1
|
Aksan B, Mauceri D. Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure. J Biomed Sci 2025; 32:33. [PMID: 40050849 PMCID: PMC11884128 DOI: 10.1186/s12929-025-01128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025] Open
Abstract
Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Institute of Anatomy and Cell Biology, Dept. Molecular and Cellular Neuroscience, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
2
|
Barron A, Barrett L, Tuulari J, Karlsson L, Karlsson H, McCarthy C, O'Keeffe G. sFlt-1 impairs neurite growth and neuronal differentiation in SH-SY5Y cells and human neurons. Biosci Rep 2024; 44:BSR20240562. [PMID: 38700092 PMCID: PMC11130541 DOI: 10.1042/bsr20240562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024] Open
Abstract
Pre-eclampsia (PE) is a hypertensive disorder of pregnancy which is associated with increased risk of neurodevelopmental disorders in exposed offspring. The pathophysiological mechanisms mediating this relationship are currently unknown, and one potential candidate is the anti-angiogenic factor soluble Fms-like tyrosine kinase 1 (sFlt-1), which is highly elevated in PE. While sFlt-1 can impair angiogenesis via inhibition of VEGFA signalling, it is unclear whether it can directly affect neuronal development independently of its effects on the vasculature. To test this hypothesis, the current study differentiated the human neural progenitor cell (NPC) line ReNcell® VM into a mixed culture of mature neurons and glia, and exposed them to sFlt-1 during development. Outcomes measured were neurite growth, cytotoxicity, mRNA expression of nestin, MBP, GFAP, and βIII-tubulin, and neurosphere differentiation. sFlt-1 induced a significant reduction in neurite growth and this effect was timing- and dose-dependent up to 100 ng/ml, with no effect on cytotoxicity. sFlt-1 (100 ng/ml) also reduced βIII-tubulin mRNA and neuronal differentiation of neurospheres. Undifferentiated NPCs and mature neurons/glia expressed VEGFA and VEGFR-2, required for endogenous autocrine and paracrine VEGFA signalling, while sFlt-1 treatment prevented the neurogenic effects of exogenous VEGFA. Overall, these data provide the first experimental evidence for a direct effect of sFlt-1 on neurite growth and neuronal differentiation in human neurons through inhibition of VEGFA signalling, clarifying our understanding of the potential role of sFlt-1 as a mechanism by which PE can affect neuronal development.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Lauren Barrett
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Medicine, Unit of Public Health, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
| |
Collapse
|
3
|
Sousa CS, Lima R, Cibrão JR, Gomes ED, Fernandes LS, Pinho TS, Silva D, Campos J, Salgado AJ, Silva NA. Pre-Clinical Assessment of Roflumilast Therapy in a Thoracic Model of Spinal Cord Injury. Pharmaceutics 2023; 15:1556. [PMID: 37242797 PMCID: PMC10222626 DOI: 10.3390/pharmaceutics15051556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The failure of axons to regenerate after a spinal cord injury (SCI) remains one of the greatest challenges in neuroscience. The initial mechanical trauma is followed by a secondary injury cascade, creating a hostile microenvironment, which not only is not permissive to regeneration but also leads to further damage. One of the most promising approaches for promoting axonal regeneration is to maintain the levels of cyclic adenosine monophosphate (cAMP), specifically by a phosphodiesterase-4 (PDE4) inhibitor expressed in neural tissues. Therefore, in our study, we evaluated the therapeutic effect of an FDA-approved PDE4 inhibitor, Roflumilast (Rof), in a thoracic contusion rat model. Results indicate that the treatment was effective in promoting functional recovery. Rof-treated animals showed improvements in both gross and fine motor function. Eight weeks post-injury, the animals significantly recovered by achieving occasional weight-supported plantar steps. Histological assessment revealed a significant decrease in cavity size, less reactive microglia, as well as higher axonal regeneration in treated animals. Molecular analysis revealed that IL-10 and IL-13 levels, as well as VEGF, were increased in the serum of Rof-treated animals. Overall, Roflumilast promotes functional recovery and supports neuroregeneration in a severe thoracic contusion injury model and may be important in SCI treatment.
Collapse
Affiliation(s)
- Carla S Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
- Department of Neurosurgery, Hospital Garcia de Orta, 2805-267 Almada, Portugal
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Jorge R Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Luís S Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| |
Collapse
|
4
|
Gehmeyr J, Maghnouj A, Tjaden J, Vorgerd M, Hahn S, Matschke V, Theis V, Theiss C. Disabling VEGF-Response of Purkinje Cells by Downregulation of KDR via miRNA-204-5p. Int J Mol Sci 2021; 22:2173. [PMID: 33671638 PMCID: PMC7926311 DOI: 10.3390/ijms22042173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) is well known for its wide-ranging functions, not only in the vascular system, but also in the central (CNS) and peripheral nervous system (PNS). To study the role of VEGF in neuronal protection, growth and maturation processes have recently attracted much interest. These effects are mainly mediated by VEGF receptor 2 (VEGFR-2). Current studies have shown the age-dependent expression of VEGFR-2 in Purkinje cells (PC), promoting dendritogenesis in neonatal, but not in mature stages. We hypothesize that microRNAs (miRNA/miR) might be involved in the regulation of VEGFR-2 expression during the development of PC. In preliminary studies, we performed a miRNA profiling and identified miR204-5p as a potential regulator of VEGFR-2 expression. In the recent study, organotypic slice cultures of rat cerebella (postnatal day (p) 1 and 9) were cultivated and VEGFR-2 expression in PC was verified via immunohistochemistry. Additionally, PC at age p9 and p30 were isolated from cryosections by laser microdissection (LMD) to analyse VEGFR-2 expression by quantitative RT-PCR. To investigate the influence of miR204-5p on VEGFR-2 levels in PC, synthetic constructs including short hairpin (sh)-miR204-5p cassettes (miRNA-mimics), were microinjected into PC. The effects were analysed by confocal laser scanning microscopy (CLSM) and morphometric analysis. For the first time, we could show that miR204-5p has a negative effect on VEGF sensitivity in juvenile PC, resulting in a significant decrease of dendritic growth compared to untreated juvenile PC. In mature PC, the overexpression of miR204-5p leads to a shrinkage of dendrites despite VEGF treatment. The results of this study illustrate, for the first time, which miR204-5p expression has the potential to play a key role in cerebellar development by inhibiting VEGFR-2 expression in PC.
Collapse
Affiliation(s)
- Julian Gehmeyr
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany; (J.G.); (J.T.); (V.M.); (V.T.)
| | - Abdelouahid Maghnouj
- Clinical Research Centre (ZKF), Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany; (A.M.); (S.H.)
| | - Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany; (J.G.); (J.T.); (V.M.); (V.T.)
| | - Matthias Vorgerd
- Neuromuscular Center Ruhrgebiet, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany;
| | - Stephan Hahn
- Clinical Research Centre (ZKF), Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany; (A.M.); (S.H.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany; (J.G.); (J.T.); (V.M.); (V.T.)
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany; (J.G.); (J.T.); (V.M.); (V.T.)
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany; (J.G.); (J.T.); (V.M.); (V.T.)
| |
Collapse
|
5
|
Xiao G, Lyu M, Li Z, Cao L, Liu X, Wang Y, He S, Chen Z, Du H, Feng Y, Wang J, Zhu Y. Restoration of early deficiency of axonal guidance signaling by guanxinning injection as a novel therapeutic option for acute ischemic stroke. Pharmacol Res 2021; 165:105460. [PMID: 33513357 DOI: 10.1016/j.phrs.2021.105460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 01/12/2023]
Abstract
Despite of its high morbidity and mortality, there is still a lack of effective treatment for ischemic stroke in part due to our incomplete understanding of molecular mechanisms of its pathogenesis. In this study, we demonstrate that SHH-PTCH1-GLI1-mediated axonal guidance signaling and its related neurogenesis, a central pathway for neuronal development, also plays a critical role in early stage of an acute stroke model. Specifically, in vivo, we evaluated the effect of GXNI on ischemic stroke mice via using the middle cerebral artery embolization model, and found that GXNI significantly alleviated cerebral ischemic reperfusion (I/R) injury by reducing the volume of cerebral infarction, neurological deficit score and cerebral edema, reversing the BBB permeability and histopathological changes. A combined approach of RNA-seq and network pharmacology analysis was used to reveal the underlying mechanisms of GXNI followed by RT-PCR, immunohistochemistry and western blotting validation. It was pointed out that axon guidance signaling pathway played the most prominent role in GXNI action with Shh, Ptch1, and Gli1 genes as the critical contributors in brain protection. In addition, GXNI markedly prevented primary cortical neuron cells from oxygen-glucose deprivation/reoxygenation damage in vitro, and promoted axon growth and synaptogenesis of damaged neurons, which further confirmed the results of in vivo experiments. Moreover, due to the inhibition of the SHH-PTCH1-GLI1 signaling pathway by cyclopropylamine, the effect of GXNI was significantly weakened. Hence, our study provides a novel option for the clinical treatment of acute ischemic stroke by GXNI via SHH-PTCH1-GLI1-mediated axonal guidance signaling, a neuronal development pathway previously considered for after-stroke recovery.
Collapse
Affiliation(s)
- Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhixiong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Linghua Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Xinyan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Yule Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Zihao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Hongxia Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Jigang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China.
| |
Collapse
|
6
|
Chen F, Danladi J, Ardalan M, Nyengaard JR, Sanchez C, Wegener G. The rat hippocampal gliovascular system following one week vortioxetine and fluoxetine. Eur Neuropsychopharmacol 2021; 42:45-56. [PMID: 33199100 DOI: 10.1016/j.euroneuro.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 10/03/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
We have previously reported that vortioxetine, unlike the selective serotonin reuptake inhibitor fluoxetine, produces a rapid increase of dendritic spine number and Brain Derived Neurotrophic Factor (BDNF)-associated formation of synapses with mitochondrial support in the rat hippocampal CA1 and dentate gyrus. As a continuation of this line of research, and given the putative role of brain glial cells in mediating antidepressant responses the present study investigated early effects of vortioxetine on hippocampal microvasculature and Vascular Endothelial Growth Factor (VEGF) and astrocytes and microglia cells. Rats were treated for 1 week with vortioxetine (1.6 g/kg food chow) or fluoxetine (160 mg/L drinking water) at pharmacologically relevant doses. Stereological principles were used to estimate the number of ALDH1L1 positive astrocytes and Iba1 positive microglia cells, and the length of microvessels in subregions of hippocampus. VEGF protein levels were visualized with immunohistochemistry. Our results showed that vortioxetine significantly increased the number of ramified (resting) microglia and astrocytes accompanied by VEGF level elevation, whereas fluoxetine had no effect after 7 days treatment on these measures. Our findings suggest that astrocytes and microglia may have a role in mediating the pharmacological effects of vortioxetine in rats and that these effects are mediated through mechanisms that go beyond inhibition of the serotonin transporter and may target specific 5-HT receptors. It remains to be investigated whether these findings are relevant for the therapeutic effects of vortioxetine.
Collapse
Affiliation(s)
- Fenghua Chen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, Building 2B, 8000 Aarhus, Denmark; Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Jibrin Danladi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, Building 2B, 8000 Aarhus, Denmark
| | - Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, Building 2B, 8000 Aarhus, Denmark; Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, Building 2B, 8000 Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, Building 2B, 8000 Aarhus, Denmark; Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa; AUGUST Centre, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| |
Collapse
|
7
|
Rigal A, Colle R, Asmar KE, Trabado S, Loeb E, Martin S, Choucha W, Gressier F, Costemale-Lacoste JF, de Larminat D, Deflesselle E, Fève B, Chanson P, Becquemont L, Verstuyft C, Corruble E. Lower plasma vascular endothelial growth factor A in major depressive disorder not normalized after antidepressant treatment: A case control study. Aust N Z J Psychiatry 2020; 54:402-408. [PMID: 31823655 DOI: 10.1177/0004867419893433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Vascular endothelial growth factor A is a growth factor with pro-angiogenic and neurotrophic properties. Anti-vascular endothelial growth factor A treatments, used to treat cancers and opthalmic diseases, are known to induce depressive symptoms. Thus, we hypothesized that vascular endothelial growth factor A plasma levels are low in patients experiencing a major depressive episode in the context of major depressive disorder, which consequently increase after antidepressant treatment. The aim of this study was to compare plasma vascular endothelial growth factor A levels in patients with major depressive episode-major depressive disorder before and after antidepressant treatment. METHODS Vascular endothelial growth factor A fasting plasma levels of 469 major depressive episode-major depressive disorder patients were compared with healthy controls. Depressed patients were assessed for remission after 3 and 6 months of antidepressant treatment. Bivariate and multivariate analyses adjusted for sex, age, body mass index and tobacco use were performed. RESULTS As compared to healthy controls, major depressive episode patients had lower vascular endothelial growth factor A, 66.0 (38.3) pg/mL (standard deviation) vs 83.2 (49.2) pg/mL, p < 0.0001. Plasma vascular endothelial growth factor A levels did not change after antidepressant treatment, even in remitters, and remained lower than those of healthy controls, 64.9 (39.3) pg/mL vs 83.2 (49.2) pg/mL, p < 0.0001. CONCLUSION Depressed patients with major depressive disorder have lower plasma vascular endothelial growth factor A levels than healthy controls during their major depressive episode and after remission following antidepressant treatment. New strategies targeting enhancement of plasma vascular endothelial growth factor A could be promising for the prevention and treatment of major depressive disorder.
Collapse
Affiliation(s)
- Adrien Rigal
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Service Hospitalo-Universitaire de Psychiatrie et Addictologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Romain Colle
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Service Hospitalo-Universitaire de Psychiatrie et Addictologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Khalil El Asmar
- INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Department of Epidemiology and Population Health, American University of Beirut, Beirut, Liban
| | - Séverine Trabado
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,Institut National de la Santé et de la Recherche Médicale UMR-S1185, Le Kremlin-Bicêtre, France
| | - Emanuel Loeb
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Service Hospitalo-Universitaire de Psychiatrie et Addictologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Séverine Martin
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Service Hospitalo-Universitaire de Psychiatrie et Addictologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Walid Choucha
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Service Hospitalo-Universitaire de Psychiatrie et Addictologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Florence Gressier
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Service Hospitalo-Universitaire de Psychiatrie et Addictologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Jean-Francois Costemale-Lacoste
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France
| | - Delphine de Larminat
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Service Hospitalo-Universitaire de Psychiatrie et Addictologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Eric Deflesselle
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France
| | - Bruno Fève
- Sorbonne Université-Inserm, Centre de Recherche Saint-Antoine, UMR_S938, Institut Hospitalo-Universitaire ICAN, Paris, France.,Service d'Endocrinologie, Centre de Référence des Maladies Rares PRISIS, Hôpital Saint-Antoine, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Philippe Chanson
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,Institut National de la Santé et de la Recherche Médicale UMR-S1185, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre, France
| | - Laurent Becquemont
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Céline Verstuyft
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Emmanuelle Corruble
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Le Kremlin-Bicêtre, France.,INSERM UMR-1178, CESP, Le Kremlin-Bicêtre, France.,Service Hospitalo-Universitaire de Psychiatrie et Addictologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Barui AK, Jhelum P, Nethi SK, Das T, Bhattacharya D, B V, Karri S, Chakravarty S, Patra CR. Potential Therapeutic Application of Zinc Oxide Nanoflowers in the Cerebral Ischemia Rat Model through Neuritogenic and Neuroprotective Properties. Bioconjug Chem 2020; 31:895-906. [PMID: 32050064 DOI: 10.1021/acs.bioconjchem.0c00030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuritogenesis, a complex process of the sprouting of neurites, plays a vital role in the structural and functional restoration of cerebral ischemia-injured neuronal tissue. Practically, there is no effective long-term treatment strategy for cerebral ischemia in clinical practice to date due to several limitations of conventional therapies, facilitating the urgency to develop new alternative therapeutic approaches. Herein, for the first time we report that pro-angiogenic nanomaterials, zinc oxide nanoflowers (ZONF), exhibit neuritogenic activity by elevating mRNA expression of different neurotrophins, following PI3K/Akt-MAPK/ERK signaling pathways. Further, ZONF administration to global cerebral ischemia-induced Fischer rats shows improved neurobehavior and enhanced synaptic plasticity of neurons via upregulation of Neurabin-2 and NT-3, revealing their neuroprotective activity. Altogether, this study offers the basis for exploitation of angio-neural cross talk of other pro-angiogenic nano/biomaterials for future advancement of alternative treatment strategies for cerebral ischemia, where neuritogenesis and neural repair are highly critical.
Collapse
Affiliation(s)
- Ayan Kumar Barui
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Priya Jhelum
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Susheel Kumar Nethi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Tapatee Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dwaipayan Bhattacharya
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Vinothkumar B
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Shailaja Karri
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Sumana Chakravarty
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
9
|
Pinho AG, Cibrão JR, Silva NA, Monteiro S, Salgado AJ. Cell Secretome: Basic Insights and Therapeutic Opportunities for CNS Disorders. Pharmaceuticals (Basel) 2020; 13:E31. [PMID: 32093352 PMCID: PMC7169381 DOI: 10.3390/ph13020031] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Transplantation of stem cells, in particular mesenchymal stem cells (MSCs), stands as a promising therapy for trauma, stroke or neurodegenerative conditions such as spinal cord or traumatic brain injuries (SCI or TBI), ischemic stroke (IS), or Parkinson's disease (PD). Over the last few years, cell transplantation-based approaches have started to focus on the use of cell byproducts, with a strong emphasis on cell secretome. Having this in mind, the present review discusses the current state of the art of secretome-based therapy applications in different central nervous system (CNS) pathologies. For this purpose, the following topics are discussed: (1) What are the main cell secretome sources, composition, and associated collection techniques; (2) Possible differences of the therapeutic potential of the protein and vesicular fraction of the secretome; and (3) Impact of the cell secretome on CNS-related problems such as SCI, TBI, IS, and PD. With this, we aim to clarify some of the main questions that currently exist in the field of secretome-based therapies and consequently gain new knowledge that may help in the clinical application of secretome in CNS disorders.
Collapse
Affiliation(s)
- Andreia G. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Abstract
Impaired neurocognitive function is an increasingly recognized morbidity in patients who have cancer. Cancer treatments, psychosocial stressors, and the malignancy itself can alter brain function. The mechanisms by which this occurs are under active investigation. Although there is a growing appreciation of its prevalence and causes, there remain limited therapeutic options for the treatment of neurocognitive dysfunction in this population. A persistent scientific and clinical effort to understand its mechanisms and impact is critical to the care of oncology patients.
Collapse
Affiliation(s)
- Rebecca A Harrison
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 0431, Houston, TX 77030, USA.
| | - Jeffrey S Wefel
- Section of Neuropsychology, Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 0431, Houston, TX 77030, USA
| |
Collapse
|
11
|
Rat Hippocampal Neural Stem Cell Modulation Using PDGF, VEGF, PDGF/VEGF, and BDNF. Stem Cells Int 2019; 2019:4978917. [PMID: 31011333 PMCID: PMC6442450 DOI: 10.1155/2019/4978917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/07/2018] [Accepted: 01/14/2019] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have become the focus of many studies as they have the potential to differentiate into all three neural lineages. This may be utilised to develop new and novel ways to treat neurological conditions such as spinal cord and brain injuries, especially if the stem cells can be modulated in vivo without additional invasive surgical procedures. This research is aimed at investigating the effects of the growth factors vascular endothelial growth factor, platelet-derived growth factor, brain-derived neurotrophic factor, and vascular endothelial growth factor/platelet-derived growth factor on hippocampal-derived neural stem cells. Cell growth and differentiation were assessed using immunohistochemistry and glutaminase enzyme assay. Cells were cultured for 14 days and treated with different growth factors at two different concentrations 20 ng/mL and 100 ng/mL. At 2 weeks, cells were fixed, and immunohistochemistry was conducted to determine cellular differentiation using antibodies against GFAP, nestin, OSP, and NF200. The cell medium supernatant was also collected during treatment to determine glutaminase levels secreted by the cells as an indicator of neural differentiation. VEGF/PDGF at 100 ng/mL had the greatest influence on cellular proliferation of HNSC, which also stained positively for nestin, OSP, and NF200. In comparison, HNSC in other treatments had poorer cell health and adhesion. HNSC in all treatment groups displayed some differentiation markers and morphology, but this is most significant in the 100 ng/ml VEGF/PDGF treatment. VEGF/PDGF combination produced the optimal effect on the HNSCs inducing the differentiation pathway exhibiting oligodendrocytic and neuronal markers. This is a promising finding that should be further investigated in the brain and spinal cord injury.
Collapse
|
12
|
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235:2195-2220. [PMID: 29961124 PMCID: PMC6061771 DOI: 10.1007/s00213-018-4950-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants should be based on the neurotrophin theory.
Collapse
Affiliation(s)
- Marion J F Levy
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Fabien Boulle
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Harry W Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France.
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Ye F, Zhan Q, Xiao W, Tang X, Li J, Dong H, Sha W, Zhang X. Altered serum levels of vascular endothelial growth factor in first-episode drug-naïve and chronic medicated schizophrenia. Psychiatry Res 2018; 264:361-365. [PMID: 29677618 DOI: 10.1016/j.psychres.2018.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
Abstract
There is much evidence of a relationship between alterations in the brain's regional cellular energy metabolism and blood flow in schizophrenic. Vascular endothelial growth factor (VEGF) plays a role in the pathogenesis of neuropsychiatric illnesses. So, we compared serum VEGF levels in drug-naïve first-episode psychotic (FEP) and chronically medicated schizophrenic to examine if a correlation existed between VEGF and psychopathological symptoms. The serum VEGF levels were assessed in 46 FEP patients, 47 chronic medicated patients and 50 healthy controls. Symptoms of schizophrenia were evaluated with the Positive and Negative Syndrome Scale (PANSS) and sandwich enzyme-linked immunosorbent assay (ELISA) was used to measure serum VEGF levels. VEGF levels were significantly lower in FEP patients compared to both chronically medicated schizophrenic patients and healthy controls, while VEGF levels in chronically medicated patients were markedly higher than in healthy controls. Furthermore, a significant correlation was detected between the levels and the PANSS negative subscale among patient groups. However, no significant correlation was observed between VEGF and clinical variables in patients. This study suggested that imbalanced neurotrophic factors may be associated with the onset of schizophrenia, but subsequent increased VEGF may be related to medication or other factors in disease progression.
Collapse
Affiliation(s)
- Fei Ye
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Qiongqiong Zhan
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Wenhuan Xiao
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Jin Li
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Hui Dong
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Weiwei Sha
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Xiaobin Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China.
| |
Collapse
|
14
|
Geiseler SJ, Morland C. The Janus Face of VEGF in Stroke. Int J Mol Sci 2018; 19:ijms19051362. [PMID: 29734653 PMCID: PMC5983623 DOI: 10.3390/ijms19051362] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
The family of vascular endothelial growth factors (VEGFs) are known for their regulation of vascularization. In the brain, VEGFs are important regulators of angiogenesis, neuroprotection and neurogenesis. Dysregulation of VEGFs is involved in a large number of neurodegenerative diseases and acute neurological insults, including stroke. Stroke is the main cause of acquired disabilities, and normally results from an occlusion of a cerebral artery or a hemorrhage, both leading to focal ischemia. Neurons in the ischemic core rapidly undergo necrosis. Cells in the penumbra are exposed to ischemia, but may be rescued if adequate perfusion is restored in time. The neuroprotective and angiogenic effects of VEGFs would theoretically make VEGFs ideal candidates for drug therapy in stroke. However, contradictory to what one might expect, endogenously upregulated levels of VEGF as well as the administration of exogenous VEGF is detrimental in acute stroke. This is probably due to VEGF-mediated blood–brain-barrier breakdown and vascular leakage, leading to edema and increased intracranial pressure as well as neuroinflammation. The key to understanding this Janus face of VEGF function in stroke may lie in the timing; the harmful effect of VEGFs on vessel integrity is transient, as both VEGF preconditioning and increased VEGF after the acute phase has a neuroprotective effect. The present review discusses the multifaceted action of VEGFs in stroke prevention and therapy.
Collapse
Affiliation(s)
- Samuel J Geiseler
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
| | - Cecilie Morland
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
- Institute for Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0166 Oslo, Norway.
| |
Collapse
|
15
|
Parry SM, Peeples ES. The impact of hypoxic-ischemic brain injury on stem cell mobilization, migration, adhesion, and proliferation. Neural Regen Res 2018; 13:1125-1135. [PMID: 30028311 PMCID: PMC6065219 DOI: 10.4103/1673-5374.235012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy continues to be a significant cause of death or neurodevelopmental delays despite standard use of therapeutic hypothermia. The use of stem cell transplantation has recently emerged as a promising supplemental therapy to further improve the outcomes of infants with hypoxic-ischemic encephalopathy. After the injury, the brain releases several chemical mediators, many of which communicate directly with stem cells to encourage mobilization, migration, cell adhesion and differentiation. This manuscript reviews the biomarkers that are released from the injured brain and their interactions with stem cells, providing insight regarding how their upregulation could improve stem cell therapy by maximizing cell delivery to the injured tissue.
Collapse
Affiliation(s)
- Stephanie M Parry
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
16
|
Li J, Chen S, Zhao Z, Luo Y, Hou Y, Li H, He L, Zhou L, Wu W. Effect of VEGF on Inflammatory Regulation, Neural Survival, and Functional Improvement in Rats following a Complete Spinal Cord Transection. Front Cell Neurosci 2017; 11:381. [PMID: 29238292 PMCID: PMC5712574 DOI: 10.3389/fncel.2017.00381] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/14/2017] [Indexed: 11/13/2022] Open
Abstract
After complete transection of the thoracic spinal segment, neonatal rats exhibit spontaneous locomotor recovery of hindlimbs, but this recovery is not found in adult rats after similar injury. The potential mechanism related to the difference in recovery of neonatal and adult rats remains unknown. In this study, 342 animals were analyzed. The vascular endothelial growth factor (VEGF) level in spinal segments below injury sites was significantly higher in postnatal day 1 rats (P1) compared with 28-day-old adult rats (P28) following a complete T9 transection. VEGF administration in P28 rats with T9 transection significantly improved the functional recovery; by contrast, treatment with VEGF receptor inhibitors in P1 rats with T9 transection slowed down the spontaneous functional recovery. Results showed more neurons reduced in the lumbar spinal cord and worse local neural network reorganization below injury sites in P28 rats than those in P1 rats. Transynaptic tracing with pseudorabies virus and double immunofluorescence analysis indicated that VEGF treatment in P28 rats alleviated the reduced number of neurons and improved their network reorganization. VEGF inhibition in neonates resulted in high neuronal death rate and deteriorated network reorganization. In in vivo studies, T9 transection induced less increase in the number of microglia in the spinal cord in P1 animals than P28 animals. VEGF treatment reduced the increase in microglial cells in P28 animals. VEGF administration in cultured spinal motoneurons prevented lipopolysaccharide (LPS)-induced neuronal death and facilitated neurite growth. Western blots of the samples of lumbar spinal cord after spinal transection and cultured spinal motoneurons showed a lower level of Erk1/2 phosphorylation after the injury or LPS induction compared with that in the control. The phosphorylation level increased after VEGF treatment. In conclusion, VEGF is a critical mediator involved in functional recovery after spinal transection and can be considered a potential target for clinical therapy.
Collapse
Affiliation(s)
- Jing Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
- Department of Anatomy, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shuangxi Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Zhikai Zhao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yunhao Luo
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yuhui Hou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Heng Li
- Department of Anatomy, University of Hong Kong, Hong Kong, Hong Kong
| | - Liumin He
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Wutian Wu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
- Department of Anatomy, University of Hong Kong, Hong Kong, Hong Kong
- Re-Stem Biotechnology Co., Ltd., Suzhou, China
| |
Collapse
|
17
|
Ramírez-Rodríguez GB, Perera-Murcia GR, Ortiz-López L, Vega-Rivera NM, Babu H, García-Anaya M, González-Olvera JJ. Vascular endothelial growth factor influences migration and focal adhesions, but not proliferation or viability, of human neural stem/progenitor cells derived from olfactory epithelium. Neurochem Int 2017; 108:417-425. [PMID: 28600187 DOI: 10.1016/j.neuint.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 01/19/2023]
Abstract
In humans, new neurons are continuously added in the olfactory epithelium even in the adulthood. The resident neural stem/progenitor cells (hNS/PCs-OE) in the olfactory epithelium are influenced by several growth factors and neurotrophins. Among these modulators the vascular endothelial growth factor (VEGF) has attracted attention due its implicated in cell proliferation, survival and migration of other type of neural/stem progenitor cells. Interestingly, VEGFr2 receptor expression in olfactory epithelium has been described in amphibians but not in humans. Here we show that VEGFr is expressed in the hNS/PCs-OE. We also investigated the effect of VEGF on the hNS/PCs-OE proliferation, viability and migration in vitro. Additionally, pharmacological approaches showed that VEGF (0.5 ng/ml)-stimulated migration of hNS/PCs-OE was blocked with the compound DMH4, which prevents the activation of VEGFr2. Similar effects were found with the inhibitors for Rac (EHT1864) and p38MAPK (SB203850) proteins, respectively. These observations occurred with changes in focal adhesion contacts. However, no effects of VEGF on proliferation or viability were found in hNS/PCs-OE. Our results suggest that hNS/PCs-OE respond to VEGF involving VEGFr2, Rac and p38MAPK.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico.
| | - Gerardo Rodrigo Perera-Murcia
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neuroscience, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Harish Babu
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Maria García-Anaya
- Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Jorge Julio González-Olvera
- Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| |
Collapse
|
18
|
Nowacka-Chmielewska MM, Paul-Samojedny M, Bielecka-Wajdman AM, Barski JJ, Obuchowicz E. Alterations in VEGF expression induced by antidepressant drugs in female rats under chronic social stress. Exp Ther Med 2017; 13:723-730. [PMID: 28352358 DOI: 10.3892/etm.2017.4022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/17/2016] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is thought to serve a role in neurogenesis and the stress response. Although a definite link between the action of antidepressants and VEGF has not been identified, it is assumed that VEGF, as a neurotrophic factor, serves an important role in the effects of antidepressant treatment. To examine this, the present study subjected adult female rats to four weeks of social instability stress and measured the effect of antidepressant treatment on the expression of VEGF. Firstly, endocrine markers of stress and body weight were measured in parallel with behavioral tests prior to and following subjection to stress. Then, the effect of 28-day daily treatment with desipramine (DMI; 10 mg/kg), fluoxetine (5 mg/kg) or tianeptine (10 mg/kg) on the number of copies of VEGF mRNA in the amygdala, hippocampus and hypothalamus, and on serum VEGF protein levels, of rats subjected to chronic stress was determined. In addition, the weight of the adrenal glands was measured following subjection to stress. Exposure to chronic stress was found to increase the rats' sucrose preference, and diminish their tendency for general exploration and time spent in the open. The relative adrenal weights of the stressed rats were significantly increased compared with the control. Plasma concentrations of corticosterone and adrenocorticotropic hormone were not significantly augmented. In addition, the present study identified that stress elevated VEGF mRNA expression in all studied neural structures. Furthermore, the results identified that the stress-induced increase in VEGF mRNA expression in the amygdala and hypothalamus was attenuated by long-term administration of DMI. Conversely, a decrease in serum VEGF concentration was observed in stressed rats, which was not reversed by treatment with antidepressants. In conclusion, the current study suggests that under conditions of stress, VEGF serves a role in the mechanism of action of DMI, through modulating activity of the norepinephrine system.
Collapse
Affiliation(s)
- Marta Maria Nowacka-Chmielewska
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; Center For Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, School of Pharmacy with The Division of Laboratory Medicine, Medical University of Silesia, 41-200 Sosnowiec, Poland
| | - Anna Maria Bielecka-Wajdman
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Jarosław Jerzy Barski
- Center For Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
19
|
Herrfurth L, Theis V, Matschke V, May C, Marcus K, Theiss C. Morphological Plasticity of Emerging Purkinje Cells in Response to Exogenous VEGF. Front Mol Neurosci 2017; 10:2. [PMID: 28194096 PMCID: PMC5276996 DOI: 10.3389/fnmol.2017.00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is well known as the growth factor with wide-ranging functions even in the central nervous system (CNS). Presently, most attention is given to the investigation of its role in neuronal protection, growth and maturation processes, whereby most effects are mediated through VEGF receptor 2 (VEGFR-2). The purpose of our current study is to provide new insights into the impact of VEGF on immature and mature Purkinje cells (PCs) in accordance with maturity and related receptor expression. Therefore, to expand our knowledge of VEGF effects in PCs development and associated VEGFR-2 expression, we used cultivated organotypic cerebellar slice cultures in immunohistochemical or microinjection studies, followed by confocal laser scanning microscopy (CLSM) and morphometric analysis. Additionally, we incorporated in our study the method of laser microdissection, followed by quantitative polymerase chain reaction (qPCR). For the first time we could show the age-dependent VEGF sensitivity of PCs with the largest promoting effects being on dendritic length and cell soma size in neonatal and juvenile stages. Once mature, PCs were no longer susceptible to VEGF stimulation. Analysis of VEGFR-2 expression revealed its presence in PCs throughout development, which underlined its mediating functions in neuronal cells.
Collapse
Affiliation(s)
- Leonard Herrfurth
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| | - Verena Theis
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| | - Veronika Matschke
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| | - Caroline May
- Abteilung für Medizinische Proteomik/Bioanalytik, Medizinisches Proteom-Center, Ruhr-University Bochum Bochum, Germany
| | - Katrin Marcus
- Abteilung für Medizinische Proteomik/Bioanalytik, Medizinisches Proteom-Center, Ruhr-University Bochum Bochum, Germany
| | - Carsten Theiss
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| |
Collapse
|
20
|
Groh A, Jahn K, Burkert A, Neyazi A, Schares L, Janke E, Rehme M, Schuster R, Hillemacher T, Bleich S, Frieling H, Heberlein A. Epigenetic Regulation of the Promotor Region of Vascular Endothelial Growth Factor-A and Nerve Growth Factor in Opioid-Maintained Patients. Eur Addict Res 2017; 23:249-259. [PMID: 29224006 DOI: 10.1159/000485030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
AIMS The nerve growth factor (NGF) and the vascular endothelial growth factor-A (VEGF-A) may be of importance for psychiatric diseases including substance use disorders. The aim of the study was to identify differences in the regulation of both neuropeptides via the DNA-methylation status of the promotor regions of NGF and VEGF-A in different forms of maintenance therapy for opioid dependence and the related stress regulation via the hypothalamic-pituitary-adrenal axis. METHODS We compared methylation levels of opioid-dependent patients receiving treatment with diamorphine (n = 28) or levomethadone (n = 54) and similar levels in a healthy control group (n = 72). RESULTS There was a significantly higher methylation of VEGF-A in opioid-maintained patients with levomethadone compared to that in the control group (estimated marginal means [EMM] [SE]): 0.036 [0.003] vs. 0.020 [0.003]; p < 0.001). We performed a cluster analysis for NGF, splitting up the results in 4 clusters. We found significant changes in methylation rates of the opioid-maintained patients compared to the controls in cluster I ([EMM] [SE]: 0.064 [0.005] vs. 0.084 [0.006]; p = 0.03), cluster II ([EMM] [SE]: 0.133 [0.013] vs. 0.187 [0.014]; p < 0.001) and cluster III ([EMM] [SE]: 0.190 [0.014] vs. 0.128 [0.016]; p < 0.001). CONCLUSIONS The results are of importance, as they indicate that long-term changes in stress regulation regulated by neurotrophines are a crucial part of the symptomatology of opioid dependence, thus influencing drug consumption and the different forms of opioid-maintenance therapies.
Collapse
Affiliation(s)
- Adrian Groh
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.,Molecular Neuroscience Laboratory, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kirsten Jahn
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.,Molecular Neuroscience Laboratory, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Burkert
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.,Molecular Neuroscience Laboratory, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Neyazi
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.,Molecular Neuroscience Laboratory, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Laura Schares
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Eva Janke
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Marie Rehme
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Rilana Schuster
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Thomas Hillemacher
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Helge Frieling
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.,Molecular Neuroscience Laboratory, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Annemarie Heberlein
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
21
|
Dexamethasone prevents motor deficits and neurovascular damage produced by shiga toxin 2 and lipopolysaccharide in the mouse striatum. Neuroscience 2016; 344:25-38. [PMID: 28042026 DOI: 10.1016/j.neuroscience.2016.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) causes bloody diarrhea and Hemolytic Uremic Syndrome (HUS) that may derive to fatal neurological outcomes. Neurological abnormalities in the striatum are frequently observed in affected patients and in studies with animal models while motor disorders are usually associated with pyramidal and extra pyramidal systems. A translational murine model of encephalopathy was employed to demonstrate that systemic administration of a sublethal dose of Stx2 damaged the striatal microvasculature and astrocytes, increase the blood brain barrier permeability and caused neuronal degeneration. All these events were aggravated by lipopolysaccharide (LPS). The injury observed in the striatum coincided with locomotor behavioral alterations. The anti-inflammatory Dexamethasone resulted to prevent the observed neurologic and clinical signs, proving to be an effective drug. Therefore, the present work demonstrates that: (i) systemic sub-lethal Stx2 damages the striatal neurovascular unit as it succeeds to pass through the blood brain barrier. (ii) This damage is aggravated by the contribution of LPS which is also produced and secreted by EHEC, and (iii) the observed neurological alterations may be prevented by an anti-inflammatory treatment.
Collapse
|
22
|
Whiteford JR, De Rossi G, Woodfin A. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:201-78. [PMID: 27572130 DOI: 10.1016/bs.ircmb.2016.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders.
Collapse
Affiliation(s)
- J R Whiteford
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - G De Rossi
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - A Woodfin
- Cardiovascular Division, King's College, University of London, London, United Kingdom.
| |
Collapse
|
23
|
Association of serum VEGF levels with prefrontal cortex volume in schizophrenia. Mol Psychiatry 2016; 21:686-92. [PMID: 26169975 DOI: 10.1038/mp.2015.96] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/05/2015] [Accepted: 06/01/2015] [Indexed: 12/30/2022]
Abstract
A large body of evidence indicates alterations in brain regional cellular energy metabolism and blood flow in schizophrenia. Among the different molecules regulating blood flow, vascular endothelial growth factor (VEGF) is generally accepted as the major factor involved in the process of angiogenesis. In the present study, we examined whether peripheral VEGF levels correlate with changes in the prefrontal cortex (PFC) volume in patients with schizophrenia and in healthy controls. Whole-blood samples were obtained from 96 people with schizophrenia or schizoaffective disorder and 83 healthy controls. Serum VEGF protein levels were analyzed by enzyme-linked immunosorbent assay, whereas quantitative PCR was performed to measure interleukin-6 (IL-6, a pro-inflammatory marker implicated in schizophrenia) mRNA levels in the blood samples. Structural magnetic resonance imaging scans were obtained using a 3T Achieva scanner on a subset of 59 people with schizophrenia or schizoaffective disorder and 65 healthy controls, and prefrontal volumes were obtained using FreeSurfer software. As compared with healthy controls, individuals with schizophrenia had a significant increase in log-transformed mean serum VEGF levels (t(177)=2.9, P=0.005). A significant inverse correlation (r=-0.40, P=0.002) between serum VEGF and total frontal pole volume was found in patients with schizophrenia/schizoaffective disorder. Moreover, we observed a significant positive association (r=0.24, P=0.03) between serum VEGF and IL-6 mRNA levels in patients with schizophrenia. These findings suggest an association between serum VEGF and inflammation, and that serum VEGF levels are related to structural abnormalities in the PFC of people with schizophrenia.
Collapse
|
24
|
Guo H, Zhou H, Lu J, Qu Y, Yu D, Tong Y. Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury. Neural Regen Res 2016; 11:174-9. [PMID: 26981109 PMCID: PMC4774214 DOI: 10.4103/1673-5374.175067] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jie Lu
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yu Tong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
25
|
Jiang C, Zuo F, Wang Y, Lu H, Yang Q, Wang J. Progesterone Changes VEGF and BDNF Expression and Promotes Neurogenesis After Ischemic Stroke. Mol Neurobiol 2016. [PMID: 26746666 DOI: 10.1007/s12035-015-9651-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies have shown that progesterone enhances functional recovery after ischemic stroke, but the underlying mechanisms are not completely understood. Therefore, we investigated the effect of progesterone on vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and neurogenesis in a rodent stroke model. Rats underwent permanent middle cerebral artery occlusion (pMCAO) and then received intraperitoneal injections of progesterone (15 mg/kg) or vehicle at 1 h followed by subcutaneous injections at 6, 24, and 48 h. We examined VEGF and BDNF expression by Western blotting and/or immunostaining and microvessel density by lectin immunostaining. Neurogenesis in the subventricular zone was determined by immunostaining of Ki67 and doublecortin, and double BrdU/Nestin immunostaining. We calculated brain water content with the wet-dry weight method on day 3 and assessed neurologic deficits with the modified neurological severity score on days 1, 3, 7, and 14. Progesterone-treated rats showed a significant decrease in VEGF expression, but an increase in BDNF expression, compared with that of vehicle-treated pMCAO rats on day 3 post-occlusion. Progesterone did not alter the microvessel density, but it reduced brain water content compared with that in vehicle-treated rats on day 3 post-occlusion. Progesterone treatment increased the numbers of newly generated neurons in the subventricular zone and doublecortin-positive cells in the peri-infarct region on day 7 post-occlusion. In addition, progesterone improved neurologic function on days 7 and 14 post-occlusion. Our data suggest that the enhancement of endogenous BDNF and subsequent neurogenesis could partially underlie the neuroprotective effects of progesterone.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China.
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| | - Fangfang Zuo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China
| | - Yuejuan Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400044, China
| | - Jian Wang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
Roslavtceva V, Salmina A, Prokopenko S, Pozhilenkova E, Kobanenko I, Rezvitskaya G. The role of vascular endothelial growth factor in the regulation of development and functioning of the brain: new target molecules for pharmacotherapy. ACTA ACUST UNITED AC 2016; 62:124-33. [DOI: 10.18097/pbmc20166202124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vascular endothelial growth factors (VEGFs) have been shown to participate in atherosclerosis, arteriogenesis, cerebral edema, neuroprotection, neurogenesis, angiogenesis, postischemic brain and vessel repair. Most of these actions involve VEGF-A and the VEGFR-2 receptor. VEGF signaling pathways represent an important potential for treatment of neurological diseases affecting the brain
Collapse
Affiliation(s)
- V.V. Roslavtceva
- Voyno-Yasenetski Krasnoyarsk State Medical Academy, Krasnoyarsk, Russia
| | - A.B. Salmina
- Voyno-Yasenetski Krasnoyarsk State Medical Academy, Krasnoyarsk, Russia
| | - S.V. Prokopenko
- Voyno-Yasenetski Krasnoyarsk State Medical Academy, Krasnoyarsk, Russia
| | - E.A. Pozhilenkova
- Voyno-Yasenetski Krasnoyarsk State Medical Academy, Krasnoyarsk, Russia
| | - I.V. Kobanenko
- Berzon Krasnoyarsk Regional Clinical Hospital N 20, Krasnoyarsk Russia
| | - G.G. Rezvitskaya
- Berzon Krasnoyarsk Regional Clinical Hospital N 20, Krasnoyarsk Russia
| |
Collapse
|
27
|
Ergul A, Valenzuela JP, Fouda AY, Fagan SC. Cellular connections, microenvironment and brain angiogenesis in diabetes: Lost communication signals in the post-stroke period. Brain Res 2015; 1623:81-96. [PMID: 25749094 PMCID: PMC4743654 DOI: 10.1016/j.brainres.2015.02.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
Diabetes not only increases the risk but also worsens the motor and cognitive recovery after stroke, which is the leading cause of disability worldwide. Repair after stroke requires coordinated communication among various cell types in the central nervous system as well as circulating cells. Vascular restoration is critical for the enhancement of neurogenesis and neuroplasticity. Given that vascular disease is a major component of all complications associated with diabetes including stroke, this review will focus on cellular communications that are important for vascular restoration in the context of diabetes. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Adviye Ergul
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, CA 2094, Augusta, GA 30912, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - John Paul Valenzuela
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, CA 2094, Augusta, GA 30912, USA
| | - Abdelrahman Y Fouda
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Susan C Fagan
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| |
Collapse
|
28
|
Lee BH, Hong JP, Hwang JA, Ham BJ, Na KS, Kim WJ, Trigo J, Kim YK. Alterations in plasma vascular endothelial growth factor levels in patients with schizophrenia before and after treatment. Psychiatry Res 2015; 228:95-9. [PMID: 25977072 DOI: 10.1016/j.psychres.2015.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/13/2015] [Accepted: 04/16/2015] [Indexed: 12/27/2022]
Abstract
Vascular endothelial growth factor (VEGF), a potent angiogenetic factor, is a known neurotrophic factor. In this study, we examined plasma levels of VEGF in 50 patients with schizophrenia (SPR) and 50 healthy control subjects. We also explored any changes in plasma VEGF levels after 6-week treatment with antipsychotic agents in patients with schizophrenia. All subjects with schizophrenia were either medication-naïve or medication-free for at least 4 weeks before assessment. Plasma VEGF levels in all subjects were significantly correlated with smoking duration, which was considered to be a significant covariate. Pre-treatment plasma VEGF levels in patients with schizophrenia were significantly lower than those in healthy controls. Post-treatment VEGF levels were significantly increased in patients with schizophrenia. Plasma VEGF levels in patients with schizophrenia did not exhibit significant correlation with the total or subscale scores of the Positive and Negative Syndrome Scale (PANSS) either at baseline or at the end of the 6-week treatment. In conclusion, our findings reveal that plasma VEGF levels before treatment were lower in patients with schizophrenia and that their VEGF levels increased after treatment. Thus, VEGF may have a neuroprotective role in the improvement of schizophrenia or in the treatment effects of antipsychotics.
Collapse
Affiliation(s)
- Bun-Hee Lee
- Department of Psychiatry, Seoul Metropolitan Eunpyeong Hospital, 90, Baengyeonsan-ro, Eunpyeong-gu, Seoul, 122-913, Republic of Korea
| | - Jin-Pyo Hong
- Department of Psychiatry, Samsung Medical Center, 81, Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Jung-A Hwang
- Department of Psychiatry, Korea University Ansan Hospital, 516, Gojan-dong, Ansan, Kyunggi 425-707, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, College of Medicine, Korea University, 73, Inchon-ro, Seongbuk-gu, Seoul 136-706, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gacheon University Gil Medical Center, 1198, Guwol 1-dong, Namdong-gu, Incheon, Republic of Korea
| | - Won-Joong Kim
- Translational Addiction Research Laboratory Centre for Addicition and Mental Health (CAMH), Toronto, Ontario, Canada; McMaster University, Hamilton, Ontario, Canada
| | - Jose Trigo
- Translational Addiction Research Laboratory Centre for Addicition and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, 516, Gojan-dong, Ansan, Kyunggi 425-707, Republic of Korea; Department of Psychiatry, College of Medicine, Korea University, 73, Inchon-ro, Seongbuk-gu, Seoul 136-706, Republic of Korea.
| |
Collapse
|
29
|
Schira J, Falkenberg H, Hendricks M, Waldera-Lupa DM, Kögler G, Meyer HE, Müller HW, Stühler K. Characterization of Regenerative Phenotype of Unrestricted Somatic Stem Cells (USSC) from Human Umbilical Cord Blood (hUCB) by Functional Secretome Analysis. Mol Cell Proteomics 2015; 14:2630-43. [PMID: 26183719 DOI: 10.1074/mcp.m115.049312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 12/13/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic strategy to enhance axonal regeneration after spinal cord injury. Unrestricted somatic stem cells (USSC) isolated from human umbilical cord blood is an attractive stem cell population available at GMP grade without any ethical concerns. It has been shown that USSC transplantation into acute injured rat spinal cords leads to axonal regrowth and significant locomotor recovery, yet lacking cell replacement. Instead, USSC secrete trophic factors enhancing neurite growth of primary cortical neurons in vitro. Here, we applied a functional secretome approach characterizing proteins secreted by USSC for the first time and validated candidate neurite growth promoting factors using primary cortical neurons in vitro. By mass spectrometric analysis and exhaustive bioinformatic interrogation we identified 1156 proteins representing the secretome of USSC. Using Gene Ontology we revealed that USSC secretome contains proteins involved in a number of relevant biological processes of nerve regeneration such as cell adhesion, cell motion, blood vessel formation, cytoskeleton organization and extracellular matrix organization. We found for instance that 31 well-known neurite growth promoting factors like, e.g. neuronal growth regulator 1, NDNF, SPARC, and PEDF span the whole abundance range of USSC secretome. By the means of primary cortical neurons in vitro assays we verified SPARC and PEDF as significantly involved in USSC mediated neurite growth and therewith underline their role in improved locomotor recovery after transplantation. From our data we are convinced that USSC are a valuable tool in regenerative medicine as USSC's secretome contains a comprehensive network of trophic factors supporting nerve regeneration not only by a single process but also maintained its regenerative phenotype by a multitude of relevant biological processes.
Collapse
Affiliation(s)
- Jessica Schira
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Heiner Falkenberg
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marion Hendricks
- §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Daniel M Waldera-Lupa
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gesine Kögler
- ¶Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Helmut E Meyer
- ‖Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, Germany
| | - Hans Werner Müller
- §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; **Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; **Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Fathpour P, Obad N, Espedal H, Stieber D, Keunen O, Sakariassen PØ, Niclou SP, Bjerkvig R. Bevacizumab treatment for human glioblastoma. Can it induce cognitive impairment? Neuro Oncol 2015; 16:754-6. [PMID: 24733853 DOI: 10.1093/neuonc/nou013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent results from 2 double-blind, placebo-controlled phase III trials (RTOG 0825) and (AVAglio) for first-line treatment of glioblastoma patients with the VEGF antibody bevacizumab, showed similar results, related to overall and progression-free survival. The RTOG 0825 trial indicated, opposed to the AVAglio trial, that patients treated with bevacizumab showed a decline in global neurocognitive function compared to untreated patients, -a decline that was most obvious after prolonged treatment. At present, there is a considerably controversy related to these observations. In the present work we point at the possibility that bevacizumab treatment of the normal brain can reduce synaptic plasticity in the hippocampus. We believe that such a phenomenon may partly explain the reduced cognitive function observed in patients in the RTOG 0825 trial. Since the same effects were not clearly defined in the AVAglio trial, further studies on putative neurocognitive effects after bevacizumab treatment are warranted.
Collapse
Affiliation(s)
- Pakzad Fathpour
- Department of Biomedicine, University of Bergen, Norway (P.F., N.O., H.E.,P.Ø.S., R.B); Centre de Recherche Public de la Santé, Luxembourg (D.S., O.K., S.P.N.)
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Muche A, Bigl M, Arendt T, Schliebs R. Expression of vascular endothelial growth factor (VEGF) mRNA, VEGF receptor 2 (Flk-1) mRNA, and of VEGF co-receptor neuropilin (Nrp)-1 mRNA in brain tissue of aging Tg2576 mice by in situ hybridization. Int J Dev Neurosci 2015; 43:25-34. [PMID: 25797338 DOI: 10.1016/j.ijdevneu.2015.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 01/23/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) has been characterized as a heparin binding angiogenic growth factor displaying high specificity for endothelial cells. It is profoundly accumulated and co-localized with amyloid beta (Aβ) plaques in the brain of Alzheimer's disease patients. In order to examine the effect of Aβ plaques on the expression level of VEGF mRNA and its receptors, brain tissue of both transgenic Tg2576 and wild type mice at ages ranging from 13 to 22 months was subjected to in situ hybridization followed by densitometric assessment using computer-assisted image analysis. Strong expression of VEGF mRNA, fetal liver kinase (Flk)-1 mRNA, and neuropilin (Nrp)-1 mRNA in the piriform, entorhinal, somatosensory, frontal cortex and hippocampal formation of both transgenic and non-transgenic mice brain was detected. Developmentally, only expression of VEGF mRNA was increased with age in the entorhinal, and somatosensory cortex of wild type mice. In 20-month-old transgenic Tg2576 mice, up-regulation of VEGF mRNA, Flk-1 mRNA, and Nrp-1 mRNA transcripts was observed in the entorhinal cortex compared to age-matched wild type mice. Our data suggest up-regulation of VEGF mRNA, Flk-1 mRNA and Nrp-1 mRNA, at least in the entorhinal cortex at ages when Aβ deposition in Tg2576 is typically increasing.
Collapse
Affiliation(s)
- Abebe Muche
- Department of Human Anatomy, College of Medicine and Health Sciences, University of Gondar, Ethiopia; Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany.
| | - Marina Bigl
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
32
|
Park YS, Cho JH, Kim IH, Cho GS, Cho JH, Park JH, Ahn JH, Chen BH, Shin BN, Shin MC, Tae HJ, Cho YS, Lee YL, Kim YM, Won MH, Lee JC. Effects of ischemic preconditioning on VEGF and pFlk-1 immunoreactivities in the gerbil ischemic hippocampus after transient cerebral ischemia. J Neurol Sci 2014; 347:179-87. [PMID: 25300771 DOI: 10.1016/j.jns.2014.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/01/2014] [Accepted: 09/23/2014] [Indexed: 01/19/2023]
Abstract
Ischemia preconditioning (IPC) displays an important adaptation of the CNS to sub-lethal ischemia. In the present study, we examined the effect of IPC on immunoreactivities of VEGF-, and phospho-Flk-1 (pFlk-1) following transient cerebral ischemia in gerbils. The animals were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+) sham-operated-group, and IPC+ischemia-operated-group). IPC was induced by subjecting gerbils to 2 min of ischemia followed by 1 day of recovery. In the ischemia-operated-group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) alone 5 days after ischemia-reperfusion, however, in all the IPC+ischemia-operated-groups, pyramidal neurons in the SP were well protected. In immunohistochemical study, VEGF immunoreactivity in the ischemia-operated-group was increased in the SP at 1 day post-ischemia and decreased with time. Five days after ischemia-reperfusion, strong VEGF immunoreactivity was found in non-pyramidal cells, which were identified as pericytes, in the stratum oriens (SO) and radiatum (SR). In the IPC+sham-operated- and IPC+ischemia-operated-groups, VEGF immunoreactivity was significantly increased in the SP. pFlk-1 immunoreactivity in the sham-operated- and ischemia-operated-groups was hardly found in the SP, and, from 2 days post-ischemia, pFlk-1 immunoreactivity was strongly increased in non-pyramidal cells, which were identified as pericytes. In the IPC+sham-operated-group, pFlk-1 immunoreactivity was significantly increased in both pyramidal and non-pyramidal cells; in the IPC+ischemia-operated-groups, the similar pattern of VEGF immunoreactivity was found in the ischemic CA1, although the VEGF immunoreactivity was strong in non-pyramidal cells at 5 days post-ischemia. In brief, our findings show that IPC dramatically augmented the induction of VEGF and pFlk-1 immunoreactivity in the pyramidal cells of the CA1 after ischemia-reperfusion, and these findings suggest that the increases of VEGF and Flk-1 expressions may be necessary for neurons to survive from transient ischemic damage.
Collapse
Affiliation(s)
- Yoo Seok Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Young Shin Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul 140-743, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
33
|
Day JS, O'Neill E, Cawley C, Aretz NK, Kilroy D, Gibney SM, Harkin A, Connor TJ. Noradrenaline acting on astrocytic β2-adrenoceptors induces neurite outgrowth in primary cortical neurons. Neuropharmacology 2014; 77:234-48. [DOI: 10.1016/j.neuropharm.2013.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
|
34
|
Shahaduzzaman M, Golden JE, Green S, Gronda AE, Adrien E, Ahmed A, Sanberg PR, Bickford PC, Gemma C, Willing AE. A single administration of human umbilical cord blood T cells produces long-lasting effects in the aging hippocampus. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2071-2087. [PMID: 23263793 PMCID: PMC3825009 DOI: 10.1007/s11357-012-9496-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Neurogenesis occurs throughout life but significantly decreases with age. Human umbilical cord blood mononuclear cells (HUCB MNCs) have been shown to increase the proliferation of neural stem cells (NSCs) in the dentate gyrus (DG) of the hippocampus and the subgranular zone of aging rats (Bachstetter et al., BMC Neurosci 9:22, 2008), but it is unclear which fraction or combination of the HUCB MNCs are responsible for neurogenesis. To address this issue, we examined the ability of HUCB MNCs, CD4+, CD8+, CD3+, CD14+, and CD133+ subpopulations to increase proliferation of NSCs both in vitro and in vivo. NSCs were first grown in conditioned media generated from HUCB cultures, and survival and proliferation of NSC were determined with the fluorescein diacetate/propidium iodide and 5-bromo-2'-deoxyuridine incorporation assays, respectively. In a second study, we injected HUCB cells intravenously in young and aged Fisher 344 rats and examined proliferation in the DG at 1 week (study 2.1) and 2 weeks (study 2.2) postinjection. The effects of the HUCB MNC fractions on dendritic spine density and microglial activation were also assessed. HUCB T cells (CD3+, CD4+, and CD8+ cells) induced proliferation of NSCs (p < 0.001) and increased cell survival. In vivo, HUCB-derived CD4+ cells increased NSC proliferation at both 1 and 2 weeks while also enhancing the density of dendritic spines at 1 week and decreasing inflammation at 2 weeks postinjection. Collectively, these data indicate that a single injection of HUCB-derived T cells induces long-lasting effects and may therefore have tremendous potential to improve aging neurogenesis.
Collapse
Affiliation(s)
- Md Shahaduzzaman
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Jason E. Golden
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Suzanne Green
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Allisun E. Gronda
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Emanuelle Adrien
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Aysha Ahmed
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Paul R. Sanberg
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Paula C. Bickford
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
- Research Service, James A Haley VA Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33620 USA
| | - Carmelina Gemma
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Alison E. Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| |
Collapse
|
35
|
Shinozaki M, Nakamura M, Konomi T, Kobayashi Y, Takano M, Saito N, Toyama Y, Okano H. Distinct roles of endogenous vascular endothelial factor receptor 1 and 2 in neural protection after spinal cord injury. Neurosci Res 2013; 78:55-64. [PMID: 24107617 DOI: 10.1016/j.neures.2013.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 01/19/2023]
Abstract
Secondary degeneration after spinal cord injury (SCI) is caused by increased vascular permeability, infiltration of inflammatory cells, and subsequent focal edema. Therapeutic interventions using neurotrophic factors have focused on the prevention of such reactions to reduce cell death and promote tissue regeneration. Vascular endothelial growth factor (VEGF) is a potent angiogenic and vascular permeability factor. However, the effect of VEGF on SCI remains controversial. VEGF signaling is primarily regulated through two primary receptors, VEGF receptor 1 (VEGF-R1) and VEGF receptor 2 (VEGF-R2). The purpose of this study was to examine the effects of intraperitoneal administration of VEGF-R1- and VEGF-R2-neutralizing antibodies on a mouse model of SCI. VEGF-R1 blockade, but not VEGF-R2 blockade, decreased the permeability and infiltration of inflammatory cells, and VEGF-R2 blockade caused a significant increase in neuronal apoptosis in the acute phase of SCI. VEGF-R2 blockade decreased the residual tissue area and the number of neural fibers in the chronic phase of SCI. VEGF-R2 blockade worsened the functional recovery and prolonged the latency of motor evoked potentials. These data suggest that endogenous VEGF-R2 plays a crucial role in neuronal protection after SCI.
Collapse
Affiliation(s)
- Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Tsunehiko Konomi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshiomi Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morito Takano
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
36
|
Pinto A, Jacobsen M, Geoghegan PA, Cangelosi A, Cejudo ML, Tironi-Farinati C, Goldstein J. Dexamethasone rescues neurovascular unit integrity from cell damage caused by systemic administration of shiga toxin 2 and lipopolysaccharide in mice motor cortex. PLoS One 2013; 8:e70020. [PMID: 23894578 PMCID: PMC3720947 DOI: 10.1371/journal.pone.0070020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) that can lead to fatal encephalopathies. Neurological abnormalities may occur before or after the onset of systemic pathological symptoms and motor disorders are frequently observed in affected patients and in studies with animal models. As Stx2 succeeds in crossing the blood-brain barrier (BBB) and invading the brain parenchyma, it is highly probable that the observed neurological alterations are based on the possibility that the toxin may trigger the impairment of the neurovascular unit and/or cell damage in the parenchyma. Also, lipopolysaccharide (LPS) produced and secreted by enterohemorrhagic Escherichia coli (EHEC) may aggravate the deleterious effects of Stx2 in the brain. Therefore, this study aimed to determine (i) whether Stx2 affects the neurovascular unit and parenchymal cells, (ii) whether the contribution of LPS aggravates these effects, and (iii) whether an inflammatory event underlies the pathophysiological mechanisms that lead to the observed injury. The administration of a sub-lethal dose of Stx2 was employed to study in detail the motor cortex obtained from a translational murine model of encephalopathy. In the present paper we report that Stx2 damaged microvasculature, caused astrocyte reaction and neuronal degeneration, and that this was aggravated by LPS. Dexamethasone, an anti-inflammatory, reversed the pathologic effects and proved to be an important drug in the treatment of acute encephalopathies.
Collapse
Affiliation(s)
- Alipio Pinto
- Laboratorio de Neurofisiopatología, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Jacobsen
- Laboratorio de Neurofisiopatología, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia A. Geoghegan
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), – ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana Cangelosi
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), – ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Laura Cejudo
- Laboratorio de Neurofisiopatología, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Tironi-Farinati
- Laboratorio de Neurofisiopatología, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge Goldstein
- Laboratorio de Neurofisiopatología, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
37
|
Nowacka M, Obuchowicz E. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: An insight from experimental studies. Pharmacol Rep 2013; 65:535-46. [DOI: 10.1016/s1734-1140(13)71031-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/08/2013] [Indexed: 02/08/2023]
|
38
|
Licht T, Keshet E. Delineating multiple functions of VEGF-A in the adult brain. Cell Mol Life Sci 2013; 70:1727-37. [PMID: 23475068 PMCID: PMC11113886 DOI: 10.1007/s00018-013-1280-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth factor-A (abbreviated throughout this review as VEGF) is mostly known for its angiogenic activity, for its activity as a vascular permeability factor, and for its vascular survival activity [1]. There is a growing body of evidence, however, that VEGF fulfills additional less 'traditional' functions in multiple organs, both during development, as well as homeostatic functions in fully developed organs. This review focuses on the multiple roles of VEGF in the adult brain and is less concerned with the roles played by VEGF during brain development, functions described elsewhere in this review series. Most functions of VEGF that are essential for proper brain development are, in fact, dispensable in the adult brain as was clearly demonstrated using a conditional brain-specific VEGF loss-of-function (LOF) approach. Thus, in contrast to VEGF LOF in the developing brain, a process which is detrimental for the growth and survival of blood vessels and leads to massive neuronal apoptosis [2-4], continued signaling by VEGF in the mature brain is no longer required for maintaining already established cerebral vasculature and its inhibition does not cause appreciable vessel regression, hypoxia or apoptosis [4-7]. Yet, VEGF continues to be expressed in the adult brain in a constitutive manner. Moreover, VEGF is expressed in the adult brain in a region-specific manner and in distinctive spatial patterns incompatible with an angiogenic role (see below), strongly suggesting angiogenesis-independent and possibly also perfusion-independent functions. Here we review current knowledge on some of these 'non-traditional', often unexpected homeostatic VEGF functions, including those unrelated to its effects on the brain vasculature. These effects could be mediated directly (on non-vascular cells expressing cognate VEGF receptors) or indirectly (via the endothelium). Experimental approaches aimed at distinguishing between these possibilities for each particular VEGF function will be described. This review is only concerned with homeostatic functions of VEGF in the normal, non-injured brain. The reader is referred elsewhere in this series for a review on VEGF actions in response to various forms of brain injury and/or brain pathology.
Collapse
Affiliation(s)
- Tamar Licht
- Department of Developmental Biology and Cancer Research, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Eli Keshet
- Department of Developmental Biology and Cancer Research, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
39
|
Carmeliet P, Ruiz de Almodovar C, Carmen RDA. VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration. Cell Mol Life Sci 2013; 70:1763-78. [PMID: 23475071 PMCID: PMC11113464 DOI: 10.1007/s00018-013-1283-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022]
Abstract
Intensive research in the last decade shows that the prototypic angiogenic factor vascular endothelial growth factor (VEGF) can have direct effects in neurons and modulate processes such as neuronal migration, axon outgrowth, axon guidance and neuronal survival. Depending on the neuronal cell type and the process, VEGF seems to exert these effects by signaling via different receptors. It is also becoming clear that other VEGF ligands such as VEGF-B, -C and -D can act in various neuronal cell types as well. Moreover, apart from playing a role in physiological conditions, VEGF and VEGF-B have been related to different neurological disorders. We give an update on how VEGF controls different processes during neurodevelopment as well as on its role in several neurodegenerative disorders. We also discuss recent findings demonstrating that other VEGF ligands influence processes such as neurogenesis and dendrite arborization and participate in neurodegeneration.
Collapse
Affiliation(s)
- Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, K.U.Leuven, 3000, Leuven, Belgium.
| | | | | |
Collapse
|
40
|
Pan Z, Fukuoka S, Karagianni N, Guaiquil VH, Rosenblatt MI. Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea. FASEB J 2013; 27:2756-67. [PMID: 23568776 DOI: 10.1096/fj.12-225185] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peripheral nerve injury is a major neurological disorder that can cause severe motor and sensory dysfunction. Neurogenic effects of vascular endothelial growth factor (VEGF) have been found in the central nervous system, and we examined whether VEGF could promote anatomical and functional recovery of peripheral nerves after injury using an avascular corneal nerve injury model. We found that VEGF enhanced neurite elongation in isolated trigeminal ganglion neurons in a dose-dependent manner. This effect was suppressed by neutralizing antibodies for VEGF receptor (VEGFR) 1 and 2 or neuropilin receptor 1 or by VEGFR2 inhibitors (SU 1498 and Ki 8751). In vivo, mice receiving sustained VEGF via implanted pellets showed increased corneal nerve regeneration after superficial injury compared with those receiving vehicle. VEGF injected subconjunctivally at the time of injury accelerated reinnervation, the recovery of mechanosensation, and epithelial wound healing. Endogenous VEGF expression was up-regulated in the corneal epithelium and stroma after wounding. Thus, VEGF can mediate peripheral neuron growth but requires the activation of multiple VEGF receptor types. In addition, VEGF can accelerate the return of sensory and trophic functions of damaged peripheral nerves. Wounding induces the expression of VEFG, which may modulate physiological nerve repair.
Collapse
Affiliation(s)
- Zan Pan
- Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
41
|
Kundi S, Bicknell R, Ahmed Z. The role of angiogenic and wound-healing factors after spinal cord injury in mammals. Neurosci Res 2013; 76:1-9. [PMID: 23562792 DOI: 10.1016/j.neures.2013.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Patients with spinal cord injury (SCI) are permanently paralysed and anaesthetic below the lesion. This morbidity is attributed to the deposition of a dense scar at the injury site, the cellular components of which secrete axon growth inhibitory ligands that prevent severed axons reconnecting with denervated targets. Another complication of SCI is wound cavitation where a fluid filled cyst forms in the peri-lesion neuropil, enlarging over the first few months after injury and causes secondary axonal damage. Wound healing after SCI is accompanied by angiogenesis, which is regulated by angiogenic proteins, produced in response to oxygen deprivation. Necrosis in and about the SCI lesion sites may be suppressed by promoting angiogenesis and the resulting neuropil protection will enhance recovery after SCI. This review addresses the use of angiogenic/wound-healing related proteins including vascular endothelial growth factor, fibroblast growth factor, angiopoietin-1, angiopoietin-2 and transforming growth factor-β to moderate necrosis and axon sparing after SCI, providing a conducive environment for growth essential to functional recovery.
Collapse
Affiliation(s)
- Sarina Kundi
- Neurotrauma and Neurodegeneration, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
42
|
Vascular growth factors in neuropsychiatry. Cell Mol Life Sci 2013; 70:1739-52. [PMID: 23475069 DOI: 10.1007/s00018-013-1281-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 01/03/2023]
Abstract
Recent advances in understanding the cellular and molecular basis of psychiatric illnesses have shed light on the important role played by trophic factors in modulating functional parameters associated with disease causality and drug action. Disease mechanisms are now thought to involve multiple cell types, including neurons and endothelial cells. These functionally distinct but interactively coupled cell types engage in cellular cross talk via shared and common signaling molecules. Dysregulation in their cellular signaling pathways influences brain function and alters behavioral performance. Multifunctional trophic factors such as VEGF and EPO that possess both neurotrophic and angiogenic actions are of particular interest due to their ability to rescue structural and plasticity deficits in neurons and vasculature. Obtaining insight into the behavioral, cellular and molecular actions of multi-functional trophic factors has the potential to open new and transformative therapeutic approaches.
Collapse
|
43
|
Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci 2013; 70:1753-61. [PMID: 23475070 DOI: 10.1007/s00018-013-1282-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factors (VEGFs) have been shown to participate in atherosclerosis, arteriogenesis, cerebral edema, neuroprotection, neurogenesis, angiogenesis, postischemic brain and vessel repair, and the effects of transplanted stem cells in experimental stroke. Most of these actions involve VEGF-A and the VEGFR-2 receptor, but VEGF-B, placental growth factor, and VEGFR-1 have been implicated in some cases as well. VEGF signaling pathways represent important potential targets for the acute and chronic treatment of stroke.
Collapse
|
44
|
Ara J, Shukla P, Frank M. Enhanced expression of the Flt-1 and Flk-1 receptor tyrosine kinases in a newborn piglet model of ischemic tolerance. J Neurochem 2013. [DOI: 10.1111/jnc.12110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jahan Ara
- Department of Pediatrics; Drexel University College of Medicine and Saint Christopher's Hospital for Children; Philadelphia PA USA
| | - Panchanan Shukla
- Department of Pediatrics; Drexel University College of Medicine and Saint Christopher's Hospital for Children; Philadelphia PA USA
| | - Melissa Frank
- Department of Pediatrics; Drexel University College of Medicine and Saint Christopher's Hospital for Children; Philadelphia PA USA
| |
Collapse
|
45
|
Thakar A, Sylar E, Flynn FW. Activation of tachykinin, neurokinin 3 receptors affects chromatin structure and gene expression by means of histone acetylation. Peptides 2012; 38:282-90. [PMID: 22985858 PMCID: PMC3513652 DOI: 10.1016/j.peptides.2012.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 01/17/2023]
Abstract
The tachykinin, neurokinin 3 receptor (NK3R) is a g-protein coupled receptor that is broadly distributed in the nervous system and exerts its diverse physiological actions through multiple signaling pathways. Despite the role of the receptor system in a range of biological functions, the effects of NK3R activation on chromatin dynamics and gene expression have received limited attention. The present work determined the effects of senktide, a selective NK3R agonist, on chromatin organization, acetylation, and gene expression, using qRT-PCR, in a hypothalamic cell line (CLU 209) that expresses the NK3R. Senktide (1 nM, 10nM) caused a relaxation of chromatin, an increase in global acetylation of histone H3 and H4, and an increase in the expression of a common set of genes involved in cell signaling, cell growth, and synaptic plasticity. Pretreatment with histone acetyltransferase (HAT) inhibitor (garcinol and 2-methylene y-butylactone), that inhibits p300, p300/CREB binding protein (CBP) associated factor (PCAF), and GCN 5, prevented the senktide-induced increase in expression of most, but not all, of the genes upregulated in response to 1 nM and 10nM senktide. Treatment with 100 nM had the opposite effect: a reduction in chromatin relaxation and decreased acetylation. The expression of four genes was significantly decreased and the HAT inhibitor had a limited effect in blocking the upregulation of genes in response to 100 nM senktide. Activation of the NK3R appears to recruit multiple pathways, including acetylation, and possibly histone deactylases, histone methylases, or DNA methylases to affect chromatin structure and gene expression.
Collapse
Affiliation(s)
- Amit Thakar
- Graduate Neuroscience Program and Department of Zoology and Physiology University of Wyoming Laramie, WY 82072, United States
| | | | | |
Collapse
|
46
|
Tripathy D, Sanchez A, Yin X, Martinez J, Grammas P. Age-related decrease in cerebrovascular-derived neuroprotective proteins: effect of acetaminophen. Microvasc Res 2012; 84:278-85. [PMID: 22944728 PMCID: PMC3483357 DOI: 10.1016/j.mvr.2012.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/17/2012] [Accepted: 08/17/2012] [Indexed: 12/19/2022]
Abstract
As the population ages, the need for effective methods to maintain brain function in older adults is increasingly pressing. Vascular disease and neurodegenerative disorders commonly co-occur in older persons. Cerebrovascular products contribute to the neuronal milieu and have important consequences for neuronal viability. In this regard vascular derived neuroprotective proteins, Such as vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), and pituitary adenylate cyclase activating peptide (PACAP) are important for maintaining neuronal viability, especially in the face of injury and disease. The objective of this study is to measure and compare levels of VEGF, PEDF and PACAP released from isolated brain microvessels of Fischer 344 rats at 6, 12, 18, and 24 months of age. Addition of acetaminophen to isolated brain microvessels is employed to determine whether this drug affects vascular expression of these neuroprotective proteins. Experiments on cultured brain endothelial cells are performed to explore the mechanisms/mediators that regulate the effect of acetaminophen on endothelial cells. The data indicate cerebrovascular expression of VEGF, PEDF and PACAP significantly decreases with age. The age-associated decrease in VEGF and PEDF is ameliorated by addition of acetaminophen to isolated brain microvessels. Also, release of VEGF, PEDF, and PACAP from cultured brain endothelial cells decreases with exposure to the oxidant stressor menadione. Acetaminophen treatment upregulates VEGF, PEDF and PACAP in brain endothelial cells exposed to oxidative stress. The effect of acetaminophen on cultured endothelial cells is in part inhibited by the selective thrombin inhibitor hirudin. The results of this study suggest that acetaminophen may be a useful agent for preserving cerebrovascular function. If a low dose of acetaminophen can counteract the decrease in vascular-derived neurotrophic factors evoked by age and oxidative stress, this drug might be useful for improving brain function in the elderly.
Collapse
Affiliation(s)
- Debjani Tripathy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Alma Sanchez
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joseph Martinez
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Paula Grammas
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
47
|
Bianchi E, Scarinci F, Ripandelli G, Feher J, Pacella E, Magliulo G, Gabrieli CB, Plateroti R, Plateroti P, Mignini F, Artico M. Retinal pigment epithelium, age-related macular degeneration and neurotrophic keratouveitis. Int J Mol Med 2012; 31:232-42. [PMID: 23128960 DOI: 10.3892/ijmm.2012.1164] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/25/2012] [Indexed: 11/05/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of impaired vision and blindness in the aging population. The aims of our studies were to identify qualitative and quantitative alterations in mitochondria in human retinal pigment epithelium (RPE) from AMD patients and controls and to test the protective effects of pigment epithelium-derived factor (PEDF), a known neurotrophic and antiangiogenic substance, against neurotrophic keratouveitis. Histopathological alterations were studied by means of morphometry, light and electron microscopy. Unexpectedly, morphometric data showed that the RPE alterations noted in AMD may also develop in normal aging, 10-15 years later than appearing in AMD patients. Reduced tear secretion, corneal ulceration and leukocytic infiltration were found in capsaicin (CAP)-treated rats, but this effect was significantly attenuated by PEDF. These findings suggest that PEDF accelerated the recovery of tear secretion and also prevented neurotrophic keratouveitis and vitreoretinal inflammation. PEDF may have a clinical application in inflammatory and neovascular diseases of the eye.
Collapse
Affiliation(s)
- Enrica Bianchi
- Department of Sensory Organs, University of Rome, La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Olbrich L, Foehring D, Happel P, Brand-Saberi B, Theiss C. Fast rearrangement of the neuronal growth cone's actin cytoskeleton following VEGF stimulation. Histochem Cell Biol 2012; 139:431-45. [PMID: 23052841 DOI: 10.1007/s00418-012-1036-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 12/12/2022]
Abstract
The neuronal growth cone plays a crucial role in the development of the nervous system. This highly motile structure leads the axon to its final destination by translating guidance cues into cytoskeletal rearrangements. Recently, vascular endothelial growth factor (VEGF), which is essential for angiogenesis and vascular sprouting, has been found to exert a trophic activity also on neurons, leading to an increased axonal outgrowth, similar to the well-known nerve growth factor (NGF). The neurotrophic properties of VEGF are likely to be promoted via the VEGF receptor 2 (VEGFR-2) and neuropilin-1 (NRP-1). In the long term, VEGF attracts and influences the growth cone velocity and leads to growth cone enlargement. The present study focuses on immediate VEGF effects using RFP-actin and GFP-NF-M microinjected chicken dorsal root ganglia for live cell imaging of the neuronal growth cone. We analyzed actin and neurofilament dynamics following VEGF and NGF treatment and compared the effects. Furthermore, key signaling pathways of VEGF were investigated by specific blocking of VEGFR-2 or NRP-1. With the aid of confocal laser scanning microscopy and stimulated emission depletion microscopy, we show for the first time that VEGF has a quick effect on the actin-cytoskeleton, since actin rearrangements were identifiable within a few minutes, leading to a dramatically increased motion. Moreover, these effects were strongly enhanced by adding both VEGF and NGF. Most notably, the effects were inhibited by blocking VEGFR-2, therefore we propose that the immediate effects of VEGF on the actin-cytoskeleton are mediated through VEGFR-2.
Collapse
Affiliation(s)
- Laura Olbrich
- Institute of Anatomy and Molecular Embryology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
49
|
Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta Gen Subj 2012; 1830:2435-48. [PMID: 22982587 DOI: 10.1016/j.bbagen.2012.09.002] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/11/2012] [Accepted: 09/05/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adult neurogenesis occurs throughout life in discrete regions of the mammalian brain and is tightly regulated via both extrinsic environmental influences and intrinsic genetic factors. In recent years, several crucial signaling pathways have been identified in regulating self-renewal, proliferation, and differentiation of neural stem cells, as well as migration and functional integration of developing neurons in the adult brain. SCOPE OF REVIEW Here we review our current understanding of signaling mechanisms, including Wnt, notch, sonic hedgehog, growth and neurotrophic factors, bone morphogenetic proteins, neurotransmitters, transcription factors, and epigenetic modulators, and crosstalk between these signaling pathways in the regulation of adult neurogenesis. We also highlight emerging principles in the vastly growing field of adult neural stem cell biology and neural plasticity. MAJOR CONCLUSIONS Recent methodological advances have enabled the field to identify signaling mechanisms that fine-tune and coordinate neurogenesis in the adult brain, leading to a better characterization of both cell-intrinsic and environmental cues defining the neurogenic niche. Significant questions related to niche cell identity and underlying regulatory mechanisms remain to be fully addressed and will be the focus of future studies. GENERAL SIGNIFICANCE A full understanding of the role and function of individual signaling pathways in regulating neural stem cells and generation and integration of newborn neurons in the adult brain may lead to targeted new therapies for neurological diseases in humans. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Roland Faigle
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
50
|
Abstract
Vascular endothelial growth factor A (VEGF-A) is best known for its essential roles in blood vessel growth. However, evidence has emerged that VEGF-A also promotes a wide range of neuronal functions, both in vitro and in vivo, including neurogenesis, neuronal migration, neuronal survival and axon guidance. Recent studies have employed mouse models to distinguish the direct effects of VEGF on neurons from its indirect, vessel-mediated effects. Ultimately, refining our knowledge of VEGF signalling pathways in neurons should help us to understand how the current use of therapeutics targeting the VEGF pathway in cancer and eye disease might be expanded to promote neuronal health and nerve repair.
Collapse
Affiliation(s)
- Francesca Mackenzie
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, UK
| | | |
Collapse
|