1
|
Arama E, Baena-Lopez LA, Fearnhead HO. Non-lethal message from the Holy Land: The first international conference on nonapoptotic roles of apoptotic proteins. FEBS J 2021; 288:2166-2183. [PMID: 32885609 DOI: 10.1111/febs.15547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/20/2020] [Indexed: 12/01/2022]
Abstract
Apoptosis is a major form of programmed cell death (PCD) that eliminates unnecessary and potentially dangerous cells in all metazoan organisms, thus ensuring tissue homeostasis and many developmental processes. Accordingly, defects in the activation of the apoptotic pathway often pave the way to disease. After several decades of intensive research, the molecular details controlling the apoptosis program have largely been unraveled, as well as the regulatory mechanisms of caspase activation during apoptosis. Nevertheless, an ever-growing list of studies is suggesting the essential role of caspases and other apoptotic proteins in ensuring nonlethal cellular functions during normal development, tissue repair, and regeneration. Moreover, if deregulated, these novel nonapoptotic functions can also instigate diseases. The difficulty of identifying and manipulating the caspase-dependent nonlethal cellular processes (CDPs), as well as the nonlethal functions of other cell death proteins (NLF-CDPs), meant that CDPs and NLF-CDPs have been only curiosities within the apoptotic field; however, the recent technical advancements and the latest biological findings are assigning an unanticipated biological significance to these nonapoptotic functions. Here, we summarize the various talks presented in the first international conference fully dedicated to discuss CDPs and NFL-CDPs and named 'The Batsheva de Rothschild Seminar on Non-Apoptotic Roles of Apoptotic Proteins'. The conference was organized between September 22, 2019, and 25, 2019, by Eli Arama (Weizmann Institute of Science), Luis Alberto Baena-Lopez (University of Oxford), and Howard O. Fearnhead (NUI Galway) at the Weizmann Institute of Science in Israel, and hosted a large international group of researchers.
Collapse
Affiliation(s)
- Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Howard O Fearnhead
- Pharmacology and Therapeutics, Biomedical Sciences, Dangan, NUI Galway, Ireland
| |
Collapse
|
2
|
Kovermann P, Untiet V, Kolobkova Y, Engels M, Baader S, Schilling K, Fahlke C. Increased glutamate transporter-associated anion currents cause glial apoptosis in episodic ataxia 6. Brain Commun 2020; 2:fcaa022. [PMID: 32954283 PMCID: PMC7425361 DOI: 10.1093/braincomms/fcaa022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/24/2020] [Accepted: 02/02/2020] [Indexed: 01/08/2023] Open
Abstract
Episodic ataxia type 6 is an inherited neurological condition characterized by combined ataxia and epilepsy. A severe form of this disease with episodes combining ataxia, epilepsy and hemiplegia was recently associated with a proline to arginine substitution at position 290 of the excitatory amino acid transporter 1 in a heterozygous patient. The excitatory amino acid transporter 1 is the predominant glial glutamate transporter in the cerebellum. However, this glutamate transporter also functions as an anion channel and earlier work in heterologous expression systems demonstrated that the mutation impairs the glutamate transport rate, while increasing channel activity. To understand how these changes cause ataxia, we developed a constitutive transgenic mouse model. Transgenic mice display epilepsy, ataxia and cerebellar atrophy and, thus, closely resemble the human disease. We observed increased glutamate-activated chloride efflux in Bergmann glia that triggers the apoptosis of these cells during infancy. The loss of Bergmann glia results in reduced glutamate uptake and impaired neural network formation in the cerebellar cortex. This study shows how gain-of-function of glutamate transporter-associated anion channels causes ataxia through modifying cerebellar development.
Collapse
Affiliation(s)
- Peter Kovermann
- Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Verena Untiet
- Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Yulia Kolobkova
- Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Miriam Engels
- Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Stephan Baader
- Anatomisches Institut, Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelm Universität Bonn, 53115 Bonn, Germany
| | - Karl Schilling
- Anatomisches Institut, Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelm Universität Bonn, 53115 Bonn, Germany
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
3
|
Caspases interplay with kinases and phosphatases to determine cell fate. Eur J Pharmacol 2019; 855:20-29. [DOI: 10.1016/j.ejphar.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
|
4
|
Caspase-3 Mediated Cell Death in the Normal Development of the Mammalian Cerebellum. Int J Mol Sci 2018; 19:ijms19123999. [PMID: 30545052 PMCID: PMC6321612 DOI: 10.3390/ijms19123999] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
Caspase-3, onto which there is a convergence of the intrinsic and extrinsic apoptotic pathways, is the main executioner of apoptosis. We here review the current literature on the intervention of the protease in the execution of naturally occurring neuronal death (NOND) during cerebellar development. We will consider data on the most common altricial species (rat, mouse and rabbit), as well as humans. Among the different types of neurons and glia in cerebellum, there is ample evidence for an intervention of caspase-3 in the regulation of NOND of the post-mitotic cerebellar granule cells (CGCs) and Purkinje neurons, as a consequence of failure to establish proper synaptic contacts with target (secondary cell death). It seems possible that the GABAergic interneurons also undergo a similar type of secondary cell death, but the intervention of caspase-3 in this case still remains to be clarified in full. Remarkably, CGCs also undergo primary cell death at the precursor/pre-migratory stage of differentiation, in this instance without the intervention of caspase-3. Glial cells, as well, undergo a process of regulated cell death, but it seems possible that expression of caspase-3, at least in the Bergmann glia, is related to differentiation rather than death.
Collapse
|
5
|
Erekat NS. Active caspase-3 upregulation is augmented in at-risk cerebellar Purkinje cells following inferior olive chemoablation in the shaker mutant rat: an immunofluorescence study. Neurol Res 2018; 41:234-241. [DOI: 10.1080/01616412.2018.1548792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nour S. Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
6
|
Spead O, Verreet T, Donelson CJ, Poulain FE. Characterization of the caspase family in zebrafish. PLoS One 2018; 13:e0197966. [PMID: 29791492 PMCID: PMC5965869 DOI: 10.1371/journal.pone.0197966] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022] Open
Abstract
First discovered for their role in mediating programmed cell death and inflammatory responses, caspases have now emerged as crucial regulators of other cellular and physiological processes including cell proliferation, differentiation, migration, and survival. In the developing nervous system, for instance, the non-apoptotic functions of caspases have been shown to play critical roles in the formation of neuronal circuits by regulating axon outgrowth, guidance and pruning. How caspase activity is spatially and temporally maintained at sub-lethal levels within cells remains however poorly understood, especially in vivo. Thanks to its transparency and accessibility, the zebrafish offers the unique ability to directly visualize caspase activation in vivo. Yet, detailed information about the caspase family in zebrafish is lacking. Here, we report the identification and characterization of 19 different caspase genes in zebrafish, and show that caspases have diverse expression profiles from cleavage to larval stages, suggesting highly specialized and/or redundant functions during embryonic development.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Tine Verreet
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Cory J. Donelson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Fabienne E. Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
7
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
8
|
Neuronal Loss in the Developing Cerebral Cortex of Normal and Bax-Deficient Mice: Effects of Ethanol Exposure. Neuroscience 2018; 369:278-291. [DOI: 10.1016/j.neuroscience.2017.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/21/2022]
|
9
|
Sveinsdóttir K, Länsberg JK, Sveinsdóttir S, Garwicz M, Ohlsson L, Hellström A, Smith L, Gram M, Ley D. Impaired Cerebellar Maturation, Growth Restriction, and Circulating Insulin-Like Growth Factor 1 in Preterm Rabbit Pups. Dev Neurosci 2017; 39:487-497. [PMID: 28972955 DOI: 10.1159/000480428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/07/2017] [Indexed: 11/19/2022] Open
Abstract
Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p < 0.05) than in the T group. Postnatal weight development correlated with circulating IGF-1 (r2 = 0.89) independently of gestational age at birth and postnatal age. The proliferative (Ki-67-positive) portion of the external granular layer (EGL) was decreased in the PT group at postnatal day 2 (P2) compared to in the T group (p = 0.01). Purkinje cells exhibited decreased calbindin staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population.
Collapse
|
10
|
Erekat NS. Cerebellar Purkinje cells die by apoptosis in the shaker mutant rat. Brain Res 2017; 1657:323-332. [DOI: 10.1016/j.brainres.2016.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/29/2016] [Accepted: 12/27/2016] [Indexed: 12/15/2022]
|
11
|
Rotschafer SE, Allen-Sharpley MR, Cramer KS. Axonal Cleaved Caspase-3 Regulates Axon Targeting and Morphogenesis in the Developing Auditory Brainstem. Front Neural Circuits 2016; 10:84. [PMID: 27822180 PMCID: PMC5075536 DOI: 10.3389/fncir.2016.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/04/2016] [Indexed: 01/13/2023] Open
Abstract
Caspase-3 is a cysteine protease that is most commonly associated with cell death. Recent studies have shown additional roles in mediating cell differentiation, cell proliferation and development of cell morphology. We investigated the role of caspase-3 in the development of chick auditory brainstem nuclei during embryogenesis. Immunofluorescence from embryonic days E6–13 revealed that the temporal expression of cleaved caspase-3 follows the ascending anatomical pathway. The expression is first seen in the auditory portion of VIIIth nerve including central axonal regions projecting to nucleus magnocellularis (NM), then later in NM axons projecting to nucleus laminaris (NL), and subsequently in NL dendrites. To examine the function of cleaved caspase-3 in chick auditory brainstem development, we blocked caspase-3 cleavage in developing chick embryos with the caspase-3 inhibitor Z-DEVD-FMK from E6 to E9, then examined NM and NL morphology and NM axonal targeting on E10. NL lamination in treated embryos was disorganized and the neuropil around NL contained a significant number of glial cells normally excluded from this region. Additionally, NM axons projected into inappropriate portions of NL in Z-DEVD-FMK treated embyros. We found that the presence of misrouted axons was associated with more severe NL disorganization. The effects of axonal caspase-3 inhibition on both NL morphogenesis and NM axon targeting suggest that these developmental processes are coordinated, likely through communication between axons and their targets.
Collapse
Affiliation(s)
- Sarah E Rotschafer
- Department of Neurobiology and Behavior, University of California Irvine, CA, USA
| | | | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California Irvine, CA, USA
| |
Collapse
|
12
|
Ethanol-Induced Alterations in Purkinje Neuron Dendrites in Adult and Aging Rats: a Review. THE CEREBELLUM 2016; 14:466-73. [PMID: 25648753 DOI: 10.1007/s12311-014-0636-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Uncomplicated alcoholics suffer from discrete motor dysfunctions that become more pronounced with age. These deficits involve the structure and function of Purkinje neurons (PN), the sole output neurons from the cerebellar cortex. This review focuses on alterations to the PN dendritic arbor in the adult and aging Fischer 344 rat following lengthy alcohol consumption. It describes seminal studies using the Golgi-Cox method which proposed a model for ethanol-induced dendritic regression. Subsequent ultrastructural studies of PN dendrites showed dilation of the extensive smooth endoplasmic reticulum (SER) which preceded and accompanied dendritic regression. The component of the SER that was most affected by ethanol was the sarco/endoplasmic reticulum Ca(2+) ATPase pump (SERCA) responsible for resequestration of calcium into the SER. Ethanol-induced decreases in SERCA pump levels, similar to the finding of SER dilation, preceded and occurred concomitantly with dendritic regression. Discrete ethanol-induced deficits in balance also accompanied these decreases. Ethanol-induced ER stress within the SER of PN dendrites was proposed as an underlying cause of dendritic regression. It was recently shown that increased activation of caspase 12, inherent to the ER, occurred in PN of acute slices in ethanol-fed rats and was most pronounced following 40 weeks of ethanol treatment. These findings shed new light into alcohol-induced disruption in PN dendrites providing a new model for the discrete but critical changes in motor function in aging, adult alcoholics.
Collapse
|
13
|
Topper LA, Baculis BC, Valenzuela CF. Exposure of neonatal rats to alcohol has differential effects on neuroinflammation and neuronal survival in the cerebellum and hippocampus. J Neuroinflammation 2015; 12:160. [PMID: 26337952 PMCID: PMC4558631 DOI: 10.1186/s12974-015-0382-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022] Open
Abstract
Background Fetal alcohol exposure is a leading cause of preventable birth defects, yet drinking during pregnancy remains prevalent worldwide. Studies suggest that activation of the neuroimmune system plays a role in the effects of alcohol exposure during the rodent equivalent to the third trimester of human pregnancy (i.e., first week of neonatal life), particularly by contributing to neuronal loss. Here, we performed a comprehensive study investigating differences in the neuroimmune response in the cerebellum and hippocampus, which are important targets of third trimester-equivalent alcohol exposure. Methods To model heavy, binge-like alcohol exposure during this period, we exposed rats to alcohol vapor inhalation during postnatal days (P)3–5 (blood alcohol concentration = 0.5 g/dL). The cerebellar vermis and hippocampus of rat pups were analyzed for signs of glial cell activation and neuronal loss by immunohistochemistry at different developmental stages. Cytokine production was measured by reverse transcriptase polymerase chain reaction during peak blood alcohol concentration and withdrawal periods. Additionally, adolescent offspring were assessed for alterations in gait and spatial memory. Results We found that this paradigm causes Purkinje cell degeneration in the cerebellar vermis at P6 and P45; however, no signs of neuronal loss were found in the hippocampus. Significant increases in pro-inflammatory cytokines were observed in both brain regions during alcohol withdrawal periods. Although astrocyte activation occurred in both the hippocampus and cerebellar vermis, microglial activation was observed primarily in the latter. Conclusions These findings suggest that heavy, binge-like third trimester-equivalent alcohol exposure has time- and brain region-dependent effects on cytokine levels, morphological activation of microglia and astrocytes, and neuronal survival. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0382-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren A Topper
- Department of Neurosciences, School of Medicine, MSC08 4740, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131-0001, USA.
| | - Brian C Baculis
- Department of Neurosciences, School of Medicine, MSC08 4740, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131-0001, USA.
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, MSC08 4740, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
14
|
Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci 2015; 8:450. [PMID: 25628535 PMCID: PMC4290586 DOI: 10.3389/fncel.2014.00450] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada ; Department of Pathology, University of Manitoba Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Robby M Zachariah
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
15
|
Fowler AK, Thompson J, Chen L, Dagda M, Dertien J, Dossou KSS, Moaddel R, Bergeson SE, Kruman II. Differential sensitivity of prefrontal cortex and hippocampus to alcohol-induced toxicity. PLoS One 2014; 9:e106945. [PMID: 25188266 PMCID: PMC4154772 DOI: 10.1371/journal.pone.0106945] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/12/2014] [Indexed: 12/30/2022] Open
Abstract
The prefrontal cortex (PFC) is a brain region responsible for executive functions including working memory, impulse control and decision making. The loss of these functions may ultimately lead to addiction. Using histological analysis combined with stereological technique, we demonstrated that the PFC is more vulnerable to chronic alcohol-induced oxidative stress and neuronal cell death than the hippocampus. This increased vulnerability is evidenced by elevated oxidative stress-induced DNA damage and enhanced expression of apoptotic markers in PFC neurons. We also found that one-carbon metabolism (OCM) impairment plays a significant role in alcohol toxicity to the PFC seen from the difference in the effects of acute and chronic alcohol exposure on DNA repair and from exaggeration of the damaging effects upon additional OCM impairment in mice deficient in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR). Given that damage to the PFC leads to loss of executive function and addiction, our study may shed light on the mechanism of alcohol addiction.
Collapse
Affiliation(s)
- Anna-Kate Fowler
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jeremy Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Lixia Chen
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Marisela Dagda
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Janet Dertien
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Katina Sylvestre S. Dossou
- Laboratory of Clinical Investigation, NIA, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, NIA, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Susan E. Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Inna I. Kruman
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
16
|
Benitez SG, Castro AE, Patterson SI, Muñoz EM, Seltzer AM. Hypoxic preconditioning differentially affects GABAergic and glutamatergic neuronal cells in the injured cerebellum of the neonatal rat. PLoS One 2014; 9:e102056. [PMID: 25032984 PMCID: PMC4102512 DOI: 10.1371/journal.pone.0102056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022] Open
Abstract
In this study we examined cerebellar alterations in a neonatal rat model of hypoxic-ischemic brain injury with or without hypoxic preconditioning (Pc). Between postnatal days 7 and 15, the cerebellum is still undergoing intense cellular proliferation, differentiation and migration, dendritogenesis and synaptogenesis. The expression of glutamate decarboxylase 1 (GAD67) and the differentiation factor NeuroD1 were examined as markers of Purkinje and granule cells, respectively. We applied quantitative immunohistochemistry to sagittal cerebellar slices, and Western blot analysis of whole cerebella obtained from control (C) rats and rats submitted to Pc, hypoxia-ischemia (L) and a combination of both treatments (PcL). We found that either hypoxia-ischemia or Pc perturbed the granule cells in the posterior lobes, affecting their migration and final placement in the internal granular layer. These effects were partially attenuated when the Pc was delivered prior to the hypoxia-ischemia. Interestingly, whole nuclear NeuroD1 levels in Pc animals were comparable to those in the C rats. However, a subset of Purkinje cells that were severely affected by the hypoxic-ischemic insult—showing signs of neuronal distress at the levels of the nucleus, cytoplasm and dendritic arborization—were not protected by Pc. A monoclonal antibody specific for GAD67 revealed a three-band pattern in cytoplasmic extracts from whole P15 cerebella. A ∼110 kDa band, interpreted as a potential homodimer of a truncated form of GAD67, was reduced in Pc and L groups while its levels were close to the control animals in PcL rats. Additionally we demonstrated differential glial responses depending on the treatment, including astrogliosis in hypoxiated cerebella and a selective effect of hypoxia-ischemia on the vimentin-immunolabeled intermediate filaments of the Bergmann glia. Thus, while both glutamatergic and GABAergic cerebellar neurons are compromised by the hypoxic-ischemic insult, the former are protected by a preconditioning hypoxia while the latter are not.
Collapse
Affiliation(s)
- Sergio G Benitez
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM), School of Medicine, National University of Cuyo, Mendoza, National Scientific and Technical Research Council (CONICET), National Agency for Scientific and Technological Promotion (ANPCyT), Mendoza, Argentina
| | - Analía E Castro
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM), School of Medicine, National University of Cuyo, Mendoza, National Scientific and Technical Research Council (CONICET), National Agency for Scientific and Technological Promotion (ANPCyT), Mendoza, Argentina
| | - Sean I Patterson
- Traumatic and Toxic Lesions in the Nervous System Section, Institute of Histology and Embryology of Mendoza (IHEM), School of Medicine, National University of Cuyo, Mendoza, National Scientific and Technical Research Council (CONICET), National Agency for Scientific and Technological Promotion (ANPCyT), Mendoza, Argentina
| | - Estela M Muñoz
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM), School of Medicine, National University of Cuyo, Mendoza, National Scientific and Technical Research Council (CONICET), National Agency for Scientific and Technological Promotion (ANPCyT), Mendoza, Argentina
| | - Alicia M Seltzer
- Neonatal Brain Development Section, Institute of Histology and Embryology of Mendoza (IHEM), School of Medicine, National University of Cuyo, Mendoza, National Scientific and Technical Research Council (CONICET), National Agency for Scientific and Technological Promotion (ANPCyT), Mendoza, Argentina
| |
Collapse
|
17
|
Dlugos CA. ATF6 and caspase 12 expression in Purkinje neurons in acute slices from adult, ethanol-fed rats. Brain Res 2014; 1577:11-20. [PMID: 24976582 DOI: 10.1016/j.brainres.2014.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to determine, whether previously reported ethanol-induced alterations to the smooth endoplasmic reticulum (SER), predispose Purkinje neurons (PN) to thapsigargin-induced endoplasmic reticulum (ER) stress. Thapsigargin blocks the sarco/endoplasmic Ca(2+) ATPase pump (SERCA 2), depleting the SER of calcium. Forty-one, eight month old Fischer 344 male rats were treated with either the AIN (American Institute of Nutrition) liquid control or ethanol diets for 10 (n=14), 20 (n=10), or 40(n=17) weeks. At the end of treatment, acute cerebellar slices were prepared by standard means. Cerebellar slices were treated with thapsigargin or as controls for three hours in oxygenated (95% CO2, 5% O2) ACSF (artificial cerebrospinal fluid). Slices were then fixed in 4% paraformaldehyde and sectioned on a freezing microtome. Free floating sections were stained with antibodies against activating transcription factor 6 (ATF6) or activated caspase 12 and calbindin. Results showed a significant increase in the activated caspase+PN dendrites in the EF rats along with a significant interaction due to enhanced expression of activated caspase 12 at 20 weeks. The density of ATF6 labeling was not different between the EF and PF groups and was confined to the PN soma. The finding of activated caspase and ATF6 expression in PN within both the EF and PF groups supports the finding of thapsigargin-induced ER stress. The finding of increased activated caspase 12 in the dendrites supports an increased tendency to ER stress and other dendritic deficits in the ethanol rats.
Collapse
Affiliation(s)
- Cynthia A Dlugos
- Department of Pathology and Anatomical Sciences, 206 Farber Hall, School of Medicine and Biomedical Sciences, University at Buffalo, NY 14214-3000, USA.
| |
Collapse
|
18
|
Connolly PF, Jäger R, Fearnhead HO. New roles for old enzymes: killer caspases as the engine of cell behavior changes. Front Physiol 2014; 5:149. [PMID: 24795644 PMCID: PMC3997007 DOI: 10.3389/fphys.2014.00149] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly clear that caspases, far from being merely cell death effectors, have a much wider range of functions within the cell. These functions are as diverse as signal transduction and cytoskeletal remodeling, and caspases are now known to have an essential role in cell proliferation, migration, and differentiation. There is also evidence that apoptotic cells themselves can direct the behavior of nearby cells through the caspase-dependent secretion of paracrine signaling factors. In some processes, including the differentiation of skeletal muscle myoblasts, both caspase activation in differentiating cells as well as signaling from apoptotic cells has been reported. Here, we review the non-apoptotic outcomes of caspase activity in a range of different model systems and attempt to integrate this knowledge.
Collapse
Affiliation(s)
- Patrick F Connolly
- Pharmacology and Therapeutics, National University of Ireland Galway Galway, Ireland
| | - Richard Jäger
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences Rheinbach, Germany
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway Galway, Ireland
| |
Collapse
|
19
|
Fowler AK, Hewetson A, Agrawal RG, Dagda M, Dagda R, Moaddel R, Balbo S, Sanghvi M, Chen Y, Hogue RJ, Bergeson SE, Henderson GI, Kruman II. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain. J Biol Chem 2012; 287:43533-42. [PMID: 23118224 DOI: 10.1074/jbc.m112.401497] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.
Collapse
Affiliation(s)
- Anna-Kate Fowler
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chang L, Zhang X, Liu W, Song Y, Gao X, Ling W, Wu Y. Immunoreactivity of Ki-67/β-tubulin and immunocolocalization with active caspase-3 in rat dentate gyrus during postnatal development. J Chem Neuroanat 2012; 46:10-8. [PMID: 22959929 DOI: 10.1016/j.jchemneu.2012.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/25/2012] [Accepted: 08/25/2012] [Indexed: 11/30/2022]
Abstract
This study was based on our previous report that the expression of active caspase-3 kept at a high level in dentate gyrus during postnatal development, which is not related to an apoptotic event. We addressed the hypothesis that the active caspase-3 expression may be related to a nonapoptotic role in the regulation of the cell cycle and differentiation or other physiological functions. To confirm this hypothesis, through a temporal investigation from postnatal day (P) 0, 4, 7, 10, 14, 21, 28, to 56, based on immunofluorescent method, we dual labeled active caspase-3 with Ki-67 or β-tubulin in the dentate gyrus. Our results showed a minority of active caspase-3 positive cells were colabeled with the proliferation marker Ki-67 in stratum moleculare (MOL), granular cell layer (GCL), subgranular zone (SGZ) and polymorphic stratum (POLY) from P0 to P14, and the colabeled cells decreased gradually with age. From P21 to P56, the colocalization of the two proteins was mainly focused on SGZ. There was a positive correlation between the positive cells of active caspase-3 with that of Ki-67. In addition, an extensive colocalization between active caspase-3 and β-tubulin was observed at all the age groups. There was a strong positive correlation between the intensity of active caspase-3 in GCL with that of β-tubulin in MOL, GCL and POLY of dentate gyrus and the stratum lucidum of CA3. Our data raised the possibility of a nonapoptotic role of active caspase-3 in dentate gyrus, which may be partly associated with cellular proliferation and differentiation, and also may be related to neurite outgrowth, axonal transport, or dendrite elongation of granular cells during postnatal development.
Collapse
Affiliation(s)
- Lirong Chang
- Department of Anatomy, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Stephenson-Famy A, Marks J, Suresh A, Caritis SN, Simhan H, Jeyasuria P, Condon JC. Antiapoptotic signaling via MCL1 confers resistance to caspase-3-mediated apoptotic cell death in the pregnant human uterine myocyte. Mol Endocrinol 2011; 26:320-30. [PMID: 22194343 DOI: 10.1210/me.2011-1282] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Our group has previously identified elevated levels of nonapoptotic active caspase 3 (CASP3) accompanied by increased prosurvival, antiapoptotic signaling in the pregnant mouse uterus during late gestation. We speculated that increased antiapoptotic signaling desensitized the pregnant uterine myocyte to the apoptotic action of uterine CASP3. This current study examines the mechanism by which the pregnant myocyte gains resistance to the apoptotic effects of increased uterine CASP3. Using both primary human pregnant fundal myometrial cultures and the telomerase-immortalized human uterine myocyte cell line (hTERT) as our model systems, uterine myocytes were exposed to UV irradiation and Fas ligand to stimulate both the intrinsic and extrinsic apoptotic pathways. Stimulation of either the intrinsic or extrinsic apoptotic pathways resulted in elevated levels of uterine myocyte CASP3. However, apoptotic cell death was restricted to CASP3 activated by intrinsic stimulation via UV light. In contrast Fas ligand-mediated CASP3 activation was accompanied by increased antiapoptotic signaling mimicking our in vivo observations in the pregnant mouse uterus. Using small interfering RNA to inhibit antiapoptotic signaling, we determined the ability of the human uterine myocyte to resist apoptotic cell death in the absence of the prosurvival, antiapoptotic signaling. Accordingly, suppression of antiapoptotic signaling specifically mediated by myeloid cell leukemia sequence 1 was sufficient to sensitize the uterine myocyte to undergo apoptotic cell death. These data demonstrate that elevated myeloid cell leukemia sequence 1 levels are sufficient to confer apoptotic resistance on the human uterine myocyte despite highly elevated levels of active CASP3.
Collapse
Affiliation(s)
- Alyssa Stephenson-Famy
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Yakovlev AA, Gulyaeva NV. Pleiotropic functions of brain proteinases: Methodological considerations and search for caspase substrates. BIOCHEMISTRY (MOSCOW) 2011; 76:1079-86. [DOI: 10.1134/s0006297911100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Foran E, Bogush A, Goffredo M, Roncaglia P, Gustincich S, Pasinelli P, Trotti D. Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia 2011; 59:1719-31. [PMID: 21769946 DOI: 10.1002/glia.21218] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/16/2011] [Indexed: 12/12/2022]
Abstract
Dysregulation of glutamate handling ensuing downregulation of expression and activity levels of the astroglial glutamate transporter EAAT2 is implicated in excitotoxic degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). We previously reported that EAAT2 (a.k.a. GLT-1) is cleaved by caspase-3 at its cytosolic carboxy-terminus domain. This cleavage results in impaired glutamate transport activity and generates a proteolytic fragment (CTE) that we found to be post-translationally conjugated by SUMO1. We show here that this sumoylated CTE fragment accumulates in the nucleus of spinal cord astrocytes of the SOD1-G93A mouse model of ALS at symptomatic stages of disease. Astrocytic expression of CTE, artificially tagged with SUMO1 (CTE-SUMO1) to mimic the native sumoylated fragment, recapitulates the nuclear accumulation pattern of the endogenous EAAT2-derived proteolytic fragment. Moreover, in a co-culture binary system, expression of CTE-SUMO1 in spinal cord astrocytes initiates extrinsic toxicity by inducing caspase-3 activation in motor neuron-derived NSC-34 cells or axonal growth impairment in primary motor neurons. Interestingly, prolonged nuclear accumulation of CTE-SUMO1 is intrinsically toxic to spinal cord astrocytes, although this gliotoxic effect of CTE-SUMO1 occurs later than the indirect, noncell autonomous toxic effect on motor neurons. As more evidence on the implication of SUMO substrates in neurodegenerative diseases emerges, our observations strongly suggest that the nuclear accumulation in spinal cord astrocytes of a sumoylated proteolytic fragment of the astroglial glutamate transporter EAAT2 could participate to the pathogenesis of ALS and suggest a novel, unconventional role for EAAT2 in motor neuron degeneration.
Collapse
Affiliation(s)
- Emily Foran
- Weinberg Unit for ALS Research, Department of Neuroscience, Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Xiao R, Ferry AL, Dupont-Versteegden EE. Cell death-resistance of differentiated myotubes is associated with enhanced anti-apoptotic mechanisms compared to myoblasts. Apoptosis 2011; 16:221-34. [PMID: 21161388 PMCID: PMC3045653 DOI: 10.1007/s10495-010-0566-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle atrophy is associated with elevated apoptosis while muscle differentiation results in apoptosis resistance, indicating that the role of apoptosis in skeletal muscle is multifaceted. The objective of this study was to investigate mechanisms underlying apoptosis susceptibility in proliferating myoblasts compared to differentiated myotubes and we hypothesized that cell death-resistance in differentiated myotubes is mediated by enhanced anti-apoptotic pathways. C(2)C(12) myoblasts and myotubes were treated with H(2)O(2) or staurosporine (Stsp) to induce cell death. H(2)O(2) and Stsp induced DNA fragmentation in more than 50% of myoblasts, but in myotubes less than 10% of nuclei showed apoptotic changes. Mitochondrial membrane potential dissipation was detected with H(2)O(2) and Stsp in myoblasts, while this response was greatly diminished in myotubes. Caspase-3 activity was 10-fold higher in myotubes compared to myoblasts, and Stsp caused a significant caspase-3 induction in both. However, exposure to H(2)O(2) did not lead to caspase-3 activation in myoblasts, and only to a modest induction in myotubes. A similar response was observed for caspase-2, -8 and -9. Abundance of caspase-inhibitors (apoptosis repressor with caspase recruitment domain (ARC), and heat shock protein (HSP) 70 and -25 was significantly higher in myotubes compared to myoblasts, and in addition ARC was suppressed in response to Stsp in myotubes. Moreover, increased expression of HSPs in myoblasts attenuated cell death in response to H(2)O(2) and Stsp. Protein abundance of the pro-apoptotic protein endonuclease G (EndoG) and apoptosis-inducing factor (AIF) was higher in myotubes compared to myoblasts. These results show that resistance to apoptosis in myotubes is increased despite high levels of pro-apoptotic signaling mechanisms, and we suggest that this protective effect is mediated by enhanced anti-caspase mechanisms.
Collapse
Affiliation(s)
- Rijin Xiao
- Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA
| | - Amy L. Ferry
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA
| | - Esther E. Dupont-Versteegden
- Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Rm 204L, Lexington, KY 40536-0200, USA
| |
Collapse
|
25
|
Maternal separation affects the number, proliferation and apoptosis of glia cells in the substantia nigra and ventral tegmental area of juvenile rats. Neuroscience 2011; 173:1-18. [DOI: 10.1016/j.neuroscience.2010.11.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/08/2010] [Accepted: 11/17/2010] [Indexed: 12/15/2022]
|
26
|
Finckbone V, Oomman SK, Strahlendorf HK, Strahlendorf JC. Regional differences in the temporal expression of non-apoptotic caspase-3-positive bergmann glial cells in the developing rat cerebellum. Front Neuroanat 2009; 3:3. [PMID: 19503747 PMCID: PMC2691149 DOI: 10.3389/neuro.05.003.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/04/2009] [Indexed: 01/22/2023] Open
Abstract
Although caspases have been intimately linked to apoptotic events, some of the pro-apoptotic caspases also may regulate differentiation. We previously demonstrated that active caspase-3 is expressed and has an apparent non-apoptotic function during the development of cerebellar Bergmann glia. The current study seeks to further correlate active/cleaved caspase-3 expression with the developmental phenotype of Bergmann glia by examining regional differences in the temporal pattern of expression of cleaved caspase-3 immunoreactivity in lobules of the cerebellar vermis. In general, we found that the expression pattern of cleaved caspase-3 corresponds to the reported developmental temporal profile of the lobes and that its levels peak at 15 days and declines thereafter. Compared to intermediate or late maturing lobules, early maturing lobules had higher levels of active caspase-3 at earlier postnatal times. This period of postnatal development is precisely the time during which Bergmann glia initiate differentiation.
Collapse
Affiliation(s)
- Velvetlee Finckbone
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | | | | | | |
Collapse
|
27
|
Matamales M, Bertran-Gonzalez J, Salomon L, Degos B, Deniau JM, Valjent E, Hervé D, Girault JA. Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One 2009; 4:e4770. [PMID: 19274089 PMCID: PMC2651623 DOI: 10.1371/journal.pone.0004770] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/03/2009] [Indexed: 11/21/2022] Open
Abstract
Precise identification of neuronal populations is a major challenge in neuroscience. In the striatum, more than 95% of neurons are GABAergic medium-sized spiny neurons (MSNs), which form two intermingled populations distinguished by their projections and protein content. Those expressing dopamine D1-receptors (D1Rs) project preferentially to the substantia nigra pars reticulata (SNr), whereas those expressing dopamine D2- receptors (D2Rs) project preferentially to the lateral part of the globus pallidus (LGP). The degree of segregation of these populations has been a continuous subject of debate, and the recent introduction of bacterial artificial chromosome (BAC) transgenic mice expressing fluorescent proteins driven by specific promoters was a major progress to facilitate striatal neuron identification. However, the fraction of MSNs labeled in these mice has been recently called into question, casting doubt on the generality of results obtained with such approaches. Here, we performed an in-depth quantitative analysis of striatal neurons in drd1a-EGFP and drd2-EGFP mice. We first quantified neuronal and non-neuronal populations in the striatum, based on nuclear staining with TO-PRO-3, and immunolabeling for NeuN, DARPP-32 (dopamine- and cAMP-regulated phosphoprotein Mr∼32,000), and various markers for interneurons. TO-PRO-3 staining was sufficient to identify MSNs by their typical nuclear morphology and, with a good probability, interneuron populations. In drd1a-EGFP/drd2-EGFP double transgenic mice all MSNs expressed EGFP, which was driven in about half of them by drd1a promoter. Retrograde labeling showed that all MSNs projecting to the SNr expressed D1R and very few D2R (<1%). In contrast, our results were compatible with the existence of some D1R-EGFP-expressing fibers giving off terminals in the LGP. Thus, our study shows that nuclear staining is a simple method for identifying MSNs and other striatal neurons. It also unambiguously confirms the degree of segregation of MSNs in the mouse striatum and allows the full exploitation of results obtained with BAC-transgenic mice.
Collapse
Affiliation(s)
- Miriam Matamales
- Inserm UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC Paris-6), Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Jesus Bertran-Gonzalez
- Inserm UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC Paris-6), Paris, France
- Institut du Fer à Moulin, Paris, France
| | | | | | | | - Emmanuel Valjent
- Inserm UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC Paris-6), Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC Paris-6), Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC Paris-6), Paris, France
- Institut du Fer à Moulin, Paris, France
- * E-mail:
| |
Collapse
|
28
|
Hauser KF, Hahn YK, Adjan VV, Zou S, Buch SK, Nath A, Bruce-Keller AJ, Knapp PE. HIV-1 Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia 2009; 57:194-206. [PMID: 18756534 PMCID: PMC2743138 DOI: 10.1002/glia.20746] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human immunodeficiency virus (HIV)-infected individuals who abuse opiates show faster progression to AIDS, and enhanced incidence of HIV-1 encephalitis. Most opiates with abuse liability are preferential agonists for mu-opioid receptors (MORs), and MORs are expressed on both neurons and glia, including oligodendrocytes (OLs). Tat, gp120, and other viral toxins, cause neurotoxicity in vitro and/or when injected into brain, and co-exposure to opiates can augment HIV-1 protein-induced insults to both glial and neuronal populations. We examined the effects of HIV-1 Tat +/- opiate exposure on OL survival and differentiation. In vivo studies utilized transgenic mice expressing Tat(1-86) regulated by an inducible glial fibrillary acidic protein promoter. Although MBP levels were unchanged on immunoblots, certain structural and apoptotic indices were abnormal. After only 2 days of Tat induction, OLs showed an upregulation of active caspase-3 that was enhanced by morphine exposure. Tat also upregulated TUNEL staining, but only in the presence of morphine. Tat significantly reduced the length of processes in Golgi-Kopsch impregnated OLs. A greater proportion of cells exhibited diminished or aberrant cytoplasmic processes, especially when mice expressing Tat were co-exposed to morphine. Collectively, our data show that OLs in situ are extremely sensitive to effects of Tat +/- morphine, although it is not clear if immature OLs as well as differentiated OLs are targeted equally. Significant elevations in caspase-3 activity and TUNEL labeling, and evidence of increased degeneration/regeneration of OLs exposed to Tat +/- morphine suggest that toxicity toward OLs may be accompanied by heightened OL turnover.
Collapse
Affiliation(s)
- Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA USA
| | - Yun Kyung Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA USA
| | - Valeriya V. Adjan
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | - Shiping Zou
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA USA
| | - Shreya K. Buch
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | - Avindra Nath
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | | | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
29
|
García-Cáceres C, Lechuga-Sancho A, Argente J, Frago LM, Chowen JA. Death of hypothalamic astrocytes in poorly controlled diabetic rats is associated with nuclear translocation of apoptosis inducing factor. J Neuroendocrinol 2008; 20:1348-60. [PMID: 19094082 DOI: 10.1111/j.1365-2826.2008.01795.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Astrocytes in the hypothalamus of poorly controlled diabetic rats are reduced in number, due to increased apoptosis and decreased proliferation, and undergo morphological changes, including a decrease in projections. These changes are associated with modifications in synaptic proteins and most likely affect neuroendocrine signalling and function. The present study aimed to determine the intracellular mechanisms underlying this increase in hypothalamic cell death. Adult male Wistar rats were injected with streptozotocin (70 mg/kg, i.p) and controls received vehicle. Rats were killed at 1, 4, 6 and 8 weeks after diabetes onset (glycaemia > 300 mg/dl). Cell death, as detected by enzyme-linked immunosorbent assay, increased at 4 weeks of diabetes. Immunohistochemistry and terminal dUTP nick-end labelling (TUNEL) assays indicated that these cells corresponded to glial fibrillary acidic protein (GFAP) positive cells. No significant change in fragmentation of caspases 2, 3, 6, 7, 8, 9, or 12 was observed with western blot analysis. However, enzymatic assays indicated that caspase 3 activity increased significantly after 1 week of diabetes and decreased below control levels thereafter. In the hypothalamus, cell bodies lining the third ventricle, fibres radiating from the third ventricle and GFAP positive cells expressed fragmented caspase 3, with this labelling increasing at 1 week of diabetes. However, because no nuclear labelling was observed and this increase in activity did not correlate temporally with the increased cell death, this caspase may not be involved in astrocyte death. By contrast, nuclear translocation of apoptosis inducing factor (AIF) increased significantly in astrocytes in parallel with the increase in death and AIF was found in TUNEL positive cells. Thus, nuclear translocation of AIF could underlie the increased death, whereas fragmentation of caspase 3 could be associated with the morphological changes found in hypothalamic astrocytes of diabetic rats.
Collapse
Affiliation(s)
- C García-Cáceres
- Hospital Infantil Universitario Niño Jesús, Servicio de Endocrinología, Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Anastasia L, Papini N, Colazzo F, Palazzolo G, Tringali C, Dileo L, Piccoli M, Conforti E, Sitzia C, Monti E, Sampaolesi M, Tettamanti G, Venerando B. NEU3 sialidase strictly modulates GM3 levels in skeletal myoblasts C2C12 thus favoring their differentiation and protecting them from apoptosis. J Biol Chem 2008; 283:36265-71. [PMID: 18945680 DOI: 10.1074/jbc.m805755200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.
Collapse
Affiliation(s)
- Luigi Anastasia
- Department of Medical Chemistry, Biochemistry, and Biotechnology, University of Milan, 20090 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gdynia G, Grund K, Eckert A, Bock BC, Funke B, Macher-Goeppinger S, Sieber S, Herold-Mende C, Wiestler B, Wiestler OD, Roth W. Basal Caspase Activity Promotes Migration and Invasiveness in Glioblastoma Cells. Mol Cancer Res 2007; 5:1232-40. [DOI: 10.1158/1541-7786.mcr-07-0343] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Mooney SM, Miller MW. Nerve growth factor neuroprotection of ethanol-induced neuronal death in rat cerebral cortex is age dependent. Neuroscience 2007; 149:372-81. [PMID: 17869443 PMCID: PMC2128252 DOI: 10.1016/j.neuroscience.2007.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 07/30/2007] [Accepted: 08/08/2007] [Indexed: 01/07/2023]
Abstract
Organotypic cultures of rat cortex were used to test the hypotheses that nerve growth factor (NGF) is neuroprotective for immature cortical neurons and that ethanol abolishes this neuroprotection in a developmental stage-dependent manner. Samples were obtained on gestational day (G) 16 or postnatal day (P) 3 and cultured with ethanol (0 or 400 mg/dl) and NGF (0 or 30 ng/ml) for 72 h. Dying neurons were identified as exhibiting terminal nick-end labeling, immunoreactivity for activated caspase 3, or condensed nuclear chromatin. Two cortical compartments were examined in fetal tissue: a superficial, cell-sparse marginal zone (MZ) and a cell-dense cortical plate (CP). At P3, the CP was subdivided into a cell-dense upper cortical plate (UCP) and a less densely packed lower cortical plate (LCP). Neuronal death in the MZ was affected by neither NGF nor ethanol at both ages. In the fetal CP, NGF did not affect the incidence of cell death, but ethanol increased it. Treatment with NGF caused an upregulation of the expression of Neg, a gene known to be affected by NGF and ethanol. NGF did not ameliorate the ethanol-induced death. In pups, ethanol increased the amount of death in the LCP. NGF did protect against this death. Neither ethanol nor NGF altered the incidence of cell death in the UCP. The laminar-dependent neuroprotection did not correlate with expression of NGF receptors or Neg. Thus, NGF can be protective against the neurotoxic effect of ethanol in the neonatal brain. This effect is site selective and time dependent and it targets postmigratory, differentiating neurons.
Collapse
Affiliation(s)
- S M Mooney
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
33
|
Adjan VV, Hauser KF, Bakalkin G, Yakovleva T, Gharibyan A, Scheff SW, Knapp PE. Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: differential effects on glia and neurons. Neuroscience 2007; 148:724-36. [PMID: 17698296 DOI: 10.1016/j.neuroscience.2007.05.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/16/2007] [Accepted: 05/24/2007] [Indexed: 12/12/2022]
Abstract
Dynorphins are endogenous opioid peptide products of the prodynorphin gene. An extensive literature suggests that dynorphins have deleterious effects on CNS injury outcome. We thus examined whether a deficiency of dynorphin would protect against tissue damage after spinal cord injury (SCI), and if individual cell types would be specifically affected. Wild-type and prodynorphin(-/-) mice received a moderate contusion injury at 10th thoracic vertebrae (T10). Caspase-3 activity at the injury site was significantly decreased in tissue homogenates from prodynorphin(-/-) mice after 4 h. We examined frozen sections at 4 h post-injury by immunostaining for active caspase-3. At 3-4 mm rostral or caudal to the injury, >90% of all neurons, astrocytes and oligodendrocytes expressed active caspase-3 in both wild-type and knockout mice. At 6-7 mm, there were fewer caspase-3(+) oligodendrocytes and astrocytes than at 3-4 mm. Importantly, caspase-3 activation was significantly lower in prodynorphin(-/-) oligodendrocytes and astrocytes, as compared with wild-type mice. In contrast, while caspase-3 expression in neurons also declined with further distance from the injury, there was no effect of genotype. Radioimmunoassay showed that dynorphin A(1-17) was regionally increased in wild-type injured versus sham-injured tissues, although levels of the prodynorphin processing product Arg(6)-Leu-enkephalin were unchanged. Our results indicate that dynorphin peptides affect the extent of post-injury caspase-3 activation, and that glia are especially sensitive to these effects. By promoting caspase-3 activation, dynorphin peptides likely increase the probability of glial apoptosis after SCI. While normally beneficial, our findings suggest that prodynorphin or its peptide products become maladaptive following SCI and contribute to secondary injury.
Collapse
Affiliation(s)
- V V Adjan
- Department of Anatomy and Neurobiology, 800 Rose Street, MS209, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
P2Y1 receptor switches to neurons from glia in juvenile versus neonatal rat cerebellar cortex. BMC DEVELOPMENTAL BIOLOGY 2007; 7:77. [PMID: 17598884 PMCID: PMC1931589 DOI: 10.1186/1471-213x-7-77] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/28/2007] [Indexed: 12/03/2022]
Abstract
Background In the CNS, several P2 receptors for extracellular nucleotides are identified on neurons and glial cells to participate to neuron-neuron, glia-glia and glia-neuron communication. Results In this work, we describe the cellular and subcellular presence of metabotropic P2Y1 receptor in rat cerebellum at two distinct developmental ages, by means of immunofluorescence-confocal and electron microscopy as well as western blotting and direct membrane separation techniques. At postnatal day 21, we find that P2Y1 receptor in addition to Purkinje neurons, is abundant on neuronal specializations identified as noradrenergic by anatomical, morphological and biochemical features. P2Y1 receptor immunoreactivity colocalizes with dopamine β-hydroxylase, tyrosine hydroxylase, neurofilament light chain, synaptophysin and flotillin, but not with glial fibrillary acidic protein for astrocytes. P2Y1 receptor is found enriched in membrane microdomains such as lipid rafts, in cerebellar synaptic vesicles, and is moreover visualized on synaptic varicosities by electron microscopy analysis. When examined at postnatal day 7, P2Y1 receptor immunoreactivity is instead predominantly expressed only on Bergmann and astroglial cells, as shown by colocalization with glial fibrillary acidic protein rather then neuronal markers. At this age, we moreover identify that P2Y1 receptor-positive Bergmann fibers wrap up doublecortin-positive granule cells stretching along them, while migrating through the cerebellar layers. Conclusion Membrane components including purinergic receptors are already known to mediate cellular contact and aggregation in platelets. Our results suggesting a potential role for P2Y1 protein in cell junction/communication and development, are totally innovative for the CNS.
Collapse
|
35
|
Acarin L, Villapol S, Faiz M, Rohn TT, Castellano B, González B. Caspase-3 activation in astrocytes following postnatal excitotoxic damage correlates with cytoskeletal remodeling but not with cell death or proliferation. Glia 2007; 55:954-65. [PMID: 17487878 DOI: 10.1002/glia.20518] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Caspase-3 has classically been defined as the main executioner of programmed cell death. However, recent data supports the participation of this protease in non-apoptotic cellular events including cell proliferation, cell cycle regulation, and cellular differentiation. In this study, astroglial cleavage of caspase-3 was analyzed following excitotoxic damage in postnatal rats to determine if its presence is associated with apoptotic cell death, cell proliferation, or cytoskeletal remodeling. A well-characterized in vivo model of excitotoxicity was studied, where damage was induced by intracortical injection of N-methyl-D-asparate (NMDA) in postnatal day 9 rats. Our results demonstrate that cleaved caspase-3 was mainly observed in the nucleus of activated astrocytes in the lesioned hemisphere as early as 4 h postlesion and persisted until the glial scar was formed at 7-14 days, and it was not associated with TUNEL labeling. Caspase-3 enzymatic activity was detected at 10 h and 1 day postlesion in astrocytes, and co-localized with caspase-cleaved fragments of glial fibrillary acidic protein (CCP-GFAP). However, at longer survival times, when astroglial hypertrophy was observed, astroglial caspase-3 did not generally correlate with GFAP cleavage, but instead was associated with de novo expression of vimentin. Moreover, astroglial caspase-3 cleavage was not associated with BrdU incorporation. These results provide further evidence for a nontraditional role of caspases in cellular function that is independent of cell death and suggest that caspase activation is important for astroglial cytoskeleton remodeling following cellular injury.
Collapse
Affiliation(s)
- Laia Acarin
- Medical Histology, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine and Institute of Neurosciences, Autonomous University of Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
36
|
Fernando P, Megeney LA. Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J 2006; 21:8-17. [PMID: 17093139 DOI: 10.1096/fj.06-5912hyp] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The benefits of apoptosis for a multicellular organism are obvious and fit the current dogma that the maintenance and viability of such organisms are dependent on the selective elimination of unneeded or deleterious cell types. However, self destruction at the level of the individual cell defies the most basic precepts of biology (sustaining life). If apoptosis is viewed through this construct then one question becomes paramount, i.e., why would an individual cell and its progeny develop, retain, or evolve a mechanism the sole purpose of which is to eliminate itself? In consideration of such a paradox, it is reasonable to postulate that prospective apoptotic pathways coevolved with and or were co-opted from another basic cell function(s) that did not involve the death of the cell per se. In the following article, we present the hypothesis that the conserved biochemical pathways of apoptosis are integral components of terminal cell differentiation and it is the time of engagement and activity level of these pathways that ultimately determines the choice between cell death or cell maturation.
Collapse
Affiliation(s)
- Pasan Fernando
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa ON, K1H 8L6, Canada
| | | |
Collapse
|
37
|
Delgado-Rubín de Célix A, Chowen JA, Argente J, Frago LM. Growth hormone releasing peptide-6 acts as a survival factor in glutamate-induced excitotoxicity. J Neurochem 2006; 99:839-49. [PMID: 17076656 DOI: 10.1111/j.1471-4159.2006.04122.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic systemic treatment given to adult male rats with growth hormone releasing peptide-6, an agonist of the ghrelin receptor, increases insulin-like growth factor I levels in various brain regions, including the hypothalamus and cerebellum. Furthermore, intracellular signalling cascades normally associated with anti-apoptotic actions are activated in the same areas and are coincident with decreased basal cell death. Because abnormally high concentrations of glutamate can lead to overexcitation of neurones leading to cell damage and/or death, we investigated whether administration of growth hormone releasing peptide-6 attenuates monosodium glutamate-induced apoptosis in the rat hypothalamus and cerebellum. Glutamate increased activation of caspase 9 followed by cleavage of caspase 7, which in turn fragmented poly(ADP-ribose) polymerase, terminating in cell death in both the hypothalamus and cerebellum. Growth hormone releasing peptide-6 reversed glutamate-induced cell death by decreasing activation of caspases 9 and 7 and poly(ADP-ribose) polymerase fragmentation. These results provide a better understanding of the neuroprotective role of growth hormone secretagogues and the mechanisms involved.
Collapse
Affiliation(s)
- Arancha Delgado-Rubín de Célix
- Universidad Autónoma de Madrid. Departament of Pediatrics. Hospital Infantil Universitario Niño Jesús, Departament of Endocrinology, Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Oomman S, Strahlendorf H, Dertien J, Strahlendorf J. Bergmann glia utilize active caspase-3 for differentiation. Brain Res 2006; 1078:19-34. [PMID: 16700096 DOI: 10.1016/j.brainres.2006.01.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, functions associated with caspase have been modified from their well-established role in apoptosis. Although caspases are still regarded as mediators of apoptosis, some of the pro-apoptotic caspases, namely caspase-8, -14 and -3 also regulate differentiation in certain cell types, namely myelomonocytic cells, osteoblasts, skeletal muscle cells, keratinocytes, and T lymphocytes. In the central nervous system, non-apoptotic active caspase-3 expression has been located in proliferating and differentiating neuronal cells of the ventricular zone and external granular layer of the developing cerebellar cortex. We previously demonstrated that active caspase-3 expression was not limited to neuronal cells but also was located in the Bergmann glia of the postnatal cerebellum. In that study, active caspase-3 immunolabeling did not markedly colocalize with Ki67, a proliferation marker, but was present in differentiating Bergmann glia that expressed brain lipid binding protein (BLBP) and thus, by its localization, suggested a role in the differentiation of Bergmann glia. The current study addresses the function of caspase-3 in Bergmann glia development by utilizing a Bergmann glial culture preparation. Inhibition of caspase-3 activity by the peptide inhibitor, DMQD-FMK, increased the number of proliferating precursor glial cells and decreased the number of differentiating Bergmann glia, without significantly altering the non-glial active caspase-3 negative population. The transformation in the developmental state of Bergmann glia occurring after suppression of caspase-3 activity strongly suggests an involvement of this enzyme in promoting differentiation of Bergmann glia.
Collapse
Affiliation(s)
- Sowmini Oomman
- Department of Physiology, Room 5A163, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|