1
|
Lekjinda K, Sunintaboon P, Watthanaphanit A, Tangboriboonrat P, Ubol S. Ag/Au-incorporated trimethyl chitosan-shell hybrid particles as reinforcing and antioxidant fillers for trimethyl chitosan hydrogel. Carbohydr Polym 2024; 337:122132. [PMID: 38710548 DOI: 10.1016/j.carbpol.2024.122132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
N,N,N-Trimethyl chitosan (TMC) is a quaternized chitosan with versatile biological features. However, low mechanical strength limits its uses, for example, as hydrogels for tissue engineering applications. This study illustrates a viable synthesis of metal/polymer hybrid, core-shell colloidal particles and their use as reinforcing and antioxidant fillers for TMC hydrogels. The core-shell particles were initially synthesized by surfactant-free emulsion polymerization, induced by a photo-redox initiating system of riboflavin assisted by a 3° amine and 2° alcohol co-initiators. The synthesized core-shell particles were based on two polymeric shells: TMC and chitosan, and two polymeric cores: poly (hydroxypropyl methacrylate) (PHPMA) and poly(2-hydroxy ethyl methacrylate) (PHEMA). The presence of both 3° amine on TMC and 2° alcohol on HPMA monomer enhanced the photopolymerization performance. The TMC-based particles had sizes of 122-154 nm and zeta potentials of 10-35 mV, bringing the colloidal stability in the 4-10 pH range. Furthermore, due to the presence of TMC on the shell layer, the core-shell particles could be used as templates to grow the Ag/Au bimetallic nanoparticles with alloy and core-shell types through a thermal reduction. The prepared hybrid particles were incorporated in TMC hydrogels as a multifunctional filler, improving their mechanical and antioxidant properties.
Collapse
Affiliation(s)
- Kritsadayut Lekjinda
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Anyarat Watthanaphanit
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Demirel E, Korkmaz B, Chang Y, Misra A, Tamerler C, Spencer P. Engineering Interfacial Integrity with Hydrolytic-Resistant, Self-Reinforcing Dentin Adhesive. Int J Mol Sci 2024; 25:7061. [PMID: 39000170 PMCID: PMC11241055 DOI: 10.3390/ijms25137061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The leading cause of composite restoration failure is secondary caries, and although caries is a multifactorial problem, weak, damage-prone adhesives play a pivotal role in the high susceptibility of composite restorations to secondary caries. Our group has developed synthetic resins that capitalize on free-radical polymerization and sol-gel reactions to provide dental adhesives with enhanced properties. The resins contain γ-methacryloxypropyltrimethoxysilane (MPS) as the Si-based compound. This study investigated the properties of methacrylate-based resins containing methacryloxymethyltrimethoxysilane (MMeS) as a short-chain alternative. The degree of conversion (DC), polymerization kinetics, water sorption, mechanical properties, and leachates of MMeS- and MPS-resins with 55 and 30 wt% BisGMA-crosslinker were determined. The formulations were used as model adhesives, and the adhesive/dentin (a/d) interfaces were analyzed using chemometrics-assisted micro-Raman spectroscopy. The properties of the 55 wt% formulations were comparable. In the 30 wt% BisGMA formulations, the MMeS-resin exhibited faster polymerization, lower DC, reduced leachates, and increased storage and loss moduli, glass transition (Tg), crosslink density, and heterogeneity. The spectroscopic results indicated a comparable spatial distribution of resin, mineralized, and demineralized dentin across the a/d interfaces. The hydrolytically stable experimental short-chain-silane-monomer dental adhesive provides enhanced mechanical properties through autonomous strengthening and offers a promising strategy for the development of restorative dental materials with extended service life.
Collapse
Affiliation(s)
- Erhan Demirel
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7608, USA
| | - Burak Korkmaz
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7608, USA
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Youngwoo Chang
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7608, USA
| | - Anil Misra
- Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33174-1630, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7608, USA
- Department of Mechanical Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7608, USA
- Bioengineering Program, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7608, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7608, USA
- Department of Mechanical Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7608, USA
- Bioengineering Program, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7608, USA
| |
Collapse
|
3
|
Korkmaz B, Demirel E, Ye Q, Misra A, Tamerler C, Spencer P. Synergistic enhancement of hydrophobic dental adhesives: autonomous strengthening, polymerization kinetics, and hydrolytic resistance. FRONTIERS IN DENTAL MEDICINE 2024; 5:1373853. [PMID: 39670213 PMCID: PMC11636420 DOI: 10.3389/fdmed.2024.1373853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The leading cause of composite restoration failure is recurrent marginal decay. The margin between the composite and tooth is initially sealed by a low-viscosity adhesive, but chemical, physical, and mechanical stresses work synergistically and simultaneously to degrade the adhesive, destroying the interfacial seal and providing an ideal environment for bacteria to proliferate. Our group has been developing self-strengthening adhesives with improved chemical and mechanical characteristics. This paper reports a self-strengthening adhesive formulation that resists hydrolysis-mediated degradation by providing intrinsic reinforcement of the polymer network through synergistic stimulation of free-radical polymerization, sol-gel reaction, and hydrophobicity. Hydrophobic resin formulation (NE1) was developed using HEMA/BisGMA 28/55w/w and 15 wt% MPS. Control (NC1) contained HEMA/BisGMA 28/55 w/w and 15 wt% MES. The polymerization kinetics, water sorption, leachates, and dynamic mechanical properties of the resin samples were investigated. The NC1 and NE1 samples showed comparable polymerization kinetics, degree of conversion and water sorption. In contrast, NC1 showed significantly higher levels of HEMA and BisGMA leachate, indicating faster degradation in ethanol. At day 3, cumulative HEMA leachate for NC1 was tenfold greater than NE1 (p < 0.05). Dynamic mechanical properties were measured at 37 and 70°C in both dry and wet conditions. Under dry conditions, the storage moduli of NC1 and NE1 were comparable and the glass transition temperature (T g) of NC1 was statistically significant lower (p < 0.001) than NE1. Under wet conditions, the storage modulus of NC1 was lower than NE1 and at 70°C there is a threefold difference in storage modulus. At this temperature and under wet conditions, the storage modulus of NC1 is statistically significantly lower (p < 0.001) than NE1. The results indicated that in the wet environment, NE1 provided lower chain mobility, higher crosslink density, and more hydrogen bonds. The newly formulated methacrylate-based adhesive capitalizes on free-radical polymerization, sol-gel reactions, and hydrophobicity to provide enhanced mechanical properties at elevated temperatures in wet environments and hydrolytic stability under aggressive aging conditions.
Collapse
Affiliation(s)
- Burak Korkmaz
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
| | - Erhan Demirel
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Canon Virginia, Inc., Newport News, VA, United States
| | - Anil Misra
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Civil and Environmental Engineering, Florida International University, Miami, FL, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
4
|
Thomas HA, Singh N, Thomas AM, Masih S, Cherian JM, Varghese KG. Effect of protective coating agents on microleakage and flexural strength of glass ionomer cement and zirconomer. an in vitro study. Eur Arch Paediatr Dent 2024; 25:57-63. [PMID: 37991624 DOI: 10.1007/s40368-023-00853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE The objective of this study was to assess the microleakage and flexural strength of glass ionomer cement (GIC) and modified GIC (Zirconomer) when coated with protective coating agents such as COAT-IT and G-COAT plus. METHODS Sixty tooth specimens were grouped into two groups based on the type of restorations (GIC (n = 30) and Zirconomer (n = 30)). The samples were further divided into three subgroups (n = 10) based on the protective coating agent (Petroleum jelly, G-COAT Plus, or COAT IT) applied. This study evaluated the microleakage at the occlusal and cervical margins of class V restoration after being subjected to dye penetration and sectioning. Each specimen was viewed under a 40 × microscope and was given scores based on the depth of dye penetration. They were statistically analyzed using the Kruskal-Wallis test and compared within the groups using the Mann- Whitney Test. In addition, flexural strength was assessed using standardized cuboid (25 × 2 × 2 mm) specimens of restorative materials with and without protective coating agents. The mean flexural strength data of all the subgroups were statistically evaluated using a one-way analysis of variance (ANOVA) and compared within the subgroups using the student t test. RESULTS A statistically significant difference was found when occlusal margin microleakage scores were evaluated with G-COAT Plus demonstrating the lowest occlusal margin microleakage when applied over GIC restoration. The increasing order of occlusal margin microleakage scores is as follows: GIC with G-COAT Plus, Zirconomer with COAT-IT, GIC with COAT-IT, GIC, Zirconomer with G-COAT Plus, and Zirconomer. However, the cervical margin microleakage scores revealed no significant difference. While flexural strength was found to be highest for the GIC group coated with G-COAT Plus, it was observed that there was a significant improvement in the flexural strength of both GIC and Zirconomer when coated with either of the protective coating agents. CONCLUSION Within the limitations of this in vitro study, it was observed that the application of protective coating agents can significantly reduce the potential microleakage and improve the flexural strength of the restorative material especially when zirconia-reinforced GIC is the restorative material.
Collapse
Affiliation(s)
- H A Thomas
- Department of Pedodontics and Preventive Dentistry, Christian Dental College, Ludhiana, Punjab, India.
| | - N Singh
- Department of Pedodontics and Preventive Dentistry, Christian Dental College, Ludhiana, Punjab, India
| | - A M Thomas
- Department of Pedodontics and Preventive Dentistry, Christian Dental College, Ludhiana, Punjab, India
| | - S Masih
- Department of Pedodontics and Preventive Dentistry, Christian Dental College, Ludhiana, Punjab, India
| | - J M Cherian
- Department of Pedodontics and Preventive Dentistry, Christian Dental College, Ludhiana, Punjab, India
| | - K G Varghese
- Department of Prosthodontics and Crown and Bridge, Christian Dental College, Ludhiana, Punjab, India
| |
Collapse
|
5
|
Xie Y, Chen R, Yao W, Ma L, Li B. Synergistic effect of ion-releasing fillers on the remineralization and mechanical properties of resin-dentin bonding interfaces. Biomed Phys Eng Express 2023; 9:062001. [PMID: 37832527 DOI: 10.1088/2057-1976/ad0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
In modern restorative dentistry, adhesive resin materials are vital for achieving minimally invasive, esthetic, and tooth-preserving restorations. However, exposed collagen fibers are found in the hybrid layer of the resin-dentin bonding interface due to incomplete resin penetration. As a result, the hybrid layer is susceptible to attack by internal and external factors such as hydrolysis and enzymatic degradation, and the durability of dentin bonding remains limited. Therefore, efforts have been made to improve the stability of the resin-dentin interface and achieve long-term clinical success. New ion-releasing adhesive resin materials are synthesized by introducing remineralizing ions such as calcium and phosphorus, which continuously release mineral ions into the bonding interface in resin-bonded restorations to achieve dentin biomimetic remineralization and improve bond durability. As an adhesive resin material capable of biomimetic mineralization, maintaining excellent bond strength and restoring the mechanical properties of demineralized dentin is the key to its function. This paper reviews whether ion-releasing dental adhesive materials can maintain the mechanical properties of the resin-dentin bonding interface by supplementing the various active ingredients required for dentin remineralization from three aspects: phosphate, silicate, and bioactive glass.
Collapse
Affiliation(s)
- Yimeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Ruhua Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Wei Yao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Liang Ma
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| |
Collapse
|
6
|
Cloyd AK, Boone K, Ye Q, Snead ML, Spencer P, Tamerler C. Engineered Peptides Enable Biomimetic Route for Collagen Intrafibrillar Mineralization. Int J Mol Sci 2023; 24:ijms24076355. [PMID: 37047325 PMCID: PMC10093982 DOI: 10.3390/ijms24076355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Overcoming the short lifespan of current dental adhesives remains a significant clinical need. Adhesives rely on formation of the hybrid layer to adhere to dentin and penetrate within collagen fibrils. However, the ability of adhesives to achieve complete enclosure of demineralized collagen fibrils is recognized as currently unattainable. We developed a peptide-based approach enabling collagen intrafibrillar mineralization and tested our hypothesis on a type-I collagen-based platform. Peptide design incorporated collagen-binding and remineralization-mediating properties using the domain structure conservation approach. The structural changes from representative members of different peptide clusters were generated for each functional domain. Common signatures associated with secondary structure features and the related changes in the functional domain were investigated by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopy, respectively. Assembly and remineralization properties of the peptides on the collagen platforms were studied using atomic force microscopy (AFM). Mechanical properties of the collagen fibrils remineralized by the peptide assemblies was studied using PeakForce-Quantitative Nanomechanics (PF-QNM)-AFM. The engineered peptide was demonstrated to offer a promising route for collagen intrafibrillar remineralization. This approach offers a collagen platform to develop multifunctional strategies that combine different bioactive peptides, polymerizable peptide monomers, and adhesive formulations as steps towards improving the long-term prospects of composite resins.
Collapse
Affiliation(s)
- Aya K. Cloyd
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA 90007, USA
| | - Paulette Spencer
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
7
|
Porto ICCDM, Lôbo TDLGF, Rodrigues RF, Lins RBE, da Silva MAB. Insight into the development of versatile dentin bonding agents to increase the durability of the bonding interface. FRONTIERS IN DENTAL MEDICINE 2023; 4:1127368. [PMID: 39916922 PMCID: PMC11797806 DOI: 10.3389/fdmed.2023.1127368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2025] Open
Abstract
Despite the huge improvements made in adhesive technology over the past 50 years, there are still some unresolved issues regarding the durability of the adhesive interface. A complete sealing of the interface between the resin and the dentin substrate remains difficult to achieve, and it is doubtful whether an optimal interdiffusion of the adhesive system within the demineralized collagen framework can be produced in a complete and homogeneous way. In fact, it is suggested that hydrolytic degradation, combined with the action of dentin matrix enzymes, destabilizes the tooth-adhesive bond and disrupts the unprotected collagen fibrils. While a sufficient resin-dentin adhesion is usually achieved immediately, bonding efficiency declines over time. Thus, here, a review will be carried out through a bibliographic survey of scientific articles published in the last few years to present strategies that have been proposed to improve and/or develop new adhesive systems that can help prevent degradation at the adhesive interface. It will specially focus on new clinical techniques or new materials with characteristics that contribute to increasing the durability of adhesive restorations and avoiding the recurrent replacement restorative cycle and the consequent increase in damage to the tooth.
Collapse
Affiliation(s)
- Isabel Cristina Celerino de Moraes Porto
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
- Laboratory of Quality Control of Drugs, Medicines, Foods and Biomaterials, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Brazil
| | - Teresa de Lisieux Guedes Ferreira Lôbo
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
- Laboratory of Quality Control of Drugs, Medicines, Foods and Biomaterials, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Brazil
| | - Raphaela Farias Rodrigues
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
| | - Rodrigo Barros Esteves Lins
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
| | - Marcos Aurélio Bomfim da Silva
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
| |
Collapse
|
8
|
Spencer P, Ye Q, Misra A, Chandler JR, Cobb CM, Tamerler C. Engineering peptide-polymer hybrids for targeted repair and protection of cervical lesions. FRONTIERS IN DENTAL MEDICINE 2022; 3. [PMID: 37153688 PMCID: PMC10162700 DOI: 10.3389/fdmed.2022.1007753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
By 2060, nearly 100 million people in the U.S. will be over age 65 years. One-third of these older adults will have root caries, and nearly 80% will have dental erosion. These conditions can cause pain and loss of tooth structure that interfere with eating, speaking, sleeping, and quality of life. Current treatments for root caries and dental erosion have produced unreliable results. For example, the glass-ionomer-cement or composite-resin restorations used to treat these lesions have annual failure rates of 44% and 17%, respectively. These limitations and the pressing need to treat these conditions in the aging population are driving a focus on microinvasive strategies, such as sealants and varnishes. Sealants can inhibit caries on coronal surfaces, but they are ineffective for root caries. For healthy, functionally independent elders, chlorhexidine varnish applied every 3 months inhibits root caries, but this bitter-tasting varnish stains the teeth. Fluoride gel inhibits root caries, but requires prescriptions and daily use, which may not be feasible for some older patients. Silver diamine fluoride can both arrest and inhibit root caries but stains the treated tooth surface black. The limitations of current approaches and high prevalence of root caries and dental erosion in the aging population create an urgent need for microinvasive therapies that can: (a) remineralize damaged dentin; (b) inhibit bacterial activity; and (c) provide durable protection for the root surface. Since cavitated and non-cavitated root lesions are difficult to distinguish, optimal approaches will treat both. This review will explore the multi-factorial elements that contribute to root surface lesions and discuss a multi-pronged strategy to both repair and protect root surfaces. The strategy integrates engineered peptides, novel polymer chemistry, multi-scale structure/property characterization and predictive modeling to develop a durable, microinvasive treatment for root surface lesions.
Collapse
|
9
|
Autonomous-Strengthening Adhesive Provides Hydrolysis-Resistance and Enhanced Mechanical Properties in Wet Conditions. Molecules 2022; 27:molecules27175505. [PMID: 36080272 PMCID: PMC9457668 DOI: 10.3390/molecules27175505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The low-viscosity adhesive that is used to bond composite restorative materials to the tooth is readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite/tooth interface, demineralize the tooth, and further erode the adhesive. This paper presents the preparation and characterization of a low-crosslink-density hydrophilic adhesive that capitalizes on sol-gel reactions and free-radical polymerization to resist hydrolysis and provide enhanced mechanical properties in wet environments. Polymerization behavior, water sorption, and leachates were investigated. Dynamic mechanical analyses (DMA) were conducted using water-saturated adhesives to mimic load transfer in wet conditions. Data from all tests were analyzed using appropriate statistical tests (α = 0.05). The degree of conversion was comparable for experimental and control adhesives at 88.3 and 84.3%, respectively. HEMA leachate was significantly lower for the experimental (2.9 wt%) compared to control (7.2 wt%). After 3 days of aqueous aging, the storage and rubbery moduli and the glass transition temperature of the experimental adhesive (57.5MPa, 12.8MPa, and 38.7 °C, respectively) were significantly higher than control (7.4MPa, 4.3 MPa, and 25.9 °C, respectively). The results indicated that the autonomic sol-gel reaction continues in the wet environment, leading to intrinsic reinforcement of the polymer network, improved hydrolytic stability, and enhanced mechanical properties.
Collapse
|
10
|
Wang X, Yamauchi S, Sun J. Improve Dentin Bonding Performance Using a Hydrolytically Stable, Ether-Based Primer. J Funct Biomater 2022; 13:128. [PMID: 36135563 PMCID: PMC9501844 DOI: 10.3390/jfb13030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study is to replace a traditional methacrylate-based primer (glycine, N-(2-hydroxy-3-(2-methyl-1-oxo-2-propenyl)propyl)-N-(4-methylphenyl) monosodium salt, NTG-GMA) with a hydrolytically stable ether-based primer (glycine, N-2-hydroxy-3-(4-vinylbenzyloxy)-propyl-N-(4-methylphenyl), monosodium salt, NTG-VBGE). The performance and durability of bonding composites to detin of two primers combined with methacrylate-based or ether-based adhesives were evaluated using shear bond strength (SBS) and micro-tensile bond strength (μTBS) combined with thermal cycling. The hydrolysis resistance of NTG-VBGE against hydrolysis was tested by challenging primed hydroxyapatite crystals with an esterase. The hydrophilicity of the primers and the resin spreading kinetics of adhesives on primed dentin were characterized by water contact angle measurements. The new primer NTG-VBGE was found to be compatible with both methacrylate-based adhesives and ether-based adhesives. The highest μTBS values were found in the test group of NTG-VBGE and ether-based adhesive, which was consistent with the resin spreading kinetics results. The more hydrophobic and hydrolytically stable primer/adhesive achieved improved dentin infiltration and bonding strength, suggesting significant potential for further developing dental restorative materials with extended service life.
Collapse
Affiliation(s)
- Xiaohong Wang
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA;
| | - Shinobu Yamauchi
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA;
- Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan
| | - Jirun Sun
- The Forsyth Institute, Cambridge, MA 02142, USA;
- Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
11
|
|
12
|
Trivedi R, Gautam D, Kehe GM, Escobedo HD, Patel K, Stansbury JW, Schurr MJ, Nair DP. Synthesis, characterization and evaluation of azobenzene nanogels for their antibacterial properties in adhesive dentistry. Eur J Oral Sci 2022; 130:e12832. [PMID: 34923692 PMCID: PMC9122558 DOI: 10.1111/eos.12832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022]
Abstract
The presence of cariogenic bacteria within the prepared tooth cavity at the adhesive resin-dentin interface is detrimental to the long-term stability and function of composite restorations. Here, we report the synthesis and incorporation of methacrylated azobenzene nanogels within bisphenol A-glycidyl methacrylate/hydroxyethyl methacrylate/ethanol (B/H/E) adhesive resins and evaluate their ability to reduce the bacterial invasion of cariogenic Streptococcus mutans biofilms while preserving the mechanical strength and structural integrity of the critical interfacial connection between the restoration and the tooth. The azobenzene nanogel, with a hydrodynamic radius of < 2 nm and a molecular weight of 12,000 Da, was polymerized within B/H/E adhesive formulations at concentrations of 0.5 wt.%, 1.5 wt.%, and 2.5 wt.%. While the double-bond conversion, cytocompatibility, water solubility, and sorption of the adhesive networks were comparable, azobenzene nanogel networks showed improved hydrophobicity with a ≥ 25° increase in water contact angle. The polymerized adhesive surfaces formulated with azobenzene nanogels showed a 66% reduction in bacterial biofilms relative to the control while maintaining the mechanical properties and micro-tensile bond strength of the adhesive networks. The increased hydrophobicity and antibacterial activity are promising indicators that azobenzene nanogel additives have the potential to increase the durability and longevity of adhesive resins.
Collapse
Affiliation(s)
- Rinku Trivedi
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dixa Gautam
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gannon M Kehe
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Humberto D Escobedo
- Department of Pharmaceutical Science, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kruti Patel
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeffrey W Stansbury
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael J Schurr
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Devatha P Nair
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pharmaceutical Science, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
13
|
De Angelis F, Sarteur N, Buonvivere M, Vadini M, Šteffl M, D'Arcangelo C. Meta-analytical analysis on components released from resin-based dental materials. Clin Oral Investig 2022; 26:6015-6041. [PMID: 35870020 PMCID: PMC9525379 DOI: 10.1007/s00784-022-04625-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Resin-based materials are applied in every branch of dentistry. Due to their tendency to release substances in the oral environment, doubts have been raised about their actual safety. This review aims to provide a comprehensive analysis of the last decade literature regarding the concentrations of elutable substances released from dental resin-based materials in different type of solvents. MATERIALS AND METHODS All the literature published on dental journals between January 2010 and April 2022 was searched using international databases (PubMed, Scopus, Web of Science). Due to strict inclusion criteria, only 23 papers out of 877 were considered eligible. The concentration of eluted substances related to surface and volume of the sample was analyzed, considering data at 24 h as a reference. The total cumulative release was examined as well. RESULTS The most eluted substances were HEMA, TEGDMA, and BPA, while the less eluted were Bis-GMA and UDMA. Organic solvents caused significantly higher release of substances than water-based ones. A statistically significant inverse correlation between the release of molecules and their molecular mass was observed. A statistically significant positive correlation between the amount of released molecule and the specimen surface area was detected, as well as a weak positive correlation between the release and the specimen volume. CONCLUSIONS Type of solvent, molecular mass of eluates, and specimen surface and volume affect substances release from materials. CLINICAL RELEVANCE It could be advisable to rely on materials based on monomers with a reduced elution tendency for clinical procedures.
Collapse
Affiliation(s)
- Francesco De Angelis
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy.
| | - Nela Sarteur
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Matteo Buonvivere
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Mirco Vadini
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Michal Šteffl
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Camillo D'Arcangelo
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| |
Collapse
|
14
|
Wang R, Li Y, Hass V, Peng Z, Wang Y. Methacrylate-functionalized proanthocyanidins as novel polymerizable collagen cross-linkers - Part 2: Effects on polymerization, microhardness and leaching of adhesives. Dent Mater 2021; 37:1193-1201. [PMID: 33965250 DOI: 10.1016/j.dental.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/05/2021] [Accepted: 04/24/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the effects of a novel polymerizable collagen cross-linker methacrylate-functionalized proanthocyanidins (MAPA) on the polymerization, microhardness and leaching of a HEMA-based experimental dental adhesive system. METHODS Three MAPAs were synthesized using different methacrylate (MA) to proanthocyanidins (PA) feeding ratios of 1:2, 1:1, and 2:1 to obtain MAPA-1, MAPA-2, and MAPA-3, respectively. The resulting three MAPAs and PA were added to an experimental adhesive formulated with HEMA and a tri-component photoinitiator system (0.5 wt% CQ/EDMAB/DPIHP) at 1%, 5% and 10% MAPA or PA concentrations (wt%). The adhesive polymerization kinetics was measured continuously in real-time for 10 min using a Fourier-transform infrared spectroscopy (FTIR) with an attenuated total reflectance (ATR) accessory. Degree of conversion (DC) and Vickers microhardness (MH) of cured adhesives were measured at 72 h post-cure. The leaching of cured adhesives in DI water was monitored using UV-vis spectrophotometer. Statistical analysis was performed using one-way and two-way ANOVA, Tukey's (p < 0.05). RESULTS The adhesive formulations with 1%, 5% and 10% MAPAs-1, -2, -3 all generated higher rate of polymerization and 10-min DC than the formulations with PA at the same concentrations. At 72 h post-cure, the adhesive formulation with 5% MAPA-2 exhibited significantly higher DC (99.40%) and more than doubled MH (18.93) values than the formulation with 5% PA (DC = 89.47%, MH = 8.41) and the control (DC = 95.46%, MH = 9.33). Moreover, the cured adhesive with 5% MAPA-2 demonstrated significantly reduced PA leaching in comparison with cured adhesive with 5% PA. SIGNIFICANCE Synthesized MAPA is a novel class of polymerizable collagen cross-linker that not only stabilizes dentin collagen via its PA component, but also improves polymerization, mechanical properties and stability of HEMA-based adhesives via its MA component. By inheriting the benefit while overcoming the drawback of PA, MAPA offers a revolutionary solution for improved bond-strength and longevity of dental restorations.
Collapse
Affiliation(s)
- Rong Wang
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Yong Li
- Department of Chemistry, University of Missouri - Kansas City, MO, 64110, USA
| | - Viviane Hass
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Zhonghua Peng
- Department of Chemistry, University of Missouri - Kansas City, MO, 64110, USA.
| | - Yong Wang
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
15
|
Sarikaya R, Song L, Ye Q, Misra A, Tamerler C, Spencer P. Evolution of Network Structure and Mechanical Properties in Autonomous-Strengthening Dental Adhesive. Polymers (Basel) 2020; 12:polym12092076. [PMID: 32932724 PMCID: PMC7570171 DOI: 10.3390/polym12092076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
The inherent degradation property of most dental resins in the mouth leads to the long-term release of degradation by-products at the adhesive/tooth interface. The by-products increase the virulence of cariogenic bacteria, provoking a degradative positive-feedback loop that leads to physicochemical and mechanical failure. Photoinduced free-radical polymerization and sol‒gel reactions have been coupled to produce a novel autonomous-strengthening adhesive with enhanced hydrolytic stability. This paper investigates the effect of network structure on time-dependent mechanical properties in adhesives with and without autonomous strengthening. Stress relaxation was conducted under 0.2% strain for 8 h followed by 40 h recovery in water. The stress‒time relationship is analyzed by nonlinear least-squares data-fitting. The fitted Prony series predicts the sample’s history under monotonic loading. Results showed that the control failed after the first loading‒unloading‒recovery cycle with permanent deformation. While for the experimental sample, the displacement was almost completely recovered and the Young’s modulus increased significantly after the first test cycle. The experimental polymer exhibited higher degree of conversion, lower leachate, and time-dependent stiffening characteristics. The autonomous-strengthening reaction persists in the aqueous environment leading to a network with enhanced resistance to deformation. The results illustrate a rational approach for tuning the viscoelasticity of durable dental adhesives.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
- Department of Mechanical Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Linyong Song
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
- Correspondence: (Q.Y.); (P.S.); Tel.: +1-785-864-1746 (Q.Y.); +1-785-864-8140 (P.S.); Fax: +1-785-864-1742 (Q.Y.); +1-785-864-1742 (P.S.)
| | - Anil Misra
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
- Department of Civil Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
- Department of Mechanical Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
- Department of Mechanical Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
- Correspondence: (Q.Y.); (P.S.); Tel.: +1-785-864-1746 (Q.Y.); +1-785-864-8140 (P.S.); Fax: +1-785-864-1742 (Q.Y.); +1-785-864-1742 (P.S.)
| |
Collapse
|