1
|
Disselhoff V, Jakab A, Latal B, Schnider B, Wehrle FM, Hagmann CF. Inhibition abilities and functional brain connectivity in school-aged term-born and preterm-born children. Pediatr Res 2025; 97:315-324. [PMID: 38898110 PMCID: PMC11798846 DOI: 10.1038/s41390-024-03241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Inhibition abilities are known to have impact on self-regulation, behavior, and academic success, and they are frequently impaired in children born preterm. We investigated the possible contributions of resting-state functional brain connectivity to inhibition following preterm birth. METHODS Forty-four preterm and 59 term-born participants aged 8-13 years were administered two inhibition tasks and resting-state functional MRI was performed. Functional connectivity (FC) networks were compared between groups using network-based statistics. Associations of FCNs and inhibition abilities were investigated through multivariate linear regression models accounting for the interaction between birth status and inhibition. RESULTS NBS revealed weaker FC in children born preterm compared to term-born peers in connections between motor and supplementary motor regions, frontal lobe, precuneus, and insula. Irrespective of birth status, connections between the cerebellum, frontal, and occipital lobes and inter-lobar, subcortical, intra-hemispheric long-range connections were positively correlated with one of the two inhibition tasks. CONCLUSIONS Preterm birth results in long-term alterations of FC at network level but these FCN alterations do not specifically account for inhibition problems in children born very preterm. IMPACT Irrespective of birth status, significant associations were found between the subdomain of response inhibition and functional connectivity in some subnetworks. A group comparisons of functional brain connectivity measured by rsfMRI in school-aged children born very preterm and at term. The investigation of network-level functional connectivity at rest does not appear adequate to explain differences in inhibition abilities between children born very preterm and at term, hence other imaging techniques might be more suited to explore the underlying neural mechanisms of inhibition abilities in school-aged children born very preterm.
Collapse
Affiliation(s)
- Vera Disselhoff
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andras Jakab
- Centre for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Barbara Schnider
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Flavia M Wehrle
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Cornelia F Hagmann
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Willbrand EH, Maboudian SA, Elliott MV, Kellerman GM, Johnson SL, Weiner KS. Variable Presence of an Evolutionarily New Brain Structure Is Related to Trait Impulsivity. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00352-5. [PMID: 39613159 DOI: 10.1016/j.bpsc.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Impulsivity is a multidimensional construct reflecting poor constraint over one's behaviors. Clinical psychology research has identified separable impulsivity dimensions that are each unique transdiagnostic indicators for psychopathology. However, despite this apparent clinical importance, the shared and unique neuroanatomical correlates of these factors remain largely unknown. Concomitantly, neuroimaging research has identified variably present human brain structures implicated in cognition and disorder: the folds (sulci) of the cerebral cortex located in the latest-developing and most evolutionarily expanded hominoid-specific association cortices. METHODS We tethered these 2 fields to test whether variability in one such structure in the anterior cingulate cortex (ACC)-the paracingulate sulcus (PCGS)-was related to individual differences in trait impulsivity. A total of 120 adult participants with internalizing or externalizing psychopathology completed a magnetic resonance imaging scan and the Three-Factor Impulsivity Index. Using precision imaging techniques, we manually identified the PCGS, when present, and acquired quantitative folding metrics (PCGS length and ACC local gyrification index). RESULTS Neuroanatomical-behavioral analyses revealed that participants with leftward or symmetrical PCGS patterns had greater severity of Lack of Follow Through (LFT)-which captures inattention and lack of perseverance-than those with rightward asymmetry. Neuroanatomical-functional analyses identified that the PCGS colocalized with a focal locus found in a neuroimaging meta-analysis on a feature underlying LFT. Neither quantitative folding metric related to any impulsivity dimension. CONCLUSIONS This study advances understanding of the neuroanatomical correlates of impulsivity and establishes the notion that the topographical organization of distinct, hominoid-specific cortical expanses underlies separable impulsivity dimensions with robust, transdiagnostic implications for psychopathology.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Samira A Maboudian
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California; Department of Neuroscience, University of California, Berkeley, Berkeley, California
| | - Matthew V Elliott
- Department of Psychology, University of California, Berkeley, Berkeley, California
| | - Gabby M Kellerman
- Department of Psychology, University of California, Berkeley, Berkeley, California
| | - Sheri L Johnson
- Department of Psychology, University of California, Berkeley, Berkeley, California
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California; Department of Neuroscience, University of California, Berkeley, Berkeley, California; Department of Psychology, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
3
|
Mathan J, Maximino-Pinheiro M, He Q, Rezende G, Menu I, Tissier C, Salvia E, Mevel K, Le Stanc L, Vidal J, Moyon M, Delalande L, Orliac F, Poirel N, Oppenheim C, Houdé O, Chaumette B, Borst G, Cachia A. Effects of parental socioeconomic status on offspring's fetal neurodevelopment. Cereb Cortex 2024; 34:bhae443. [PMID: 39526525 DOI: 10.1093/cercor/bhae443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the prenatal period's critical role in shaping later cognition and health, influenced by an intricate interplay of parental genetic and environmental factors. Birth weight is commonly used as a retrospective indicator of fetal development, but recent focus has shifted to more specific proxies of neurodevelopment, like cortical sulcal patterns, which are established in utero and remain stable after birth. This study aimed to elucidate the interrelated effects of parental socioeconomic status, brain volume, birth weight, and sulcal patterns in the anterior cingulate cortex. Utilizing structural Magnetic Resonance Imaging (MRI), parental educational attainment, and related polygenic risk scores, the study analyzed 203 healthy right-handed participants aged 9 to 18. Structural equation modeling demonstrated that the anterior cingulate cortex sulcal pattern is influenced by parental socioeconomic status and global brain volume, with socioeconomic status correlating with a polygenic risk score. These findings suggest that prenatal neurodevelopmental processes may mediate the intergenerational transmission of inequalities.
Collapse
Affiliation(s)
- Julia Mathan
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | | | - Qin He
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | - Gabriela Rezende
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | - Iris Menu
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | - Cloelia Tissier
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | - Emilie Salvia
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
| | - Katell Mevel
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GIP Cyceron, 14000 Caen, France
| | - Lorna Le Stanc
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
| | - Julie Vidal
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
| | - Marine Moyon
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GIP Cyceron, 14000 Caen, France
| | - Lisa Delalande
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GIP Cyceron, 14000 Caen, France
| | | | - Nicolas Poirel
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GIP Cyceron, 14000 Caen, France
| | - Catherine Oppenheim
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | - Olivier Houdé
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Boris Chaumette
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Grégoire Borst
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Institut Universitaire de France, Paris, France
| | - Arnaud Cachia
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| |
Collapse
|
4
|
Willbrand EH, Maboudian SA, Elliott MV, Kellerman GM, Johnson SL, Weiner KS. Variable Presence of an Evolutionarily New Brain Structure is Related to Trait Impulsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619912. [PMID: 39484399 PMCID: PMC11527008 DOI: 10.1101/2024.10.23.619912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Impulsivity is a multidimensional construct reflecting poor constraint over one's behaviors. Clinical psychology research identifies separable impulsivity dimensions that are each unique transdiagnostic indicators for psychopathology. Yet, despite this apparent clinical importance, the shared and unique neuroanatomical correlates of these factors remain largely unknown. Concomitantly, neuroimaging research identifies variably present human brain structures implicated in cognition and disorder: the folds (sulci) of the cerebral cortex located in the latest developing and most evolutionarily expanded hominoid-specific association cortices. Methods We tethered these two fields to test whether variability in one such structure in anterior cingulate cortex (ACC)-the paracingulate sulcus (PCGS)-was related to individual differences in trait impulsivity. 120 adult participants with internalizing or externalizing psychopathology completed a magnetic resonance imaging scan and the Three-Factor Impulsivity Index. Using precision imaging techniques, we manually identified the PCGS, when present, and acquired quantitative folding metrics (PCGS length and ACC local gyrification index). Results Neuroanatomical-behavioral analyses revealed that participants with leftward or symmetrical PCGS patterns had greater severity of Lack of Follow Through (LFT)-which captures inattention and lack of perseverance-than those with rightward asymmetry. Neuroanatomical-functional analyses identified that the PCGS co-localized with a focal locus found in a neuroimaging meta-analysis on a feature underlying LFT. Both quantitative folding metrics did not relate to any impulsivity dimension. Conclusions This study advances understanding of the neuroanatomical correlates of impulsivity and establishes the notion that the topographical organization of distinct, hominoid-specific cortical expanses underlie separable impulsivity dimensions with robust, transdiagnostic implications for psychopathology.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Samira A. Maboudian
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - Matthew V. Elliott
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Gabby M. Kellerman
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Sheri L. Johnson
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin S. Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Harper L, Strandberg O, Spotorno N, Nilsson M, Lindberg O, Hansson O, Santillo AF. Structural and functional connectivity associations with anterior cingulate sulcal variability. Brain Struct Funct 2024; 229:1561-1576. [PMID: 38900167 PMCID: PMC11374863 DOI: 10.1007/s00429-024-02812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Sulcation of the anterior cingulate may be defined by presence of a paracingulate sulcus, a tertiary sulcus developing during the third gestational trimester with implications on cognitive function and disease. In this cross-sectional study we examine task-free resting state functional connectivity and diffusion-weighted tract segmentation data from a cohort of healthy adults (< 60-year-old, n = 129), exploring the impact of ipsilateral paracingulate sulcal presence on structural and functional connectivity. Presence of a left paracingulate sulcus was associated with reduced fractional anisotropy in the left cingulum bundle and the left peri-genual and dorsal bundle segments, suggesting reduced structural organisational coherence in these tracts. This association was not observed in the offsite temporal cingulum bundle segment. Left paracingulate sulcal presence was associated with increased left peri-genual radial diffusivity and tract volume possibly suggesting increased U-fibre density in this region. Greater network dispersity was identified in individuals with an absent left paracingulate sulcus by presence of a significant, predominantly intraregional, frontal component of resting state functional connectivity which was not present in individuals with a present left paracingulate sulcus. Seed-based functional connectivity in pre-defined networks was not associated with paracingulate sulcal presence. These results identify a novel association between sulcation and structural connectivity in a healthy adult population with implications for conditions where this variation is of interest. Presence of a left paracingulate sulcus appears to alter local structural and functional connectivity, possibly as a result of the presence of a local network reliant on short association fibres.
Collapse
Affiliation(s)
- Luke Harper
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden.
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| | - Markus Nilsson
- Diagnostic Radiology, Faculty of Medicine, Department of Clinical Sciences, Lund, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| |
Collapse
|
6
|
Bouhali F, Dubois J, Hoeft F, Weiner KS. Unique longitudinal contributions of sulcal interruptions to reading acquisition in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605574. [PMID: 39131390 PMCID: PMC11312548 DOI: 10.1101/2024.07.30.605574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A growing body of literature indicates strong associations between indentations of the cerebral cortex (i.e., sulci) and individual differences in cognitive performance. Interruptions, or gaps, of sulci (historically known as pli de passage) are particularly intriguing as previous work suggests that these interruptions have a causal effect on cognitive development. Here, we tested how the presence and morphology of sulcal interruptions in the left posterior occipitotemporal sulcus (pOTS) longitudinally impact the development of a culturally-acquired skill: reading. Forty-three children were successfully followed from age 5 in kindergarten, at the onset of literacy instruction, to ages 7 and 8 with assessments of cognitive, pre-literacy, and literacy skills, as well as MRI anatomical scans at ages 5 and 8. Crucially, we demonstrate that the presence of a left pOTS gap at 5 years is a specific and robust longitudinal predictor of better future reading skills in children, with large observed benefits on reading behavior ranging from letter knowledge to reading comprehension. The effect of left pOTS interruptions on reading acquisition accumulated through time, and was larger than the impact of benchmark cognitive and familial predictors of reading ability and disability. Finally, we show that increased local U-fiber white matter connectivity associated with such sulcal interruptions possibly underlie these behavioral benefits, by providing a computational advantage. To our knowledge, this is the first quantitative evidence supporting a potential integrative gray-white matter mechanism underlying the cognitive benefits of macro-anatomical differences in sulcal morphology related to longitudinal improvements in a culturally-acquired skill.
Collapse
Affiliation(s)
- Florence Bouhali
- Department of Psychiatry and Behavioral Sciences & Weil Institute of Neuroscience, University of California San Francisco, San Francisco, CA, USA
- Aix-Marseille University, CNRS, CRPN, Marseille, France
| | - Jessica Dubois
- University Paris Cité, NeuroDiderot, INSERM, Paris, France
- University Paris-Saclay, NeuroSpin, UNIACT, CEA, France
| | - Fumiko Hoeft
- Department of Psychological Sciences, University of Connecticut Waterbury, Waterbury, CT, USA
| | - Kevin S. Weiner
- Department of Psychology, Department of Neuroscience, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
7
|
Forte G, Troisi G, Favieri F, Casagrande M. Inhibition changes across the lifespan: experimental evidence from the Stroop task. BMC Psychol 2024; 12:336. [PMID: 38849952 PMCID: PMC11162033 DOI: 10.1186/s40359-024-01844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Individuals constantly exert inhibitory control over their thoughts and behaviors to plan actions that compete with habits and impulses. Cognitive inhibition enhances the selection of task-relevant stimuli and is closely related to neural changes that occur across the lifespan. Since few studies have focused on the entire lifespan, this study aimed to assess cognitive inhibition abilities in a sample of 425 healthy participants (age range: 7-88 years) using the Stroop task. The participants were grouped according to age into children, adolescents, young adults, adults, middle-aged adults, and older adults. A series of ANOVAs considered Group as the independent variable and Performance indices as the dependent variables. The children did not show an interference effect (Stroop effect), likely due to the lack of an automated reading process as a consequence of ongoing brain maturation. Adolescents and young adults performed significantly faster than older adults did. The results indicate that response speed reaches its peak during adolescence and young adulthood and then slightly decreases until older age. Nevertheless, when compared with the other groups, only older adults showed significant differences in the Stroop effect, suggesting that inhibitory abilities remain relatively consistent throughout adulthood but rapidly worsen in recent years due to the physiological decline in cognitive and brain functioning associated with aging.
Collapse
Affiliation(s)
- Giuseppe Forte
- Department of Dynamic, Clinical Psychology and Health Studies, "Sapienza" University of Rome, Rome, Italy
| | - Giovanna Troisi
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Favieri
- Department of Dynamic, Clinical Psychology and Health Studies, "Sapienza" University of Rome, Rome, Italy.
| | - Maria Casagrande
- Department of Dynamic, Clinical Psychology and Health Studies, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
8
|
Eldridge MAG, Mohanty A, Hines BE, Kaskan PM, Murray EA. Aspiration removal of orbitofrontal cortex disrupts cholinergic fibers of passage to anterior cingulate cortex in rhesus macaques. Brain Struct Funct 2024; 229:1011-1019. [PMID: 38502331 PMCID: PMC11003915 DOI: 10.1007/s00429-024-02776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
The study of anthropoid nonhuman primates has provided valuable insights into frontal cortex function in humans, as these primates share similar frontal anatomical subdivisions (Murray et al. 2011). Causal manipulation studies have been instrumental in advancing our understanding of this area. One puzzling finding is that macaques with bilateral aspiration removals of orbitofrontal cortex (OFC) are impaired on tests of cognitive flexibility and emotion regulation, whereas those with bilateral excitotoxic lesions of OFC are not (Rudebeck et al. 2013). This discrepancy is attributed to the inadvertent disruption of fibers of passage by aspiration lesions but not by excitotoxic lesions. Which fibers of passage are responsible for the impairments observed? One candidate is cholinergic fibers originating in the nucleus basalis magnocellularis (NBM) and passing nearby or through OFC on their way to other frontal cortex regions (Kitt et al. 1987). To investigate this possibility, we performed unilateral aspiration lesions of OFC in three macaques, and then compared cholinergic innervation of the anterior cingulate cortex (ACC) between hemispheres. Histological assessment revealed diminished cholinergic innervation in the ACC of hemispheres with OFC lesions relative to intact hemispheres. This finding indicates that aspiration lesions of the OFC disrupt cholinergic fibers of passage, and suggests the possibility that loss of cholinergic inputs to ACC contributes to the impairments in cognitive flexibility and emotion regulation observed after aspiration but not excitotoxic lesions of OFC.
Collapse
Affiliation(s)
- M A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - A Mohanty
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - B E Hines
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - P M Kaskan
- Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E A Murray
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Willbrand EH, Jackson S, Chen S, Hathaway CB, Voorhies WI, Bunge SA, Weiner KS. Sulcal variability in anterior lateral prefrontal cortex contributes to variability in reasoning performance among young adults. Brain Struct Funct 2024; 229:387-402. [PMID: 38184493 DOI: 10.1007/s00429-023-02734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/12/2023] [Indexed: 01/08/2024]
Abstract
Identifying structure-function correspondences is a major goal among biologists, cognitive neuroscientists, and brain mappers. Recent studies have identified relationships between performance on cognitive tasks and the presence or absence of small, shallow indentations, or sulci, of the human brain. Building on the previous finding that the presence of the ventral para-intermediate frontal sulcus (pimfs-v) in the left anterior lateral prefrontal cortex (aLPFC) was related to reasoning task performance in children and adolescents, we tested whether this relationship extended to a different sample, age group, and reasoning task. As predicted, the presence of this aLPFC sulcus was also associated with higher reasoning scores in young adults (ages 22-36). These findings have not only direct developmental, but also evolutionary relevance-as recent work shows that the pimfs-v is exceedingly rare in chimpanzees. Thus, the pimfs-v is a key developmental, cognitive, and evolutionarily relevant feature that should be considered in future studies examining how the complex relationships among multiscale anatomical and functional features of the brain give rise to abstract thought.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of WI-Madison, Madison, WI, USA
| | - Samantha Jackson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Szeshuen Chen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Silvia A Bunge
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Harper L, Strandberg O, Spotorno N, Nilsson M, Lindberg O, Hansson O, Santillo AF. Structural and functional connectivity associations with anterior cingulate sulcal variability. RESEARCH SQUARE 2024:rs.3.rs-3831519. [PMID: 38260469 PMCID: PMC10802698 DOI: 10.21203/rs.3.rs-3831519/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Sulcation of the anterior cingulate may be defined by presence of a paracingulate sulcus, a tertiary sulcus developing during the third gestational trimester with implications on cognitive function and disease. Methods In this retrospective analysis we examine task-free resting state functional connectivity and diffusion-weighted tract segmentation data from a cohort of healthy adults (< 60-year-old, n = 129), exploring the impact of ipsilateral paracingulate sulcal presence on structural and functional connectivity. Results Presence of a left paracingulate sulcus was associated with reduced fractional anisotropy in the left cingulum (P = 0.02) bundle and the peri-genual (P = 0.002) and dorsal (P = 0.03) but not the temporal cingulum bundle segments. Left paracingulate sulcal presence was associated with increased left peri-genual radial diffusivity (P = 0.003) and tract volume (P = 0.012). A significant, predominantly intraregional frontal component of altered resting state functional connectivity was identified in individuals possessing a left PCS (P = 0.01). Seed-based functional connectivity in pre-defined networks was not associated with paracingulate sulcal presence. Conclusion These results identify a novel association between neurodevelopmentally derived sulcation and altered structural connectivity in a healthy adult population with implications for conditions where this variation is of interest. Furthermore, they provide evidence of a link between the structural and functional connectivity of the brain in the presence of a paracingulate sulcus which may be mediated by a highly connected local functional network reliant on short association fibres.
Collapse
|
11
|
Willbrand EH, Bunge SA, Weiner KS. Neuroanatomical and Functional Dissociations between Variably Present Anterior Lateral Prefrontal Sulci. J Cogn Neurosci 2023; 35:1846-1867. [PMID: 37677051 PMCID: PMC10586811 DOI: 10.1162/jocn_a_02049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The lateral prefrontal cortex (LPFC) is an evolutionarily expanded region in humans that is critical for numerous complex functions, many of which are largely hominoid specific. Although recent work shows that the presence or absence of specific sulci in anterior LPFC is associated with cognitive performance across age groups, it is unknown whether the presence of these structures relates to individual differences in the functional organization of LPFC. To fill this gap in knowledge, we leveraged multimodal neuroimaging data from two samples encompassing 82 young adult humans (aged 22-36 years) and show that the dorsal and ventral components of the paraintermediate frontal sulcus, or pimfs, present distinct morphological (surface area), architectural (thickness and myelination), and functional (resting-state connectivity networks) properties. We further contextualize the pimfs components within classic and modern cortical parcellations. Taken together, the dorsal and ventral pimfs components mark transitions in LPFC anatomy and function, across metrics and parcellations. These results emphasize that the pimfs is a critical structure to consider when examining individual differences in the anatomical and functional organization of LPFC and suggest that future individual-level parcellations could benefit from incorporating sulcal anatomy when delineating LPFC cortical regions.
Collapse
|
12
|
Harper L, de Boer S, Lindberg O, Lätt J, Cullen N, Clark L, Irwin D, Massimo L, Grossman M, Hansson O, Pijnenburg Y, McMillan CT, Santillo AF. Anterior cingulate sulcation is associated with onset and survival in frontotemporal dementia. Brain Commun 2023; 5:fcad264. [PMID: 37869576 PMCID: PMC10586312 DOI: 10.1093/braincomms/fcad264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/05/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023] Open
Abstract
Frontotemporal dementia is the second most common form of early onset dementia (<65 years). Despite this, there are few known disease-modifying factors. The anterior cingulate is a focal point of pathology in behavioural variant frontotemporal dementia. Sulcation of the anterior cingulate is denoted by the presence of a paracingulate sulcus, a tertiary sulcus developing, where present during the third gestational trimester and remaining stable throughout life. This study aims to examine the impact of right paracingulate sulcal presence on the expression and prognosis of behavioural variant frontotemporal dementia. This retrospective analysis drew its population from two clinical samples recruited from memory clinics at university hospitals in the USA and The Netherlands. Individuals with sporadic behavioural variant frontotemporal dementia were enrolled between 2000 and 2022 and followed up for an average of 7.71 years. T1-MRI data were evaluated for hemispheric paracingulate sulcal presence in accordance with an established protocol by two blinded raters. Outcome measures included age at onset, survival, cortical thickness and Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating determined clinical disease progression. The study population consisted of 186 individuals with sporadic behavioural variant frontotemporal dementia (113 males and 73 females), mean age 63.28 years (SD 8.32). The mean age at onset was 2.44 years later in individuals possessing a right paracingulate sulcus [60.2 years (8.54)] versus individuals who did not [57.76 (8.05)], 95% confidence interval > 0.41, P = 0.02. Education was not associated with age at onset (β = -0.05, P = 0.75). The presence of a right paracingulate sulcus was associated with an 83% increased risk of death per year after age at onset (hazard ratio 1.83, confidence interval [1.09-3.07], P < 0.02), whilst the mean age at death was similar for individuals with a present and absent right paracingulate sulcus (P = 0.7). Right paracingulate sulcal presence was not associated with baseline cortical thickness. Right paracingulate sulcal presence is associated with disease expression and survival in sporadic behavioural variant frontotemporal dementia. Findings provide evidence of neurodevelopmental brain reserve in behavioural variant frontotemporal dementia that may be important in the design of trials for future therapeutic approaches.
Collapse
Affiliation(s)
- Luke Harper
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Sterre de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam 1105 BA, The Netherlands
| | - Olof Lindberg
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm 17165, Sweden
| | - Jimmy Lätt
- Centre for Medical Imaging and Physiology, Skane University Hospital, Lund 22242, Sweden
| | - Nicholas Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Lyles Clark
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Irwin
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 22100, Sweden
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam 1105 BA, The Netherlands
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| |
Collapse
|
13
|
Teymoori H, Amiri E, Tahmasebi W, Hoseini R, Grospretre S, Machado DGDS. Effect of tDCS targeting the M1 or left DLPFC on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling: a randomized controlled trial. J Neuroeng Rehabil 2023; 20:97. [PMID: 37496055 PMCID: PMC10373277 DOI: 10.1186/s12984-023-01221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Despite reporting the positive effects of transcranial direct current stimulation (tDCS) on endurance performance, very few studies have investigated its efficacy in anaerobic short all-out activities. Moreover, there is still no consensus on which brain areas could provide the most favorable effects on different performance modalities. Accordingly, this study aimed to investigate the effects of anodal tDCS (a-tDCS) targeting the primary motor cortex (M1) or left dorsolateral prefrontal cortex (DLPFC) on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling. METHODS In this randomized, crossover, and double-blind study, 15 healthy physically active men underwent a-tDCS targeting M1 or the left DLPFC or sham tDCS in separate days before performing three bouts of all-out 30s cycling anaerobic test. a-tDCS was applied using 2 mA for 20 min. Peak power, mean power, fatigue index, and EMG of the quadriceps muscles were measured during each bout. Heart rate, perceived exertion, affective valence, and arousal were recorded two minutes after each bout. Color-word Stroop test and choice reaction time were measured at baseline and after the whole anaerobic test. RESULTS Neither tDCS montage significantly changed peak power, mean power, fatigue index, heart rate, affective valence, arousal, and choice reaction time (p> 0.05). a-tDCS over DLPFC significantly lowered RPE of the first bout (compared to sham; p=0.048, Δ=-12.5%) and third bout compared to the M1 (p=0.047, Δ=-12.38%) and sham (p=0.003, Δ=-10.5%), increased EMG of the Vastus Lateralis muscle during the second (p=0.016, Δ= +40.3%) and third bout (p=0.016, Δ= +42.1%) compared to sham, and improved the score of color-word Stroop test after the repeated all-out task (p=0.04, Δ= +147%). The qualitative affective response (valence and arousal) was also higher under the M1 and DLPFC compared to the sham. CONCLUSION We concluded that tDCS targeting M1 or DLPFC does not improve repeated anaerobic performance. However, the positive effect of DLPFC montage on RPE, EMG, qualitative affective responses, and cognitive function is promising and paves the path for future research using different tDCS montages to see any possible effects on anaerobic performance. TRIAL REGISTRATION This study was approved by the Ethics Committee of Razi University (IR.RAZI.REC.1400.023) and registered in the Iranian Registry of Clinical Trials (IRCT id: IRCT20210617051606N5; Registration Date: 04/02/2022).
Collapse
Affiliation(s)
- Hafez Teymoori
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Worya Tahmasebi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Rastegar Hoseini
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Sidney Grospretre
- EA4660-C3S Laboratory - Culture, Sports, Health and Society, University Bourgogne France- Comte, Besancon, France
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of the Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
14
|
Zhao S, Yuan R, Gao W, Liu Q, Yuan J. Neural substrates of behavioral inhibitory control during the two-choice oddball task: functional neuroimaging evidence. PSYCHORADIOLOGY 2023; 3:kkad012. [PMID: 38666128 PMCID: PMC10917370 DOI: 10.1093/psyrad/kkad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 04/28/2024]
Abstract
Background Behavioral inhibitory control (BIC) depicts a cognitive function of inhibiting inappropriate dominant responses to meet the context requirement. Despite abundant research into neural substrates of BIC during the go/no-go and stop signal tasks, these tasks were consistently shown hard to isolate neural processes of response inhibition, which is of primary interest, from those of response generation. Therefore, it is necessary to explore neural substrates of BIC using the two-choice oddball (TCO) task, whose design of dual responses is thought to produce an inhibition effect free of the confounds of response generation. Objective The current study aims at depicting neural substrates of performing behavioral inhibitory control in the two-choice oddball task, which designs dual responses to balance response generation. Also, neural substrates of performing BIC during this task are compared with those in the go/no-go task, which designs a motor response in a single condition. Methods The present study integrated go/no-go (GNG) and TCO tasks into a new Three-Choice BIC paradigm, which consists of standard (75%), deviant (12.5%), and no-go (12.5%) conditions simultaneously. Forty-eight college students participated in this experiment, which required them to respond to standard (frequent) and deviant stimuli by pressing different keys, while inhibiting motor response to no-go stimuli. Conjunction analysis and ROI (region of interest) analysis were adopted to identify the unique neural mechanisms that subserve the processes of BIC. Results Both tasks are effective in assessing BIC function, reflected by the significantly lower accuracy of no-go compared to standard condition in GNG, and the significantly lower accuracy and longer reaction time of deviant compared to standard condition in TCO. However, there were no significant differences between deviant and no-go conditions in accuracy. Moreover, functional neuroimaging has demonstrated that the anterior cingulate cortex (ACC) activation was observed for no-go vs. standard contrast in the GNG task, but not in deviant vs. standard contrast in the TCO task, suggesting that ACC involvement is not a necessary component of BIC. Second, ROI analysis of areas that were co-activated in TCO and GNG showed co-activations in the right inferior frontal cortex (triangle and orbital), with the signals in the TCO task significantly higher than those in the GNG task. Conclusions These findings show that the designed responses to both standard and deviant stimuli in the TCO task, compared to the GNG task, produced a more prominent prefrontal inhibitory processing and extinguished an unnecessary component of ACC activation during BIC. This implies that prefrontal involvement, but not that of ACC, is mandatory for the successful performance of inhibiting prepotent behaviors.
Collapse
Affiliation(s)
- Shirui Zhao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- Faculté des Sciences Psychologiques et de l’Éducation, Université Libre de Bruxelles (ULB)Brussels 1050, Belgium
| | - Ruosong Yuan
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Wei Gao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Qiang Liu
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jiajin Yuan
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision (Sichuan Normal University), Chengdu 610066, China
| |
Collapse
|
15
|
Harper L, de Boer S, Lindberg O, Lätt J, Cullen N, Clark L, Irwin D, Massimo L, Grossman M, Hansson O, Pijnenburg Y, McMillan CT, Santillo AF. Anterior cingulate sulcation is associated with onset and survival in frontotemporal dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287945. [PMID: 37034647 PMCID: PMC10081407 DOI: 10.1101/2023.03.30.23287945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Frontotemporal dementia is the second most common form of early onset dementia (< 65 years). Despite this there are few known disease modifying factors. The anterior cingulate is a focal point of pathology in behavioural variant frontotemporal dementia. Sulcation of the anterior cingulate is denoted by the presence of a paracingulate sulcus, a tertiary sulcus developing, where present during the third gestational trimester and remaining stable throughout life. This study aims to examine the impact of right paracingulate sulcal presence on the expression and prognosis of behavioural variant Frontotemporal Dementia. Methods This retrospective analysis drew it's population from two clinical samples recruited from memory clinics at University Hospitals in The United States of America and The Netherlands. Individuals with sporadic behavioural variant Frontotemporal Dementia were enrolled between 2004 and 2022 and followed up for an average of 7.71 years. T1-MRI data were evaluated for hemispheric paracingulate sulcal presence in accordance with an established protocol by two blinded raters. Outcome measures included age at onset, survival, cortical thickness, and Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating determined clinical disease progression. Results The study population consisted of 186 individuals with sporadic behavioural variant Frontotemporal Dementia, (113 males and 73 females) mean age 63.28 years (SD 8.32). The mean age at onset was 2.44 years later in individuals possessing a right paracingulate sulcus (60.2 years (SD 8.54)) versus individuals who did not (57.76 (8.05)), 95% CI >0.41, P = 0.02. Education was not associated with age at onset (β = -0.05, P =0.75). Presence of a right paracingulate sulcus was associated with a 119% increased risk of death per year after age at onset (HR 2.19, CI [1.21 - 3.96], P <0.01), whilst the mean age at death was similar for individuals with a present and absent right paracingulate sulcus ( P = 0.7). Right paracingulate sulcal presence was not associated with baseline cortical thickness. Conclusion Right paracingulate sulcal presence is associated with disease expression and survival in sporadic behavioural variant Frontotemporal Dementia. Findings provide evidence of neurodevelopmental brain reserve in behavioural variant Frontotemporal Dementia which may be important in the design of trials for future therapeutic approaches.
Collapse
|
16
|
Selahi Ö, Kuru Bektaşoğlu P, Hakan T, Firat Z, Güngör A, Çelikoğlu E. Cingulate sulcus morphology and paracingulate sulcus variations: Anatomical and radiological studies. Clin Anat 2023; 36:256-266. [PMID: 36403099 DOI: 10.1002/ca.23981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
The sulci and gyri found across the cerebrum differ in morphology between individuals. The cingulate sulcus is an important landmark for deciding the surgical approach for neighboring pathological lesions. Identifying the anatomical variations of anterior cingulate cortex morphology would help to determine the safe-entry route through neighboring lesions. In this study, magnetic resonance imaging data acquired from 149 healthy volunteers were investigated retrospectively for anatomical variations of the paracingulate sulcus. Also, human cadaveric brain hemispheres were investigated for cingulate and paracingulate sulcus anatomy. All participants had cingulate sulci in both hemispheres (n = 149, 100%). Three types of paracingulate sulcus patterns were identified: "prominent," "present," and "absent." Hemispheric comparisons indicated that the paracingulate sulcus is commonly "prominent" in the left hemisphere (n = 48, 32.21%) and more commonly "absent" in the right hemisphere (n = 73, 48.99%). Ten (6.71%) people had a prominent paracingulate sulcus in both the right and left hemispheres. Seven (4.70%) of them were male, and 3 (2.01%) of them were female. Paracingulate sulci were present in both hemispheres in 19 people (12.75%), of which 9 (6.04%) were male and 10 (6.71%) were female. There were 35 (23.49%) participants without paracingulate sulci in both hemispheres. Eleven (7.38%) were male and 24 (16.11%) were female. There were 73 (48.99%) participants without right paracingulate sulcus and 57 (38.26%) participants without left paracingulate sulcus (p = 0.019). In the examinations of the cadaver hemispheres, the paracingulate sulcus was present and prominent in 25%, and the intralimbic sulcus was present in 15%. It has been observed that the paracingulate sulcus is more prominent in the normal male brain compared to females. In females, there were more participants without paracingulate sulcus. This study shows that there are both hemispheric and sex differences in the anatomy of the paracingulate sulcus. Understanding the cingulate sulcus anatomy and considering the variations in the anterior cingulate cortex morphology during surgery will help surgeons to orient this elegant and complex area.
Collapse
Affiliation(s)
- Özge Selahi
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Istanbul, Turkey
| | | | - Tayfun Hakan
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Istanbul, Turkey
| | - Zeynep Firat
- Department of Radiology, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Abuzer Güngör
- Department of Neurosurgery, University of Health Sciences, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Erhan Çelikoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
17
|
Yuan D, Hahn S, Allgaier N, Owens MM, Chaarani B, Potter A, Garavan H. Machine learning approaches linking brain function to behavior in the ABCD STOP task. Hum Brain Mapp 2023; 44:1751-1766. [PMID: 36534603 PMCID: PMC9921227 DOI: 10.1002/hbm.26172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
The stop-signal task (SST) is one of the most common fMRI tasks of response inhibition, and its performance measure, the stop-signal reaction-time (SSRT), is broadly used as a measure of cognitive control processes. The neurobiology underlying individual or clinical differences in response inhibition remain unclear, consistent with the general pattern of quite modest brain-behavior associations that have been recently reported in well-powered large-sample studies. Here, we investigated the potential of multivariate, machine learning (ML) methods to improve the estimation of individual differences in SSRT with multimodal structural and functional region of interest-level neuroimaging data from 9- to 11-year-olds children in the ABCD Study. Six ML algorithms were assessed across modalities and fMRI tasks. We verified that SST activation performed best in predicting SSRT among multiple modalities including morphological MRI (cortical surface area/thickness), diffusion tensor imaging, and fMRI task activations, and then showed that SST activation explained 12% of the variance in SSRT using cross-validation and out-of-sample lockbox data sets (n = 7298). Brain regions that were more active during the task and that showed more interindividual variation in activation were better at capturing individual differences in performance on the task, but this was only true for activations when successfully inhibiting. Cortical regions outperformed subcortical areas in explaining individual differences but the two hemispheres performed equally well. These results demonstrate that the detection of reproducible links between brain function and performance can be improved with multivariate approaches and give insight into a number of brain systems contributing to individual differences in this fundamental cognitive control process.
Collapse
Affiliation(s)
- Dekang Yuan
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Sage Hahn
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | | | - Max M. Owens
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Bader Chaarani
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Alexandra Potter
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Hugh Garavan
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
18
|
Willbrand EH, Parker BJ, Voorhies WI, Miller JA, Lyu I, Hallock T, Aponik-Gremillion L, Koslov SR, Bunge SA, Foster BL, Weiner KS. Uncovering a tripartite landmark in posterior cingulate cortex. SCIENCE ADVANCES 2022; 8:eabn9516. [PMID: 36070384 PMCID: PMC9451146 DOI: 10.1126/sciadv.abn9516] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/21/2022] [Indexed: 05/18/2023]
Abstract
Understanding brain structure-function relationships, and their development and evolution, is central to neuroscience research. Here, we show that morphological differences in posterior cingulate cortex (PCC), a hub of functional brain networks, predict individual differences in macroanatomical, microstructural, and functional features of PCC. Manually labeling 4511 sulci in 572 hemispheres, we found a shallow cortical indentation (termed the inframarginal sulcus; ifrms) within PCC that is absent from neuroanatomical atlases yet colocalized with a focal, functional region of the lateral frontoparietal network implicated in cognitive control. This structural-functional coupling generalized to meta-analyses consisting of hundreds of studies and thousands of participants. Additional morphological analyses showed that unique properties of the ifrms differ across the life span and between hominoid species. These findings support a classic theory that shallow, tertiary sulci serve as landmarks in association cortices. They also beg the question: How many other cortical indentations have we missed?
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Benjamin J. Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jacob A. Miller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Tyler Hallock
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
| | | | - Seth R. Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Silvia A. Bunge
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Brett L. Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
19
|
Willbrand EH, Voorhies WI, Yao JK, Weiner KS, Bunge SA. Presence or absence of a prefrontal sulcus is linked to reasoning performance during child development. Brain Struct Funct 2022; 227:2543-2551. [PMID: 35932310 PMCID: PMC9418286 DOI: 10.1007/s00429-022-02539-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022]
Abstract
The relationship between structural variability in late-developing association cortices like the lateral prefrontal cortex (LPFC) and the development of higher-order cognitive skills is not well understood. Recent findings show that the morphology of LPFC sulci predicts reasoning performance; this work led to the observation of substantial individual variability in the morphology of one of these sulci, the para-intermediate frontal sulcus (pimfs). Here, we sought to characterize this variability and assess its behavioral significance. To this end, we identified the pimfs in a developmental cohort of 72 participants, ages 6-18. Subsequent analyses revealed that the presence or absence of the ventral component of the pimfs was associated with reasoning, even when controlling for age. This finding shows that the cortex lining the banks of sulci can support the development of complex cognitive abilities and highlights the importance of considering individual differences in local morphology when exploring the neurodevelopmental basis of cognition.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Willa I Voorhies
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jewelia K Yao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Kevin S Weiner
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Silvia A Bunge
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
20
|
Fedeli D, Del Maschio N, Del Mauro G, Defendenti F, Sulpizio S, Abutalebi J. Cingulate cortex morphology impacts on neurofunctional activity and behavioral performance in interference tasks. Sci Rep 2022; 12:13684. [PMID: 35953536 PMCID: PMC9372177 DOI: 10.1038/s41598-022-17557-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Inhibitory control is the capacity to withhold or suppress a thought or action intentionally. The anterior Midcingulate Cortex (aMCC) participates in response inhibition, a proxy measure of inhibitory control. Recent research suggests that response inhibition is modulated by individual variability in the aMCC sulcal morphology. However, no study has investigated if this phenomenon is associated with neurofunctional differences during a task. In this study, 42 participants performed an Attention Network Task and a Numerical Stroop task in an MRI scanner. We investigated differences in brain activity and response inhibition efficiency between individuals with symmetric and asymmetric aMCC sulcal patterns. The results showed that aMCC morphological variability is partly associated with inhibitory control, and revealed greater activation in individuals with symmetric patterns during the Stroop task. Our findings provide novel insights into the functional correlates of the relationship between aMCC morphology and executive abilities.
Collapse
Affiliation(s)
- Davide Fedeli
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Gianpaolo Del Mauro
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Federica Defendenti
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Simone Sulpizio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
21
|
Investigating the association between variability in sulcal pattern and academic achievement. Sci Rep 2022; 12:12323. [PMID: 35854034 PMCID: PMC9296655 DOI: 10.1038/s41598-022-15335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Investigating how the brain may constrain academic achievement is not only relevant to understanding brain structure but also to providing insight into the origins of individual differences in these academic abilities. In this pre-registered study, we investigated whether the variability of sulcal patterns, a qualitative feature of the brain determined in-utero and not affected by brain maturation and learning, accounted for individual differences in reading and mathematics. Participants were 97 typically developing 10-year-olds. We examined (a) the association between the sulcal pattern of the IntraParietal Sulcus (IPS) and mathematical ability; (b) the association between the sulcal pattern of the Occipito Temporal Sulcus (OTS) and reading ability; and (c) the overlap and specificity of sulcal morphology of IPS and OTS and their associations with mathematics and reading. Despite its large sample, the present study was unable to replicate a previously observed relationship between the IPS sulcal pattern and mathematical ability and a previously observed association between the left posterior OTS sulcal pattern and reading. We found a weak association between right IPS sulcal morphology and symbolic number abilities and a weak association between left posterior OTS and reading. However, both these associations were the opposite of previous reports. We found no evidence for a possible overlap or specificity in the effect of sulcal morphology on mathematics and reading. Possible explanations for this weak association between sulcal morphology and academic achievement and suggestions for future research are discussed.
Collapse
|
22
|
Wiwatowska E, Czajeczny D, Michałowski JM. Decreased preparatory activation and inattention to cues suggest lower activation of proactive cognitive control among high procrastinating students. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:171-186. [PMID: 34498229 PMCID: PMC8791900 DOI: 10.3758/s13415-021-00945-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Procrastination is a voluntary delay in completing an important task while being aware that this behavior may lead to negative outcomes. It has been shown that an increased tendency to procrastinate is associated with deficits in some aspects of cognitive control. However, none of the previous studies investigated these dysfunctions through the lenses of the Dual Mechanisms Framework, which differentiates proactive and reactive modes of control. The present study was designed to fill this gap, using behavioral and neurophysiological assessment during the completion of the AX-Continuous Performance Task (AX-CPT) by high (HP) and low (LP) procrastinating students (N = 139). Behavioral results indicated that HP (vs. LP) were characterized by increased attentional fluctuations (higher reaction time variability) and reduction in some indices of proactive cognitive control (lower d'-context and A-cue bias, but similar PBIs). Furthermore, the neurophysiological data showed that HP, compared with LP, allocated less attentional resources (lower P3b) to cues that help to predict the correct responses to upcoming probes. They also responded with reduced preparatory activity (smaller CNV) after cues presentation. The two groups did not differ in neural responses linked to conflict detection and inhibition (similar N2 and P3a). Obtained findings indicate that HP might present deficits in some cognitive functions that are essential for effective proactive control engagement, along with preserved levels of reactive cognitive control. In the present paper, we discuss the potential neural and cognitive mechanisms responsible for the observed effects.
Collapse
Affiliation(s)
- Ewa Wiwatowska
- Department of Psychology and Law, SWPS University of Social Sciences and Humanities, Kutrzeby 10 St, 61-719, Poznań, Poland.
| | - Dominik Czajeczny
- Department of Psychology and Law, SWPS University of Social Sciences and Humanities, Kutrzeby 10 St, 61-719, Poznań, Poland
- Department of Clinical Psychology, Poznań University of Medical Sciences, Poznań, Poland
| | - Jarosław M Michałowski
- Department of Psychology and Law, SWPS University of Social Sciences and Humanities, Kutrzeby 10 St, 61-719, Poznań, Poland
| |
Collapse
|
23
|
Abedanzadeh R, Alboghebish S, Barati P. The effect of transcranial direct current stimulation of dorsolateral prefrontal cortex on performing a sequential dual task: a randomized experimental study. PSICOLOGIA-REFLEXAO E CRITICA 2021; 34:30. [PMID: 34626255 PMCID: PMC8502187 DOI: 10.1186/s41155-021-00195-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
When it comes to simultaneous processing of two tasks, information processing capacity is usually below par and not desirable. Therefore, this preliminary study aimed to investigate the effect of transcranial direct-current stimulation (tDCS) of dorsolateral prefrontal cortex (DLPFC) on performing dual tasks. Twenty-six students (average age 25.2 ± 2.43 years) were selected and then randomly divided into experimental and sham groups. All of the participants conducted the Stroop effect test in a dual task situation before and after the tDCS. This test included two intervals between the stimuli of 100 and 900 ms. The results of mixed-ANOVA showed that the average second reaction time of the experimental stimulated group was reduced (in both dual tasks with congruent and incongruent stimuli) significantly after the tDCS. Therefore, it can be stated that the tDCS of the DLPFC increases the information processing speed and the capacity of attention and, as a result, decreases the effect of the psychological refractory period.
Collapse
Affiliation(s)
- Rasool Abedanzadeh
- Department of Motor Behaviour, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Saeed Alboghebish
- Department of Motor Behaviour, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Parisa Barati
- Department of Motor Behaviour, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
24
|
Cachia A, Borst G, Jardri R, Raznahan A, Murray GK, Mangin JF, Plaze M. Towards Deciphering the Fetal Foundation of Normal Cognition and Cognitive Symptoms From Sulcation of the Cortex. Front Neuroanat 2021; 15:712862. [PMID: 34650408 PMCID: PMC8505772 DOI: 10.3389/fnana.2021.712862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
Growing evidence supports that prenatal processes play an important role for cognitive ability in normal and clinical conditions. In this context, several neuroimaging studies searched for features in postnatal life that could serve as a proxy for earlier developmental events. A very interesting candidate is the sulcal, or sulco-gyral, patterns, macroscopic features of the cortex anatomy related to the fold topology-e.g., continuous vs. interrupted/broken fold, present vs. absent fold-or their spatial organization. Indeed, as opposed to quantitative features of the cortical sheet (e.g., thickness, surface area or curvature) taking decades to reach the levels measured in adult, the qualitative sulcal patterns are mainly determined before birth and stable across the lifespan. The sulcal patterns therefore offer a window on the fetal constraints on specific brain areas on cognitive abilities and clinical symptoms that manifest later in life. After a global review of the cerebral cortex sulcation, its mechanisms, its ontogenesis along with methodological issues on how to measure the sulcal patterns, we present a selection of studies illustrating that analysis of the sulcal patterns can provide information on prenatal dispositions to cognition (with a focus on cognitive control and academic abilities) and cognitive symptoms (with a focus on schizophrenia and bipolar disorders). Finally, perspectives of sulcal studies are discussed.
Collapse
Affiliation(s)
- Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, Paris, France
- Université de Paris, IPNP, INSERM, Paris, France
| | - Grégoire Borst
- Université de Paris, LaPsyDÉ, CNRS, Paris, France
- Institut Universitaire de France, Paris, France
| | - Renaud Jardri
- Univ Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Centre, Plasticity & SubjectivitY (PSY) team, Lille, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Graham K. Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Marion Plaze
- Université de Paris, IPNP, INSERM, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris, Paris, France
| |
Collapse
|
25
|
Voorhies WI, Miller JA, Yao JK, Bunge SA, Weiner KS. Cognitive insights from tertiary sulci in prefrontal cortex. Nat Commun 2021; 12:5122. [PMID: 34433806 PMCID: PMC8387420 DOI: 10.1038/s41467-021-25162-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
The lateral prefrontal cortex (LPFC) is disproportionately expanded in humans compared to non-human primates, although the relationship between LPFC brain structures and uniquely human cognitive skills is largely unknown. Here, we test the relationship between variability in LPFC tertiary sulcal morphology and reasoning scores in a cohort of children and adolescents. Using a data-driven approach in independent discovery and replication samples, we show that the depth of specific LPFC tertiary sulci is associated with individual differences in reasoning scores beyond age. To expedite discoveries in future neuroanatomical-behavioral studies, we share tertiary sulcal definitions with the field. These findings support a classic but largely untested theory linking the protracted development of tertiary sulci to late-developing cognitive processes.
Collapse
Affiliation(s)
- Willa I Voorhies
- Department of Psychology, University of California, Berkeley, CA, USA.
| | - Jacob A Miller
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Jewelia K Yao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Silvia A Bunge
- Department of Psychology, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
26
|
Sulcation of the intraparietal sulcus is related to symbolic but not non-symbolic number skills. Dev Cogn Neurosci 2021; 51:100998. [PMID: 34388639 PMCID: PMC8363820 DOI: 10.1016/j.dcn.2021.100998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023] Open
Abstract
The horizontal segment of intraparietal sulcus (HIPS) is one of the key functional regions for processing numbers. Sulcal morphology is a qualitative feature of the brain determined in-utero and not affected by brain maturation and learning. The HIPS sulcal pattern explains part of the variance in participant’s symbolic number comparison and math fluency abilities. Participant’s non-symbolic number comparison abilities was not explained by HIPS sulcal pattern. This association between HIPS sulcal pattern and symbolic number abilities was stable from childhood to young adulthood.
Understanding the constraints, including biological ones, that may influence mathematical development is of great importance because math ability is a key predictor of career success, income and even psychological well-being. While research in developmental cognitive neuroscience of mathematics has extensively studied the key functional regions for processing numbers, particularly the horizontal segment of intraparietal sulcus (HIPS), few studies have investigated the effects of early cerebral constraints on later mathematical abilities. In this pre-registered study, we investigated whether variability of the sulcal pattern of the HIPS, a qualitative feature of the brain determined in-utero and not affected by brain maturation and learning, accounts for individual difference in symbolic and non-symbolic number abilities. Seventy-seven typically developing school-aged children and 21 young adults participated in our study. We found that the HIPS sulcal pattern, (a) explains part of the variance in participant’s symbolic number comparison and math fluency abilities, and (b) that this association between HIPS sulcal pattern and symbolic number abilities was found to be stable from childhood to young adulthood. However, (c) we did not find an association between participant’s non-symbolic number abilities and HIPS sulcal morphology. Our findings suggest that early cerebral constraints may influence individual difference in math abilities, in addition to the well-established neuroplastic factors.
Collapse
|
27
|
Miller EN, Hof PR, Sherwood CC, Hopkins WD. The Paracingulate Sulcus Is a Unique Feature of the Medial Frontal Cortex Shared by Great Apes and Humans. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:26-36. [PMID: 34192698 DOI: 10.1159/000517293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
Primate brains display a wide range of variation in size and cerebral gyrification, leading to the appearance of novel sulci in particular groups of species. We investigated sulcal organization in the medial frontal cortex of great apes, with a particular focus on the paracingulate sulcus (PCGS). Until recently, the presence of the PCGS was thought to be a structural feature unique to the human brain. However, upon closer examination, the PCGS has been observed as a variable feature that also may appear in chimpanzee brains. To understand the evolutionary origins of the sulcal anatomy in the medial frontal cortex of apes, we examined high-resolution MRI scans for the presence or absence of the PCGS and, when present, measured its length in a sample of ape brains (chimpanzees, bonobos, gorillas, orangutans, gibbons, and siamangs). We found that the PCGS is variable in its appearance among these species, being present in 23 to 50% of great ape individuals depending on the species, but not present in gibbons or siamangs. We did not find population level hemispheric lateralization patterns or sex differences in PCGS presence across species, and we did not detect a relationship between cerebral volume and PCGS occurrence or length. Our data suggest that the PCGS is a common sulcal variant present in great apes and humans due to a shared evolutionary ancestry.
Collapse
Affiliation(s)
- Elaine N Miller
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, University of Texas, MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
28
|
Borne L, Rivière D, Cachia A, Roca P, Mellerio C, Oppenheim C, Mangin JF. Automatic recognition of specific local cortical folding patterns. Neuroimage 2021; 238:118208. [PMID: 34089872 DOI: 10.1016/j.neuroimage.2021.118208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022] Open
Abstract
The study of local cortical folding patterns showed links with psychiatric illnesses as well as cognitive functions. Despite the tools now available to visualize cortical folds in 3D, manually classifying local sulcal patterns is a time-consuming and tedious task. In fact, 3D visualization of folds helps experts to identify different sulcal patterns but fold variability is so high that the distinction between these patterns sometimes requires the definition of complex criteria, making manual classification difficult and not reliable. However, the assessment of the impact of these patterns on the functional organization of the cortex could benefit from the study of large databases, especially when studying rare patterns. In this paper, several algorithms for the automatic classification of fold patterns are proposed to allow morphological studies to be extended and confirmed on such large databases. Three methods are proposed, the first based on a Support Vector Machine (SVM) classifier, the second on the Scoring by Non-local Image Patch Estimator (SNIPE) approach and the third based on a 3D Convolution Neural Network (CNN). These methods are generic enough to be applicable to a wide range of folding patterns. They are tested on two types of patterns for which there is currently no method to automatically identify them: the Anterior Cingulate Cortex (ACC) patterns and the Power Button Sign (PBS). The two ACC patterns are almost equally present whereas PBS is a particularly rare pattern in the general population. The three models proposed achieve balanced accuracies of approximately 80% for ACC patterns classification and 60% for PBS classification. The CNN-based model is more interesting for the classification of ACC patterns thanks to its rapid execution. However, SVM and SNIPE-based models are more effective in managing unbalanced problems such as PBS recognition.
Collapse
Affiliation(s)
- Léonie Borne
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France; University of Newcastle, HMRI, Systems Neuroscience Group, NSW, Australia.
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France
| | - Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, Paris, France; Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France
| | - Pauline Roca
- Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Imaging Department, Paris, France; Pixyl, Research and Development Laboratory, Grenoble, France
| | - Charles Mellerio
- Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Imaging Department, Paris, France; Centre d'imagerie du Nord, Saint Denis, France
| | - Catherine Oppenheim
- Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Imaging Department, Paris, France
| | | |
Collapse
|
29
|
Amiez C, Sallet J, Novek J, Hadj-Bouziane F, Giacometti C, Andersson J, Hopkins WD, Petrides M. Chimpanzee histology and functional brain imaging show that the paracingulate sulcus is not human-specific. Commun Biol 2021; 4:54. [PMID: 33420330 PMCID: PMC7794552 DOI: 10.1038/s42003-020-01571-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 01/06/2023] Open
Abstract
The paracingulate sulcus -PCGS- has been considered for a long time to be specific to the human brain. Its presence/absence has been discussed in relation to interindividual variability of personality traits and cognitive abilities. Recently, a putative PCGS has been observed in chimpanzee brains. To demonstrate that this newly discovered sulcus is the homologue of the PCGS in the human brain, we analyzed cytoarchitectonic and resting-state functional magnetic resonance imaging data in chimpanzee brains which did or did not display a PCGS. The results show that the organization of the mid-cingulate cortex of the chimpanzee brain is comparable to that of the human brain, both cytoarchitectonically and in terms of functional connectivity with the lateral frontal cortex. These results demonstrate that the PCGS is not human-specific but is a shared feature of the primate brain since at least the last common ancestor to humans and great apes ~6 mya. The paracingulate sulcus (PCGS) is a brain structure long thought to be specific to humans, and variation in this structure has been linked to personality traits and cognitive abilities. In this study, Céline Amiez and Jérôme Sallet et al. analyze brain imaging data from humans and chimpanzees to demonstrate that the PCGS is in fact present in our closest relative and its functional connectivity in chimpanzees is comparable to that in humans.
Collapse
Affiliation(s)
- Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.
| | - Jérôme Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.,Wellcome Integrative Neuroimaging Centre, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
| | - Jennifer Novek
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France, University of Lyon 1, Lyon, France
| | - Camille Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Jesper Andersson
- Wellcome Integrative Neuroimaging Centre, fMRIB, University of Oxford, Headington, UK
| | - William D Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, 78602, USA
| | - Michael Petrides
- Montreal Neurological Institute, Department of Neurology and Neurosurgery and Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Del Maschio N, Sulpizio S, Abutalebi J. Thinking outside the box: The brain-bilingualism relationship in the light of early neurobiological variability. BRAIN AND LANGUAGE 2020; 211:104879. [PMID: 33080496 DOI: 10.1016/j.bandl.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Bilingualism represents a distinctive way to investigate the interplay between brain and behaviour, and an elegant model to study the role of environmental factors in shaping this relationship. Past neuroimaging research has mainly focused on how bilingualism influences brain structure, and how eventually the brain accommodates a second language. In this paper, we discuss a more recent contribution to the field which views bilingualism as lens to understand brain-behaviour mappings from a different perspective. It has been shown, in contexts not related to bilingualism, that cognitive performance across several domains can be predicted by neuroanatomical variants determined prenatally and largely impervious to postnatal changes. Here, we discuss novel findings indicating that bilingualism modulates the predictive role of these variants on domain-specific cognition. The repercussions of these findings are potentially far-reaching on multiple levels, and highlight the need to shape more complex questions for progress in cognitive neuroscience approaches to bilingualism.
Collapse
Affiliation(s)
- Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, University Vita-Salute San Raffaele, Milano, Italy
| | - Simone Sulpizio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, University Vita-Salute San Raffaele, Milano, Italy; Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, University Vita-Salute San Raffaele, Milano, Italy; The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
31
|
Fedeli D, Del Maschio N, Caprioglio C, Sulpizio S, Abutalebi J. Sulcal Pattern Variability and Dorsal Anterior Cingulate Cortex Functional Connectivity Across Adult Age. Brain Connect 2020; 10:267-278. [PMID: 32567343 DOI: 10.1089/brain.2020.0751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The dorsal anterior cingulate cortex (dACC) is a key network hub for cognitive control and environmental adaptation. Previous studies have shown that task-based functional activity in this area is constrained by individual differences in sulcal pattern, a morphologic feature of cortex anatomy determined during fetal life and stable throughout development. Methods: By using anatomical magnetic resonance imaging and seed-based resting-state functional connectivity (rsFC), we explored the influence of sulcal pattern variability on the functional architecture of the dACC in a sample of healthy adults aged 20-80 years (n = 173). Results: Overall, rsFC was associated with individual differences in sulcal pattern. Furthermore, rsFC was modulated by the age-sulcal pattern interaction. Conclusion: Our results suggest a relationship between brain structure and function that partly traces back to early stages of brain development. The modulation of rsFC by the age-sulcal pattern interaction indicates that the effects of sulcal pattern variability on the functional architecture of the dACC may change over adulthood, with potential repercussions for brain network efficiency and cognitive function in aging.
Collapse
Affiliation(s)
- Davide Fedeli
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Milano, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Milano, Italy
| | - Camilla Caprioglio
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Simone Sulpizio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Milano, Italy.,Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Milano, Italy.,The Arctic University of Norway, Tromsø, Norway.,Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
32
|
Inhibition is associated with whole-brain structural brain connectivity on network level in school-aged children born very preterm and at term. Neuroimage 2020; 218:116937. [PMID: 32416228 DOI: 10.1016/j.neuroimage.2020.116937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Inhibition abilities are often impaired in children born very preterm. In typically-developing individuals, inhibition has been associated with structural brain connectivity (SC). As SC is frequently altered following preterm birth, this study investigated whether aberrant SC underlies inhibition deficits in school-aged children born very preterm. In a group of 67 very preterm participants aged 8-13 years and 69 term-born peers, inhibition abilities were assessed with two tasks. In a subgroup of 50 very preterm and 62 term-born participants, diffusion tensor imaging (DTI) data were collected. Using network-based statistics (NBS), mean fractional anisotropy (FAmean) was compared between groups. Associations of FAmean and inhibition abilities were explored through linear regression. The composite score of inhibition abilities was lower in the very preterm group (M = -0.4, SD = 0.8) than in the term-born group (M = 0.0, SD = 0.8) but group differences were not significant when adjusting for age, sex and socio-economic status (β = -0.13, 95%-CI [-0.30, 0.04], p = 0.13). In the very preterm group, FAmean was significantly lower in a network comprising thalamo-frontal, thalamo-temporal, frontal, cerebellar and intra-hemispheric connections than in the term-born group (t = 5.21, lowest p-value = 0.001). Irrespective of birth status, a network comprising parietal, cerebellar and subcortical connections was positively associated with inhibition abilities (t = 4.23, lowest p-value = 0.02). Very preterm birth results in long-term alterations of SC at network-level. As networks underlying inhibition abilities do not overlap with those differing between the groups, FAmean may not be adequate to explain inhibition problems in very preterm children. Future studies should combine complementary measures of brain connectivity to address neural correlates of inhibition abilities.
Collapse
|
33
|
Liu C, Dong F, Li Y, Ren Y, Xie D, Wang X, Xue T, Zhang M, Ren G, von Deneen KM, Yuan K, Yu D. 12 h Abstinence-Induced ERP Changes in Young Smokers: Electrophysiological Evidence From a Go/NoGo Study. Front Psychol 2019; 10:1814. [PMID: 31474901 PMCID: PMC6703154 DOI: 10.3389/fpsyg.2019.01814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Decreased inhibition control ability and increased craving may be the most important causes of relapsing in smoking. Although inhibition control defects in young smokers were investigated, the effects of short-term abstinence on inhibition control in young smokers were still unclear. Thirty young smokers participated in the present study. The EEG signals during the Go/NoGo task were recorded in both satiety and 12 h abstinence conditions. The task performances were observed and compared between the two conditions. Event-related potential (ERP) analysis was used to investigate changes in N200 and P300 amplitude and latency induced by 12 h of abstinence. After 12 h of abstinence, the latency of N200 was prolonged in young smokers. No significant changes were found in the number of NoGo errors and the response time of Go in young smokers after 12 h of abstinence. Correlation analysis showed that the N200 latency of abstinence condition was significantly correlated with the number of NoGo errors and the response time of Go in the abstinence condition. The present findings may improve the understanding of the effect of short-term abstinence in young smokers. We suggested that the latency of N200 may be associated with inefficient inhibitory control of the abstinence condition in young smokers. Our results may contribute new insights into the neural mechanism of nicotine abstinence in young smokers.
Collapse
Affiliation(s)
- Chang Liu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Fang Dong
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yangding Li
- Guangxi Key Laboratory of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, China
| | - Yan Ren
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Dongdong Xie
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xianfu Wang
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ting Xue
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ming Zhang
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Guoyin Ren
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | | | - Kai Yuan
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
- Guangxi Key Laboratory of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, China
- School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
34
|
Duan D, Xia S, Rekik I, Meng Y, Wu Z, Wang L, Lin W, Gilmore JH, Shen D, Li G. Exploring folding patterns of infant cerebral cortex based on multi-view curvature features: Methods and applications. Neuroimage 2019; 185:575-592. [PMID: 30130646 PMCID: PMC6289765 DOI: 10.1016/j.neuroimage.2018.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022] Open
Abstract
The highly convoluted cortical folding of the human brain is intriguingly complex and variable across individuals. Exploring the underlying representative patterns of cortical folding is of great importance for many neuroimaging studies. At term birth, all major cortical folds are established and are minimally affected by the complicated postnatal environments; hence, neonates are the ideal candidates for exploring early postnatal cortical folding patterns, which yet remain largely unexplored. In this paper, we propose a novel method for exploring the representative regional folding patterns of infant brains. Specifically, first, multi-view curvature features are constructed to comprehensively characterize the complex characteristics of cortical folding. Second, for each view of curvature features, a similarity matrix is computed to measure the similarity of cortical folding in a specific region between any pair of subjects. Next, a similarity network fusion method is adopted to nonlinearly and adaptively fuse all the similarity matrices into a single one for retaining both shared and complementary similarity information of the multiple characteristics of cortical folding. Finally, based on the fused similarity matrix and a hierarchical affinity propagation clustering approach, all subjects are automatically grouped into several clusters to obtain the representative folding patterns. To show the applications, we have applied the proposed method to a large-scale dataset with 595 normal neonates and discovered representative folding patterns in several cortical regions, i.e., the superior temporal gyrus (STG), inferior frontal gyrus (IFG), precuneus, and cingulate cortex. Meanwhile, we have revealed sex difference in STG, IFG, and cingulate cortex, as well as hemispheric asymmetries in STG and cingulate cortex in terms of cortical folding patterns. Moreover, we have also validated the proposed method on a public adult dataset, i.e., the Human Connectome Project (HCP), and revealed that certain major cortical folding patterns of adults are largely established at term birth.
Collapse
Affiliation(s)
- Dingna Duan
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China
| | - Islem Rekik
- BASIRA Lab, CVIP, Computing, School of Science and Engineering, University of Dundee, UK
| | - Yu Meng
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
35
|
Amiez C, Wilson CRE, Procyk E. Variations of cingulate sulcal organization and link with cognitive performance. Sci Rep 2018; 8:13988. [PMID: 30228357 PMCID: PMC6143647 DOI: 10.1038/s41598-018-32088-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 08/21/2018] [Indexed: 12/30/2022] Open
Abstract
The sulcal morphology of the human medial frontal cortex has received marked interest because of (1) its remarkable link with the functional organization of this region, and (2) observations that deviations from 'normal' sulcal morphological variability correlate with the prevalence of some psychiatric disorders, cognitive abilities, or personality traits. Unfortunately, background studies on environmental or genetic factors influencing the ontogenesis of the sulcal organization in this region are critically lacking. We analysed the sulcal morphological organization in this region in twins and non-twin siblings, as well as in control subjects for a total of 599 subjects from the Human Connectome Project. The data first confirm significant biases in the presence of paracingulate sulci in left vs right hemispheres in the whole population (twin: p < 2.4.10-9; non-twin: p < 2.10-6) demonstrating a clear general laterality in human subjects. Second, measures of similarity between siblings and estimations of heritability suggest significant environmental factors, in particular in-womb environment, and weak additive genetic factors influencing the presence of a paracingulate sulcus. Finally, we found that relationships between sulcal organization and performance in cognitive, motor, and affective tests depend on the twin status (Twins versus Non-twins). These results provide important new insights to the issue of the significance of sulcal organization in the human medial frontal cortex.
Collapse
Affiliation(s)
- Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| |
Collapse
|
36
|
Del Maschio N, Sulpizio S, Fedeli D, Ramanujan K, Ding G, Weekes BS, Cachia A, Abutalebi J. ACC Sulcal Patterns and Their Modulation on Cognitive Control Efficiency Across Lifespan: A Neuroanatomical Study on Bilinguals and Monolinguals. Cereb Cortex 2018; 29:3091-3101. [DOI: 10.1093/cercor/bhy175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/11/2018] [Accepted: 07/04/2018] [Indexed: 01/17/2023] Open
Abstract
Abstract
The anterior cingulate cortex (ACC) is a key structure implicated in the regulation of cognitive control (CC). Previous studies suggest that variability in the ACC sulcal pattern—a neurodevelopmental marker unaffected by maturation or plasticity after birth—is associated with intersubject differences in CC performance. Here, we investigated whether bilingual experience modulates the effects of ACC sulcal variability on CC performance across the lifespan. Using structural MRI, we first established the distribution of the ACC sulcal patterns in a large sample of healthy individuals (N = 270) differing on gender and ethnicity. Second, a participants’ subsample (N = 157) was selected to test whether CC performance was differentially affected by ACC sulcation in bilinguals and monolinguals across age. A prevalent leftward asymmetry unaffected by gender or ethnicity was reported. Sulcal variability in the ACC predicted CC performance differently in bilinguals and monolinguals, with a reversed pattern of structure–function relationship: asymmetrical versus symmetrical ACC sulcal patterns were associated with a performance advantage in monolinguals and a performance detriment to bilinguals and vice versa. Altogether, these findings provide novel insights on the dynamic interplay between early neurodevelopment, environmental background and cognitive efficiency across age.
Collapse
Affiliation(s)
- Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele, Milano, Italy
| | - Simone Sulpizio
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele, Milano, Italy
| | - Davide Fedeli
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele, Milano, Italy
| | - Keerthi Ramanujan
- Department of Speech and Hearing Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Brendan S Weekes
- Department of Speech and Hearing Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
- School of Psychological Sciences, Faculty of Dentistry, Medicine and Health Sciences, University of Melbourne, Parkville, Australia
| | - Arnaud Cachia
- Laboratory for the Psychology of Child Development and Education, Sorbonne, CNRS UMR8240, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- Institut Universitaire de France, Paris, France
- Imaging Biomarkers for Brain Development and Disorders, Ste Anne Hospital, INSERM UMR894, Paris, France
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele, Milano, Italy
- Department of Speech and Hearing Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
37
|
Abstract
Inhibitory control (IC) is a core executive function that enables humans to resist habits, temptations, or distractions. IC efficiency in childhood is a strong predictor of academic and professional success later in life. Based on analysis of the sulcal pattern, a qualitative feature of cortex anatomy determined during fetal life and stable during development, we searched for evidence that interindividual differences in IC partly trace back to prenatal processes. Using anatomical magnetic resonance imaging (MRI), we analyzed the sulcal pattern of two key regions of the IC neural network, the dorsal anterior cingulate cortex (ACC) and the inferior frontal cortex (IFC), which limits the inferior frontal gyrus. We found that the sulcal pattern asymmetry of both the ACC and IFC contributes to IC (Stroop score) in children and adults: participants with asymmetrical ACC or IFC sulcal patterns had better IC efficiency than participants with symmetrical ACC or IFC sulcal patterns. Such additive effects of IFC and ACC sulcal patterns on IC efficiency suggest that distinct early neurodevelopmental mechanisms targeting different brain regions likely contribute to IC efficiency. This view shares some analogies with the “common variant–small effect” model in genetics, which states that frequent genetic polymorphisms have small effects but collectively account for a large portion of the variance. Similarly, each sulcal polymorphism has a small but additive effect: IFC and ACC sulcal patterns, respectively, explained 3% and 14% of the variance of the Stroop interference scores.
Collapse
|
38
|
Centanni TM, Norton ES, Park A, Beach SD, Halverson K, Ozernov-Palchik O, Gaab N, Gabrieli JDE. Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area. Dev Sci 2018; 21:e12658. [PMID: 29504651 DOI: 10.1111/desc.12658] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
A functional region of left fusiform gyrus termed "the visual word form area" (VWFA) develops during reading acquisition to respond more strongly to printed words than to other visual stimuli. Here, we examined responses to letters among 5- and 6-year-old early kindergarten children (N = 48) with little or no school-based reading instruction who varied in their reading ability. We used functional magnetic resonance imaging (fMRI) to measure responses to individual letters, false fonts, and faces in left and right fusiform gyri. We then evaluated whether signal change and size (spatial extent) of letter-sensitive cortex (greater activation for letters versus faces) and letter-specific cortex (greater activation for letters versus false fonts) in these regions related to (a) standardized measures of word-reading ability and (b) signal change and size of face-sensitive cortex (fusiform face area or FFA; greater activation for faces versus letters). Greater letter specificity, but not letter sensitivity, in left fusiform gyrus correlated positively with word reading scores. Across children, in the left fusiform gyrus, greater size of letter-sensitive cortex correlated with lesser size of FFA. These findings are the first to suggest that in beginning readers, development of letter responsivity in left fusiform cortex is associated with both better reading ability and also a reduction of the size of left FFA that may result in right-hemisphere dominance for face perception.
Collapse
Affiliation(s)
- Tracy M Centanni
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Psychology, Texas Christian University, Fort Worth, Texas, USA
| | - Elizabeth S Norton
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, and Institute for Innovations in Developmental Sciences, Northwestern University, Evanston, Illinois, USA
| | - Anne Park
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sara D Beach
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kelly Halverson
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Nadine Gaab
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - John DE Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
39
|
Cachia A, Del Maschio N, Borst G, Della Rosa PA, Pallier C, Costa A, Houdé O, Abutalebi J. Anterior cingulate cortex sulcation and its differential effects on conflict monitoring in bilinguals and monolinguals. BRAIN AND LANGUAGE 2017; 175:57-63. [PMID: 29017088 DOI: 10.1016/j.bandl.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
The role of the anterior cingulate cortex (ACC) in modulating the effect of bilingual experience on cognitive control has been reported at both functional and structural neural levels. Individual differences in the ACC sulcal patterns have been recently correlated with cognitive control efficiency in monolinguals. We aimed to investigate whether differences of ACC sulcation mediate the effect of bilingualism on cognitive control efficiency. We contrasted the performance of bilinguals and monolinguals during a cognitive control task (i.e., the Flanker Task) using a stratification based on the participants' ACC sulcal features. We found that performance of the two groups was differentially affected by ACC sulcation. Our findings provide the first evidence that early neurodevelopmental mechanisms may modulate the effect of different environmental backgrounds - here, bilingual vs monolingual experience - on cognitive efficiency.
Collapse
Affiliation(s)
- Arnaud Cachia
- Laboratory for the Psychology of Child Development and Education, Sorbonne, CNRS UMR8240, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; Institut Universitaire de France, Paris, France; Biomarkers of Brain Development and Disorders, Center of Psychiatry and Neurosciences, INSERM UMR894, Paris, France
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele and Scientific Institute San Raffaele, Milano, Italy
| | - Gregoire Borst
- Laboratory for the Psychology of Child Development and Education, Sorbonne, CNRS UMR8240, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; Institut Universitaire de France, Paris, France
| | - Pasquale Anthony Della Rosa
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele and Scientific Institute San Raffaele, Milano, Italy
| | - Christophe Pallier
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Albert Costa
- Universitat de Pompeu Fabra, Barcelona & ICREA, Spain
| | - Olivier Houdé
- Laboratory for the Psychology of Child Development and Education, Sorbonne, CNRS UMR8240, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; Institut Universitaire de France, Paris, France
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics, University Vita-Salute San Raffaele and Scientific Institute San Raffaele, Milano, Italy.
| |
Collapse
|
40
|
Réveillon M, Hüppi PS, Barisnikov K. Inhibition difficulties in preterm children: Developmental delay or persistent deficit? Child Neuropsychol 2017; 24:734-762. [DOI: 10.1080/09297049.2017.1294665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Morgane Réveillon
- Child Clinical Neuropsychology Unit, Department of Psychology, University of Geneva, Switzerland
| | - Petra S. Hüppi
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Switzerland
| | - Koviljka Barisnikov
- Child Clinical Neuropsychology Unit, Department of Psychology, University of Geneva, Switzerland
| |
Collapse
|
41
|
Aso T, Nishimura K, Kiyonaka T, Aoki T, Inagawa M, Matsuhashi M, Tobinaga Y, Fukuyama H. Dynamic interactions of the cortical networks during thought suppression. Brain Behav 2016; 6:e00503. [PMID: 27547504 PMCID: PMC4980473 DOI: 10.1002/brb3.503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Thought suppression has spurred extensive research in clinical and preclinical fields, particularly with regard to the paradoxical aspects of this behavior. However, the involvement of the brain's inhibitory system in the dynamics underlying the continuous effort to suppress thoughts has yet to be clarified. This study aims to provide a unified perspective for the volitional suppression of internal events incorporating the current understanding of the brain's inhibitory system. MATERIALS AND METHODS Twenty healthy volunteers underwent functional magnetic resonance imaging while they performed thought suppression blocks alternating with visual imagery blocks. The whole dataset was decomposed by group-independent component analysis into 30 components. After discarding noise components, the 20 valid components were subjected to further analysis of their temporal properties including task-relatedness and between-component residual correlation. RESULTS Combining a long task period and a data-driven approach, we observed a right-side-dominant, lateral frontoparietal network to be strongly suppression related. This network exhibited increased fluctuation during suppression, which is compatible with the well-known difficulty of suppression maintenance. CONCLUSIONS Between-network correlation provided further insight into the coordinated engagement of the executive control and dorsal attention networks, as well as the reciprocal activation of imagery-related components, thus revealing neural substrates associated with the rivalry between intrusive thoughts and the suppression process.
Collapse
Affiliation(s)
- Toshihiko Aso
- Human Brain Research CenterKyoto University Graduate School of MedicineKyotoJapan
| | | | - Takashi Kiyonaka
- Human Brain Research CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Takaaki Aoki
- Institute of Economic ResearchKyoto UniversityKyotoJapan
| | | | - Masao Matsuhashi
- Human Brain Research CenterKyoto University Graduate School of MedicineKyotoJapan
| | | | - Hidenao Fukuyama
- Human Brain Research CenterKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
42
|
Cachia A, Borst G, Tissier C, Fisher C, Plaze M, Gay O, Rivière D, Gogtay N, Giedd J, Mangin JF, Houdé O, Raznahan A. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development. Dev Cogn Neurosci 2016; 19:122-7. [PMID: 26974743 PMCID: PMC4912935 DOI: 10.1016/j.dcn.2016.02.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/19/2016] [Accepted: 02/28/2016] [Indexed: 12/18/2022] Open
Abstract
Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events - under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC) - an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show - without exception-that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life.
Collapse
Affiliation(s)
- A Cachia
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM UMR 894, Center of Psychiatry and Neurosciences, Paris, France; Institut Universitaire de France, Paris, France.
| | - G Borst
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Tissier
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM UMR 894, Center of Psychiatry and Neurosciences, Paris, France
| | - C Fisher
- CATI Multicenter Neuroimaging Plaform, cati-neuroimaging.com, France; UNATI, Neurospin, CEA, Gif-sur-Yvette, France
| | - M Plaze
- INSERM UMR 894, Center of Psychiatry and Neurosciences, Paris, France
| | - O Gay
- INSERM UMR 894, Center of Psychiatry and Neurosciences, Paris, France
| | - D Rivière
- UNATI, Neurospin, CEA, Gif-sur-Yvette, France
| | - N Gogtay
- National Institute of Mental Health (NIMH) and the National Institutes of Health Intramural Research Program, Bethesda, USA
| | - J Giedd
- National Institute of Mental Health (NIMH) and the National Institutes of Health Intramural Research Program, Bethesda, USA
| | - J-F Mangin
- CATI Multicenter Neuroimaging Plaform, cati-neuroimaging.com, France; UNATI, Neurospin, CEA, Gif-sur-Yvette, France
| | - O Houdé
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut Universitaire de France, Paris, France
| | - A Raznahan
- National Institute of Mental Health (NIMH) and the National Institutes of Health Intramural Research Program, Bethesda, USA
| |
Collapse
|
43
|
Migliorini R, Moore EM, Glass L, Infante MA, Tapert SF, Jones KL, Mattson SN, Riley EP. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure. Behav Brain Res 2015; 292:26-35. [PMID: 26025509 DOI: 10.1016/j.bbr.2015.05.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/28/2015] [Accepted: 05/22/2015] [Indexed: 12/11/2022]
Abstract
Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure.
Collapse
Affiliation(s)
- Robyn Migliorini
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA 92120-4913, USA.
| | - Eileen M Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA
| | - Leila Glass
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA 92120-4913, USA
| | - M Alejandra Infante
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA 92120-4913, USA
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., San Diego, CA 92037, USA; VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Kenneth Lyons Jones
- University of California, San Diego, School of Medicine, Department of Pediatrics, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Sarah N Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA
| | - Edward P Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA
| |
Collapse
|
44
|
Kharitonova M, Winter W, Sheridan MA. As Working Memory Grows: A Developmental Account of Neural Bases of Working Memory Capacity in 5- to 8-Year Old Children and Adults. J Cogn Neurosci 2015; 27:1775-88. [PMID: 25961641 DOI: 10.1162/jocn_a_00824] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.
Collapse
Affiliation(s)
- Maria Kharitonova
- Boston Children's Hospital/Harvard Medical School.,Northwestern University
| | | | | |
Collapse
|
45
|
Bridgett DJ, Burt NM, Edwards ES, Deater-Deckard K. Intergenerational transmission of self-regulation: A multidisciplinary review and integrative conceptual framework. Psychol Bull 2015; 141:602-654. [PMID: 25938878 PMCID: PMC4422221 DOI: 10.1037/a0038662] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review examines mechanisms contributing to the intergenerational transmission of self-regulation. To provide an integrated account of how self-regulation is transmitted across generations, we draw from over 75 years of accumulated evidence, spanning case studies to experimental approaches, in literatures covering developmental, social, and clinical psychology, and criminology, physiology, genetics, and human and animal neuroscience (among others). First, we present a taxonomy of what self-regulation is and then examine how it develops--overviews that guide the main foci of the review. Next, studies supporting an association between parent and child self-regulation are reviewed. Subsequently, literature that considers potential social mechanisms of transmission, specifically parenting behavior, interparental (i.e., marital) relationship behaviors, and broader rearing influences (e.g., household chaos) is considered. Finally, evidence that prenatal programming may be the starting point of the intergenerational transmission of self-regulation is covered, along with key findings from the behavioral and molecular genetics literatures. To integrate these literatures, we introduce the self-regulation intergenerational transmission model, a framework that brings together prenatal, social/contextual, and neurobiological mechanisms (spanning endocrine, neural, and genetic levels, including gene-environment interplay and epigenetic processes) to explain the intergenerational transmission of self-regulation. This model also incorporates potential transactional processes between generations (e.g., children's self-regulation and parent-child interaction dynamics that may affect parents' self-regulation) that further influence intergenerational processes. In pointing the way forward, we note key future directions and ways to address limitations in existing work throughout the review and in closing. We also conclude by noting several implications for intervention work.
Collapse
Affiliation(s)
| | - Nicole M Burt
- Department of Psychology, Northern Illinois University
| | | | | |
Collapse
|
46
|
Borst G, Aïte A, Houdé O. Inhibition of misleading heuristics as a core mechanism for typical cognitive development: evidence from behavioural and brain-imaging studies. Dev Med Child Neurol 2015; 57 Suppl 2:21-5. [PMID: 25690112 DOI: 10.1111/dmcn.12688] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2014] [Indexed: 11/29/2022]
Abstract
Cognitive development is generally conceived as incremental with knowledge of increasing complexity acquired throughout childhood and adolescence. However, several studies have now demonstrated not only that infants possess complex cognitive abilities but also that older children, adolescents, and adults tend to make systematic errors even in simple logical reasoning tasks. Therefore, one of the main issues for any theory of typical cognitive development is to provide an explanation of why at some age and in some contexts children, adolescents, and adults do not express a knowledge or cognitive principle that they already acquired when they were younger. In this review, we present convergent behavioural and neurocognitive evidence that cognitive development is more similar to a non-linear dynamic system than to a linear, stage-like system. In this theoretical framework, errors can emerge in problems similar to the ones infants or young children were succeeding when older children, adolescents, and adults rely on a misleading heuristic rather than on the correct logical algorithm to solve such problems. And the core mechanism for overcoming these errors is inhibitory control (i.e. the ability to inhibit the misleading heuristics). Therefore, typical cognitive development relies not only on the ability to acquire knowledge of incremental complexity but also to inhibit previously acquired knowledge.
Collapse
Affiliation(s)
- Grégoire Borst
- LaPsyDÉ, CNRS Unit 8240, Paris, France; Institut de Psychologie, University Paris Descartes and Sorbonne Paris Cité, Paris, France; University of Caen Basse-Normandie, Caen, France
| | | | | |
Collapse
|