde content was lower than the control. Moreover, the superoxide dismutase activity, glutathione peroxidase and total antioxidant capacity of crab fed 6000 IU/kg VD3 were significantly higher than in control. Crabs fed 9000 IU/kg showed the highest survival after 120 h of salinity stress, and the relative mRNA expressions indicate vitamin D receptor (VDR) is the important regulatory element in molting and innate immunity. The molting-related gene expressions showed that the response of crab to salinity was self-protective. This study would contribute to a new understanding of the molecular basis underlying molting and innate immunity regulation by vitamin D3 in E. sinensis.
Collapse
Affiliation(s)
- Shubin Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Xianyong Bu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, PR China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
12
|
Wang C, Wang X, Huang Y, Bu X, Xiao S, Qin C, Qiao F, Qin JG, Chen L. Effects of dietary T-2 toxin on gut health and gut microbiota composition of the juvenile Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2020; 106:574-582. [PMID: 32798696 DOI: 10.1016/j.fsi.2020.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The current study aims to investigate the effects of dietary T-2 toxin on the intestinal health and microflora in the juvenile Chinese mitten crab (Eriocheir sinensis) with an initial weight 2.00 ± 0.05 g. Juvenile crabs were fed with experimental diets supplemented with T-2 toxin at 0 (control), 0.6 (T1 group), 2.5 (T2 group) and 5.0 (T3 group) mg/kg diet for 8 weeks. Dietary T-2 toxin increased the malondialdehyde (MDA) content and the expression of Kelch-like ECH-associated protein 1 (keap1) gene while the expression of cap 'n' collar isoform C (CncC) decreased in the intestine. The activities of glutathione peroxidase (GSH-Px) and total anti-oxidation capacity (T-AOC) in the intestine increased only in the lower dose of dietary T-2. Dietary T-2 toxin significantly increased the mRNA expression of caspase-3, caspase-8, Bax and mitogen-activated protein kinase (MAPK) genes and the ratio of Bax to Bcl-2 accompanied with a reduction of Bcl-2 expression. Furthermore, T-2 toxin decreased the mRNA levels of antimicrobial peptides (AMPs), peritrophic membrane (PM1 and PM2) and immune regulated nuclear transcription factors (Toll-like receptor: TLR, myeloid differentiation primary response gene 88: Myd88, relish and lipopolysaccharide-induced TNF-α factor: LITAF). The richness and diversity of the gut microbiota were also affected by dietary T-2 toxin in T3 group. The similar dominant phyla in the intestine of the Chinese mitten crab in the control and T3 groups were found including Bacteroidetes, Firmicutes, Tenericutes and Proteobacteria. Moreover, the inclusion of dietary T-2 toxin of 4.6 mg/kg significantly decreased the richness of Bacteroidetes and increased the richness of Firmicutes, Tenericutes and Proteobacteria in the intestine. At the genus level, Dysgonomonas and Romboutsia were more abundant in T3 group than those in the control. However, the abundances of Candidatus Bacilloplasma, Chryseobacterium and Streptococcus in T3 group were lower than those in the control. This study indicates that T-2 toxin could cause oxidative damage and immunosuppression, increase apoptosis and disturb composition of microbiota in the intestine of Chinese mitten crab.
Collapse
Affiliation(s)
- Chunling Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xianyong Bu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Shusheng Xiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, PR China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
13
|
Jiang X, Zu L, Wang Z, Cheng Y, Yang Y, Wu X. Micro-algal astaxanthin could improve the antioxidant capability, immunity and ammonia resistance of juvenile Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 102:499-510. [PMID: 32408019 DOI: 10.1016/j.fsi.2020.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Green alga Haematococcus pluvialis is an important source of natural astaxanthin (Ast), which have been shown to be beneficial for the color formulation, survival, antioxidation, immunity and stress resistance of many crustacean. This study was conducted to investigate the effects of dietary supplementation of H. pluvialis meal on growth, antioxidant status, ammonia resistance, color parameters, and carotenoids composition of juvenile Chinese mitten crab Eriocheir sinensis. Five diets were formulated to contain 0, 30, 60, 90 and 120 mg/kg dry diets of natural Ast (defined as Diet 1-5) using H. pluvialis meal as astaxanthin source. The results showed that: (1) Although all treatments with Ast supplementation had the relatively higher growth performance and survival than the control (Diet 1 treatment), no significant differences were found on growth performance, feed conversion ratio and hepatosomatic index among all treatments. (2) The highest total antioxidant capacity (T-AOC) in hepatopancreas and hemolymph were observed in Diet 4 and 3 treatments respectively, while the lowest malondialdehyde (MDA) contents in hepatopancreas and hemolymph were also found in these two treatments. Furthermore, the significantly positive relationships were detected on acid phosphatase (ACP) activities and dietary Ast contents for hepatopancreas and hemolymph. (3) Diet 3 treatment had the highest mRNA levels of EsLecA, EsTrx, and EsPrx6 in hepatopancreas, while both Diet 3 and 4 treatments reached the peaks for mRNA expression levels of EsMyd88 and EsHc, respectively. (4) The stress test with ammonia-N indicated Diet 1 treatment had the highest mortality among all treatments, and the lowest mortality was found on Diet 3 treatment during the stress test. (5) Dietary Ast significantly improved the redness (a*) of carapace and hepatopancreas, which were consistent with the Ast contents in these tissues from the different treatments. Ast concentrations in carapace reached the plateau for Diet 3 treatment while hepatopancreatic Ast concentration kept increasing with elevating dietary Ast contents. In conclusion, natural astaxanthin could enhance the antioxidative capability, non-specific immunity, tissue Ast contents and stress resistance to ammonia-N, and these results suggested the optimal diet micro-algal astaxanthin was around 60 mg/kg for juvenile E. sinensis.
Collapse
Affiliation(s)
- Xiaodong Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150036, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Lu Zu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiyan Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150036, China.
| | - Xugan Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
14
|
Liu JD, Liu WB, Zhang DD, Xu CY, Zhang CY, Zheng XC, Chi C. Dietary reduced glutathione supplementation can improve growth, antioxidant capacity, and immunity on Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 100:300-308. [PMID: 32135343 DOI: 10.1016/j.fsi.2020.02.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Eriocheir sinensis is an important aquaculture species in China, and its yield and quality are threatened by oxidative stress caused by deteriorating water conditions. Reduced glutathione (GSH) is an endogenous antioxidant, but whether dietary GSH can increase the resistance of E. sinensis to environmental stress remains unclear. Therefore, in this study, crabs were fed with dietary GSH (0, 300, 600, 900, and 1200 mg/kg diet weight) for up to 10 weeks to determine the effects of different dietary GSH concentrations on growth, antioxidant capacity, and immunity of E. sinensis. The results showed that the weight gain rate and survival rate increased significantly as dietary GSH levels increased from 0 to 900 mg/kg, but decreased at 1200 mg/kg. Compared with the control group, the diet supplemented with 900 mg/kg GSH not only increased the concentration of GSH in the haemolymph and hepatopancreas, but also enhanced the activity of glutathione peroxidase (GSH-Px) (p < 0.05). Diets supplemented with 600 or 900 mg/kg GSH significantly increased the enzymes activities of superoxide dismutase (SOD), lysozyme (LZM), alkaline phosphatase, and acid phosphatase, and significantly decreased the content of malondialdehyde. To understand the changes in the activity of these enzymes further, the expression of related genes was detected. Diets supplemented with 600 or 900 mg/kg GSH significantly upregulated the genes expressions of cytosolic manganese SOD, mitochondrial manganese SOD, copper, zinc-SOD, GSH-Px, LZM, and prophenoloxidase activating factor, and significantly down regulated the expression of Toll-like receptor 1, Toll-like receptor 2, Dorsal, and the myeloid differentiation factor 88. However, a diet supplemented with 1200 mg/kg GSH decreased those positive indicators. Overall, our results demonstrated that an appropriate diet supplemented with 600 or 900 mg/kg GSH enhances antioxidant capacity and immunity, which will enhance the general health of E. sinensis.
Collapse
Affiliation(s)
- Jia-Dai Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Chen-Yuan Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Cai-Yan Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xiao-Chuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
15
|
Huang Y, Ren Q. Research progress in innate immunity of freshwater crustaceans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103569. [PMID: 31830502 DOI: 10.1016/j.dci.2019.103569] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Invertebrates lack adaptive immunity and innate immunity plays important roles in combating foreign invasive pathogens. Freshwater crustaceans, which are invertebrates, depend completely on their innate immune system. In recent years, many immune-related molecules in freshwater crustaceans, as well as their functions, have been identified. Three main immune signaling pathways, namely, Toll, immune deficiency (IMD), and Janus kinase-signal transducer activator of transcription (JAK/STAT) pathways, were found in freshwater crustaceans. A series of pattern recognition receptors (PRRs), including Toll receptors, lectins, lipopolysaccharide and β-1,3-glucan binding protein, scavenger receptors, Down syndrome cell adhesion molecules, and thioester-containing proteins, were reported. Prophenoloxidase activation system and antimicrobial peptide synthesis are two important immune effector systems. These components are involved in the innate immunity of freshwater crustaceans, and they function in the innate immune defense against invading pathogens. This review mainly summarizes innate immune signaling pathways, PRRs, and effector molecules in freshwater crustaceans.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
16
|
Yang W, Liu C, Xu Q, Qu C, Lv X, Li H, Wu Z, Li M, Yi Q, Wang L, Song L. A novel nuclear factor Akirin regulating the expression of antimicrobial peptides in Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103451. [PMID: 31306698 DOI: 10.1016/j.dci.2019.103451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Akirin, a recently discovered nuclear factor, participates in regulating various processes, including cell proliferation and differentiation, embryonic development, and immunity. In the present study, a novel Akirin was identified from Chinese mitten crab Eriocheir sinensis (designated as EsAkirin), and its primary functions in regulating antimicrobial peptides were explored. The open reading frame of EsAkirin was of 615 bp, encoding a polypeptide of 204 amino acid residues. The deduced amino acid sequence of EsAkirin shared high similarities ranging from 44.1% to 89.2% with other Akirins. In the phylogenetic tree, EsAkirin was firstly clustered with Akirins from shrimp and then assigned into the invertebrate branch. The mRNA transcripts of EsAkirin were constitutively expressed in all the tested tissues, with the highest expression level (5.07-fold compared to the stomach, p < 0.01) in hepatopancreas. The mRNA expression of EsAkirin in hemocytes was significantly increased at 6 h, and reached the maximum level at 24 h post stimulations with either lipopolysaccharide (LPS) (5.04-fold, p < 0.01) or Aeromonas hydrophila (3.10-fold, p < 0.01). After the injection of EsAkirin-dsRNA, the mRNA expressions of EsALF2, EsLYZ, EsCrus2 and EsDWD1 were significantly decreased (p < 0.01) upon LPS stimulation. EsAkirin protein was prominently distributed in the nucleus of E. sinensis hemocytes after LPS and A. hydrophila stimulations. The relative luciferase reporter system analysis revealed that the activity of nuclear factor-κB was significantly up-regulated (2.64-fold, p < 0.01) in human embryonic kidney (HEK293T) cells after the over-expression of EsAkirin. Collectively, these results suggested that EsAkirin might play an important role in the immune responses of E. sinensis by regulating the expression of antimicrobial peptides.
Collapse
Affiliation(s)
- Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Chao Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Huan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhaojun Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
17
|
Zhou SM, Zhao JJ, Tao Z, Jin S, Wang CL, Zhou QC, Yin F. Characterization, subcellular localization and function analysis of myeloid differentiation factor 88 (Pt-MyD88) in swimming crab, Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2019; 95:227-235. [PMID: 31654766 DOI: 10.1016/j.fsi.2019.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/03/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a universal and essential adaptor protein required for the Toll-like receptors (TLRs) pathway activation in invertebrates as well as in vertebrates. Herein, we characterized a MyD88 (Pt-MyD88) cDNA sequence in the swimming crab (Portunus trituberculatus). The Pt-MyD88 ORF is predicted to encode 469 peptides with an N-terminal death domain and a typical C-terminal TIR domain. Real-Time quantitative PCR analysis showed that the Pt-MyD88 transcriptions were constitutively expressed in hemocytes, gill, intestine, heart and muscle in normal crab. The expressions of Pt-MyD88 would be down-regulated by V. alginolyticus or LPS challenge, and be up-regulated by WSSV infection in hemocytes. Intracellular localization showed Pt-MyD88 was distributed mainly in the cytoplasm when it was over-expressed in human cell HEK293T or in Drosophila Schneider 2 (S2). Functionally, over-expression of Pt-MyD88 could either activate the NF-κB in HEK293T cells or activate the promoters of Drosophila antimicrobial peptide genes (AMPs) in S2 cell. In primary cultured hemocytes of swimming crab, after Pt-MyD88 was knocked-down by specific long double strand RNA, the expression of anti-lipopolysaccharide factor1 (ALF1), hyastatin3, crustin1 and crustin3 have been significantly inhibited, while the expression of other AMPs is normal compared to non-specific dsRNA treated cells.
Collapse
Affiliation(s)
- Su-Ming Zhou
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Jiao-Jiao Zhao
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Zhen Tao
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shan Jin
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Chun-Lin Wang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Qi-Cun Zhou
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Fei Yin
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
18
|
Molecular Characterization and Functional Study of Insulin-Like Androgenic Gland Hormone Gene in the Red Swamp Crayfish, Procambarus clarkii. Genes (Basel) 2019; 10:genes10090645. [PMID: 31455039 PMCID: PMC6770367 DOI: 10.3390/genes10090645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/07/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The androgenic gland (AG) is a male-specific endocrine organ that controls the primary and secondary sexual characteristics in male crustaceans. More evidence indicates that the insulin-like androgenic gland hormone gene (IAG) is the key male sexual differentiation factor, particularly the application of RNA interference (RNAi) technology on IAG. In this study, the full-length cDNA of IAG (termed PcIAG) was isolated from the red swamp crayfish, Procambarusclarkii. Tissue distribution analysis showed that in addition to its expression in the AG of male P. clarkii, PcIAG was widely expressed in female tissues and other male tissues. The PcIAG protein was detected in the reproductive and nervous systems of adult male P. clarkii. Additionally, RNAi results showed that the PcIAG expression could be silenced efficiently, and the male sperm maturation and release possibly present a transient adverse interference at lower doses (0.1 μg/g and 1 μg/g) of PcIAG–dsRNA (PcIAG double-stranded RNA). Dramatically, the expression level of PcIAG increased sharply shortly after the injection of higher doses (5 μg/g and 10 μg/g) of PcIAG–dsRNA, which might accelerate the maturation and release of sperm. Moreover, the expression of PcSxl (P. clarkii Sex-lethal) was detected by Quantitative Real-Time PCR (qPCR) after the injection of PcIAG–dsRNA to explore whether the PcIAG gene regulates the PcSxl gene, and we found that the PcIAG did not directly regulate PcSxl in P. clarkii. The study could help accelerate the progress of PcIAG functional research and provide a useful reference for the single-sex selective breeding of P. clarkii.
Collapse
|
19
|
Liu H, Huo L, Yu Q, Ge D, Chi C, Lv Z, Wang T. Molecular insights of a novel cephalopod toll-like receptor homologue in Sepiella japonica, revealing its function under the stress of aquatic pathogenic bacteria. FISH & SHELLFISH IMMUNOLOGY 2019; 90:297-307. [PMID: 31059811 DOI: 10.1016/j.fsi.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Toll-like receptors (TLRs) play an important role in defense response to pathogens in mollusk. In this study the first TLR from Sepiella japonica (named as SjTLR) was functionally characterized, and its full-length cDNA consisted of 3914bp (GenBank accession no. AQY56780.1) including an open reading frame of 3582bp, encoding a putative protein of 1193 amino acids. Its theoretical molecular weight was 137.87 KDa and the predicted isoelectric point was 3.69. The derived amino acids sequence comprised of an extracellular domain including 26 amino acids signal peptide and eleven leucine-rich repeats (LRR), capped with LRRCT and LRRNT followed by transmembrane domain and cytoplasmic Toll/IL-1R domain (TIR). In addition, 12 potential N-linked glycosylation sites were present in the ectodomain to influence protein trafficking, surface presentation and ligand recognition. Multiple sequence alignment and phylogenetic analysis revealed that SjTLR shared the highest similarity to that of Euprymna scolopes and they fell into the same clade. Real-time PCR showed SjTLR expressed constitutively in all tested tissues, including gill, liver, brain, muscle, intestine, heart, lobus opticus and stomach, but showed different expression levels with genders. The highest expression was in the liver, and the lowest was in stomach for both genders. The functional domain region sequences encoding LRRs domain protein and TIR domain containing protein (TcpB) were expressed in BL21(DE3) respectively and purified with Ni-NAT Superflow resin conforming to the expected molecular weight. The cellular localization of SjTLR in HEK293 cells was conducted and plasma membrane localization was detected. SjLRRs internalization upon the activation of LPS was also observed, and dramatic redistribution of SjLRRs in the cytoplasm with distinct perinuclear accumulation was found. After SjTLR transfection Toll/NF-κB signaling pathway was active in HEK293 treated with LPS and TNFɑ. The nuclear related genes may also be activated by NF-κB in the nucleus, and the corresponding mRNA was transferred through the intracellular signal transduction pathway, so that IL-6 cytokines could be synthesized and released. After infection by Vibrio parahemolyticus and Aeromonas hydrophila the expression of SjTLR were upregulated with time-dependent manner. These findings might be valuable for understanding the innate immune signaling pathways of S.japonica and enabling future studies on host-pathogen interactions.
Collapse
Affiliation(s)
- Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Liping Huo
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qiuhan Yu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Delong Ge
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Zhenming Lv
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Tianming Wang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| |
Collapse
|
20
|
Jia E, Zheng X, Cheng H, Liu J, Li X, Jiang G, Liu W, Zhang D. Dietary fructooligosaccharide can mitigate the negative effects of immunity on Chinese mitten crab fed a high level of plant protein diet. FISH & SHELLFISH IMMUNOLOGY 2019; 84:100-107. [PMID: 30267755 DOI: 10.1016/j.fsi.2018.09.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
An 8-week feeding trial was carried out under controlled condition to evaluate the effect of dietary fructooligosaccharide (FOS) on growth performance, whole body composition, antioxidant status and immunity of crabs fed high levels of plant protein diets. Thus, six experimental diets were formulated (designated as F0P50, F0P60, F0P70, F0.2P50, F0.2P60 and F0.2P70), which contain two FOS levels (0 or 0.2%) and three plant protein levels (50, 60, or 70%) according to a 2 × 3 factorial design. The results showed that weight gain increased significantly as dietary plant protein level decreased from 70% to 50%. At 50% plant protein level, the addition of 0.2% FOS can significantly elevate weight gain (WG) (P < 0.05). The highest value in survival rate was observed in crabs fed F0.2P50 and F0.2P60 diet. Crabs fed F0.2P50 diet showed significantly higher crude protein content (P < 0.05) compared with those in other groups, but there were no significant differences in the contents of moisture, crude lipid and ash among all groups (P > 0.05). Catalase (CAT) activity in crabs fed F0.2P50 increased significantly (P < 0.05) compared with crabs fed F0P60, F0P70, F0.2P60 and F0.2P70, but malondialdehyde (MDA) concentrations decreased significantly (P < 0.05). Meanwhile, nitric oxide (NO) concentration, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities of crabs fed 0.2% FOS diets increased significantly (P < 0.05) compared with crabs fed 0% FOS diets. The expressions of prophenoloxidase (propo) was significantly (P < 0.05) affected only by dietary plant protein levels with the highest values observed in 50% plant protein diet, whereas the opposite was true for Myeloid differentiation factor 88 (myd88). The mRNA expressions of mitochondrial manganese superoxide dismutase (mtmnsod), lipopolysaccharide-induced TNF-α factor (litaf) and toll like receptors (tlrs) were significantly affected (P < 0.05) by both FOS and plant protein levels. The cytosolic manganese superoxide dismutase (cytmnsod) mRNA expressions in F0.2P50 and F0.2P60 groups were significantly higher than those in F0P70 and F0.2P70 groups. The results in this study indicated that supplementation with 0.2% FOS can enhance growth performance in crabs fed lower plant protein diets and as well improve immunity in those fed with higher plant protein diets.
Collapse
Affiliation(s)
- Erteng Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huihui Cheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Dong J, Cheng R, Yang Y, Zhao Y, Wu G, Zhang R, Zhu X, Li L, Li X. Effects of dietary taurine on growth, non-specific immunity, anti-oxidative properties and gut immunity in the Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 82:212-219. [PMID: 30125701 DOI: 10.1016/j.fsi.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Taurine has been widely researched as a growth-promoting additive or as an antioxidant in aquatic animals because of its multiple functions, however, few studies have explored its effects on crustacean in spite of the occurrence of serious diseases. We studied the effects of taurine supplementation on the growth, non-specific immunity, anti-oxidative properties and gut immunity of the Chinese mitten crab Eriocheir sinensis. Healthy crabs (8.0 ± 0.5 g) were fed diets supplemented with taurine at 0% (control), 0.2%, 0.4%, 0.8%, and 1.6% for 65 days. At the end of this 65 days feeding trial, the final weight, weight gain, specific growth rate, and feed conversion ratio were best in crabs fed the 0.4% taurine diet, followed by that in those fed the 0.8% taurine diet; the parameters were worst for the control group. Carapace length (CL) and carapace width (CW) were significantly increased in the crab fed the 0.4% and 0.8% taurine diet than that of the other three groups. Total haemocyte count (THC) and acid phosphatase (ACP) activity were significantly higher in the crab fed the 0.8% taurine diet than in those belonging to the other groups, the crabs fed the 0.4% taurine diet had the highest phenoloxidase (PO), lysozyme (LZM), and alkaline phosphatase (AKP) activities, however, there was no obvious change in their haemocyanin (Hc) content. According to superoxide dismutase (SOD), glutathione Peroxidase (GSH-PX), total anti-oxidant capacity (T-AOC) activities and malondialdehyde (MDA) content, the antioxidant capacity was significantly induced by taurine diet, while was higher in crabs fed 0.4 %-0.8% taurine diet than that of the other groups. Taurine supplementation significantly up-regulated the expression of gut immune genes (EsToll2, EsRelish) and antimicrobial peptides (EsALF1, EsALF2, EsCrus1, EsCrus2) in crabs gut fed the 0.2-0.8% taurine diet group compared to control. Thus, these study results indicate that dietary taurine is important for improving growth, regulating immunity, and enhancing the antioxidant capacity in crabs, with the recommended optimum dietary allowance being 0.4 %-0.8% taurine for E. sinensis.
Collapse
Affiliation(s)
- Jing Dong
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rongjie Cheng
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yingying Zhao
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ruiyang Zhang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaochen Zhu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lin Li
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaodong Li
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
22
|
Huang D, Bai Z, Shen J, Zhao L, Li J. Identification of tumor necrosis factor receptor-associated factor 6 in the pearl mussel Hyriopsis cumingii and its involvement in innate immunity and pearl sac formation. FISH & SHELLFISH IMMUNOLOGY 2018; 80:335-347. [PMID: 29920382 DOI: 10.1016/j.fsi.2018.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) acts as a central intracellular signal adapter molecule that mediates the tumor necrosis factor receptor superfamily and the interleukin-1 receptor/Toll-like receptor family in vertebrates and invertebrates. In the present study, HcTRAF6, a molluscan homologue of TRAF6 from Hyriopsis cumingii, has been cloned and identified. The entire open reading frame of HcTRAF6 was found to comprise a 1965-bp region that encodes a predicted protein of 654 amino acids, which contains conserved characteristic domains including a RING domain, two TRAF-type zinc finger domains, a typical coiled coil and the MATH domain. Phylogenetic analysis revealed that HcTRAF6 was aggregated closely with CsTRAF6 from Cyclina sinensis in the invertebrate cluster of mollusks. Further, qRT-PCR analysis showed that HcTRAF6 mRNA was extensively distributed in mussel tissues with a high expression in gills. After immune stimulation with Aeromonas hydrophila and lipopolysaccharides, the transcription of HcTRAF6 was obviously induced in the gills and hemocytes. In addition, significant fluctuation in HcTRAF6 expression was observed in the pearl sac, gills and hemocytes after mantle implantation. These findings confirmed its role in the alloimmune response. Dual-luciferase reporter assay showed that over-expression of HcTRAF6 could enhance the activity of the NF-κB reporter in a dose-dependent manner. Further, the RNA interference showed that the up-regulation of antimicrobial peptides in anti-bacterial infection was strongly suppressed in HcTRAF6-silenced mussels and that depletion of HcTRAF inhibited the elimination of A. hydrophila. All these findings together prove that HcTRAF6 functions as an efficient regulator in innate immune mechanisms against invading pathogens and the alloimmune mechanism after mantle implantation in H. cumingii.
Collapse
Affiliation(s)
- Dandan Huang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Jiexuan Shen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Liting Zhao
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China.
| |
Collapse
|
23
|
Visetnan S, Donpudsa S, Tassanakajon A, Rimphanitchayakit V. Silencing of a Kazal-type serine proteinase inhibitor SPIPm2 from Penaeus monodon affects YHV susceptibility and hemocyte homeostasis. FISH & SHELLFISH IMMUNOLOGY 2018; 79:18-27. [PMID: 29729960 DOI: 10.1016/j.fsi.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
In shrimp, the Kazal-type serine proteinase inhibitors (KPIs) are involved in host innate immune defense system against pathogenic microorganisms. A five-Kazal-domain SPIPm2 is the most abundant KPIs in the black tiger shrimp Penaeus monodon and up-regulated in response to yellow head virus (YHV) infection. In this study, the role of SPIPm2 in YHV infection was investigated. The expression of SPIPm2 in hemocytes, gill and heart from 48-h YHV-infected shrimp was increased. The expression of SPIPm2 in hemocytes was significantly increased after 12 h of infection and gradually increased higher afterwards. Silencing of SPIPm2 by dsRNA interference resulted in the increased expression of different apoptosis-related genes, the increased expression of transcriptional factors of antimicrobial synthesis pathways, the reduction of circulating hemocytes in the shrimp hemolymph, and the increased susceptibility of the silenced shrimp to YHV infection. The activities of caspase-3 and caspase-7 in the hemocytes of SPIPm2-silenced shrimp was also increased by 5.32-fold as compared with those of the control shrimp. The results suggested that the SPIPm2 was involved in the hemocyte homeostasis.
Collapse
Affiliation(s)
- Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Suchao Donpudsa
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
24
|
Huang Y, Wang W, Xu Z, Pan J, Zhao Z, Ren Q. Eriocheir sinensis microRNA-7 targets crab Myd88 to enhance white spot syndrome virus replication. FISH & SHELLFISH IMMUNOLOGY 2018; 79:274-283. [PMID: 29775740 DOI: 10.1016/j.fsi.2018.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression at the posttranscriptional level. In this study, the function of microRNA-7 (miR-7) in host-virus interaction was investigated. Replication of White spot syndrome virus (WSSV) was enhanced with the overexpression of miR-7 and inhibited with the downregulation of miR-7 by using anti-miRNA oligonucleotide AMO-miR-7. The target gene of miR-7 was predicted using bioinformatics methods. Results showed that crab myeloid differentiation factor 88 (Myd88) could be targeted by miR-7. When the expression of Myd88 was knocked down by sequence-specific siRNA, WSSV copies in crabs were significantly increased. Further findings revealed that knockdown of Myd88, Tube, or Pelle inhibited the expressions of interleukin enhancer-binding factor 2 homolog (ILF2) and interleukin-16-like gene (IL-16L). While ILF2 was silenced, IL-16L expression was inhibited. The overexpression of miR-7 inhibited the expressions of ILF2 and IL-16L. Moreover, when ILF2 or IL-16L was silenced, WSSV copies in crabs were increased. Thus, the upregulated expression of miR-7 during WSSV challenge suppressed the host Myd88-ILF2-(IL-16L) signaling pathway in crabs and enhanced WSSV replication. Our study indicated that WSSV utilized crab miR-7 to enhance virus replication during infection.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, Nanjing 210098, China; Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jianlin Pan
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, Nanjing 210098, China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
25
|
Huang Y, Chen Y, Hui K, Ren Q. Cloning and Characterization of Two Toll Receptors ( PcToll5 and PcToll6) in Response to White Spot Syndrome Virus in the Red Swamp Crayfish Procambarus clarkii. Front Physiol 2018; 9:936. [PMID: 30072914 PMCID: PMC6060793 DOI: 10.3389/fphys.2018.00936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023] Open
Abstract
Toll/Toll-like receptors are key components in the innate immune responses of invertebrates. In this study, we identified two novel Toll receptors (PcToll5 and PcToll6) from the red swamp crayfish Procambarus clarkii. The complete cDNA sequence of PcToll5 is 4247 bp, encoding a 1293 amino acid polypeptide. The full-length 4688 bp PcToll6 encodes a putative protein of 1195 amino acids. Quantitative RT-PCR analysis indicated that PcToll5 and PcToll6 were constitutively expressed in all tissues studied. The highest expression levels of PcToll5 and PcToll6 were found in the intestine and gills, respectively, and were significantly upregulated from 24 to 48 h during white spot syndrome virus (WSSV) challenge. siRNA-mediated RNA interference results showed that PcToll5 and PcToll6 might regulate the expression of anti-lipopolysaccharide factors (PcALF2 and PcALF3) in vivo. Overexpression of PcToll5 and PcToll6 in Drosophila Schneider 2 (S2) cells activated the transcription of Drosophila antimicrobial peptides, including drosomycin (Drs), metchnikowin (Mtk), and attacin A (AttA), and shrimp Penaeidin-4 (Pen4). These findings provide significant information that PcToll5 and PcToll6 may contribute to host immune defense against WSSV in P. clarkii.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, Nanjing, China
| | - Yihong Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kaimin Hui
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, China
| |
Collapse
|
26
|
Tassanakajon A, Rimphanitchayakit V, Visetnan S, Amparyup P, Somboonwiwat K, Charoensapsri W, Tang S. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:81-93. [PMID: 28501515 DOI: 10.1016/j.dci.2017.05.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Diseases have caused tremendous economic losses and become the major problem threatening the sustainable development of shrimp aquaculture. The knowledge of host defense mechanisms against invading pathogens is essential for the implementation of efficient strategies to prevent disease outbreaks. Like other invertebrates, shrimp rely on the innate immune system to defend themselves against a range of microbes by recognizing and destroying them through cellular and humoral immune responses. Detection of microbial pathogens triggers the signal transduction pathways including the NF-κB signaling, Toll and Imd pathways, resulting in the activation of genes involved in host defense responses. In this review, we update the discovery of components of the Toll and Imd pathways in shrimp and their participation in the regulation of shrimp antimicrobial peptide (AMP) synthesis. We also focus on a recent progress on the two most powerful and the best-studied shrimp humoral responses: AMPs and melanization. Shrimp AMPs are mainly cationic peptides with sequence diversity which endues them the broad range of activities against microorganisms. Melanization, regulated by the prophenoloxidase activating cascade, also plays a crucial role in killing and sequestration of invading pathogens. The progress and emerging research on mechanisms and functional characterization of components of these two indispensable humoral responses in shrimp immunity are summarized and discussed. Interestingly, the pattern recognition protein (PRP) crosstalk is evidenced between the proPO activating cascade and the AMP synthesis pathways in shrimp, which enables the innate immune system to build up efficient immune responses.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Sureerat Tang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
27
|
Ren Y, Xue J, Yang H, Pan B, Bu W. Comparative and evolutionary analysis of an adapter molecule MyD88 in invertebrate metazoans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:18-24. [PMID: 28502652 DOI: 10.1016/j.dci.2017.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
The myeloid differentiation factor 88 (MyD88) is an essential adapter in Toll-like receptor (TLR) signalling pathways, with TLR the first pattern-recognition receptor (PRR) that was discovered in Drosophila. In the present study, a MyD88 gene was identified and characterized from a commercially important shellfish, Scapharca subcrenata, including a DEATH domain and TIR domain conserved within other molluscs. Furthermore, comparative genomic evidence revealed that MyD88 was of different lengths and contained quantitative exon and intron regions, which might be involved in specific mechanisms. To further explore the phylogenetic relationships of invertebrate metazoan MyD88, we applied MrBayes and PhyML software to construct phylogenetic trees using Bayesian and maximum likelihood approaches, respectively, which suggested that the MyD88 of Arthropoda was closely related to lower invertebrates, in contrast to morphological taxonomy. Finally, we investigated the evolutionary patterns and location of positive selection sites (PSSs) in the MyD88 gene from Arthropoda, Mollusca and Insecta using PAML software with the maximum likelihood method. The data showed that positive selection sites were detected in these groups, and partial sites were located in the TIR domain but were not found in the DEATH domain. To summarize, in this study, we report on the diversification of MyD88 in invertebrate metazoans, the specific evolutionary position of Arthropoda MyD88, and the positive selection pressures on MyD88 of Arthropoda, Mollusca and Insecta. These results are a valuable contribution to understand and clarify the evolutionary pattern of TLR/MyD88 signalling pathways in invertebrate and vertebrate taxa.
Collapse
Affiliation(s)
- Yipeng Ren
- Institute of Entomology, College of Life Sciences, Nankai University, Weijin Road No. 94, Tianjin, 300071, PR China
| | - Junli Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Weijin Road No. 94, Tianjin, 300071, PR China
| | - Huanhuan Yang
- Institute of Entomology, College of Life Sciences, Nankai University, Weijin Road No. 94, Tianjin, 300071, PR China
| | - Baoping Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Weijin Road No. 94, Tianjin, 300071, PR China.
| |
Collapse
|
28
|
Jia Z, Wang L, Jiang S, Sun M, Wang M, Yi Q, Song L. Functional characterization of hemocytes from Chinese mitten crab Eriocheir sinensis by flow cytometry. FISH & SHELLFISH IMMUNOLOGY 2017; 69:15-25. [PMID: 28826623 DOI: 10.1016/j.fsi.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Hemocytes comprise a diversity of cell types with functional and structural heterogeneity, and they play key roles in the host defense of invertebrates. In the present study, the hemocytes from Chinese mitten crab Eriocheir sinensis were directly separated into two groups by flow cytometry. The hemocytes in P1 group were full of round and abundant granules with deeply staining cytoplasm, while P2 hemocytes were more diverse with a wide range of sizes and less granularity. Both P1 and P2 hemocytes exhibited phagocytic ability, but the phagocytic rate of P1 hemocytes increased which was significantly higher than that of P2 hemocytes after LPS stimulations. The levels of ROS production and intracellular Calcium as well as lysosome content were higher in P1 hemocytes than that in P2 hemocytes under both normal and immune-activated situations. The genes involved in phagocytosis, antimicrobial and antioxidant activities were mainly expressed in P1 hemocytes, while the genes involved in proPO activation system were highly expressed in P2 hemocytes. These results collectively suggested that P1 hemocytes were the main immunocompetent hemocytes in Chinese mitten crab and P2 hemocytes mainly participated in proPO activation system.
Collapse
Affiliation(s)
- Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mingzhe Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
29
|
Huang Y, Li T, Jin M, Yin S, Hui KM, Ren Q. Newly identified PcToll4 regulates antimicrobial peptide expression in intestine of red swamp crayfish Procambarus clarkii. Gene 2017; 610:140-147. [PMID: 28213041 DOI: 10.1016/j.gene.2017.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/22/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
Abstract
Tolls or Toll-like receptors (TLRs) have an essential role in initiating innate immune responses against pathogens. In this study, a novel Toll gene, PcToll4, was first identified from the intestinal transcriptome of the freshwater crayfish, Procambarus clarkii. The PcToll4 cDNA is 4849bp long with a 3036bp open reading frame that encodes a 1011-amino acid protein. PcToll4 contains a signal peptide, 13 LRR domains, 3 LRR TYP domains, 2 LRR CT domains, an LRR NT domain, a transmembrane region, and a TIR domain. Quantitative RT-PCR analysis revealed that PcToll4 mRNA was detected in all tested tissues, and the expression of PcToll4 in the intestine was significantly upregulated after white spot syndrome virus (WSSV) challenge. Overexpression of PcToll4 in Drosophila Schneider 2 (S2) cells activates the antimicrobial peptides (AMPs) of Drosophila, including metchnikowin, drosomycin, attacin A, and shrimp Penaeidin-4. Results of RNA interference by siRNA also showed that PcToll4 regulates the expressions of 5 anti-lipopolysaccharide factors (ALFs) in the intestine of crayfish. Our findings suggest that PcToll4 is important for the innate immune responses of P. clarkii because this gene regulates the expressions of AMPs against WSSV.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Tingting Li
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
30
|
Kim BM, Kang S, Ahn DH, Kim JH, Ahn I, Lee CW, Cho JL, Min GS, Park H. First Insights into the Subterranean Crustacean Bathynellacea Transcriptome: Transcriptionally Reduced Opsin Repertoire and Evidence of Conserved Homeostasis Regulatory Mechanisms. PLoS One 2017; 12:e0170424. [PMID: 28107438 PMCID: PMC5249073 DOI: 10.1371/journal.pone.0170424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
Bathynellacea (Crustacea, Syncarida, Parabathynellidae) are subterranean aquatic crustaceans that typically inhabit freshwater interstitial spaces (e.g., groundwater) and are occasionally found in caves and even hot springs. In this study, we sequenced the whole transcriptome of Allobathynella bangokensis using RNA-seq. De novo sequence assembly produced 74,866 contigs including 28,934 BLAST hits. Overall, the gene sequences were most similar to those of the waterflea Daphnia pulex. In the A. bangokensis transcriptome, no opsin or related sequences were identified, and no contig aligned to the crustacean visual opsins and non-visual opsins (i.e. arthropsins, peropsins, and melaopsins), suggesting potential regressive adaptation to the dark environment. However, A. bangokensis expressed conserved gene family sets, such as heat shock proteins and those related to key innate immunity pathways and antioxidant defense systems, at the transcriptional level, suggesting that this species has evolved adaptations involving molecular mechanisms of homeostasis. The transcriptomic information of A. bangokensis will be useful for investigating molecular adaptations and response mechanisms to subterranean environmental conditions.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
| | - Seunghyun Kang
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
| | - Do-Hwan Ahn
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
| | - Jin-Hyoung Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
| | - Inhye Ahn
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
- Polar Sciences, University of Science & Technology, Yuseong-gu, Daejeon, South Korea
| | - Chi-Woo Lee
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Joo-Lae Cho
- Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Gi-Sik Min
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
- Polar Sciences, University of Science & Technology, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
31
|
Ren Y, Pan H, Pan B, Bu W. Identification and functional characterization of three TLR signaling pathway genes in Cyclina sinensis. FISH & SHELLFISH IMMUNOLOGY 2016; 50:150-159. [PMID: 26804650 DOI: 10.1016/j.fsi.2016.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Toll-like receptors (TLRs) are an ancient family of pattern recognition receptors that play a critical role in initiating and activating the innate immune system. In this study, we identified two TLR genes (CsTLR4 and CsTLR13) and the MyD88 (CsMyD88) gene using a transcriptome library from Cyclina sinensis. The sequence features and mRNA expression profiles of the genes were characterized, and their functions in the immune response were investigated to validate the TLR signaling pathway and its potential role in immune defense. The expression patterns of CsTLR4, CsTLR13 and CsMyD88 were detected in all the tissues examined from healthy clams and were primarily expressed in the hemocytes (P < 0.05), as shown by real-time PCR. Upon challenge with Vibrio anguillarum and Micrococcus luteus, they were significantly increased in hemocytes (P < 0.01), whereas only CsTLR13 and CsMyD88 were up-regulated (P < 0.01) by poly (I:C) challenge. In addition, the mRNA expression level of CsC-LYZ and CsAMP was down-regulated at 72 h (P < 0.01) after injection with CsMyD88 RNAi. These findings might be valuable for understanding the innate immune signaling pathways of C. sinensis and enabling future studies on host-pathogen interactions.
Collapse
Affiliation(s)
- Yipeng Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China; Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Heting Pan
- Library of Tianjin Medical University, Tianjin, 300070, PR China
| | - Baoping Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
32
|
Huang Y, Chen YH, Zhang YZ, Feng JL, Zhao LL, Zhu HX, Wang W, Ren Q. Identification, characterization, and functional studies of a Pelle gene in the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2015; 45:704-716. [PMID: 26026692 DOI: 10.1016/j.fsi.2015.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/10/2015] [Accepted: 05/24/2015] [Indexed: 06/04/2023]
Abstract
The toll-like receptor/NF-κB signaling pathways play an important role in the innate immune system. In the present study, one Pelle gene (named EsPelle) was identified for the first time from the Chinese mitten crab Eriocheir sinensis. The full-length cDNA of EsPelle is 3797 bp with a 3156 bp-long open reading frame that encodes a 1051 amino acid protein. EsPelle protein contains a death domain at the N-terminal and a serine/threonine kinase domain at the C-terminal. A neighbor joining phylogenetic tree showed that the EsPelle protein, which is closest to those of Scylla paramamosain Pelle and Litopenaeus vannamei Pelle, was clustered to a group of crustacean Pelle proteins. EsPelle was expressed in all tested tissues of normal crabs, and its expression was regulated in hemocytes and hepatopancreas of crabs challenged with lipopolysaccharide, peptidoglycan, Staphyloccocus aureus, Vibrio parahaemolyticus, and Aeromonas hydrophila. Overexpression of EsPelle in Drosophila Schneider 2 cells could upregulate the expression of Drosophila antimicrobial peptides, namely, metchnikowin (Mtk), attacinA (Atta), drosomycin (Drs), and cecropinA (CecA). Moreover, EsPelle silencing by siRNA reduced the transcription of anti-lipopolysaccharide factor 1 and 2, crustin 2, and lysozyme in crabs challenged with V. parahaemolyticus. From the results, we speculated that EsPelle was involved in innate immune defense against V. parahaemolyticus in E. sinensis.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Yi-Hong Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Zhou Zhang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Jin-Ling Feng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Ling-Ling Zhao
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Huan-Xi Zhu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| |
Collapse
|