1
|
Pallis D, Pachiou A, Dimitriadi M, Sykaras N, Kourtis S. A Comparative In Vitro Study of Materials for Provisional Restorations Manufactured With Additive (3Dprinting), Subtractive (Milling), and Conventional Techniques. J ESTHET RESTOR DENT 2025. [PMID: 40296335 DOI: 10.1111/jerd.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/16/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE To compare the mechanical, chemical, and surface properties of three materials used for provisional restorations, manufactured with additive (3D-printing), subtractive (milling), and conventional techniques. MATERIALS AND METHODS Three material groups were tested: (a) GC TempPRINT, (3D-printed/3DP), (b) VITA CAD-Temp, (milled/ML), and (c) Telio CS C&B, (conventional self-cured/CC). Each group consisted of 20 beam-shaped specimens (25 × 2 × 2 mm) used for a three-point flexural strength test and 5 discs (Ø:15 mm, h: 2 mm) used for surface roughness, gloss, degree of conversion, and hardness measurements. Data were analyzed using one-way ANOVA and Holm-Sidak multiple comparison tests (α = 0.05). RESULTS The ranking of the statistically significant differences (p < 0.05) was: 3DP >CC > ML (Sdr roughness parameter), ML >CC > 3DP (gloss) and ML > 3DP> CC (gloss, degree of conversion, hardness and flexural strength). CLINICAL SIGNIFICANCE The tested materials showed statistically significant differences in all tested properties. These differences may affect their clinical performance and should be taken into consideration for their clinical application.
Collapse
Affiliation(s)
- Dimitrios Pallis
- Department of Prosthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Aspasia Pachiou
- Department of Prosthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dimitriadi
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikitas Sykaras
- Department of Prosthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefanos Kourtis
- Department of Prosthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Mosaddad SA, Peláez J, Panadero RA, Ghodsi S, Akhlaghian M, Suárez MJ. Do 3D printed and milled tooth-supported complete monolithic zirconia crowns differ in accuracy and fit? A systematic review and meta-analysis of in vitro studies. J Prosthet Dent 2025; 133:383-393. [PMID: 38772783 DOI: 10.1016/j.prosdent.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
STATEMENT OF PROBLEM Additive (3-dimensional printing) and subtractive (milling) methods are digital approaches to fabricating zirconia restorations. Comparisons of their resultant fabrication accuracy and restoration fit are lacking. PURPOSE The purpose of this systematic review and meta-analysis was to evaluate the accuracy and fit of monolithic zirconia crowns fabricated by 3-dimensional printing and milling. MATERIAL AND METHODS The PubMed (Medline), Scopus, Embase, Web of Science, Cochrane Library, and Google Scholar databases were searched up to August 2023. Eligible records were included, and the standardized mean difference (SMD) analyzed 4 outcomes: marginal fit, intaglio fit, trueness, and precision. Publication bias was analyzed with Trim-and-fill, the Egger regression test, and Begg funnel plot. Methodological quality was rated using the QUIN tool. RESULTS A total of 15 publications were found eligible out of the initial 6539 records. The 3-dimensional printing group demonstrated a lower marginal fit (SMD=1.46, 95% CI=[0.67, 2.26], P<.001; I2=83%, P<.001) and trueness (SMD=0.69, 95% CI=[0.20, 1.18], P=.006; I2=88%, P<.001) and a significantly higher precision (SMD=-2.19, 95% CI=[-2.90, -1.48], P<.001; I2=56%, P=.045). The intaglio fit did not differ significantly across the study groups (SMD=0.77, 95% CI=[-0.22, 1.77], P=.127; I2=87%, P<.001). CONCLUSIONS Given the high degree of heterogeneity, it can be cautiously concluded that while 3-dimensional printing led to greater precision, the outcomes of the 2 accuracy and adaptation parameters most crucial to the longevity of the restorations-trueness and marginal fit-showed the superiority of the milling technique.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Researcher, Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain; and Adjunct Faculty Member, Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesús Peláez
- Adjunct Professor, Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain.
| | - Rubén Agustín Panadero
- Professor, Department of Stomatology, Faculty of Medicine and Dentistry, Valencia University, Valencia, Spain
| | - Safoura Ghodsi
- Associate Professor, Dental Research Center, Dentistry Research Institute, Department of Prosthodontics, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Akhlaghian
- Assistant Professor, Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - María J Suárez
- Professor, Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Zandinejad A, Khanlar LN, Barmak AB, Ikeda M, Tagami J, Masri R. Shear bond strength of porcelain to milled and stereolithography additively manufactured zirconia with and without surface treatment: An in vitro study. J Prosthet Dent 2025; 133:273-279. [PMID: 36932021 DOI: 10.1016/j.prosdent.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
STATEMENT OF PROBLEM Delamination of veneering ceramic is one of the most common challenges relating to veneered zirconia restorations. Additive manufacturing (AM) is a fast-expanding technology that has gained widespread acceptance in dentistry and is increasingly being used to produce dental restorations. However, information about bonding of porcelain to AM zirconia is lacking. PURPOSE The purpose of this in vitro study was to investigate the shear bond strength (SBS) of porcelain to milled and additively manufactured zirconia, and the effect of surface treatment on bond strength. MATERIAL AND METHODS A Ø12×5-mm disk was designed virtually to fabricate all specimens, which were divided into 2 groups according to the manufacturing technique: additively manufactured or milled zirconia. The effect of airborne-particle abrasion and a zirconia liner before porcelain application was investigated in both groups. Veneering porcelain was fired into an alumina ring mold on the zirconia surface. SBS was measured by using a universal testing machine at a crosshead speed of 1 mm/min before and after aging (n=10). SBS data were analyzed with 3-way ANOVA (α=.05) RESULTS: A significant difference was found between milled and AM zirconia. The SBS of porcelain to milled zirconia was significantly higher (1.38 MPa) than to AM zirconia (0.68 MPa) (P<.001). The surface treatment of zirconia had no significant effect on porcelain SBS in either group (P=.254), whereas thermocycling significantly reduced the SBS of porcelain to zirconia in both milled and AM groups (P=.001). CONCLUSIONS Porcelain bonding to milled zirconia was better than to AM zirconia. Pretreating the zirconia substrate before porcelain application did not improve the porcelain bond.
Collapse
Affiliation(s)
- Amirali Zandinejad
- Associate Professor, Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, Texas; Private practice, Arlington, Texas.
| | - Leila Nasiry Khanlar
- Lecturer, AEGD Residency Program, Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, Texas
| | - Abdul Basir Barmak
- Assistant Professor, Clinical Research and Biostatistics, Department of Comprehensive Dentistry, EIOH Medical Center, University of Rochester, Rochester, NY
| | - Masaomi Ikeda
- Senior Lecturer, Oral Prosthetic Engineering, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junji Tagami
- Professor, Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Radi Masri
- Professor and Division Head, Division of Prosthodontics, School of Dentistry, University of Maryland, Baltimore, MD
| |
Collapse
|
4
|
Zhu Y, Guo S, Ravichandran D, Ramanathan A, Sobczak MT, Sacco AF, Patil D, Thummalapalli SV, Pulido TV, Lancaster JN, Yi J, Cornella JL, Lott DG, Chen X, Mei X, Zhang YS, Wang L, Wang X, Zhao Y, Hassan MK, Chambers LB, Theobald TG, Yang S, Liang L, Song K. 3D-Printed Polymeric Biomaterials for Health Applications. Adv Healthc Mater 2025; 14:e2402571. [PMID: 39498750 PMCID: PMC11694096 DOI: 10.1002/adhm.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Indexed: 11/07/2024]
Abstract
3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.
Collapse
Affiliation(s)
- Yuxiang Zhu
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Shenghan Guo
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Arunachalam Ramanathan
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - M. Taylor Sobczak
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Alaina F. Sacco
- School of Chemical, Materials and Biomedical Engineering (CMBE), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Dhanush Patil
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Sri Vaishnavi Thummalapalli
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Tiffany V. Pulido
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Jessica N. Lancaster
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Johnny Yi
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - Jeffrey L. Cornella
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - David G. Lott
- Division of Laryngology, Department of OtolaryngologyMayo Clinic ArizonaPhoenixAZUSA
| | - Xiangfan Chen
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Linbing Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Yiping Zhao
- Physics, Franklin College of Arts and SciencesUniversity of GeorgiaAthensGA30602USA
| | | | - Lindsay B. Chambers
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Taylor G. Theobald
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of MatterTransport and Energy (SEMTE) at Arizona State UniversityTempeAZ85287USA
| | | | - Kenan Song
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
5
|
Rus F, Neculau C, Imre M, Duica F, Popa A, Moisa RM, Voicu-Balasea B, Radulescu R, Ripszky A, Ene R, Pituru S. Polymeric Materials Used in 3DP in Dentistry-Biocompatibility Testing Challenges. Polymers (Basel) 2024; 16:3550. [PMID: 39771402 PMCID: PMC11679966 DOI: 10.3390/polym16243550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
In the latter part of the 20th century, remarkable developments in new dental materials and technologies were achieved. However, regarding the impact of dental resin-based materials 3D-printed on cellular responses, there have been a limited number of published studies recently. The biocompatibility of dental restorative materials is a controversial topic, especially when discussing modern manufacturing technologies. Three-dimensional printing generates the release of residual monomers due to incomplete polymerization of materials and involves the use of potentially toxic substances in post-printing processes that cannot be completely eliminated. Considering the issue of biocompatibility, this article aims to establish an overview of this aspect, summarizing the different types of biocompatibility tests performed on materials used in 3D printing in dentistry. In order to create this comprehensive review, articles dealing with the issue of 3D printing in dentistry were analysed by accessing the main specialized search engines using specific keywords. Relevant data referring to types of materials used in 3DP to manufacture various dental devices, polymerization methods, factors affecting monomer release, cytotoxicity of unreacted products or post-curing treatments, and methods for assessing biocompatibility were analysed. Although the introduction of new restorative materials used in dental treatments is subject to national and international regulations and standards, it is necessary to investigate them regarding biocompatibility in order to support or deny the manufacturers' statements regarding this aspect.
Collapse
Affiliation(s)
- Florentina Rus
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Cristina Neculau
- Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Duica
- Clinical Emergency Hospital Bucharest, Floreasca 8, 014451 Bucharest, Romania
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Radu Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Razvan Ene
- Orthopedics and Traumatology Department, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania
| | - Silviu Pituru
- Department of Professional Organization and Medical Legislation-Malpractice, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| |
Collapse
|
6
|
Kessler A, Reichert T, Lindner S, Liebermann A, El Gezawi M, Kaisarly D. Influence of additive and subtractive zirconia and lithium disilicate manufacturing on tensile bond strength and surface topography. J Prosthet Dent 2024; 132:623.e1-623.e7. [PMID: 38853056 DOI: 10.1016/j.prosdent.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 06/11/2024]
Abstract
STATEMENT OF PROBLEM Although bonding is important for long-term clinical success, studies on the bonding of additively manufactured ceramics are sparse. PURPOSE The purpose of this in vitro study was to determine the influence of manufacturing methods, additive (LCM) versus subtractive (CAM). and ceramic materials, zirconia (ZrO2) and lithium disilicate (LiSi), on the tensile bond strength (TBS), failure mode, and surface roughness of ceramics. MATERIAL AND METHODS A total of 240 ceramic specimens (n=60/group; 2×2×10 mm) were prepared. Two additively manufactured (LCM-printed) ceramics, LiSi and ZrO2 (Lithoz), subtractively manufactured LiSi (IPS e.max CAD), and subtractively manufactured ZrO2 (KATANA Zirconia HTML PLUS) were evaluated. From each material, 40 specimens were bonded together (n=20 ceramic-ceramic specimens/group), and 20 specimens were bonded to equally sized human dentin specimens (n=20 ceramic-dentin specimens/group). The ZrO2 specimens were airborne-particle abraded (Al2O3, 50 µm, 0.1 MPa), and the LiSi specimens were etched with hydrofluoric acid. Then, a universal primer (Monobond Plus) was applied. After the dentin was coated with an etch-and-rinse adhesive (Syntac Classic), the specimens were bonded with luting composite resin (Variolink Esthetic DC), light polymerized for 40 seconds, thermally aged (10 000 cycles between 5 °C and 55 °C), tested for TBS, and statistically analyzed (1- and 3-way ANOVA and Weibull analysis). The ceramic surface was examined with scanning electron microscopy, and surface roughness was measured with digital microscopy before and after surface pretreatment. RESULTS TBS varied between 5.88 ±2.22 MPa and 6.34 ±2.26 MPa in the ceramic-dentin groups and 12.40 ±1.56 MPa and 18.82 ±5.92 MPa in the ceramic-ceramic groups. No significant difference was observed regarding the manufacturing method and material for different bonding conditions (P>.05). Additive and subtractive LiSi showed the highest reliability with m=18.27. The ceramic-ceramic specimens failed cohesively in the luting composite resin, whereas the ceramic-dentin specimens failed adhesively. CONCLUSIONS The manufacturing method and material used had little effect on bond strength values or surface properties. The recently introduced printed materials performed similarly to conventionally milled materials.
Collapse
Affiliation(s)
- Andreas Kessler
- Assistant Professor, Department of Prosthetic Dentistry, Faculty of Medicine, Center for Dental Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany; Assistant Professor, Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany.
| | - Thilo Reichert
- Postdoctorate, Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Stefanie Lindner
- Assistant Professor, Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Anja Liebermann
- Full Professor and Department Head, Department of Prosthetic Dentistry, University Hospital of Cologne, Cologne, Germany
| | - Moataz El Gezawi
- Full Professor, Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dalia Kaisarly
- Assistant Professor, Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
7
|
Zhai Z, Qian C, Jiao T, Xu C, Sun J. Zirconia specimens printed by vat photopolymerization: Mechanical properties, fatigue properties, and fractography analysis. J Prosthodont 2024. [PMID: 39213171 DOI: 10.1111/jopr.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE The mechanical and fatigue properties of zirconia specimens printed by vat photopolymerization (VPP) were evaluated and compared with those of zirconia specimens milled by computer numerical control (CNC). MATERIALS AND METHODS Bar-shaped specimens were printed by stereolithography (SL) and digital light processing (DLP). CNC-milled specimens were used as control samples. The fracture toughness, hardness, and flexural strength properties of the zirconia specimens were evaluated via single edge V-notch beam tests, Vickers hardness tests, and 3-point bending tests. Dynamic fatigue tests were carried out in distilled water using a step-stress test. After static bending and dynamic step-stress testing, fractography analysis was performed. Statistical analysis was carried out to compare the fracture toughness, hardness, flexural strength, and fatigue cycle results of each group (α = 0.05). RESULTS The fracture toughness values did not significantly differ among the groups (p > 0.05). The flexural strength was 894.10 MPa for SL, 831.46 MPa for DLP, and 1140.39 MPa for CNC. The flexural strength of CNC was greater than that of SL and DLP (p < 0.01). The mean fatigue cycles were 23498.07 for SL, 19858.60 for DLP, and 31566.80 for CNC. The mean fatigue failure strength was 643.13 MPa for SL, 530.63 MPa for DLP, and 903.75 MPa for CNC. The fatigue failure strength of CNC was greater than that of SL and DLP (p < 0.05). Fractography analysis revealed material defects at the fracture origin for each group. A partially fused structure of the incompletely debonded resin could be observed in SL, and a porous region of incompletely sintered zirconia grains could be observed in CNC. CONCLUSIONS The fracture toughness and hardness of zirconia printed by VPP are comparable to those of zirconia milled by CNC. However, zirconia milled by CNC has superior static flexural strength and dynamic fatigue resistance. Further studies are needed to explore the clinical applications of VPP-printed zirconia.
Collapse
Affiliation(s)
- Zidi Zhai
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, P.R. China
| | - Chao Qian
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, P.R. China
| | - Ting Jiao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, P.R. China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, P.R. China
| | - Jian Sun
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, P.R. China
| |
Collapse
|
8
|
Valenti C, Isabella Federici M, Masciotti F, Marinucci L, Xhimitiku I, Cianetti S, Pagano S. Mechanical properties of 3D printed prosthetic materials compared with milled and conventional processing: A systematic review and meta-analysis of in vitro studies. J Prosthet Dent 2024; 132:381-391. [PMID: 35934576 DOI: 10.1016/j.prosdent.2022.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
STATEMENT OF PROBLEM Three-dimensional (3D) additive manufacturing (AM) is an evolving technology in dentistry, proposed as an alternative to subtractive milling manufacture (MM) or conventional processing. However, a systematic review of the use of AM technology instead of milling or conventional processing is lacking. PURPOSE The purpose of this systematic review and meta-analysis was to evaluate the mechanical properties of 3D printed prosthetic materials compared with MM and conventional techniques. MATERIAL AND METHODS An electronic search of the literature was conducted on the MEDLINE (via PubMed), Scopus, and Web of Science databases. The inclusion criteria were in vitro studies published in the last 5 years, in English or Italian, and with 3D AM printed dental prosthetic materials. Data extraction was focused on dental prosthetic materials (ceramics, polymers, and metals) and their mechanical properties: flexural strength, fracture load, hardness, roughness, removable partial denture (RPD) fit accuracy, trueness, marginal discrepancy, and internal fit. Data considered homogenous were subjected to meta-analysis using the Stata17 statistical software program (95% confidence interval [CI]; α=.05). Since all variables were continuous, the Hedge g measure was calculated. A fixed-effects model was used for I2=0%, while the statistical analysis was conducted using a random-effects model with I2>0%. RESULTS From a total of 3624 articles, 2855 studies were selected, and 76 studies included after full-text reading. The roughness of AM-printed ceramics generally increased compared with that of conventional processing while the marginal discrepancy was comparable both for ceramics and polymers. The flexural strength, hardness, and fracture load of AM-printed polymers were statistically lower than those of the conventional group (P<.05). No significant difference was detected in terms of hardness, roughness, marginal discrepancy, fracture load, trueness, or internal fit between the AM and MM techniques (P>.05). Milling techniques showed significantly higher values of flexural strength (Hedge g=-3.88; 95% CI, -7.20 to -0.58; P=.02), also after aging (Hedge g=-3.29; 95% CI, -6.41 to -0.17; P=.04), compared with AM printing. CONCLUSIONS AM is comparable with MM in terms of mechanical properties, in particular with polymeric materials. The flexural strength of AM-printed prostheses is lower than with conventional and MM techniques, as are the parameters of hardness and fracture load, while the marginal discrepancy is similar to that of MM and conventional techniques. AM prostheses are commonly used for interim crowns and fixed partial dentures, as their rigidity and fracture resistance cannot support mastication forces for extended periods. More comparative studies are needed.
Collapse
Affiliation(s)
- Chiara Valenti
- Graduate student, Department of Medicine and Surgery, Odontostomatological University Centre, University of Perugia, Perugia, Italy
| | - Maria Isabella Federici
- Graduate student, Department of Medicine and Surgery, Odontostomatological University Centre, University of Perugia, Perugia, Italy
| | - Francesca Masciotti
- Student, Department of Medicine and Surgery, Odontostomatological University Centre, University of Perugia, Perugia, Italy
| | - Lorella Marinucci
- Researcher, Section of Biosciences and Medical Embryology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Xhimitiku
- PhD student, Centro di Ateneo di Studi e Attività Spaziali "Giuseppe Colombo" - CISAS, University of Padua, Padua, Italy
| | - Stefano Cianetti
- Professor, Department of Medicine and Surgery, Odontostomatological University Centre, University of Perugia, Perugia, Italy
| | - Stefano Pagano
- Researcher, Department of Medicine and Surgery, Odontostomatological University Centre, University of Perugia, Perugia, Italy.
| |
Collapse
|
9
|
Zhu H, Jiang J, Wang Y, Wang S, He Y, He F. Additive manufacturing of dental ceramics in prosthodontics: The status quo and the future. J Prosthodont Res 2024; 68:380-399. [PMID: 38346729 DOI: 10.2186/jpr.jpr_d_23_00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
PURPOSE This review aims to summarize the available technologies, material categories, and prosthodontic applications of additive manufacturing (AM) dental ceramics, evaluate the achievable accuracy and mechanical properties in comparison with current mainstream computer-aided design/computer-aided manufacturing (CAD/CAM) subtractive manufacturing (SM) methods, and discuss future prospects and directions. STUDY SELECTION This paper is based on the latest reviews, state-of-the-art research, and existing ISO standards on AM technologies and prosthodontic applications of dental ceramics. PubMed, Web of Science, and ScienceDirect were amongst the sources searched for narrative reviews. RESULTS Relatively few AM technologies are available and their applications are limited to crowns and fixed partial dentures. Although the accuracy and strength of AM dental ceramics are comparable to those of SM, they have the limitations of relatively inferior curved surface accuracy and low strength reliability. Furthermore, functionally graded additive manufacturing (FGAM), a potential direction for AM, enables the realization of biomimetic structures, such as natural teeth; however, specific studies are currently lacking. CONCLUSIONS AM dental ceramics are not sufficiently developed for large-scale clinical applications. However, with additional research, it may be possible for AM to replace SM as the mainstream manufacturing technology for ceramic restorations.
Collapse
Affiliation(s)
- Han Zhu
- Department of Periodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China
| | - Jimin Jiang
- Department of Periodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China
| | - Yujie Wang
- Department of Periodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China
| | - Sijie Wang
- Department of Periodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, PR China
| | - Fuming He
- Department of Periodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China
| |
Collapse
|
10
|
Siqueira JRCDS, Rodriguez RMM, Campos TMB, Ramos NDC, Bottino MA, Tribst JPM. Characterization of Microstructure, Optical Properties, and Mechanical Behavior of a Temporary 3D Printing Resin: Impact of Post-Curing Time. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1496. [PMID: 38612010 PMCID: PMC11012777 DOI: 10.3390/ma17071496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
The present study aimed to characterize the microstructure of a temporary 3D printing polymer-based composite material (Resilab Temp), evaluating its optical properties and mechanical behavior according to different post-curing times. For the analysis of the surface microstructure and establishment of the best printing pattern, samples in bar format following ISO 4049 (25 × 10 × 3 mm) were designed in CAD software (Rhinoceros 6.0), printed on a W3D printer (Wilcos), and light-cured in Anycubic Photon for different lengths of time (no post-curing, 16 min, 32 min, and 60 min). For the structural characterization, analyses were carried out using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The mechanical behavior of this polymer-based composite material was determined based on flexural strength tests and Knoop microhardness. Color and translucency analysis were performed using a spectrophotometer (VITA Easy Shade Advanced 4.0), which was then evaluated in CIELab, using gray, black, and white backgrounds. All analyses were performed immediately after making the samples and repeated after thermal aging over two thousand cycles (5-55 °C). The results obtained were statistically analyzed with a significance level of 5%. FT-IR analysis showed about a 46% degree of conversion on the surface and 37% in the center of the resin sample. The flexural strength was higher for the groups polymerized for 32 min and 1 h, while the Knoop microhardness did not show a statistical difference between the groups. Color and translucency analysis also did not show statistical differences between groups. According to all of the analyses carried out in this study, for the evaluated material, a post-polymerization time of 1 h should be suggested to improve the mechanical performance of 3D-printed devices.
Collapse
Affiliation(s)
- Joyce Roma Correia dos Santos Siqueira
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos 12245-000, Brazil; (J.R.C.d.S.S.); (R.M.M.R.); (N.d.C.R.); (M.A.B.)
| | - Rita Maria Morejon Rodriguez
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos 12245-000, Brazil; (J.R.C.d.S.S.); (R.M.M.R.); (N.d.C.R.); (M.A.B.)
| | - Tiago Moreira Bastos Campos
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil;
| | - Nathalia de Carvalho Ramos
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos 12245-000, Brazil; (J.R.C.d.S.S.); (R.M.M.R.); (N.d.C.R.); (M.A.B.)
| | - Marco Antonio Bottino
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos 12245-000, Brazil; (J.R.C.d.S.S.); (R.M.M.R.); (N.d.C.R.); (M.A.B.)
| | - João Paulo Mendes Tribst
- Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
11
|
Park GT, Ko KH, Huh YH, Park CJ, Cho LR. Flexural strength and translucency of barium-silicate-filled resin nanoceramics for additive manufacturing. J ESTHET RESTOR DENT 2024; 36:445-452. [PMID: 37671774 DOI: 10.1111/jerd.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVE This in vitro study aimed to evaluate the flexural strength (FS) and translucency parameter (TP) of resin nanoceramics (RNCs) with barium silicate for additive manufacturing. MATERIALS AND METHODS An RNC slurry was prepared by mixing a barium silicate filler and resin monomer. For the FS tests, specimens with three filler contents (0, 50, and 63 wt%) were designed according to ISO6872 for dental ceramics and ISO10477 for dental polymers. These specimens were then formed into discs with thicknesses of 1 and 2 mm for TP measurement. RESULTS In the specimens prepared according to ISO6872, the FS increased significantly depending on the filler content. However, in the case of ISO10477, there was no significant difference between the FSs of the specimens with 0 and 50 wt% filler contents. The increase in thickness affected translucency, and the lowest translucency was obtained at a filler content of 63 wt%. The filler distribution was dense in the specimen with 63 wt% filler and uniform but relatively sparse in the specimen with 50 wt% filler. More voids were observed in the specimen with 63 wt% filler. The thickness and filler content of the specimen affected its TP. The TP of the specimen with 63 wt% filler was similar to that of human enamel. CONCLUSION The FS was significantly higher at a filler content of 63 wt%. The lowest translucency was obtained at a filler content of 63 wt% for all tested thicknesses. CLINICAL SIGNIFICANCE Increasing the filler content was advantageous for the mechanical properties of the RNCs. A high filler content led to low translucency in the RNCs. Therefore, the esthetics of human teeth can be reproduced if layering according to the filler content is performed in areas where esthetic characteristics are required.
Collapse
Affiliation(s)
- Geun-Taek Park
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Kyung-Ho Ko
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yoon-Hyuk Huh
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Chan-Jin Park
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Lee-Ra Cho
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
12
|
Wang L, Wang K, Sheng Y, Hao Z, Tang W, Dou R. The effect of phase contents on the properties of yttria stabilized zirconia dental materials fabricated by stereolithography-based additive manufacturing. J Mech Behav Biomed Mater 2024; 150:106313. [PMID: 38109815 DOI: 10.1016/j.jmbbm.2023.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
The aim is to investigate the impact of phase contents on mechanical properties, translucency, and aging stability of additively manufactured yttria partially stabilized zirconia ceramics. For that purpose, we evaluated two PSZ materials. The first type was prepared utilizing commercially available 5 mol% yttria-stabilized zirconia(5Y-PSZ), while the second type, denoted as 3Y+8Y-PSZ ceramics, was fabricated by blending 3 mol% and 8 mol% yttria-stabilized zirconia powders. Compared to 5Y-PSZ (39.90 wt% tetragonal phases and c/a2 = 1.0141), 3Y+8Y-PSZ is characterized by a greater abundance of tetragonal phases (47.68 wt%), which display higher tetragonality (c/a2 = 1.0165) and lower yttrium oxide content (2.25mol%). As a result, the 3Y+8Y-PSZ demonstrates elevated strength (816.52 MPa) and toughness (4.32 MPa m1/2), accompanied by reduced translucency(CR:0.47) and it exhibits greater susceptibility to aging. The phase contents, yttrium oxide content, and lattice parameters in the tetragonal phase play a crucial role in determining the mechanical properties, translucency, and aging stability of PSZ ceramics.
Collapse
Affiliation(s)
- Li Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Kang Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yang Sheng
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zongdong Hao
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Weizhe Tang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Rui Dou
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
13
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Someya T, Kasahara M, Takemoto S, Hattori M. The Wear Behavior of Glass-Ceramic CAD/CAM Blocks against Bovine Enamel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6839. [PMID: 37959436 PMCID: PMC10649743 DOI: 10.3390/ma16216839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The wear of enamel and crown restorative materials often occur by occlusion. The purpose of this study was to evaluate the wear volume between glass-ceramics used for CAD/CAM blocks (lithium disilicate: Initial LiSi block (LIS), IPS e.max CAD (IPS), zirconia-reinforced lithium silicate glass-ceramics: Celtra DUO (DUO), VITA Suprinity (VITS) and feldspar-based glass-ceramics: Vitablocs Mark II (MAK)) and bovine tooth enamel using a two-body wear test, the hardness, three-point bending strength, micro-structure and the element components of glass-ceramics. The data were analyzed using a one-way analysis of variance and Tukey's multiple comparison test (α = 0.05). IPS and DUO with relatively large size crystal gain had significantly larger abrader wear volumes. Zirconia-reinforced lithium silicate glass-ceramics (DUO, VITS) caused significantly greater wear volume in antagonist enamel. MAK with scale-shape crystals grains produced distinct scratches after wear tests, both in the material itself and in the enamel. A strong correlation between the mechanical properties (hardness, three-point bending strength) and wear volume could not be confirmed. The type of glass-ceramic, size, and shape of the crystal grains affected the wear behavior of the glass-ceramics for CAD/CAM blocks. Therefore, dentists should consider that wear behavior varies with crystal structure, size, and shape in glass-ceramics for CAD/CAM blocks.
Collapse
Affiliation(s)
- Tomoko Someya
- Department of Dental Materials Science, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (M.H.)
| | - Masaaki Kasahara
- Department of Dental Materials Science, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (M.H.)
| | - Shinji Takemoto
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Iwate, Shiwa-gun 028-3694, Japan;
| | - Masayuki Hattori
- Department of Dental Materials Science, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (M.H.)
| |
Collapse
|
15
|
Zhai Z, Sun J. Research on the low-temperature degradation of dental zirconia ceramics fabricated by stereolithography. J Prosthet Dent 2023; 130:629-638. [PMID: 34933748 DOI: 10.1016/j.prosdent.2021.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
STATEMENT OF PROBLEM Stereolithography is a promising method of fabricating zirconia ceramics with high strength and accuracy. However, studies of the aging effects on zirconia ceramics fabricated by this technique are lacking. PURPOSE The purpose of this in vitro study was to evaluate the aging effects on the crystalline content, microstructure, and mechanical properties of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) printed by stereolithography apparatus (SLA) and digital light processing (DLP) compared with those of zirconia milled by computer numerical control (CNC). MATERIAL AND METHODS Bar-shaped specimens were fabricated after layer-by-layer printing, debinding, and sintering by SLA and DLP. Specimens milled and sintered by CNC were used as controls (n=24/material). The specimens were divided into 12 groups (n=6) and aged (0/5/10/15 hours, 134 °C, 0.2 MPa), after which the crystalline content, microstructure, and mechanical properties were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and 3-point bend tests. The flexural strength and monoclinic (m) phase content were statistically evaluated (α=.05). RESULTS The XRD results showed that an m peak was not detected for any of the tested materials before aging. The m-phase content was the highest for SLA (5/10/15 hours: 19.64%/34.76%/41.88%), followed by DLP (5/10/15 hours: 9.62%/21.76%/28.43%) and CNC (5/10/15 hours: 2.29%/7.77%/7.66%). The SEM images showed zirconia grain fragments for DLP and grain pullout for SLA, while surface defects were not obvious for CNC. Within the materials, the flexural strength was the highest for SLA after aging for 5 hours (1010.3 MPa), followed by 10 hours (913.06 MPa) and 15 hours and 0 hours, which exhibited no difference (0/15 hours: 776.71/814.28 MPa) (P<.001). The flexural strength for CNC and DLP did not significantly change after aging for 5 hours, 10 hours, and 15 hours (P>.05). The flexural strength for CNC was always more than 1200 MPa, and that for DLP was approximately 800 MPa before and after aging. CONCLUSIONS Although the m-phase content for SLA and DLP increased with the aging time, the mechanical properties did not significantly decrease, indicating the stability of both materials.
Collapse
Affiliation(s)
- Zidi Zhai
- Graduate student, Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - Jian Sun
- Professor, Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, PR China.
| |
Collapse
|
16
|
Wang L, Yu H, Hao Z, Tang W, Dou R. Investigating the effect of solid loading on microstructure, mechanical properties, and translucency of highly translucent zirconia ceramics prepared via stereolithography-based additive manufacturing. J Mech Behav Biomed Mater 2023; 144:105952. [PMID: 37311296 DOI: 10.1016/j.jmbbm.2023.105952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
A study was conducted to explore the potential of 5 mol% yttria-partially stabilized zirconia (5Y-PSZ) ceramics for dental restorations, using stereolithography (SLA) printing technique. Four different solid loadings were established in the ceramic paste systems to study their effects on microstructure, mechanical properties, and translucency. The study examined the rheological behavior and photopolymerization performance of the ceramic pastes with varying solid loadings. Results showed that, an increase in powder concentration resulted in a decrease in cure depth (Cd) and penetration depth (Dp). A narrower pore size distribution was observed in the green bodies with a high solid loading, facilitating the achievement of final densification. The green and sintered densities were highest at 52 vol%, with values of 3.46 ± 0.01 g/cm3 and 6.01 ± 0.02 g/cm3, respectively. Additionally, all of the green strengths exceeded 30 MPa, with a maximum of 35.09 ± 2.02 MPa obtained at 44 vol%. The maximum flexural strength and minimum contrast ratio (CR) value of 746 ± 75 MPa and 0.40 ± 0.01 were achieved at 52 vol% after sintering. No significant differences were observed in the phase composition and hardness of the as-sintered ceramics. Though significant differences were observed in photopolymerization performance, four materials showed similar structural reliability considering Weibull modulus and characteristic strength.
Collapse
Affiliation(s)
- Li Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Hang Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zongdong Hao
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Weizhe Tang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Rui Dou
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
17
|
Lu Y, Wang L, Dal Piva AMO, Tribst JPM, Nedeljkovic I, Kleverlaan CJ, Feilzer AJ. Influence of surface finishing and printing layer orientation on surface roughness and flexural strength of stereolithography-manufactured dental zirconia. J Mech Behav Biomed Mater 2023; 143:105944. [PMID: 37269603 DOI: 10.1016/j.jmbbm.2023.105944] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To evaluate the effect of surface finishing and printing layer orientation on the surface roughness and flexural strength of three-dimensionally (3D) printed 3 mol% yttria-stabilized zirconia manufactured by stereolithography (SLA). METHODS Ninety bar-shaped zirconia specimens (1 mm x 1 mm x 12 mm) were 3D-printed via SLA. After debinding and sintering, they were randomly divided according to the printing layer orientation: parallel (PR) or perpendicular (PD) to the tensile surface for bending test. Each group was submitted to a surface finishing protocol (n=15/group): unpolished (subgroup 0), with polished tensile surface (subgroup 1), and with polished lateral and tensile surfaces (subgroup 3). Roughness of tensile surface was determined using a contact sensor and surface morphology was analyzed under Scanning Electron Microscopy (SEM). Flexural strength, apparent elastic modulus, and Weibull parameters were assessed using a 3-point bending test. Fractured specimens were examined to identify failure origins. Finite element analysis was used to evaluate tensile stress peaks and failure risk. RESULTS PR orientation exhibited higher strength, higher apparent elastic modulus, higher maximum principal stress peaks, and lower failure risk. For both layer orientations, groups with polished lateral and tensile sides (PR3 and PD3) were the strongest. SEM revealed that polishing led to changes in defect type, location, and size. SIGNIFICANCE SLA zirconia shows different mechanical properties according to surface roughness and defects. Orienting the printed layers parallel to the tensile side improves its mechanical performance. Polishing can significantly improve its flexural strength. It is necessary to reduce the final product's surface roughness and large pores for its best performance.
Collapse
Affiliation(s)
- Y Lu
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, the Netherlands
| | - L Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - A M O Dal Piva
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, the Netherlands.
| | - J P M Tribst
- Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands
| | - I Nedeljkovic
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, the Netherlands
| | - C J Kleverlaan
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, the Netherlands
| | - A J Feilzer
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, the Netherlands; Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Celik HK, Koc S, Kustarci A, Caglayan N, Rennie AE. The state of additive manufacturing in dental research - A systematic scoping review of 2012-2022. Heliyon 2023; 9:e17462. [PMID: 37484349 PMCID: PMC10361388 DOI: 10.1016/j.heliyon.2023.e17462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background/purpose Additive manufacturing (AM), also known as 3D printing, has the potential to transform the industry. While there have been advancements in using AM for dental restorations, there is still a need for further research to develop functional biomedical and dental materials. It's crucial to understand the current status of AM technology and research trends to advance dental research in this field. The aim of this study is to reveal the current status of international scientific publications in the field of dental research related to AM technologies. Materials and methods In this study, a systematic scoping review was conducted using appropriate keywords within the scope of international scientific publishing databases (PubMed and Web of Science). The review included related clinical and laboratory research, including both human and animal studies, case reports, review articles, and questionnaire studies. A total of 187 research studies were evaluated for quantitative synthesis in this review. Results The findings highlighted a rising trend in research numbers over the years (From 2012 to 2022). The most publications were produced in 2020 and 2021, with annual percentage increases of 25.7% and 26.2%, respectively. The majority of AM-related publications in dentistry research originate from Korea. The pioneer dental sub-fields with the ost publications in its category are prosthodontics and implantology, respectively. Conclusion The final review result clearly stated an expectation for the future that the research in dentistry would concentrate on AM technologies in order to increase the new product and process development in dental materials, tools, implants and new generation modelling strategy related to AM. The results of this work can be used as indicators of trends related to AM research in dentistry and/or as prospects for future publication expectations in this field.
Collapse
Affiliation(s)
- H. Kursat Celik
- Dept. of Agr. Machinery and Technology Engineering, Akdeniz University, Antalya, 07070, Turkey
| | - Simay Koc
- Dept. of Endodontics, Fac. of Dentistry, Akdeniz University, Antalya, Turkey
| | - Alper Kustarci
- Dept. of Endodontics, Fac. of Dentistry, Akdeniz University, Antalya, Turkey
| | - Nuri Caglayan
- Dept. of Mechatronics, Fac. of Engineering, Akdeniz University, Antalya, Turkey
| | | |
Collapse
|
19
|
Cai H, Xu X, Lu X, Zhao M, Jia Q, Jiang HB, Kwon JS. Dental Materials Applied to 3D and 4D Printing Technologies: A Review. Polymers (Basel) 2023; 15:2405. [PMID: 37242980 PMCID: PMC10224282 DOI: 10.3390/polym15102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
As computer-aided design and computer-aided manufacturing (CAD/CAM) technologies have matured, three-dimensional (3D) printing materials suitable for dentistry have attracted considerable research interest, owing to their high efficiency and low cost for clinical treatment. Three-dimensional printing technology, also known as additive manufacturing, has developed rapidly over the last forty years, with gradual application in various fields from industry to dental sciences. Four-dimensional (4D) printing, defined as the fabrication of complex spontaneous structures that change over time in response to external stimuli in expected ways, includes the increasingly popular bioprinting. Existing 3D printing materials have varied characteristics and scopes of application; therefore, categorization is required. This review aims to classify, summarize, and discuss dental materials for 3D printing and 4D printing from a clinical perspective. Based on these, this review describes four major materials, i.e., polymers, metals, ceramics, and biomaterials. The manufacturing process of 3D printing and 4D printing materials, their characteristics, applicable printing technologies, and clinical application scope are described in detail. Furthermore, the development of composite materials for 3D printing is the main focus of future research, as combining multiple materials can improve the materials' properties. Updates in material sciences play important roles in dentistry; hence, the emergence of newer materials are expected to promote further innovations in dentistry.
Collapse
Affiliation(s)
- HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
| | - Xiaotong Xu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Xinyue Lu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Menghua Zhao
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Qi Jia
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Heng-Bo Jiang
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
| |
Collapse
|
20
|
Sutejo IA, Kim J, Zhang S, Gal CW, Choi YJ, Park H, Yun HS. Fabrication of color-graded feldspathic dental prosthetics for aesthetic and restorative dentistry. Dent Mater 2023:S0109-5641(23)00089-1. [PMID: 37088587 DOI: 10.1016/j.dental.2023.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVE Feasibility investigation of natural teeth shades replication on dental prosthetics fabricated via functionally graded additive manufacturing (FGAM) using combination of feldspathic porcelain (FP) and yttrium aluminum garnet cerium (Y3Al5O12:Ce, YAG:Ce) as a promising esthetic restoration option. METHODS Color-graded feldspathic crown fabrication parameter through FGAM method was comprehensively examined from the slurry rheology, cure depth, debinding to sintering temperature. Effect of light absorbent also checked towards overcuring reaction during UV exposure by the shape comparison. Lastly, the flexural bending strength measured following ISO 6872:2015 to assure the applicability. Applying the studied parameter, natural teeth shades then imitated and investigated by alteration of FP and FP + 0.1 wt% YAG:Ce (Y-FP). Generated color across the structure captured through mobile camera, interpreted through the CIELAB coordinate and the gradation confirmed by the color differences (ΔE00) calculated using CIEDE2000 formula. RESULT Parameter study indicated that 70 wt% of FP slurry with 3 wt% dispersant and 0.2 wt% light absorbent is favored. It produces excellent flowability in our FGAM system with less overcuring justified by edge margin reduction from 95.65° to 90.00° after UV exposure on rectangle shapes masking. The obtain structure also offers adequate flexural bending strength of 106.26 MPa (FP) and 101.36 MPa (Y-FP) after sintering at 780 °C. This validated the materials as class 2 dental prosthetics citing ISO 6872:2015. Color gradation was verified by the yellow b* value reduction (14.8 to -3.33) as it shifted from cervical to incisal area while ΔE00 further affirmed the differences from each segment in comparison with the FP and Y-FP. SIGNIFICANCE Color gradation was successfully replicated by FP and YAG:Ce composition shift via FGAM technique. This result highlights the potential of FGAM as an alternative for fabricating dental prosthetics with high efficiency and improved esthetic appeal.
Collapse
Affiliation(s)
- Imam Akbar Sutejo
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea,; University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jeehwan Kim
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea,; Pusan National University (PNU), Busan, Republic of Korea
| | - Sinuo Zhang
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea,; University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Chang Woo Gal
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Yeong-Jin Choi
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Honghyun Park
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Hui-Suk Yun
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea,; University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
21
|
Denis C, Robberecht L, Delattre J, Deveaux E, Hornez JC, Dehurtevent M. Effect of dimensional variations on the manufacturing process and the 3D shrinkage ratio of stereolithographic dental alumina ceramics. Dent Mater J 2023; 42:79-85. [PMID: 36351601 DOI: 10.4012/dmj.2022-102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of the present study was to evaluate the influence of height and length variations of alumina ceramics manufactured by stereolithography on deformations caused by the manufacturing process and on the 3D shrinkage ratio to control the final dimensions and improve the adaptation of stereolithographic ceramic dental prostheses. Two different U-shaped models were designed with variable heights or lengths. The specimens were manufactured by stereolithography and were scanned using a microtomographic device before and after the heat treatment. Dimensional variations were measured using inspection software. The number and surface of layers of alumina ceramic influenced the reliability of the stereolithography manufacturing but did not influence the 3D shrinkage ratio. The larger the layer surface, the larger the deformation of the ceramic. Dental ceramics manufactured by stereolithography with smallest layer surface are the most reliable. This helps in the selection of the build orientation.
Collapse
Affiliation(s)
- Corentin Denis
- Department of Prosthodontics, Faculty of Dental Surgery, University of Lille.,INSERM U1008 - Controlled Drug Delivery Systems and Biomaterials, School of Medicine, University of Lille
| | - Lieven Robberecht
- INSERM U1008 - Controlled Drug Delivery Systems and Biomaterials, School of Medicine, University of Lille.,Department of Restorative Dentistry, Faculty of Dental Surgery, University of Lille
| | - Jérôme Delattre
- ULR 4490, Marrow Adiposity and Bone Laboratory, University of Lille
| | - Etienne Deveaux
- INSERM U1008 - Controlled Drug Delivery Systems and Biomaterials, School of Medicine, University of Lille.,Department of Restorative Dentistry, Faculty of Dental Surgery, University of Lille
| | - Jean-Christophe Hornez
- Laboratory of Ceramic Materials and Associated Processes, Université Polytechnique des Hauts de France
| | - Marion Dehurtevent
- Department of Prosthodontics, Faculty of Dental Surgery, University of Lille.,INSERM U1008 - Controlled Drug Delivery Systems and Biomaterials, School of Medicine, University of Lille
| |
Collapse
|
22
|
Hinojo A, Lujan E, Nel-lo M, Abella J, Colominas S. Potentiometric Hydrogen Sensor with 3D-Printed BaCe 0.6Zr 0.3Y 0.1O 3-α Electrolyte for High-Temperature Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:9707. [PMID: 36560077 PMCID: PMC9785787 DOI: 10.3390/s22249707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen is expected to play an important role in the near future in the transition to a net-zero economy. Therefore, the development of new in situ and real-time analytical tools able to quantify hydrogen at high temperatures is required for future applications. Potentiometric sensors based on perovskite-structured solid-state electrolytes can be a good option for H2 monitoring. Nevertheless, the geometry of the sensor should be designed according to the specific necessities of each technological field. Conventional shaping processes need several iterations of green shaping and machining to achieve a good result. In contrast, 3D printing methods stand out from conventional ones since they simplify the creation of prototypes, reducing the cost and the number of iterations needed for the obtainment of the final design. In the present work, BaCe0.6Zr0.3Y0.1O3-α (BCZY) was used as a proton-conducting electrolyte for potentiometric sensors construction. Two different shapes were tested for the sensors' electrolyte: pellets (BCZY-Pellet) and crucibles (BCZY-Crucible). Ceramics were shaped using extrusion-based 3D printing. Finally, parameters, such as sensitivity, response time, recovery time and the limit of detection and accuracy, were evaluated for both types of sensors (BCZY-Pellet and BCZY-Crucible) at 500 °C.
Collapse
Affiliation(s)
| | | | | | | | - Sergi Colominas
- Electrochemical Methods Laboratory—Analytical and Applied Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| |
Collapse
|
23
|
Marsico C, Carpenter I, Kutsch J, Fehrenbacher L, Arola D. Additive manufacturing of lithium disilicate glass-ceramic by vat polymerization for dental appliances. Dent Mater 2022; 38:2030-2040. [PMID: 36424203 PMCID: PMC9722593 DOI: 10.1016/j.dental.2022.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The objectives of this study were to evaluate the mechanical properties of lithium disilicate components produced by additive manufacturing (AM) and to assess the effect of build orientation on the resistance to fracture. METHODS Oversized bars were printed with a glass-filled photoactive resin using a digital light processing technique. After sintering and post-processing, flexure and chevron notch fracture toughness bars were obtained in three principal orientations (0°, 45°, and 90°) with respect to the build direction. Mechanical properties were obtained according to the relevant ASTM standards. The hardness, indentation fracture resistance, and elastic modulus were measured for each orientation, and a Weibull analysis was conducted with the flexure responses. Fractography of the fracture surfaces was performed to identify the failure origins. RESULTS The 0° orientation exhibited characteristic strength, Weibull modulus, and elastic modulus of 313 MPa, 4.42, and 168 ± 3 GPa, respectively, which are comparable to lithium disilicate materials from traditional processes. However, build orientation contributed significantly to the flexure strength, elastic modulus, and Weibull modulus; the characteristic strengths for the 45° and 90° build orientations were 86 MPa and 177 MPa, respectively. The primary contribution to the orientation dependence was the number of residual build layer-related flaws from incomplete union between printed layers. Of note, hardness and the fracture toughness were not dependent on build orientation. SIGNIFICANCE AM of lithium disilicate materials can achieve the mechanical properties of materials produced by traditionally processing. Thus, while further process development is warranted, the outlook for dentistry is promising.
Collapse
Affiliation(s)
- Carli Marsico
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Izabela Carpenter
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Jeff Kutsch
- Technology Assessment & Transfer, Inc., Millersville, MD, USA
| | | | - Dwayne Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA; Department of Oral Health Science, School of Dentistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Al Wadei MHD, Sayed ME, Jain S, Aggarwal A, Alqarni H, Gupta SG, Alqahtani SM, Alahmari NM, Alshehri AH, Jain M, Ageeli AA, AlResayes SS, Alghamdi S, Alnajdi AK, Gharawi MM. Marginal Adaptation and Internal Fit of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM-Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis. COATINGS 2022; 12:1777. [DOI: 10.3390/coatings12111777] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The aim of this systematic review was to evaluate the marginal fit and internal adaptation of provisional crowns and fixed dental prostheses (FDPs) fabricated using 3D-printing resins and compared them with those fabricated by CAD/CAM (computer-aided designing/computer-aided manufacturing) milling and conventional resins. The null hypotheses tested were that there would be no differences in the marginal fit and internal adaptation of 3D-printed provisional crowns and FDP resins when compared to CAD/CAM-milled and conventional provisional resins. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to construct this systematic review. The focused PICO/PECO (Population, Intervention/Exposure, Comparison, Outcome) question was “Do provisional crowns and FDPs (P) fabricated by 3D-printing (I) have similar marginal adaptation and internal fit (O) when compared to those fabricated by CAD/CAM milling and conventional techniques (C)?”. The protocol used for this systematic review was pre-registered in the International Prospective Register of Systematic Reviews (PROSPERO). Electronic databases (e.g., MEDLINE/PubMed and Web of Science (Core Collection)) were systematically searched for indexed English literature published up to June 2022. In the initial electronic search of the selected databases, 519 articles were identified. Duplicates were removed, and screening was performed to select the articles that met the preset inclusion criteria. Sixteen studies were selected for qualitative analysis, but only ten of them provided comparative data and were selected for quantitative analysis. The modified CONSORT scale was used for qualitative analysis, and most of the included studies were rated to be of moderate quality. Based on the findings, it could be concluded that provisional crowns and FDPs fabricated from 3D-printing resins have a superior marginal fit and internal adaptation when compared to CAD/CAM-milled and conventional provisional resins; thus, they can be used as a dependable alternative to other resins.
Collapse
Affiliation(s)
| | - Mohammed E. Sayed
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
- Rutgers School of Dental Medicine, Rutgers University, Newark, NJ 07103, USA
| | - Saurabh Jain
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Hatem Alqarni
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Shilpi Gilra Gupta
- Department of Prosthodontics, Government College of Dentistry, Indore 452001, India
| | - Saeed M. Alqahtani
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Nasser M. Alahmari
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdullah Hasan Alshehri
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Meena Jain
- Department of Public Health Dentistry, Manav Rachna Dental College, Faculty of Dental Sciences, Manav Rachna International Institute of Research and Studies, Faridabad 121004, India
| | - Abrar A. Ageeli
- Specialty Dental Center, Ministry of Health, Jazan 45142, Saudi Arabia
| | - Saad Saleh AlResayes
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 12372, Saudi Arabia
| | - Samar Alghamdi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | | | - Mafaz M. Gharawi
- College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
25
|
Tosto C, Bragaglia M, Nanni F, Recca G, Cicala G. Fused Filament Fabrication of Alumina/Polymer Filaments for Obtaining Ceramic Parts after Debinding and Sintering Processes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7399. [PMID: 36295462 PMCID: PMC9607584 DOI: 10.3390/ma15207399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this paper, a hybrid commercially available alumina/polymer filament was 3D printed and thermally treated (debinding and sintering) to obtain ceramic parts. Microscopic and spectroscopic analysis was used to thoroughly characterize the green and sintered parts in terms of their mesostructured, as well as their flexural properties. The sintered samples show an α alumina crystalline phase with a mean density of 3.80 g/cm3, a tensile strength of 232.6 ± 12.3 MPa, and a Vickers hardness of 21 ± 0.7 GPa. The mean thermal conductivity value at room temperature was equal to 21.52 ± 0.02 W/(mK). The values obtained through FFF production are lower than those obtained by conventional processes as the 3D-printed samples exhibited imperfect interlayer bonding and voids similar to those found in the structures of polymeric FFFs. Nonetheless, the highly filled ceramic filament is suitable for use in affordable and easy-to-operate FFF machines, as shown by the cost analysis of a real printed and sintered FFF part.
Collapse
Affiliation(s)
- Claudio Tosto
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Mario Bragaglia
- Department of Enterprise Engineering “Mario Lucertini”, University of Rome “Tor Vergata”, INSTM RU Roma—Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Francesca Nanni
- Department of Enterprise Engineering “Mario Lucertini”, University of Rome “Tor Vergata”, INSTM RU Roma—Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Giuseppe Recca
- Institute for Polymers, Composites and Biomaterials, IPCB-CNR, Via Gaifami 18, 95126 Catania, Italy
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
26
|
Wu H, Liu W, Lin L, Chen Y, Xu Y, Wu S, Sun Z, An D, Wei S, Xie Z. Realization of complex-shaped and high-performance alumina ceramic cutting tools via Vat photopolymerization based 3D printing: A novel surface modification strategy through coupling agents aluminic acid ester and silane coupling agent. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
27
|
Ma Q, Ding Q, Zhang L, Sun Y, Xie Q. Surface characteristics and flexural strength of Porous-Surface designed zirconia manufactured via stereolithography. J Prosthodont 2022; 32:e81-e89. [PMID: 35778958 DOI: 10.1111/jopr.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/17/2022] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To design and fabricate zirconia bars with porous surfaces using stereolithography and evaluate their surface characteristics and flexural strengths. METHODS Five groups of zirconia bars (20 mm × 4 mm × 2 mm) with interconnected porous surfaces were designed and manufactured: (i) 400-μm pore size and 50% porosity (D400-P50 group), (ii) 400-μm pore size and 30% porosity (D400-P30 group), (iii) 200-μm pore size and 50% porosity (D200-P50 group), (iv) 200-μm pore size and 30% porosity (D200-P30 group), and (v) 100-μm pore size and 30% porosity (D100-P30 group). Zirconia bars without a porous surface (NP) were used as controls. The surface topographies and pore structures were investigated using scanning electron microscopy and three-dimensional laser microscopy. The printed porosity was calculated using the Archimedes method. Fifteen specimens from each group were subjected to a three-point bending test according to the ISO 6872:2015 standard. A Weibull analysis was performed, and the fractured surfaces were examined using scanning electron microscopy. RESULTS Zirconia bars with porous surfaces were designed and successfully manufactured. The designed pore size, porosity, and shape of the printed pores were approximately achieved for all the porous surfaces. The flexural strength of the control group was significantly higher than those of the groups with porous surfaces (p < 0.001). For the same porosity, groups with a pore size of 400 μm exhibited a lower flexural strength than the other groups (p<0.001). Additionally, for the same pore-size design, the flexural strengths of group D400-P50 and D400-P30 exhibited no significant differences (p = 0.150), while the flexural strengths of D200-P30 were significantly higher than that of D200-P50 group (p = 0.043). The control group and D400-P50 group had higher Weibull moduli than the other groups. The fractography of the specimens with porous surfaces indicated more than one crack origin, mainly owing to defects, including pores and cracks. CONCLUSION Zirconia bars with porous surfaces were successfully designed and fabricated using the stereolithography technique. Although porous surfaces may be advantageous for osteogenesis, the porous-surface design can reduce the flexural strength of the printed zirconia bars. By reducing the pore size, controlling the porosity, and improving the printing accuracy, a higher strength can be achieved. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Quanquan Ma
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qian Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.,Foshan (Southern China) Institute for New Materials, Guangdong, China
| | - Lei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yuchun Sun
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Research Center of Engineering and Technology for Digital Dentistry, Beijing, China
| | - Qiufei Xie
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
28
|
Al Hamad KQ, Al-Rashdan BA, Ayyad JQ, Al Omrani LM, Sharoh AM, Al Nimri AM, Al-Kaff FT. Additive Manufacturing of Dental Ceramics: A Systematic Review and Meta-Analysis. J Prosthodont 2022; 31:e67-e86. [PMID: 35675133 DOI: 10.1111/jopr.13553] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/29/2022] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The purpose of this systematic review and meta-analysis was to evaluate the effect of using additive manufacturing (AM) for dental ceramic fabrication in comparison with subtractive manufacturing (SM), and to evaluate the effect of the type of AM technology on dental ceramic fabrication. MATERIALS AND METHODS A search was conducted electronically in MEDLINE (via PubMed), EBSCOhost, Scopus, and Cochran Library databases, and also by other methods (table of contents screening, backward and forward citations, and grey literature search) up to February 12, 2022, to identify records evaluating additive manufacturing of ceramics for dental purposes in comparison with subtractive manufacturing. A minimum of 2 review authors conducted tstudy selection, quality assessment, and data extraction. Quality assessment was performed with Joanna Briggs Institute tool, and the quantitative synthesis was performed with the Comprehensive Meta-Analysis program (CMA, Biostat Inc). Hedges's g for effect size was calculated, with 0.2 as small, 0.5 as medium, and 0.8 as large. Heterogeneity was assessed with I2 and prediction interval (PI) statistics. Publication bias was investigated with funnel plots and grey literature search. Certainty of evidence was assessed with the Grading of Recommendations: Assessment, Development, and Evaluation (GRADE) tool. RESULTS A total of 28 studies were included for the qualitative and quantitative synthesis; 11 in vitro studies on accuracy, 1 in vivo study on color, and 16 in vitro studies on physical and mechanical properties. Meta-analysis showed overall higher accuracy for SM compared with AM, with medium effect size (0.679, CI: 0.173 to 1.185, p = 0.009) and also for marginal (g = 1.05, CI: 0.344 to 1.760, p = 0.004), occlusal (g = 2.24, CI: 0.718 to 3.766, p = 0.004), and total (g = 4.544, CI: -0.234 to 9.323, p = 0.062) with large effect size; whereas AM had higher accuracy than SM with small effect size for the external (g = -0.238, CI: -1.215 to 0.739), p = 0.633), and internal (g = -0.403, CI: -1.273 to 0.467, p = 0.364) surfaces. For technology, self-glazed zirconia protocol had the smallest effect size (g = -0.049, CI: -0.878 to 0.78, p = 0.907), followed by stereolithography (g = 0.305, CI: -0.289 to 0.9, p = 0.314), and digital light processing (g = 1.819, CI: 0.662 to 2.976, p = 0.002) technologies. Flexural strength was higher for ceramics made by SM in comparison to AM with large effect size (g = -2.868, CI: -4.371 to -1.365, p < 0.001). Only 1 study reported on color, favoring ceramics made through combined AM and SM. CONCLUSIONS Subtractive manufacturing had better overall accuracy, particularly for the marginal and occlusal areas, higher flexural strength, and more favorable hardness, fracture toughness, porosity, fatigue, and volumetric shrinkage; whereas AM had more favorable elastic modulus and wettability. Both methods had favorable biocompatibility. All studies on accuracy and mechanical properties were in vitro, with high heterogeneity and low to very low certainty of evidence. There is a lack of studies on color match and esthetics.
Collapse
Affiliation(s)
- Khaled Q Al Hamad
- Department of Prosthodontics, Jordan University of Science & Technology, Irbid, Jordan
| | | | - Jad Q Ayyad
- Department of Prosthodontics, Jordan University of Science & Technology, Irbid, Jordan
| | - Leen M Al Omrani
- Department of Prosthodontics, Jordan University of Science & Technology, Irbid, Jordan
| | - Ayat M Sharoh
- Department of Prosthodontics, Jordan University of Science & Technology, Irbid, Jordan
| | - Adnan M Al Nimri
- Department of Prosthodontics, Jordan University of Science & Technology, Irbid, Jordan
| | - Fatma T Al-Kaff
- Department of Prosthodontics, Jordan University of Science & Technology, Irbid, Jordan
| |
Collapse
|
29
|
Bao Y. Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing. Macromol Rapid Commun 2022; 43:e2200202. [PMID: 35579565 DOI: 10.1002/marc.202200202] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/11/2022]
Abstract
3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attracted considerable attention owing to their superior print resolution, relatively high speed, low cost and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems can not only offer faster 3D printing speed and enable low-energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, 8093, Switzerland
| |
Collapse
|
30
|
Zandinejad A, Khanlar LN, Barmak AB, Tagami J, Revilla-León M. Surface Roughness and Bond Strength of Resin Composite to Additively Manufactured Zirconia with Different Porosities. J Prosthodont 2022; 31:97-104. [PMID: 35313023 DOI: 10.1111/jopr.13434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To investigate the bond strength of resin cement to additively manufactured (AM) zirconia with different porosities when compared to milled zirconia. MATERIALS AND METHODS A 12 × 5 mm disk virtual design file was used to fabricate a total of 48 disks divided into 4 groups: 3 groups were AM with different porosities including 0%-porosity (AMZ0 group), 20%-porosity (AMZ20 group), and 40%-porosity (AMZ40 group), and 1 milled zirconia (control or CNCZ group). The dimensions of all specimens were measured using a digital caliper. A 3D- confocal laser scanner was used to analyze surface morphology and measure the surface roughness (Sa), followed by SEM analysis. Tensile bond strength of composite resin cement to specimens was measured before and after aging procedures using a universal testing machine (n = 10). Failure modes were evaluated under a light microscope. Volumetric change data was analyzed using one-way ANOVA, and two-way ANOVA was used to compare bond strength values (α = 0.05). RESULTS There was a significant difference in volumetric changes among the groups. The CNCZ group showed the least changes in diameter 0.027 ± 0.029 mm and thickness 0.030 ± 0.012 mm and AM zirconia with 40% porosity showed the most volumetric changes in diameter 5.237 ± 0.023 mm. ANOVA test indicated an overall significant difference in surface roughness across all groups (F = 242.6, p < 0.001). The CNCZ group showed the highest mean Sa of 1.649 ± 0.240 µm, followed by AMZ40 group with Sa of 0.830 ± 0.063 µm, AMZ20 group with Sa of 0.780 ± 0.070 µm, and the AMZ0 group with Sa of 0.612 ± 0.063 µm. Two-way ANOVA showed significant difference in bond strength between the CNCZ group 12.109 ± 3.223 MPa and the AMZ0 group 8.629 ± 0.914 MPa, with significant pretest failures in specimens with porosities. Thermal cycling methods reduced the bond strength non-significantly in CNCZ group with no effect in the AMZ0 group. CONCLUSION Milled zirconia had a higher surface roughness and bond strength to composite resin cement than AM zirconia, and porosities in AM zirconia decreased the bond strength with significant pretest failures.
Collapse
Affiliation(s)
- Amirali Zandinejad
- Department of comprehensive dentistry, College of Dentistry, Texas A&M University, Dallas, TX
| | - Leila Nasiry Khanlar
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Abdul Basir Barmak
- Department of comprehensive dentistry, EIOH Medical Center, University of Rochester, Rochester, NY
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marta Revilla-León
- Department of comprehensive dentistry, School of Dentistry, University of Washington, Seattle, WA.,Department of comprehensive dentistry, Revilla Research Center, Madrid, Spain
| |
Collapse
|
31
|
Li B, Zhang M, Lu Q, Zhang B, Miao Z, Li L, Zheng T, Liu P. Application and Development of Modern 3D Printing Technology in the Field of Orthopedics. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8759060. [PMID: 35211626 PMCID: PMC8863440 DOI: 10.1155/2022/8759060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022]
Abstract
3D printing, also known as additive manufacturing, is a technology that uses a variety of adhesive materials such as powdered metal or plastic to construct objects based on digital models. Recently, 3D printing technology has been combined with digital medicine, materials science, cytology, and other multidisciplinary fields, especially in the field of orthopedic built-in objects. The development of advanced 3D printing materials continues to meet the needs of clinical precision medicine and customize the most suitable prosthesis for everyone to improve service life and satisfaction. This article introduces the development of 3D printing technology and different types of materials. We also discuss the shortcomings of 3D printing technology and the current challenges, including the poor bionics of 3D printing products, lack of ideal bioinks, product safety, and lack of market supervision. We also prospect the future development trends of 3D printing.
Collapse
Affiliation(s)
- Binglong Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
- Shandong University Cheeloo College of Medicine, Jinan, 250100 Shandong, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
| | - Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Baoqing Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Zhuang Miao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Lei Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Tong Zheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Peilai Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| |
Collapse
|
32
|
Won S, Ko KH, Park CJ, Cho LR, Huh YH. Effect of barium silicate filler content on mechanical properties of resin nanoceramics for additive manufacturing. J Adv Prosthodont 2022; 14:315-323. [DOI: 10.4047/jap.2022.14.5.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sun Won
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Kyung-Ho Ko
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Chan-Jin Park
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Lee-Ra Cho
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yoon-Hyuk Huh
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
33
|
Bandyopadhyay A, Bose S, Narayan R. Translation of 3D printed materials for medical applications. MRS BULLETIN 2022; 47:39-48. [PMID: 35814311 PMCID: PMC9267199 DOI: 10.1557/s43577-021-00258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 06/02/2023]
Abstract
During the past 30 years, 3D printing (3DP) technologies significantly influenced the manufacturing world, including innovation in biomedical devices. This special issue reviews recent advances in translating 3DP biomaterials and medical devices for metallic, ceramic, and polymeric devices, as well as bioprinting for organ and tissue engineering, along with regulatory issues in 3DP biomaterials. In our introductory article, besides introducing selected 3DP processes for biomaterials, current challenges and growth opportunities are also discussed. Finally, it highlights a few success stories for the 3D printed biomaterials for medical devices. We hope these articles will educate engineers, scientists, and clinicians about recent developments in translational 3DP technologies.
Collapse
|
34
|
de Camargo IL, Erbereli R, Fortulan CA. Additive manufacturing of electrofused mullite slurry by digital light processing. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Zandinejad A, Revilla-León M, Methani MM, Nasiry Khanlar L, Morton D. The Fracture Resistance of Additively Manufactured Monolithic Zirconia vs. Bi-Layered Alumina Toughened Zirconia Crowns When Cemented to Zirconia Abutments. Evaluating the Potential of 3D Printing of Ceramic Crowns: An In Vitro Study. Dent J (Basel) 2021; 9:115. [PMID: 34677177 PMCID: PMC8535066 DOI: 10.3390/dj9100115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
(1) Background: This study compared the fracture resistance of additively manufactured monolithic zirconia and bi-layered alumina toughened zirconia crowns on implants. (2) Methods: Maxillary model with a dental implant replacing right second bicuspid was obtained. Custom abutments and full-contour crowns for additively manufactured monolithic zirconia and bi-layered alumina reinforced zirconia crowns (n = 10) were fabricated. The crowns were cemented to implant-supported zirconia abutments and the assembly fixed onto resin blocks. Fracture resistance was measured using a universal testing machine at a crosshead speed of 2 mm/min. A Kruskal-Wallis test was used to analyze the data. (3) Results: Although additively manufactured monolithic zirconia crowns demonstrated a higher mean fracture resistance than bi-layered alumina toughened zirconia crowns, statistical analysis revealed no significant difference in fracture resistance between the two groups. All specimens fractured at the implant-abutment interface. (4) Conclusions: Additively manufactured bi-layered alumina toughened zirconia crowns demonstrated similar fracture resistance to additively manufactured monolithic zirconia crowns when cemented to implant-supported zirconia abutments.
Collapse
Affiliation(s)
- Amirali Zandinejad
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Marta Revilla-León
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Mohammad Mujtaba Methani
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Leila Nasiry Khanlar
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Bunkyo-ku Yushima, Tokyo 113-8510, Japan;
| | - Dean Morton
- Department of Prosthodontics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
| |
Collapse
|
36
|
Yang B, Wang S, Wang G, Yang X. Mechanical properties and wear behaviors analysis of fluorapatite glass-ceramics based on stereolithography 3D printing. J Mech Behav Biomed Mater 2021; 124:104859. [PMID: 34607301 DOI: 10.1016/j.jmbbm.2021.104859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Stereolithography (SL) 3D printing of ceramic materials is a promising forming technology to prepare denture with complex shape in the dental field. But the SL formed parts often have inferior mechanical properties than traditional forming method, and the debinding process is time assuming, limiting the clinical application of the technology. In this paper, a novel fluorapatite (FAp) glass-ceramics samples were fabricated through SL 3D printing based on self-made glass-ceramic powders. The effect of laser power and scanning speed on mechanical properties and tribological properties of FAp glass-ceramics were investigated. Phase compositions and microstructure of specimens were characterized by X-ray diffractometer and scanning electron microscope. The microhardness, flexural strength, elastic modulus and tribological performances of the SL samples were tested and compared with that of traditional dry pressing formed samples. The results showed that with the appropriate laser parameters and a relatively short debinding time, the SL formed glass-ceramics had microhardness, flexural strength, and elastic modulus of 772.05 Hv, 205.97 MPa, and 97.06 GPa, respectively, which exceeded that of traditional formed samples. The results reveal that it is possible to efficiently obtain FAp glass-ceramics with excellent mechanical and tribological performance by SL 3D printing process with appropriate parameters.
Collapse
Affiliation(s)
- Bingbing Yang
- School of Mechanical Engineering, University of Jinan, Jinan, 250022, China
| | - Shouren Wang
- School of Mechanical Engineering, University of Jinan, Jinan, 250022, China.
| | - Gaoqi Wang
- School of Mechanical Engineering, University of Jinan, Jinan, 250022, China.
| | - Xuefeng Yang
- School of Mechanical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
37
|
Zandinejad A, Das O, Barmak AB, Kuttolamadom M, Revilla-León M. The Flexural Strength and Flexural Modulus of Stereolithography Additively Manufactured Zirconia with Different Porosities. J Prosthodont 2021; 31:434-440. [PMID: 34580962 DOI: 10.1111/jopr.13430] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Additive manufacturing (AM) technologies are capable of fabricating complex geometries with different porosities. However, the effect of such porosities on mechanical properties of stereolithography (SLA) AM zirconia with different porosities is unclear. The purpose of this in vitro study was to investigate the mechanical properties namely flexural strength, and flexural modulus of AM zirconia with different porosities. MATERIALS AND METHODS A bar (25 × 4 × 3 mm) for flexural strength test (ISO standard 6872/2015) was designed by CAD software program and standard tessellation language (STL) file was obtained. The STL file was used to fabricate a total of 80 bars in four groups. Three experimental groups each containing 20 samples were manufactured using an SLA ceramic printer (CeraMaker 900; 3DCeram Co) and zirconia material (3DMix ZrO2 paste; 3DCeram Co) with different sintering post processing to achieve different porosities including 0%-porosity (AMZ0), 20%-porosity (AMZ20), and 40%-porosity (AMZ40). The same STL file was used for subtractive manufacturing or milling of 20 zirconia bars as control group (CNCZ) with the same dimensions using a commercial zirconia. Three-point bending tests were performed for all groups following ISO standard 6872/2015 specification using a universal testing machine. Outcomes measured included load at fracture, mean flexural strength, and flexural modulus and they were compared across the experimental groups using a one-way ANOVA. Post hoc pair wise comparison between each pair of the groups were performed using Tukey test. RESULTS There was a significant difference between the four groups, in terms of fracture load, flexural strength and flexural modulus using one-way ANOVA. AM zirconia with 0% porosity (AMZ0) showed the highest value for fracture load (1132.7 ± 220.6 N), flexural strength (755.1 ± 147.1 MPa) and flexural modulus (41,273 ± 2193 MPa) and AM zirconia with 40% porosity (AMZ40) showed the lowest fracture load (72.13 ± 13.42 N), flexural strength (48.09 ± 8.95 MPa) and flexural modulus (7177 ± 506 MPa). Tukey's pairwise comparisons detected a significant difference between all the possible pairs for all variables except flexural modulus between AMZ0 and CNCZ. The Weibull moduli presented the lowest value for AMZ20 (4.4) followed by AMZ40 (6.1), AMZ0 (6.1), and the highest value was for CNCZ (8.1). CONCLUSION AM zirconia with 0% porosity showed significantly higher flexural strength and flexural modulus when compared to milled and AM zirconia with 20% and 40% porosities.
Collapse
Affiliation(s)
| | - Omprakash Das
- College of Engineering, Texas A&M University, College Station, TX
| | | | | | - Marta Revilla-León
- College of Dentistry, Texas A&M University, Dallas, TX.,School of Dentistry, University of Washington, Seattle, WA.,Revilla Research Center, Madrid, Spain
| |
Collapse
|
38
|
Lerner H, Nagy K, Pranno N, Zarone F, Admakin O, Mangano F. Trueness and precision of 3D-printed versus milled monolithic zirconia crowns: An in vitro study. J Dent 2021; 113:103792. [PMID: 34481929 DOI: 10.1016/j.jdent.2021.103792] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To compare the trueness and precision of 3D-printed versus milled monolithic zirconia crowns (MZCs). METHODS A model of a maxilla with a prepared premolar was scanned with an industrial scanner (ATOSQ®, Gom) and an MZC was designed in computer-assisted-design (CAD) software (DentalCad®, Exocad). From that standard tessellation language (STL) file, 10 MZCs (test) were 3D-printed with a Lithography-based Ceramic Manufacturing (LCM) printer (CerafabS65®, Lithoz) and 10 MZCs (control) were milled using a 5-axis machine (DWX-52D®, DGShape). All MZCs were sintered and scanned with the aforementioned scanner. The surface data of each sample (overall crown, marginal area, occlusal surface) were superimposed to the original CAD file (ControlX®, Geomagic) to evaluate trueness: (90-10)/2, absolute average (ABS AVG) and root mean square (RMS) values were obtained for test and control groups (MathLab®, Mathworks) and used for analysis. Finally, the clinical precision (marginal adaptation, interproximal contacts) of test and control MZCs was investigated on a split-cast model printed (Solflex350®, Voco) from the CAD project, and compared. RESULTS The milled MZCs had a significantly higher trueness than the 3D-printed ones, overall [(90-10)/2 printed 37.8 µm vs milled 21.2 µm; ABS AVG printed 27.2 µm vs milled 15.1 µm; RMS printed 33.2 µm vs milled 20.5 µm; p = 0.000005], at the margins [(90-10)/2 printed 25.6 µm vs milled 12.4 µm; ABS AVG printed 17.8 µm vs milled 9.4 µm; RMS printed 22.8 µm vs milled 15.6 µm; p= 0.000011] and at the occlusal level [(90-10)/2 printed 50.4 µm vs milled 21.9 µm; ABS AVG printed 29.6 µm vs milled 14.7 µm; RMS printed 38.9 µm vs milled 22.5 µm; p = 0.000005]. However, with regard to precision, both test and control groups scored highly, with no significant difference either in the quality of interproximal contact points (p = 0.355) or marginal closure (p = 0.355). CONCLUSIONS Milled MZCs had a statistically higher trueness than 3D-printed ones; all crowns, however, showed high precision, compatible with the clinical use. CLINICAL SIGNIFICANCE Although milled MZCs remain more accurate than 3D-printed ones, the LCM technique seems able to guarantee the production of clinically precise zirconia crowns.
Collapse
Affiliation(s)
- Henriette Lerner
- Department of Oral Surgery, University of Szeged, Szeged, Hungary.
| | - Katalin Nagy
- Department of Oral Surgery, University of Szeged, Szeged, Hungary.
| | - Nicola Pranno
- Department of Oral and Maxillofacial Sciences, Sapienza University, Rome, Italy.
| | - Fernando Zarone
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Naples, Italy.
| | - Oleg Admakin
- Department of Pediatric, Preventive Dentistry and Orthodontics, Sechenov First State Medical University, Moscow, Russia.
| | - Francesco Mangano
- Department of Pediatric, Preventive Dentistry and Orthodontics, Sechenov First State Medical University, Moscow, Russia.
| |
Collapse
|
39
|
Additively Manufactured Zirconia for Dental Applications. MATERIALS 2021; 14:ma14133694. [PMID: 34279264 PMCID: PMC8269801 DOI: 10.3390/ma14133694] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
We aimed to assess the crystallography, microstructure and flexural strength of zirconia-based ceramics made by stereolithography (SLA). Two additively manufactured 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP: LithaCon 3Y 230, Lithoz; 3D Mix zirconia, 3DCeram Sinto) and one alumina-toughened zirconia (ATZ: 3D Mix ATZ, 3DCeram Sinto) were compared to subtractively manufactured 3Y-TZP (control: LAVA Plus, 3M Oral Care). Crystallographic analysis was conducted by X-ray diffraction. Top surfaces and cross-sections of the subsurface microstructure were characterized using scanning electron microscopy (SEM). Biaxial flexural strength was statistically compared using Weibull analysis. The additively and subtractively manufactured zirconia grades revealed a similar phase composition. The residual porosity of the SLA 3Y-TZPs and ATZ was comparable to that of subtractively manufactured 3Y-TZP. Weibull analysis revealed that the additively manufactured LithaCon 3Y 230 (Lithoz) had a significantly lower biaxial flexural strength than 3D Mix ATZ (3D Ceram Sinto). The biaxial flexural strength of the subtractively manufactured LAVA Plus (3M Oral Care) was in between those of the additively manufactured 3Y-TZPs, with the additively manufactured ATZ significantly outperforming the subtractively manufactured 3Y-TZP. Additively manufactured 3Y-TZP showed comparable crystallography, microstructure and flexural strength as the subtractively manufactured zirconia, thus potentially being a good option for dental implants.
Collapse
|
40
|
Sodeyama MK, Ikeda H, Nagamatsu Y, Masaki C, Hosokawa R, Shimizu H. Printable PICN Composite Mechanically Compatible with Human Teeth. J Dent Res 2021; 100:1475-1481. [PMID: 33978514 DOI: 10.1177/00220345211012930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymer-infiltrated ceramic network (PICN) composites are mechanically compatible with human enamel, and are therefore promising dental restorative materials. Fabrication technology for PICN composites used in tooth restorative material has been established through computer-aided design/computer-aided manufacturing (CAD/CAM) milling, however, to date, has not been successfully developed using 3-dimensional (3D) printing. This study aimed to develop a 3D-printable PICN composite as a restorative material. The PICN composite was fabricated using a specific method based on 3D printing. A 3D-printable precursor slurry containing a high concentration of silica nanoparticles was produced and 3D-printed using stereolithography (SLA). The 3D-printed object was sintered to obtain a nano-porous object, and subsequently infiltrated and polymerized with resin monomer. Three different fabrication condition combinations were used to produce the 3D-printed PICN composites, which were characterized based on microstructure, mechanical properties, inorganic content, physicochemical properties, and overall shrinkage. The 3D-printed PICN composites were also compared to 2 commercially available CAD/CAM composite blocks, namely a PICN composite and a dispersed-filler composite. The 3D-printed PICN composites exhibited a nano-sized dual-network structure comprising a silica skeleton with infiltrated resin. The 3D-printed PICN composite exhibited a similar Vickers hardness to enamel, and a similar elastic modulus to dentin. The 3D-printed PICN composite exhibited comparable flexural strength (>100 MPa) to the CAD/CAM block, and acceptable water sorption and solubility for practical use. Further, the 3D-printed model-crown underwent isotropic shrinkage during sintering without fatal deformation. Overall, the potential of this 3D-printable PICN composite as a restorative material with similar mechanical properties to human teeth was successfully demonstrated.
Collapse
Affiliation(s)
- M K Sodeyama
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - H Ikeda
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Y Nagamatsu
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - C Masaki
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - R Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - H Shimizu
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
41
|
Alazzawi MK, Beyoglu B, Maniaci FF, Haber RA. Degree of dispersion assessments of highly filled stereolithography suspension using fineness of grind measurement. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.12.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Khorsandi D, Fahimipour A, Abasian P, Saber SS, Seyedi M, Ghanavati S, Ahmad A, De Stephanis AA, Taghavinezhaddilami F, Leonova A, Mohammadinejad R, Shabani M, Mazzolai B, Mattoli V, Tay FR, Makvandi P. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater 2021; 122:26-49. [PMID: 33359299 DOI: 10.1016/j.actbio.2020.12.044] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
3D and 4D printing are cutting-edge technologies for precise and expedited manufacturing of objects ranging from plastic to metal. Recent advances in 3D and 4D printing technologies in dentistry and maxillofacial surgery enable dentists to custom design and print surgical drill guides, temporary and permanent crowns and bridges, orthodontic appliances and orthotics, implants, mouthguards for drug delivery. In the present review, different 3D printing technologies available for use in dentistry are highlighted together with a critique on the materials available for printing. Recent reports of the application of these printed platformed are highlighted to enable readers appreciate the progress in 3D/4D printing in dentistry.
Collapse
|
43
|
Determination of Hardness and Fracture Toughness of Y-TZP Manufactured by Digital Light Processing through the Indentation Technique. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6612840. [PMID: 33628793 PMCID: PMC7896846 DOI: 10.1155/2021/6612840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 02/05/2023]
Abstract
Objective The purpose of the study was to determine the hardness and fracture toughness of dental yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) manufactured by digital light processing (DLP) technology to study its clinical prospects. Methods The experimental group was DLP-manufactured zirconia, and the control group was milled zirconia. The hardness was investigated under a range of test loads (0.49 N, 0.98 N, 1.96 N, 4.90 N, 9.81 N, 29.42 N, 49.03 N, 98.07 N, and 196.1 N). Meyer's law was applied to describe the indentation size effect (ISE). Meanwhile, the PSR model and MPSR model were utilized to generate true hardness values. The cracks were observed to be induced by indentation under loads above 49.03 N, while the cracks showed the radial-median type under the load of 196.1 N, under which the fracture toughness was calculated. Results The true hardness of DLP-manufactured zirconia was 1189 HV based on the PSR model and 1193 HV based on the MPSR model, a bit lower than that of milled zirconia. The fracture toughness was 3.43 ± 0.29 MPa√m, which showed no statistical difference with the milled zirconia. Conclusion The dental zirconia manufactured by the DLP 3D printing technique is similar to that manufactured by the conventional milling process in hardness and fracture toughness, thus having a promising future of clinical use.
Collapse
|
44
|
Revilla-León M, Mostafavi D, Methani MM, Zandinejad A. Manufacturing accuracy and volumetric changes of stereolithography additively manufactured zirconia with different porosities. J Prosthet Dent 2021; 128:211-215. [PMID: 33573829 DOI: 10.1016/j.prosdent.2020.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
STATEMENT OF PROBLEM When compared with subtractive fabricating methods, additive manufacturing (AM) technologies are capable of fabricating complex geometries with different material porosities. However, the manufacturing accuracy and shrinkage of the stereolithography (SLA) AM zirconia with different porosities are unclear. PURPOSE The purpose of this in vitro study was to measure the manufacturing accuracy and volumetric changes of AM zirconia specimens with porosities of 0%, 20%, and 40%. MATERIAL AND METHODS A digital design of a bar (25×4×3 mm) was obtained by using an open-source software program (Blender, version 2.77a; The Blender Foundation). The standard tessellation language (STL) file was exported. Three groups were created based on the material porosity: 0% porosity (0% group), 20% porosity (20% group), and 40% porosity (40% group). The STL was used to manufacture all the specimens by using an SLA ceramic printer (CeraMaker 900; 3DCeram Co) and zirconia material (3DMix ZrO2 paste; 3DCeram Co) (n=20). After manufacturing, the specimens were cleaned of the green parts by using a semiautomated cleaning station. Subsequently, debinding procedures was completed in a furnace at 600 °C. The sintering procedures varied among the groups to achieve different porosities. For the 0% group, the ZrO2 was sintered in a furnace at 1450 °C, and for the 20% and 40% groups, the sintering temperature varied between 1450 °C and 1225 °C. The specimen dimensions (length, width, and height) were measured 3 times with digital calipers, and the mean value was determined. The manufacturing volume shrinkage (%) was calculated by using the digital design of the bar and the achieved AM dimensions of the specimens. The Shapiro-Wilk test revealed that the data were not normally distributed. Therefore, the data were analyzed by using the Kruskal-Wallis followed by pairwise Mann-Whitney U tests (α=.05). RESULTS The Kruskal-Wallis test demonstrated significant differences among the groups in length, width, and height (P<.001). The Mann-Whitney U test indicated significant differences in pairwise comparisons of length, width, and height among the 3 groups (P<.001). The 0% group obtained a median ±interquartile range values of 20.92 ±0.14 mm in length, 3.43 ±0.07 mm in width, and 2.39 ±0.03 mm in height; the 20% group obtained 22.81 ±0.29 mm in length, 3.74 ±0.07 mm in width, and 2.62 ±0.05 mm in height; and the 40% group presented 25.11 ±0.13 mm in length, 4.14 ±0.08 mm in width, and 2.96 ±0.02 mm in height. Significant differences in manufacturing volumetric changes were encountered among the 3 groups (P<.001). In all groups, volumetric changes in the length, width, and height were not uniform, being higher in the z-axis direction compared with the x- and y-axis. The manufacturing volumetric changes varied from -20.33 ±1.00% to +3.5 ±2.00%. CONCLUSIONS The 40%-porosity group obtained the highest manufacturing accuracy and the lowest manufacturing volume change, followed by the 20%-porosity and the 0%-porosity groups. An uneven manufacturing volume change in the x-, y-, and z-axis was observed. However, none of the groups tested were able to perfectly match the virtual design of the specimens.
Collapse
Affiliation(s)
- Marta Revilla-León
- Assistant Professor and Assistant Program Director, AEGD Residency, Comprehensive Dentistry Department, College of Dentistry, Texas A&M University, Dallas, Texas; Affiliate Faculty, Graduate Prosthodontics, Restorative Dentistry Department, School of Dentistry, University of Washington, Seattle, Wash; Researcher at Revilla Research Center, Madrid, Spain.
| | - Delaram Mostafavi
- Student, AEGD Residency, Comprehensive Dentistry Department, College of Dentistry, Texas A&M University, Dallas, Texas
| | - Mohammed M Methani
- Graduate Prosthodontic Resident, Restorative Dentistry Department, Rutgers School of Dental Medicine, New Jersey, NY
| | - Amirali Zandinejad
- Associate Professor and Program Director, AEGD Residency, Comprehensive Dentistry Department, College of Dentistry, Texas A&M University, Dallas, Texas
| |
Collapse
|
45
|
Della Bona A, Cantelli V, Britto VT, Collares KF, Stansbury JW. 3D printing restorative materials using a stereolithographic technique: a systematic review. Dent Mater 2021; 37:336-350. [PMID: 33353734 DOI: 10.1016/j.dental.2020.11.030] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To present through a systematic review a qualitative analysis of studies published on stereolithography-based 3D printing of restorative materials and their clinical applicability. METHODS The literature search was conducted based on the question: "What is the state-of-the-art of available restorative materials for 3D printing based on stereolithography?" Online search was conducted in three databases (MEDLINE/PubMed, Scopus and Web of Science) with no restriction for year of publication. Data are reported based on PRISMA, including publication details such as authors and their countries, year and journal of publication, and study design. The synthesis is focused on describing the dental restorative materials and properties evaluated, applied methods, 3D printers used and clinical applicability. RESULTS Studies that fit the inclusion criteria were performed in Asia (21), Europe (16) and USA (10), mostly using polymer-based restorative materials (38) for 3D printing constructs. Stereolithographic-printed ceramic-based restorative structures were evaluated by 9 studies. Many studies reported on dimensional accuracy (14), strength (11) and surface morphology (9) of the printed structures. Antibacterial response, cytotoxicity, internal and marginal fit, fracture and wear resistance, density, viscosity, elastic modulus, hardness, structural shrinkage and reliability, degree of conversion, layer cure depth, fatigue, and color were also evaluated by the included studies. Many of them (11) published a proof of concept as an attempt to demonstrate the clinical feasibility and applicability of the technology to print restorative materials, but only 5 studies actually applied the 3D printed restorative structures in patients, which highlights an increasing interest but limited early-stage translation. SIGNIFICANCE The fast expansion of stereolithographic-based 3D printing has been impressive and represents a great technological progress with significant disruptive potential. Dentistry has demonstrated an incredible willingness to adapt materials, methods and workflows to this promising digital technology. However, esthetic appearance, wear resistance, wet strength and dimensional accuracy are the main current clinical limitations restricting the progression to functional part production with 3D printing, which may explain the absence of clinical trials and reports on permanent/definitive dental restorative materials and structures.
Collapse
Affiliation(s)
- Alvaro Della Bona
- Postgraduate Program in Dentistry, Dental School, University of Passo Fundo, Campus I, BR285, Passo Fundo, RS, 99052-900, Brazil.
| | - Viviane Cantelli
- Postgraduate Program in Dentistry, Dental School, University of Passo Fundo, Campus I, BR285, Passo Fundo, RS, 99052-900, Brazil
| | - Vitor T Britto
- Postgraduate Program in Dentistry, Dental School, University of Passo Fundo, Campus I, BR285, Passo Fundo, RS, 99052-900, Brazil
| | - Kaue F Collares
- Postgraduate Program in Dentistry, Dental School, University of Passo Fundo, Campus I, BR285, Passo Fundo, RS, 99052-900, Brazil
| | - Jeffrey W Stansbury
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
46
|
Arun M, Sathishkumar N, Nithesh Kumar K, Ajai S, Aswin S. Development of patient specific bio-polymer incisor teeth by 3D printing process: A case study. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2020.04.367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Morita S, Iijima M, Chen Y, Furukawa T, Tatami J, Maruo S. 3D structuring of dense alumina ceramics using fiber-based stereolithography with interparticle photo-cross-linkable slurry. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Li R, Chen H, Wang Y, Sun Y. Performance of stereolithography and milling in fabricating monolithic zirconia crowns with different finish line designs. J Mech Behav Biomed Mater 2020; 115:104255. [PMID: 33340775 DOI: 10.1016/j.jmbbm.2020.104255] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Subtractive manufacturing has become the dominant method in fabricating zirconia dental restorations while additive manufacturing is emerging as a potential alternative. The aim of this in vitro study was to investigate the performance of stereolithography (SLA) and milling in fabricating monolithic zirconia crowns with different finish line designs. Full-contour crowns with three finish lines (chamfer, rounded shoulder, knife-edge) were designed and fabricated by SLA and milling. Fabrication accuracy was accessed by 3D deviation analysis and margin quality was characterized under microscopes. The obtained root mean square value was significantly influenced by finish line design (P < 0.05) but not by fabrication method (P>0.05). However, the color-difference map showed crowns fabricated by SLA and milling had different error distribution in external surfaces. SLA-printed crowns exhibited margins of rounded line angle and without small flaws, although large chippings were found in knife-edged crowns. In milling group, crowns showed margins of sharp line angle and with separate chippings. More and larger margin chippings were found in knife-edged crowns by milling. The results indicate that SLA and milling can fabricate monolithic zirconia crowns of comparable accuracy and knife-edged crowns are prone to large margin chippings by either of the two manufacturing methods.
Collapse
Affiliation(s)
- Rong Li
- Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Disease, Beijing, 100081, China
| | - Hu Chen
- Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Disease, Beijing, 100081, China
| | - Yong Wang
- Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Disease, Beijing, 100081, China
| | - Yuchun Sun
- Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Disease, Beijing, 100081, China.
| |
Collapse
|
49
|
Marsico C, Øilo M, Kutsch J, Kauf M, Arola D. Vat Polymerization-Printed Partially Stabilized Zirconia: Mechanical Properties, Reliability and Structural defects. ADDITIVE MANUFACTURING 2020; 36:101450. [PMID: 32793425 PMCID: PMC7418863 DOI: 10.1016/j.addma.2020.101450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Additive manufacturing (AM) of ceramics, particularly of zirconia, is becoming of increasing interest due to the substantial freedom available in the design and fabrication process. However, due to the novelty of the field and the challenges associated with printing dense bulk ceramics suitable for structural applications, thorough investigations that explore the effects of printing on the mechanical performance are limited. Previous work has identified anisotropy in the mechanical properties and attributed it to the layer-by-layer deposition. However, substantiated fractographic evidence detailing the origins and effects of layer lines on the probability of failure are limited. This study investigates the mechanical properties of a dense (>99 %TD), partially stabilized zirconia fabricated by a digital light projection printing method following ASTM standards. Hardness and strength evaluations were conducted, followed by a Weibull analysis and fractography. The investigation entailed five unique build directions and a conventionally manufactured reference material that was used as a control. Although the strengths were comparable to the reference material for some orientations, fracture frequently initiated at layer lines and related defects in all orientations. The findings indicate that if the layer lines can be prevented or engineered, the strength of vat printed ceramics can be improved substantially.
Collapse
Affiliation(s)
- Carli Marsico
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Marit Øilo
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Jeff Kutsch
- Technology Assessment & Transfer, Inc., Millersville, MD, USA
| | - Mark Kauf
- Technology Assessment & Transfer, Inc., Millersville, MD, USA
| | - Dwayne Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington Seattle, WA USA
- Department of Restorative Dentistry, School of Dentistry, University of Washington Seattle, WA USA
- Department of Oral Health Science, School of Dentistry, University of Washington Seattle, WA USA
| |
Collapse
|
50
|
Li H, Liu Y, Liu Y, Zeng Q, Wang J, Hu K, Lu Z, Liang J. Evolution of the microstructure and mechanical properties of stereolithography formed alumina cores sintered in vacuum. Ann Ital Chir 2020. [DOI: 10.1016/j.jeurceramsoc.2019.11.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|