1
|
Ma Y, Wu Z, Tu Y, Liu C, Guo J, Xu Y, Li S, Xi Y, Li J, Ren T, Yang D, Huang S, Yi Q. Hypoxia-inducible factor-1α involves in regulating anti-lipopolysaccharide factors expression via NF-κB under hypoxia stress in Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2025; 162:110328. [PMID: 40220923 DOI: 10.1016/j.fsi.2025.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Oxygen is essential for the survival of organisms. Hypoxia profoundly affects the immune response in aquatic crustaceans, nevertheless, the precise mechanisms of immunological regulation under hypoxic conditions remain unclear. Hypoxia-inducible factor 1-alpha (HIF-1α), a key regulator of oxygen homeostasis, also plays a vital role in the immunological responses of mammals. Nonetheless, it remains uncertain whether HIF-1α regulates the immune response of crustaceans under hypoxia stress. This study investigated the expression patterns of EsHIF-1α and anti-lipopolysaccharide factors (ALFs) in response to Aeromonas hydrophila stimulation under hypoxia stress in Eriocheir sinensis. The mRNA expression levels of EsHIF-1α in haemocytes were significantly increased after hypoxia treatment, while were markedly reduced following A. hydrophila stimulation under hypoxic condition. Similarly, the EsALFs mRNA expression levels were also significantly decreased post A. hydrophila injection under hypoxic condition. Subsequently, the effect of EsHIF-1α on EsALFs mRNA expression was detected. The mRNA transcripts of EsALFs significantly diminished in HIF-1α inhibitor (KC7F2) injected crabs, however, a significant increase was observed in HIF-1α activator (IOX4) injected crabs. Furthermore, the mRNA expression and phosphorylation levels of NF-κB exhibited a similar trend following the inhibition or activation of EsHIF-1α, indicating that EsHIF-1α has a positive effect on the expression and activity of NF-κB. In addition, the bacterial clearance of haemolymph in the HIF-1α activated group was significantly higher, whereas in the HIF-1α inhibited group it was significantly lower, compared to the control group. Our findings collectively suggested that EsHIF-1α regulated ALFs expression through NF-κB activation in E. sinensis in response to A. hydrophila stimulation under hypoxic conditions. This research improves the understanding of the immunological regulation mechanisms in crustaceans under hypoxia stress.
Collapse
Affiliation(s)
- Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China
| | - Yuhan Tu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China
| | - Chang Liu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China
| | - Junwei Guo
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China
| | - Yiyang Xu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China
| | - Siyue Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China
| | - Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China
| | - Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China
| | - Tongjun Ren
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China; Dalian Jinshiwan Laboratory, Dalian, China.
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China.
| |
Collapse
|
2
|
Li Y, Ye Y, Zhu Y, Yao Z, Zhou K, Wei Y, Zhang L, Bao N, Zhao Y, Lai Q. Effects of Dietary 5-Aminolevulinic Acid on Growth, Nutrient Composition, and Intestinal Microflora in Juvenile Shrimp, Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1307-1323. [PMID: 39305390 DOI: 10.1007/s10126-024-10373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/07/2024] [Indexed: 11/07/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is an endogenous non-protein amino acid and has been used as a new type of growth promoter in aquaculture feed. This study explored the effects of 5-ALA on growth and intestinal health in juvenile shrimp, Litopenaeus vannamei. Shrimps were fed diets containing five different 5-ALA levels (0, 15, 30, 45, and 60 g/t) for 90 days. A concentration of 45 g/t 5-ALA significantly improved growth metrics, including the specific growth rate, protein efficiency, and feed conversion (P < 0.05). The optimal concentration of 5-ALA was 38.3 g/t, as indicated by broken-line regression. Dietary supplementation with 5-ALA increased the crude protein content of whole shrimp, but had no significant effect on the moisture, ash, or crude lipid content (P > 0.05). Suitable supplementation of 5-ALA (45 g/t, 60 g/t) improved the activities of the digestive enzymes alpha-amylase, pepsin, trypsin, and lipase, thus promoting digestion and absorption. Shrimp fed with 45 g/t 5-ALA had increased levels of essential amino acids in the muscles and a higher proportion of polyunsaturated fatty acids in the hepatopancreas. Supplementation with 45 or 60 g/t 5-ALA upregulated the expression of genes related to growth and molting, including chitinase, ecdysone receptor, retinoic X receptor, calcium/calmodulin-dependent protein kinase I, heat shock protein 60, and heat shock protein 70. Moreover, dietary supplementation with 5-ALA affected the abundance of intestinal flora, increased the number of beneficial bacteria, and improved intestinal health. These results indicated that 5-ALA may significantly benefit shrimp health and aquaculture productivity, providing a novel theoretical basis for further research into 5-ALA as a dietary supplement.
Collapse
Affiliation(s)
- Yiming Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yucong Ye
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yashi Zhu
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zongli Yao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Kai Zhou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yuxing Wei
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Lin Zhang
- Beijing Challenge Bio-Technology Co., Ltd, Beijing, 100081, China
| | - Ning Bao
- Beijing Challenge Bio-Technology Co., Ltd, Beijing, 100081, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
3
|
Xi Y, Li J, Wu Z, Ma Y, Li J, Yang Z, Wang F, Yang D, Jiang Y, Yi Q, Huang S. Yorkie negatively regulates the Crustin expression during molting in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105242. [PMID: 39128619 DOI: 10.1016/j.dci.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Molting is a key biological process of crustaceans, which is mainly regulated by 20-hydroxyecdyone (20E). The molting cycle could be divided into three main stages including pre-molt, post-molt and inter-molt stages. The mechanism of immune regulation during molting process still requires further exploration. Yorkie (Yki) is a pivotal transcription factor in the Hippo signaling pathway, and it plays an essential role in regulating cell growth and immune response. In the present study, a Yki gene was identified from Eriocheir sinensis (designed as EsYki), and the regulatory role of EsYki in controlling the expression of antimicrobial peptide genes throughout the molting process was investigated. The mRNA expression level of EsYki was higher at the pre-molt stage compared to the post-molt stage and inter-molt stage. Following the injection of 20E, there was a notable and consistent rise in the EsYki mRNA expression in haemocytes. The increase was observed from 3 h to 48 h with the maximum level at 12 h. And the phosphorylation of Yki in the haemocytes was also significantly up-regulated at 3 h post 20E injection. Moreover, the levels of EsYki mRNA expression at three molting stages were significantly increased post Aeromonas hydrophila stimulation. The maximum level was detected at post-molt stage following A. hydrophila stimulation, while the lowest level was observed at inter-molt stage. The expression pattern of EsCrus was in contrast to EsCrus. After EsYki mRNA transcripts were inhibited by Yki inhibitor (CA3), the mRNA expression levels of EsCrus1 and EsCrus2 following A. hydrophila stimulation were significantly elevated. Furthermore, the phosphorylation level of NF-κB was also increased following the inhibition of Yki. Collectively, our findings indicated that EsYki could be induced by 20E and has a suppressive effect on the expression of EsCrus via inhibiting NF-κB during molting process. This research contributes to the understanding of the immunological regulation mechanism during molting process in crustaceans.
Collapse
Affiliation(s)
- Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
4
|
Li J, Ma Y, Wu Z, Li J, Wang F, Yang Z, Xi Y, Yang D, Jiang Y, Yi Q, Huang S. The involvement of tumor necrosis factor receptor-associated factor 6 in regulating immune response by NF-κB at pre-molt stage of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109842. [PMID: 39153580 DOI: 10.1016/j.fsi.2024.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Molting is a crucial biological process of crustaceans. Crustaceans go through three separate stages throughout their molting process, including pre-molt, post-molt and inter-molt. However, the exact mechanism of immunological modulation during molting remains unclear. Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been extensively documented to participate in immune defense. In the present study, a TRAF6 gene with two TRAF-type zinc finger domains was identified from Eriocheir sinensis (designed as EsTRAF6), and its role in regulating immune response during molting process was explored. The mRNA expression level of EsTRAF6 at pre-molt stage was higher than that at post-molt stage and inter-molt stage. After Aeromonas hydrophila stimulation, the expression levels of EsTRAF6, EsRelish and anti-lipopolysaccharide factors (ALFs) genes exhibited a considerable increase at three molting stages. Subsequently, the expression patterns of EsTRAF6 and EsRelish in response to the treatment with 20-hydroxyecdysone (20E) were examined. The mRNA expression of EsTRAF6 and EsRelish were significantly increased at 12 h after 20E injection. Additionally, the protein expression level of TRAF6 was also up-regulated in 20E group compared to control group. Furthermore, the role of EsTRAF6 in regulating the anti- ALFs expression at pre-molt stage post A. hydrophila stimulation was investigated. Following the inhibition of the EsTRAF6 transcript using RNAi or the injection of inhibitor (TMBPS), there was a notable decrease of the EsALF1, EsALF2 and EsALF3 transcripts. Moreover, a significant reduction in the phosphorylation level of NF-κB at pre-molt stage was observed after A. hydrophila stimulation in TRAF6-inhibited crabs. Collectively, our results suggest that EsTRAF6 could be induced by 20E and promoted the EsALFs expression by activating NF-κB at pre-molt stage, which provides a novel insight into the research of immune regulatory mechanism during the process of molting of crustaceans.
Collapse
Affiliation(s)
- Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
5
|
Benrabaa SAM, Chang SA, Chang ES, Mykles DL. Effects of molting on the expression of ecdysteroid responsive genes in the crustacean molting gland (Y-organ). Gen Comp Endocrinol 2024; 355:114548. [PMID: 38761872 DOI: 10.1016/j.ygcen.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1). Quantitative polymerase chain reaction quantified mRNA levels in tissues from intermolt animals and in YO of animals induced to molt by multiple limb autotomy (MLA) or eyestalk ablation (ESA). Gl-EcR, Gl-Retinoid X Receptor (RXR), Gl-Br-C, Gl-HR3, Gl-HR4, Gl-E74, Gl-E75, Gl-Ftz-f1, and Gl-FOXO were expressed in all 10 tissues, with Gl-Br-C, Gl-E74, Gl-E75, and Gl-HR4 mRNA levels in the YO lower than those in most of the other tissues. In MLA animals, molting had no effect on Gl-Br-C, Gl-E74, and Gl-Ftz-f1 mRNA levels and little effect on Gl-EcR, Gl-E75, and Gl-HR4 mRNA levels. Gl-HR3 and Gl-FOXO mRNA levels were increased during premolt stages, while Gl-RXR mRNA level was highest during intermolt and premolt stages and lowest at postmolt stage. In ESA animals, YO mRNA levels were not correlated with hemolymph ecdysteroid titers. ESA had no effect on Gl-EcR, Gl-E74, Gl-HR3, Gl-HR4, Gl-Ftz-f1, and Gl-FOXO mRNA levels, while Gl-RXR, Gl-Br-C, and Gl-E75 mRNA levels were decreased at 3 days post-ESA. These data suggest that transcriptional up-regulation of Gl-FOXO and Gl-HR3 contributes to increased YO ecdysteroidogenesis during premolt. By contrast, transcriptional regulation of ecdysteroid responsive genes and ecdysteroidogenesis were uncoupled in the YO of ESA animals.
Collapse
Affiliation(s)
| | - Sharon A Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Ernest S Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Donald L Mykles
- Colorado State University, Fort Collins, CO 80523, USA; Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA.
| |
Collapse
|
6
|
Yi Q, Xi Y, Li J, Wu Z, Ma Y, Jiang Y, Yang D, Huang S. The interaction between 20-hydroxyecdysone and AMPK through PI3K activation in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105194. [PMID: 38754572 DOI: 10.1016/j.dci.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
In crustaceans, the steroid hormone 20-hydroxyecdysone (20E) initiates molting, and the molting process is also regulated by energy metabolism. AMPK is an energy sensor and plays a critical role in systemic energy balance. Here, the regulatory mechanism in the interaction between 20E and AMPK was investigated in Chinese mitten crab, Eriocheir sinensis. The results showed that the 20E concentration and the mRNA expression levels of 20E receptors in hepatopancreas were down-regulated post AMPK activator (AICAR) treatment, and were up-regulated after AMPK inhibitor (Compound C) injection in crabs. Besides, the molt-inhibiting hormone (MIH) gene expression in eyestalk showed the opposite patterns in response to the AICAR and Compound C treatment, respectively. Further investigation found that there was a significant reduction in 20E concentration post PI3K inhibitor (LY294002) treatment, and the phosphorylation level of PI3K was increased in hepatopancreas after AMPK inhibitor injection. On the other hand, the positive regulation of PI3K-mediated activation of AMPK was also observed, the phosphorylation levels of AMPKα, AMPKβ and PI3K in hepatopancreas were significantly increased post 20E injection. In addition, the phosphorylation levels of AMPKα and AMPKβ induced by 20E were decreased after the injection of PI3K inhibitor. Taken together, these results suggest that the regulatory cross-talk between 20E and AMPK is likely to act through PI3K pathway in E. sinensis, which appeared to be helpful for a better understanding in molting regulation.
Collapse
Affiliation(s)
- Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
7
|
Hao T, Song Z, Zhang M, Zhang L, Yang J, Li J, Sun J. Reconstruction of Metabolic-Protein Interaction Integrated Network of Eriocheir sinensis and Analysis of Ecdysone Synthesis. Genes (Basel) 2024; 15:410. [PMID: 38674345 PMCID: PMC11049885 DOI: 10.3390/genes15040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Integrated networks have become a new interest in genome-scale network research due to their ability to comprehensively reflect and analyze the molecular processes in cells. Currently, none of the integrated networks have been reported for higher organisms. Eriocheir sinensis is a typical aquatic animal that grows through ecdysis. Ecdysone has been identified to be a crucial regulator of ecdysis, but the influence factors and regulatory mechanisms of ecdysone synthesis in E. sinensis are still unclear. In this work, the genome-scale metabolic network and protein-protein interaction network of E. sinensis were integrated to reconstruct a metabolic-protein interaction integrated network (MPIN). The MPIN was used to analyze the influence factors of ecdysone synthesis through flux variation analysis. In total, 236 integrated reactions (IRs) were found to influence the ecdysone synthesis of which 16 IRs had a significant impact. These IRs constitute three ecdysone synthesis routes. It is found that there might be alternative pathways to obtain cholesterol for ecdysone synthesis in E. sinensis instead of absorbing it directly from the feeds. The MPIN reconstructed in this work is the first integrated network for higher organisms. The analysis based on the MPIN supplies important information for the mechanism analysis of ecdysone synthesis in E. sinensis.
Collapse
Affiliation(s)
- Tong Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (T.H.); (Z.S.); (M.Z.); (L.Z.); (J.Y.)
| | - Zhentao Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (T.H.); (Z.S.); (M.Z.); (L.Z.); (J.Y.)
| | - Mingzhi Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (T.H.); (Z.S.); (M.Z.); (L.Z.); (J.Y.)
| | - Lingrui Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (T.H.); (Z.S.); (M.Z.); (L.Z.); (J.Y.)
| | - Jiarui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (T.H.); (Z.S.); (M.Z.); (L.Z.); (J.Y.)
| | - Jingjing Li
- Tianjin Fisheries Research Institute, Tianjin 300211, China;
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (T.H.); (Z.S.); (M.Z.); (L.Z.); (J.Y.)
| |
Collapse
|
8
|
Zhao X, Huang S, Zhang P, Qiao X, Liu Y, Dong M, Yi Q, Wang L, Song L. A circadian clock protein cryptochrome inhibits the expression of inflammatory cytokines in Chinese mitten crab (Eriocheir sinensis). Int J Biol Macromol 2023; 253:126591. [PMID: 37659496 DOI: 10.1016/j.ijbiomac.2023.126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Cryptochrome (Cry), as important flavoprotein, plays a key role in regulating the innate immune response, such as the release of inflammatory cytokines. In the present study, a cryptochrome homologue (EsCry) was identified from Chinese mitten crab Eriocheir sinensis, which contained a typical DNA photolyase domain, a FAD binding domain. The transcripts of EsCry were highly expressed at 11:00, and lowest at 3:00 within one day, while those of Interleukin enhancer binding factor (EsILF), Lipopolysaccharide-induced TNF-alpha factor (EsLITAF), Tumor necrosis factor (EsTNF) and Interleukin-16 (EsIL-16) showed a rhythm expression pattern contrary to EsCry. After EsCry was knocked down by dsEsCry injection, mRNA transcripts of Timeless (EsTim), Cycle (EsCyc), Circadian locomotor output cycles kaput (EsClock), Period (EsPer), and EsLITAF, EsTNF, EsILF, EsIL-16, as well as phosphorylation level of Dorsal significantly up-regulated. The transcripts of EsLITAF, EsTNF, EsILF, and EsIL-16 in EsCry-RNAi crabs significantly down-regulated after injection of NF-κB inhibitor. The interactions of EsCyc and EsCry, EsCyc and Dorsal were observed in vitro. These results indicated that EsCry negatively regulated the expression of the cytokine TNF and IL-16 via inhibiting their transcription factor LITAF and ILF through NF-κB signaling pathway, which provide evidences to better understand the circadian regulation mechanism of cytokine production in crabs.
Collapse
Affiliation(s)
- Xinyu Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Peng Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
9
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
10
|
Yao C, Yu L, Huang L, Chen Y, Guo X, Cao N, Liu Z, Shen J, Li X, Pang S, Li C. Sex-specific effects of propiconazole on the molting of the Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109612. [PMID: 36914039 DOI: 10.1016/j.cbpc.2023.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Given the inevitable exposure of Eriocheir sinensis (E. sinensis) to fungicides in rice-crab co-culture systems, understanding the potential effect of fungisides is important for practical application. Molting is a crucial development process of E. sinensis, which is regulated by endocrine system and genetic factors, and is susceptible to exogenous chemicals. However, the impact of fungicides application on the molting of E. sinensis have been rarely reported. In the present study, propiconazole, a widely used fungicide for rice disease management, was found to exert potential effects on the molting of E. sinensis at residual-related level in the rice-crab co-culture fields. After 14 days of short-term exposure to propiconazole, female crabs exhibited remarkably higher levels of hemolymph ecdysone than males. When the exposure was extended to 28 days, propiconazole markedly accelerated molt-inhibiting hormone expression by 3.3-fold, ecdysone receptor expression by 7.8-fold, and crustacean retinoid X receptor expression by 9.6-fold in male crabs, while it showed the opposite effect in females with suppressed gene expression. Propiconazole also induced the activity of N-acetylglucosaminidase in male crabs rather than females during the experiments. Our study suggests that propiconazole exerts sex-specific effects on the molting of E. sinensis. The impact of propiconazole application in the rice-crab co-culture systems remains more assessment to avoid affecting the growth of cultured E. sinensis.
Collapse
Affiliation(s)
- Chunlian Yao
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Lina Yu
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing, China
| | - Lan Huang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Yajie Chen
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Niannian Cao
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Zhuoying Liu
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Xuefeng Li
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Sen Pang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China.
| | - Changsheng Li
- Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
11
|
Wang F, Yang Z, Li J, Ma Y, Tu Y, Zeng X, Wang Q, Jiang Y, Huang S, Yi Q. The involvement of hypoxia inducible factor-1α on the proportion of three types of haemocytes in Chinese mitten crab under hypoxia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104598. [PMID: 36511346 DOI: 10.1016/j.dci.2022.104598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia triggers diverse cell physiological processes, and the hypoxia inducible factors (HIFs) are a family of heterodimeric transcription factors that function as master regulators to respond to hypoxia in different cells. However, the knowledge about the hypoxic responses especially cell alteration mediated by HIFs under hypoxia stress is still limited in crustaceans. In the present study, a hypoxia-inducible factor-1α (HIF-1α) gene was identified (designed as EsHIF-1α). The relative mRNA expression level of EsHIF-1α was highest in hyalinocytes and lowest in granulocytes among three types of haemocytes in crabs. Hypoxia could significantly increase the EsHIF-1α protein expression level in haemocytes. Meanwhile, the proportion of hyalinocytes began to increase from 3 h post hypoxia treatment, and reached the highest level at 24 h. However, the opposite variation in proportion of granulocytes was observed under hypoxia stress. Further investigation showed that the inhibition of EsHIF-1α induced by KC7F2 (HIF-1α inhibitor) could lead to the significant decrease in the proportion of hyalinocytes under hypoxia stress, and also resulted in an increase of granulocytes proportion. While, after EsHIF-1α was activated by IOX4 (HIF-1α activator), the proportion of hyalinocytes was significantly up-regulated and the proportion of granulocytes was significantly down-regulated under post hypoxia treatment. These results collectively suggested that EsHIF-1α was involved in the regulation of proportion of three types of haemocytes induced by hypoxia stress, which provided vital insight into the understanding of the crosstalk between hypoxia and cell development in invertebrates.
Collapse
Affiliation(s)
- Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Tu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Xiaorui Zeng
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Qingyao Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| |
Collapse
|
12
|
Ye Y, Fan X, Cai Z, Wu Y, Zhang W, Zhao H, Guo S, Feng P, Li Q, Zou P, Chen M, Fan N, Chen D, Guo R. Unveiling the circRNA-Mediated Immune Responses of Western Honey Bee Larvae to Ascosphaera apis Invasion. Int J Mol Sci 2022; 24:613. [PMID: 36614055 PMCID: PMC9820429 DOI: 10.3390/ijms24010613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Western honey bee (Apis mellifera), a eusocial insect with a superior economic and ecological value, is widely used in the beekeeping industry throughout the world. As a new class of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) participate in the modulation of considerable biological processes, such as the immune response via diverse manners. Here, the identification, characteristic investigation, and molecular verification of circRNAs in the Apis mellifera ligustica larval guts were conducted, and the expression pattern of larval circRNAs during the Ascosphaera apis infection was analyzed, followed by the exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 2083 circRNAs in the larval guts of A. m. ligustcia were identified, with a length distribution ranging from 106 nt to 92,798 nt. Among these, exonic circRNAs were the most abundant type and LG1 was the most distributed chromosome. Additionally, 25, 14, and 30 up-regulated circRNAs as well as 26, 25, and 62 down-regulated ones were identified in the A. apis-inoculated 4-, 5-, and 6-day-old larval guts in comparison with the corresponding un-inoculated larval guts. These DEcircRNAs were predicted to target 35, 70, and 129 source genes, which were relative to 12, 23, and 20 GO terms as well as 11, 10, and 27 KEGG pathways, including 5 cellular and humoral immune pathways containing apoptosis, autophagy, endocytosis, MAPK, Toll, and Imd signaling pathways. Furthermore, complex competing endogenous RNA (ceRNA) regulatory networks were detected to be formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The Target DEmRNAs were engaged in 24, 20, and 25 functional terms as well as 62, 80, and 159 pathways, including several vital immune defense-associated pathways, namely the lysosome, endocytosis, phagosome, autophagy, apoptosis, MAPK, Jak-STAT, Toll, and Imd signaling pathways. Finally, back-splicing sites within 15 circRNAs and the difference in the 9 DEcircRNAs' expression between un-inoculated and A. apis-inoculated larval guts were confirmed utilizing molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions, but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. m. ligustica larvae against A. apis invasion.
Collapse
Affiliation(s)
- Yaping Ye
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zongbing Cai
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peilin Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiming Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiyuan Zou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjun Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nian Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
13
|
Yang B, Ma J, Yang W, Qu C, Li B, Xu M, Gao Y, Xu Q. MEK homologue is involved in immune response by regulating antimicrobial peptides expression in Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104527. [PMID: 36058384 DOI: 10.1016/j.dci.2022.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
MEK activates the phosphorylation of downstream molecules involved in various immune responses. In this study, an MEK homologue gene in Chinese mitten crab Eriocheir sinensis (designated as EsMEK) was investigated. EsMEK mRNA was constitutively expressed in all tissues with higher expression in hepatopancreas, hemocytes, and gills. EsMEK protein was mainly localized in the cytoplasm. Lipopolysaccharide (LPS) and Aeromonas hydrophila challenge significantly increased the mRNA levels of EsMEK in hemocytes. In addition, the mRNA expression level of some antimicrobial peptides (AMPs), including EsWAP, EsDWD1, and EsALF decreased significantly due to the inhibition of EsMEK by specific dsRNA in LPS-challenged crabs. Downstream pathway analysis revealed that the phosphorylation of EsERK decreased prominently after EsMEK inhibition. These results suggested that EsMEK played an important role in regulating the expression of antimicrobial peptides in E. sinensis through MEK-ERK pathway.
Collapse
Affiliation(s)
- Binghui Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China
| | - Jinlong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China
| | - Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China
| | - Mei Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China
| | - Yujia Gao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
14
|
Huang S, Ma Y, Wang F, Li J, Yang Z, Jiang Y, Chen X, Hu S, Yi Q. ERK is involved in the regulation of CpG ODN 2395 on the expression levels of anti-lipopolysaccharide factors in Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1206-1213. [PMID: 36403703 DOI: 10.1016/j.fsi.2022.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
CpG oligodeoxynucleotides (ODN), as an effective adjuvant or immunopotentiator, activate the immune system and induce various immune responses. Recently, it has also been reported that high dose of CpG ODN can lead to immunosuppression. However, the underlying mechanism of CpG ODN-mediated immune response remains largely unknown in invertebrates. In the present study, the role of ERK in regulating expression levels of anti-lipopolysaccharide factors (ALFs) induced by different doses of CpG ODN 2395 was analyzed in Chinese mitten crab, Eriocheir sinensis. The mRNA expression levels of EsALFs (EsALF1, EsALF2 and EsALF3) and EsERK in haemocytes were observed to increase from 6 h to 48 h post low doses of CpG ODN 2395 (0.5 μg and 2.5 μg) stimulation, while they were suppressed after high dose of CpG ODN 2395 (12.5 μg) injection. Meanwhile, the phosphorylation levels of ERK in haemocytes were significantly promoted after low doses of CpG ODN 2395 injection, and a reduce level of ERK phosphorylation was observed after high dose of CpG ODN 2395 injection. Further investigation showed that the expression levels of EsALFs induced by CpG ODN 2395 were markedly down-regulated after knocking down the expression of EsERK. Similarly, the EsALFs mRNA expression were also inhibited post different doses of CpG ODN 2395 stimulation in PD98059 (ERK inhibitor) injection crabs. These results collectively suggest that ERK is involved in regulating the expression level of EsALFs induced by different dose of CpG ODN 2395 in Chinese mitten crab, which contribute to the understanding of the regulation of CpG ODN involving in immune response in crustaceans.
Collapse
Affiliation(s)
- Shu Huang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Xi Chen
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Shengyang Hu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Qilin Yi
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China.
| |
Collapse
|