1
|
Kobia FM, Castro E Almeida L, Paganoni AJ, Carminati F, Andronache A, Lavezzari F, Wade M, Vaccari T. Novel determinants of NOTCH1 trafficking and signaling in breast epithelial cells. Life Sci Alliance 2025; 8:e202403122. [PMID: 39663000 PMCID: PMC11633778 DOI: 10.26508/lsa.202403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
The evolutionarily conserved Notch signaling pathway controls cell-cell communication, enacting cell fate decisions during development and tissue homeostasis. Its dysregulation is associated with a wide range of diseases, including congenital disorders and cancers. Signaling outputs depend on maturation of Notch receptors and trafficking to the plasma membrane, endocytic uptake and sorting, lysosomal and proteasomal degradation, and ligand-dependent and independent proteolytic cleavages. We devised assays to follow quantitatively the trafficking and signaling of endogenous human NOTCH1 receptor in breast epithelial cells in culture. Based on such analyses, we executed a high-content screen of 2,749 human genes to identify new regulators of Notch that might be amenable to pharmacologic intervention. We uncovered 39 new NOTCH1 modulators for NOTCH1 trafficking and signaling. Among them, we find that PTPN23 and HCN2 act as positive NOTCH1 regulators by promoting endocytic trafficking and NOTCH1 maturation in the Golgi apparatus, respectively, whereas SGK3 serves as a negative regulator that can be modulated by pharmacologic inhibition. Our findings might be relevant in the search of new strategies to counteract pathologic Notch signaling.
Collapse
Affiliation(s)
- Francis M Kobia
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Alyssa Jj Paganoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Adrian Andronache
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | | | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
2
|
Chen LG, Fang YH, Wang KM, Zhang W, Chen G. VPS25 Promotes an Immunosuppressive Microenvironment in Head and Neck Squamous Cell Carcinoma. Biomolecules 2025; 15:323. [PMID: 40149859 PMCID: PMC11940596 DOI: 10.3390/biom15030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery is essential for various cellular processes, yet its role in head and neck squamous cell carcinoma (HNSCC) is poorly understood. We utilized The Cancer Genome Atlas (TCGA) datasets to analyze the expression of ESCRT genes. Bulk RNA-sequencing data and HNSCC tissue microarrays (TMAs) were used to evaluate VPS25 expression and its clinical significance. Single-cell RNA sequencing of tumor tissues and VPS25 knockdown experiments in CAL27 cells were used to investigate its biological functions. Immunohistochemistry, spatial transcriptomics, and immunotherapy datasets highlighted the involvement of VPS25 in immune suppression and its potential as a predictive biomarker. The results demonstrated significant VPS25 overexpression in HNSCC tissues, which correlated with poor clinical outcomes. It promoted tumor cell proliferation and migration while reducing immune cell infiltration in the tumor microenvironment (TME). Additionally, by upregulating PVR expression in tumor cells, VPS25 activated the immunosuppressive PVR-TIGIT signaling axis, thereby facilitating immune evasion. Furthermore, VPS25 emerged as a potential biomarker for predicting immunotherapy response. These findings highlight VPS25 as a pivotal regulator of tumor progression and immune evasion in HNSCC and a promising target for therapeutic strategies.
Collapse
Affiliation(s)
- Li-Guo Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.-G.C.); (K.-M.W.)
| | - Yu-Han Fang
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Kui-Ming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.-G.C.); (K.-M.W.)
| | - Wei Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.-G.C.); (K.-M.W.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.-G.C.); (K.-M.W.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Gu C, Wang Z, Luo W, Ling H, Cui X, Deng T, Li K, Huang W, Xie Q, Tao B, Qi X, Peng X, Ding J, Qiu P. Impaired olfactory bulb neurogenesis mediated by Notch1 contributes to olfactory dysfunction in mice chronically exposed to methamphetamine. Cell Biol Toxicol 2025; 41:46. [PMID: 39976779 PMCID: PMC11842540 DOI: 10.1007/s10565-025-10004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Methamphetamine (Meth) is a potent central nervous system stimulant with high addictive potential and neurotoxic effects. Chronic use results in significant damage in various brain functions, including cognition, memory, and sensory perception. Olfactory dysfunction is a notable yet often overlooked consequence of Meth abuse, and its underlying mechanisms are not fully understood. This study investigates the mechanisms of Meth-induced olfactory impairment through a thorough examination of olfactory bulb (OB) neurogenesis. We found that chronic Meth abuse impaired olfactory function in mice by not only reducing the self-renewal of subventricular zone (SVZ) neural stem cells (NSCs) but also altering their differentiation potential, leading their differentiation into astrocytes at the expense of neurons. Mechanistically, Meth inhibits autophagosome-lysosome fusion by downregulating Syntaxin 17 (Stx17), which reduces autophagic flux. In NSCs, autophagy tightly regulates Notch1 levels, and impaired autophagic degradation of Notch1 leads to its abnormal activation. This alters NSCs fate determination, ultimately affecting OB neurogenesis. Our study reveals that Meth impairs olfactory function through autophagic dysfunction and aberrant Notch1 signaling. Understanding these mechanisms not only provides new insights into Meth-induced olfactory dysfunction but also offers potential targets for developing therapies to alleviate Meth-induced neurotoxicity and sensory damage in the future.
Collapse
Affiliation(s)
- Cihang Gu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhuo Wang
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenyu Luo
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Haosen Ling
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xilie Cui
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tongtong Deng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Kuan Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wei Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiqian Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bowen Tao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaojia Peng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jiuyang Ding
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China.
| | - Pingming Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
4
|
Reimels TA, Steinberg M, Yan H, Shahar S, Rosenberg A, Kalafsky K, Luf M, Kelly L, Octaviani S, Pfleger CM. Rabex-5 E3 and Rab5 GEF domains differ in their regulation of Ras, Notch, and PI3K signaling in Drosophila wing development. PLoS One 2024; 19:e0312274. [PMID: 39466792 PMCID: PMC11515992 DOI: 10.1371/journal.pone.0312274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
Rabex-5 (also called RabGEF1), a protein originally characterized for its Rab5 GEF function, also has an A20-like E3 ubiquitin ligase domain. We and others reported that Rabex-5 E3 activity promotes Ras mono- and di-ubiquitination to inhibit Ras signaling in Drosophila and mammals. Subsequently, we reported that Rabex-5 inhibits Notch signaling in the Drosophila hematopoietic system. Here we report genetic interactions using Rabex-5 transgenes encoding domain-specific mutations that show that Rabex-5 requires an intact E3 domain to inhibit Notch signaling in the epithelial tissue of the developing wing. Surprisingly, we discovered that Rabex-5 with an impaired E3 domain but active Rab5 GEF domain suppresses Notch loss-of-function phenotypes and enhances both Notch duplication phenotypes and activated Ras phenotypes consistent with a model that the Rab5 GEF activity of Rabex-5 might positively regulate Ras and Notch. Positive and negative regulation of developmental signaling by its different catalytic domains could allow Rabex-5 to precisely coordinate developmental signaling to fine-tune patterning. Finally, we report that Rabex-5 also inhibits the overgrowth due to loss of PTEN or activation of PI3K but not activation of AKT. Inhibition of Ras, Notch, and PI3K signaling may explain why Rabex-5 is deleted in some cancers. Paradoxically, Rabex-5 is reported to be an oncogene in other cancers. We propose that Rabex-5 acts as a tumor suppressor via its E3 activity to inhibit Ras, Notch, and PI3K signaling and as an oncogene via its Rab5 GEF activity to enhance Ras and Notch signaling.
Collapse
Affiliation(s)
- Theresa A. Reimels
- Department of Oncological Sciences, Salt Lake City, Utah, United States of America
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mia Steinberg
- Department of Oncological Sciences, Salt Lake City, Utah, United States of America
| | - Hua Yan
- Department of Oncological Sciences, Salt Lake City, Utah, United States of America
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Sivan Shahar
- Department of Oncological Sciences, Salt Lake City, Utah, United States of America
| | - Ashley Rosenberg
- Department of Oncological Sciences, Salt Lake City, Utah, United States of America
| | - Kristina Kalafsky
- Department of Oncological Sciences, Salt Lake City, Utah, United States of America
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Max Luf
- Department of Oncological Sciences, Salt Lake City, Utah, United States of America
| | - Lindsay Kelly
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Stacia Octaviani
- Department of Oncological Sciences, Salt Lake City, Utah, United States of America
| | - Cathie M. Pfleger
- Department of Oncological Sciences, Salt Lake City, Utah, United States of America
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
5
|
Schultz DF, Davies BA, Payne JA, Martin CP, Minard AY, Childs BG, Zhang C, Jeganathan KB, Sturmlechner I, White TA, de Bruin A, Harkema L, Chen H, Davies MA, Jachim S, LeBrasseur NK, Piper RC, Li H, Baker DJ, van Deursen J, Billadeau DD, Katzmann DJ. Loss of HD-PTP function results in lipodystrophy, defective cellular signaling and altered lipid homeostasis. J Cell Sci 2024; 137:jcs262032. [PMID: 39155850 PMCID: PMC11449442 DOI: 10.1242/jcs.262032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) facilitates function of the endosomal sorting complexes required for transport (ESCRTs) during multivesicular body (MVB) formation. To uncover its role in physiological homeostasis, embryonic lethality caused by a complete lack of HD-PTP was bypassed through generation of hypomorphic mice expressing reduced protein, resulting in animals that are viable into adulthood. These mice exhibited marked lipodystrophy and decreased receptor-mediated signaling within white adipose tissue (WAT), involving multiple prominent pathways including RAS/MAPK, phosphoinositide 3-kinase (PI3K)/AKT and receptor tyrosine kinases (RTKs), such as EGFR. EGFR signaling was dissected in vitro to assess the nature of defective signaling, revealing decreased trans-autophosphorylation and downstream effector activation, despite normal EGF binding. This corresponds to decreased plasma membrane cholesterol and increased lysosomal cholesterol, likely resulting from defective endosomal maturation necessary for cholesterol trafficking and homeostasis. The ESCRT components Vps4 and Hrs have previously been implicated in cholesterol homeostasis; thus, these findings expand knowledge on which ESCRT subunits are involved in cholesterol homeostasis and highlight a non-canonical role for HD-PTP in signal regulation and adipose tissue homeostasis.
Collapse
Affiliation(s)
- Destiny F Schultz
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Immunology Graduate Program, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Brian A Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Johanna A Payne
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Cole P Martin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Bennett G Childs
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ines Sturmlechner
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Alain de Bruin
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Liesbeth Harkema
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Huiqin Chen
- Department of Biostatistics, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sarah Jachim
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
6
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
7
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Nagata R, Igaki T. Cell competition: emerging signaling and unsolved questions. FEBS Lett 2024; 598:379-389. [PMID: 38351618 DOI: 10.1002/1873-3468.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
Multicellular communities have an intrinsic mechanism that optimizes their structure and function via cell-cell communication. One of the driving forces for such self-organization of the multicellular system is cell competition, the elimination of viable unfit or deleterious cells via cell-cell interaction. Studies in Drosophila and mammals have identified multiple mechanisms of cell competition caused by different types of mutations or cellular changes. Intriguingly, recent studies have found that different types of "losers" of cell competition commonly show reduced protein synthesis. In Drosophila, the reduction in protein synthesis levels in loser cells is caused by phosphorylation of the translation initiation factor eIF2α via a bZip transcription factor Xrp1. Given that a variety of cellular stresses converge on eIF2α phosphorylation and thus global inhibition of protein synthesis, cell competition may be a machinery that optimizes multicellular fitness by removing stressed cells. In this review, we summarize and discuss emerging signaling mechanisms and critical unsolved questions, as well as the role of protein synthesis in cell competition.
Collapse
Affiliation(s)
- Rina Nagata
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Japan
| |
Collapse
|
9
|
Cong B, Cagan RL. Cell competition and cancer from Drosophila to mammals. Oncogenesis 2024; 13:1. [PMID: 38172609 PMCID: PMC10764339 DOI: 10.1038/s41389-023-00505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Throughout an individual's life, somatic cells acquire cancer-associated mutations. A fraction of these mutations trigger tumour formation, a phenomenon partly driven by the interplay of mutant and wild-type cell clones competing for dominance; conversely, other mutations function against tumour initiation. This mechanism of 'cell competition', can shift clone dynamics by evaluating the relative status of clonal populations, promoting 'winners' and eliminating 'losers'. This review examines the role of cell competition in the context of tumorigenesis, tumour progression and therapeutic intervention.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK.
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK
| |
Collapse
|
10
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
11
|
Zhang R, Pan S, Zheng S, Liao Q, Jiang Z, Wang D, Li X, Hu A, Li X, Zhu Y, Shen X, Lei J, Zhong S, Zhang X, Huang L, Wang X, Huang L, Shen L, Song BL, Zhao JW, Wang Z, Yang B, Guo X. Lipid-anchored proteasomes control membrane protein homeostasis. SCIENCE ADVANCES 2023; 9:eadj4605. [PMID: 38019907 PMCID: PMC10686573 DOI: 10.1126/sciadv.adj4605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here, we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system, and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation and membrane protein trafficking. Rpt2G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by myristoyl-anchored proteasomes in health and disease.
Collapse
Affiliation(s)
- Ruizhu Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuxian Pan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Suya Zheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Dixian Wang
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cryo-Electron Microscopy Center, Zhejiang University, Hangzhou 310058, China
| | - Xuemei Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430072, China
| | - Xinran Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Yezhang Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqi Shen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jing Lei
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Siming Zhong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining 314400, China
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lingyun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697, USA
| | - Li Shen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430072, China
| | - Jing-Wei Zhao
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cryo-Electron Microscopy Center, Zhejiang University, Hangzhou 310058, China
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Hermosilla Aguayo V, Martin P, Tian N, Zheng J, Aho R, Losa M, Selleri L. ESCRT-dependent control of craniofacial morphogenesis with concomitant perturbation of NOTCH signaling. Dev Biol 2023; 503:25-42. [PMID: 37573008 DOI: 10.1016/j.ydbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Craniofacial development is orchestrated by transcription factor-driven regulatory networks, epigenetic modifications, and signaling pathways. Signaling molecules and their receptors rely on endo-lysosomal trafficking to prevent accumulation on the plasma membrane. ESCRT (Endosomal Sorting Complexes Required for Transport) machinery is recruited to endosomal membranes enabling degradation of such endosomal cargoes. Studies in vitro and in invertebrate models established the requirements of the ESCRT machinery in membrane remodeling, endosomal trafficking, and lysosomal degradation of activated membrane receptors. However, investigations during vertebrate development have been scarce. By ENU-induced mutagenesis, we isolated a mouse line, Vps25ENU/ENU, carrying a hypomorphic allele of the ESCRT-II component Vps25, with craniofacial anomalies resembling features of human congenital syndromes. Here, we assessed the spatiotemporal dynamics of Vps25 and additional ESCRT-encoding genes during murine development. We show that these genes are ubiquitously expressed although enriched in discrete domains of the craniofacial complex, heart, and limbs. ESCRT-encoding genes, including Vps25, are expressed in both cranial neural crest-derived mesenchyme and epithelium. Unlike constitutive ESCRT mutants, Vps25ENU/ENU embryos display late lethality. They exhibit hypoplastic lower jaw, stunted snout, dysmorphic ear pinnae, and secondary palate clefting. Thus, we provide the first evidence for critical roles of ESCRT-II in craniofacial morphogenesis and report perturbation of NOTCH signaling in craniofacial domains of Vps25ENU/ENU embryos. Given the known roles of NOTCH signaling in the developing cranium, and notably the lower jaw, we propose that the NOTCH pathway partly mediates the craniofacial defects of Vps25ENU/ENU mouse embryos.
Collapse
Affiliation(s)
- Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Martin
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nuo Tian
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James Zheng
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert Aho
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marta Losa
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Zhang R, Pan S, Zheng S, Liao Q, Jiang Z, Wang D, Li X, Hu A, Li X, Zhu Y, Shen X, Lei J, Zhong S, Zhang X, Huang L, Wang X, Huang L, Shen L, Song BL, Zhao J, Wang Z, Yang B, Guo X. Lipid-anchored Proteasomes Control Membrane Protein Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540509. [PMID: 37214852 PMCID: PMC10197712 DOI: 10.1101/2023.05.12.540509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation (ERAD) and membrane protein trafficking. Rpt2 G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by m yristoyl- a nchored p roteasomes (MAPs) in health and disease.
Collapse
|
14
|
Enomoto M, Igaki T. Cell-cell interactions that drive tumorigenesis in Drosophila. Fly (Austin) 2022; 16:367-381. [PMID: 36413374 PMCID: PMC9683056 DOI: 10.1080/19336934.2022.2148828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell-cell interactions within tumour microenvironment play crucial roles in tumorigenesis. Genetic mosaic techniques available in Drosophila have provided a powerful platform to study the basic principles of tumour growth and progression via cell-cell communications. This led to the identification of oncogenic cell-cell interactions triggered by endocytic dysregulation, mitochondrial dysfunction, cell polarity defects, or Src activation in Drosophila imaginal epithelia. Such oncogenic cooperations can be caused by interactions among epithelial cells, mesenchymal cells, and immune cells. Moreover, microenvironmental factors such as nutrients, local tissue structures, and endogenous growth signalling activities critically affect tumorigenesis. Dissecting various types of oncogenic cell-cell interactions at the single-cell level in Drosophila will greatly increase our understanding of how tumours progress in living animals.
Collapse
Affiliation(s)
- Masato Enomoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan,CONTACT Tatsushi Igaki
| |
Collapse
|
15
|
Ptp61F integrates Hippo, TOR, and actomyosin pathways to control three-dimensional organ size. Cell Rep 2022; 41:111640. [DOI: 10.1016/j.celrep.2022.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
|
16
|
Liu D, Tsarouhas V, Samakovlis C. WASH activation controls endosomal recycling and EGFR and Hippo signaling during tumor-suppressive cell competition. Nat Commun 2022; 13:6243. [PMID: 36271083 PMCID: PMC9587002 DOI: 10.1038/s41467-022-34067-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Cell competition is a conserved homeostatic mechanism whereby epithelial cells eliminate neighbors with lower fitness. Cell communication at the interface of wild-type "winner" cells and polarity-deficient (scrib-/-) "losers" is established through Sas-mediated Ptp10D activation in polarity-deficient cells. This tumor-suppressive cell competition restrains EGFR and Hippo signaling and enables Eiger-JNK mediated apoptosis in scrib-/- clones. Here, we show that the activation state of the endosomal actin regulator WASH is a central node linking EGFR and Hippo signaling activation. The tyrosine kinase Btk29A and its substrate WASH are required downstream of Ptp10D for "loser" cell elimination. Constitutively active, phosphomimetic WASH is sufficient to induce both EGFR and Yki activation leading to overgrowth. On the mechanistic level we show that Ptp10D is recycled by the WASH/retromer complex, while EGFR is recycled by the WASH/retriever complex. Constitutive WASH activation selectively interferes with retromer function leading to Ptp10D mistargeting while promoting EGFR recycling and signaling activation. Phospho-WASH also activates aberrant Arp2/3 actin polymerization, leading to cytoskeletal imbalance, Yki activation and reduced apoptosis. Selective manipulation of WASH phosphorylation on sorting endosomes may restrict epithelial tumorous growth.
Collapse
Affiliation(s)
- Dan Liu
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Vasilios Tsarouhas
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Christos Samakovlis
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden ,grid.8664.c0000 0001 2165 8627Cardiopulmonary Institute, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
17
|
Rahal Z, Sinjab A, Wistuba II, Kadara H. Game of clones: Battles in the field of carcinogenesis. Pharmacol Ther 2022; 237:108251. [PMID: 35850404 PMCID: PMC10249058 DOI: 10.1016/j.pharmthera.2022.108251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
Recent advances in bulk sequencing approaches as well as genomic decoding at the single-cell level have revealed surprisingly high somatic mutational burdens in normal tissues, as well as increased our understanding of the landscape of "field cancerization", that is, molecular and immune alterations in mutagen-exposed normal-appearing tissues that recapitulated those present in tumors. Charting the somatic mutational landscapes in normal tissues can have strong implications on our understanding of how tumors arise from mutagenized epithelium. Making sense of those mutations to understand the progression along the pathologic continuum of normal epithelia, preneoplasias, up to malignant tissues will help pave way for identification of ideal targets that can guide new strategies for preventing or eliminating cancers at their earliest stages of development. In this review, we will provide a brief history of field cancerization and its implications on understanding early stages of cancer pathogenesis and deviation from the pathologically "normal" state. The review will provide an overview of how mutations accumulating in normal tissues can lead to a patchwork of mutated cell clones that compete while maintaining an overall state of functional homeostasis. The review also explores the role of clonal competition in directing the fate of normal tissues and summarizes multiple mechanisms elicited in this phenomenon and which have been linked to cancer development. Finally, we highlight the importance of understanding mutations in normal tissues, as well as clonal competition dynamics (in both the epithelium and the microenvironment) and their significance in exploring new approaches to combatting cancer.
Collapse
Affiliation(s)
- Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA.
| |
Collapse
|
18
|
Wu Y, Wu Y, Xu C, Sun W, You Z, Wang Y, Zhang S. CHMP1A suppresses the growth of renal cell carcinoma cells via regulation of the PI3K/mTOR/p53 signaling pathway. Genes Genomics 2022; 44:823-832. [PMID: 35583792 DOI: 10.1007/s13258-022-01237-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND CHMP1A, a member of the ESCRT-III complex family, has been indicated as a brand-new inhibitor gene of tumors. Our previous research has revealed that CHMP1A plays a vital role in the development and progression of renal cell carcinoma (RCC). OBJECTIVE To investigate the potential target pathway of the regulation of the tumor cell growth by CHMP1A. METHODS The effect of CHMP1A on mTOR pathway was elucidated by western blotting. The effect of CHMP1A on the expression of p53 was evaluated, and A498 cell growth was assessed by colony formation and MTT assays. The expression of p53 was knocked down by shRNA-p53, and the effect of CHMP1A on mTOR after knockdown of p53 was evaluated. The effect of CHMP1A on apoptosis and its relationship with MDM2 pathway were detected by western blotting and FCM. Finally, the relationship between the regulation of p53 by CHMP1A and the PI3K/mTOR pathway was detected. RESULTS This study showed that the mTOR pathway was suppressed significantly in CHMP1A-overexpressing A498 and 786-0 cells; moreover, the enhanced expression of p53 and the reduced proliferation were shown in CHMP1A-overexpressing A498 cells. Furthermore, CHMP1A was able to regulate the PI3K/PTEN/mTOR and MDM2/p53 pathways in order to suppress RCC. In addition, CHMP1A regulated Bax and Bcl-2 via MDM2/p53 to induce the apoptosis of tumor cells and upregulated the expression of p53 via the PI3K/mTOR pathway. CONCLUSIONS The results convey that CHMP1A-related suppression of RCC is closely related to the PI3K/mTOR/p53 pathway.
Collapse
Affiliation(s)
- Youping Wu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yueguo Wu
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Cong Xu
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Sun
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenqiang You
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yin Wang
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China. .,Hangzhou Medical College, No.182 Tianmushan Road, 310013, Hangzhou, China.
| |
Collapse
|
19
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 531] [Impact Index Per Article: 177.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
20
|
Zhu X, Yang H, Zhang M, Wu X, Jiang L, Liu X, Lv K. YTHDC1-mediated VPS25 regulates cell cycle by targeting JAK-STAT signaling in human glioma cells. Cancer Cell Int 2021; 21:645. [PMID: 34863175 PMCID: PMC8642909 DOI: 10.1186/s12935-021-02304-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioma is a common type of malignant brain tumor with a high mortality and relapse rate. The endosomal sorting complex required for transport (ESCRT) has been reported to be involved in tumorigenesis. However, the molecular mechanisms have not been clarified. METHODS Bioinformatics was used to screen the ESCRT subunits highly expressed in glioma tissues from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The function of the ESCRT subunits in glioma cells was examined in vitro. Transcriptome sequencing analyzed the target genes and signaling pathways affected by the ESCRT subunit. Finally, the relationship between m6A (N6-methyladenosine) modification and high expression of the ESCRT subunit was studied. RESULTS VPS25 was upregulated in glioma tissues, which was correlated with poor prognosis in glioma patients. Furthermore, VPS25 knockdown inhibited the proliferation, blocked the cell cycle, and promoted apoptosis in glioma cells. Meanwhile, VPS25 induced a G0/G1 phase arrest of the cell cycle in glioma cells by directly mediating p21, CDK2, and cyclin E expression, and JAK-signal transducer and activator of transcription (STAT) activation. Finally, YTHDC1 inhibited glioma proliferation by reducing the expression of VPS25. CONCLUSION These results suggest that VPS25 is a promising prognostic indicator and a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China.,Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, China
| | - Hui Yang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China.,Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, China
| | - Mengying Zhang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China.,Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, China
| | - Xingwei Wu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China.,Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, China
| | - Lan Jiang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China.,Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, China
| | - Xiaocen Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, People's Republic of China
| | - Kun Lv
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China. .,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China. .,Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
21
|
Interaction between Ras and Src clones causes interdependent tumor malignancy via Notch signaling in Drosophila. Dev Cell 2021; 56:2223-2236.e5. [PMID: 34324859 DOI: 10.1016/j.devcel.2021.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/31/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Cancer tissue often comprises multiple tumor clones with distinct oncogenic alterations such as Ras or Src activation, yet the mechanism by which tumor heterogeneity drives cancer progression remains elusive. Here, we show in Drosophila imaginal epithelium that clones of Ras- or Src-activated benign tumors interact with each other to mutually promote tumor malignancy. Mechanistically, Ras-activated cells upregulate the cell-surface ligand Delta while Src-activated cells upregulate its receptor Notch, leading to Notch activation in Src cells. Elevated Notch signaling induces the transcriptional repressor Zfh1/ZEB1, which downregulates E-cadherin and cell death gene hid, leading to Src-activated invasive tumors. Simultaneously, Notch activation in Src cells upregulates the cytokine Unpaired/IL-6, which activates JAK-STAT signaling in neighboring Ras cells. Elevated JAK-STAT signaling upregulates the BTB-zinc-finger protein Chinmo, which downregulates E-cadherin and thus generates Ras-activated invasive tumors. Our findings provide a mechanistic explanation for how tumor heterogeneity triggers tumor progression via cell-cell interactions.
Collapse
|
22
|
Margiotta A. All Good Things Must End: Termination of Receptor Tyrosine Kinase Signal. Int J Mol Sci 2021; 22:ijms22126342. [PMID: 34198477 PMCID: PMC8231876 DOI: 10.3390/ijms22126342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane receptors that regulate many fundamental cellular processes. A tight regulation of RTK signaling is fundamental for development and survival, and an altered signaling by RTKs can cause cancer. RTKs are localized at the plasma membrane (PM) and the major regulatory mechanism of signaling of RTKs is their endocytosis and degradation. In fact, RTKs at the cell surface bind ligands with their extracellular domain, become active, and are rapidly internalized where the temporal extent of signaling, attenuation, and downregulation are modulated. However, other mechanisms of signal attenuation and termination are known. Indeed, inhibition of RTKs’ activity may occur through the modulation of the phosphorylation state of RTKs and the interaction with specific proteins, whereas antagonist ligands can inhibit the biological responses mediated by the receptor. Another mechanism concerns the expression of endogenous inactive receptor variants that are deficient in RTK activity and take part to inactive heterodimers or hetero-oligomers. The downregulation of RTK signals is fundamental for several cellular functions and the homeostasis of the cell. Here, we will review the mechanisms of signal attenuation and termination of RTKs, focusing on FGFRs.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
23
|
Estella C, Baonza A. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.1.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractThe Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.
Collapse
Affiliation(s)
- Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular SeveroOchoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Antonio Baonza
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM) c/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
24
|
Genetic analysis of the Drosophila ESCRT-III complex protein, VPS24, reveals a novel function in lysosome homeostasis. PLoS One 2021; 16:e0251184. [PMID: 33956855 PMCID: PMC8101729 DOI: 10.1371/journal.pone.0251184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The ESCRT pathway is evolutionarily conserved across eukaryotes and plays key roles in a variety of membrane remodeling processes. A new Drosophila mutant recovered in our forward genetic screens for synaptic transmission mutants mapped to the vps24 gene encoding a subunit of the ESCRT-III complex. Molecular characterization indicated a loss of VPS24 function, however the mutant is viable and thus loss of VPS24 may be studied in a developed multicellular organism. The mutant exhibits deficits in locomotion and lifespan and, notably, these phenotypes are rescued by neuronal expression of wild-type VPS24. At the cellular level, neuronal and muscle cells exhibit marked expansion of a ubiquitin-positive lysosomal compartment, as well as accumulation of autophagic intermediates, and these phenotypes are rescued cell-autonomously. Moreover, VPS24 expression in glia suppressed the mutant phenotype in muscle, indicating a cell-nonautonomous function for VPS24 in protective intercellular signaling. Ultrastructural analysis of neurons and muscle indicated marked accumulation of the lysosomal compartment in the vps24 mutant. In the neuronal cell body, this included characteristic lysosomal structures associated with an expansive membrane compartment with a striking tubular network morphology. These findings further define the in vivo roles of VPS24 and the ESCRT pathway in lysosome homeostasis and their potential contributions to neurodegenerative diseases characterized by defective ESCRT or lysosome function.
Collapse
|
25
|
Intracellular trafficking of Notch orchestrates temporal dynamics of Notch activity in the fly brain. Nat Commun 2021; 12:2083. [PMID: 33828096 PMCID: PMC8027629 DOI: 10.1038/s41467-021-22442-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Abstract
While Delta non-autonomously activates Notch in neighboring cells, it autonomously inactivates Notch through cis-inhibition, the molecular mechanism and biological roles of which remain elusive. The wave of differentiation in the Drosophila brain, the ‘proneural wave’, is an excellent model for studying Notch signaling in vivo. Here, we show that strong nonlinearity in cis-inhibition reproduces the second peak of Notch activity behind the proneural wave in silico. Based on this, we demonstrate that Delta expression induces a quick degradation of Notch in late endosomes and the formation of the twin peaks of Notch activity in vivo. Indeed, the amount of Notch is upregulated and the twin peaks are fused forming a single peak when the function of Delta or late endosomes is compromised. Additionally, we show that the second Notch peak behind the wavefront controls neurogenesis. Thus, intracellular trafficking of Notch orchestrates the temporal dynamics of Notch activity and the temporal patterning of neurogenesis. During Drosophila development, two peaks of Notch activity propagate across the neuroepithelium to generate neuroblasts. Here, the authors show Notch cis-inhibition under the control of intracellular Notch trafficking establishes these two peaks, which temporally control neurogenesis in the brain.
Collapse
|
26
|
Dutta D, Sharma V, Mutsuddi M, Mukherjee A. Regulation of Notch signaling by E3 ubiquitin ligases. FEBS J 2021; 289:937-954. [PMID: 33644958 DOI: 10.1111/febs.15792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway that is widely used for multiple cellular events during development. Activation of the Notch pathway occurs when the ligand from a neighboring cell binds to the Notch receptor and induces cleavage of the intracellular domain of Notch, which further translocates into the nucleus to activate its downstream genes. The involvement of the Notch pathway in diverse biological events is possible due to the complexity in its regulation. In order to maintain tight spatiotemporal regulation, the Notch receptor, as well as its ligand, undergoes a series of physical and biochemical modifications that, in turn, helps in proper maintenance and fine-tuning of the signaling outcome. Ubiquitination is the post-translational addition of a ubiquitin molecule to a substrate protein, and the process is regulated by E3 ubiquitin ligases. The present review describes the involvement of different E3 ubiquitin ligases that play an important role in the regulation and maintenance of proper Notch signaling and how perturbation in ubiquitination results in abnormal Notch signaling leading to a number of human diseases.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
27
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
28
|
Pannen H, Rapp T, Klein T. The ESCRT machinery regulates retromer-dependent transcytosis of septate junction components in Drosophila. eLife 2020; 9:61866. [PMID: 33377869 PMCID: PMC7848756 DOI: 10.7554/elife.61866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
Loss of ESCRT function in Drosophila imaginal discs is known to cause neoplastic overgrowth fueled by mis-regulation of signaling pathways. Its impact on junctional integrity, however, remains obscure. To dissect the events leading to neoplasia, we used transmission electron microscopy (TEM) on wing imaginal discs temporally depleted of the ESCRT-III core component Shrub. We find a specific requirement for Shrub in maintaining septate junction (SJ) integrity by transporting the claudin Megatrachea (Mega) to the SJ. In absence of Shrub function, Mega is lost from the SJ and becomes trapped on endosomes coated with the endosomal retrieval machinery retromer. We show that ESCRT function is required for apical localization and mobility of retromer positive carrier vesicles, which mediate the biosynthetic delivery of Mega to the SJ. Accordingly, loss of retromer function impairs the anterograde transport of several SJ core components, revealing a novel physiological role for this ancient endosomal agent. Proteins are large molecules responsible for a variety of activities that cells needs to perform to survive; from respiration to copying DNA before cells divide. To perform these roles proteins need to be transported to the correct cell compartment, or to the cell membrane. This protein trafficking depends on the endosomal system, a set of membrane compartments that can travel within the cell and act as a protein sorting hub. This system needs its own proteins to work properly. In particular, there are two sets of proteins that are crucial for the endosomal systems activity: a group of proteins known as the ESCRT (endosomal sorting complex required for transport) machinery and a complex called retromer. The retromer complex regulates recycling of receptor proteins so they can be reused, while the ESCRT machinery mediates degradation of proteins that the cell does not require anymore. In the epithelia of fruit fly larvae – the tissues that form layers of cells, usually covering an organ but also making structures like wings – defects in ESCRT activity lead to a loss of tissue integrity. This loss of tissue integrity suggests that the endosomal system might be involved in transporting proteins that form cellular junctions, the multiprotein complexes that establish contacts between cells or between a cell and the extracellular space. In arthropods such as the fruit fly, the adherens junction and the septate junction are two types of cellular junctions important for the integrity of epithelia integrity. Adherens junctions allow cells to adhere to each other, while septate junctions stop nutrient molecules, ions and water from leaking into the tissue. The role of the endosomal system in trafficking the proteins that form septate junctions remains a mystery. To better understand the role of the endosomal system in regulating cell junctions and tissue integrity, Pannen et al. blocked the activity of either the ESCRT or retromer in wing imaginal discs – the future wings – of fruit fly larvae. Pannen et al. then analyzed the effects of these endosomal defects on cellular junctions using an imaging technique called transmission electron microscopy. The results showed that both ESCRT and retromer activities are necessary for the correct delivery of septate junction components to the cell membrane. However, neither retromer nor ESCRT were required for the delivery of adherens junction proteins. These findings shed light on how retromer and the ESCRT machinery are involved in the epithelial tissue integrity of fruit fly larvae through their effects on cell junctions. Humans have their own versions of the ESCRT, retromer, and cell junction proteins, all of which are very similar to their fly counterparts. Since defects in the human versions of these proteins have been associated with a variety of diseases, from infections to cancer, these results may have implications for research into treating those diseases.
Collapse
Affiliation(s)
- Hendrik Pannen
- Institute of Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tim Rapp
- Institute of Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
29
|
Baeumers M, Ruhnau K, Breuer T, Pannen H, Goerlich B, Kniebel A, Haensch S, Weidtkamp-Peters S, Schmitt L, Klein T. Lethal (2) giant discs (Lgd)/CC2D1 is required for the full activity of the ESCRT machinery. BMC Biol 2020; 18:200. [PMID: 33349255 PMCID: PMC7754597 DOI: 10.1186/s12915-020-00933-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/24/2020] [Indexed: 01/10/2023] Open
Abstract
Background A major task of the endosomal sorting complex required for transport (ESCRT) machinery is the pinching off of cargo-loaded intraluminal vesicles (ILVs) into the lumen of maturing endosomes (MEs), which is essential for the complete degradation of transmembrane proteins in the lysosome. The ESCRT machinery is also required for the termination of signalling through activated signalling receptors, as it separates their intracellular domains from the cytosol. At the heart of the machinery lies the ESCRT-III complex, which is required for an increasing number of processes where membrane regions are abscised away from the cytosol. The core of ESCRT-III, comprising four members of the CHMP protein family, organises the assembly of a homopolymer of CHMP4, Shrub in Drosophila, that is essential for abscission. We and others identified the tumour-suppressor lethal (2) giant discs (Lgd)/CC2D1 as a physical interactor of Shrub/CHMP4 in Drosophila and mammals, respectively. Results Here, we show that the loss of function of lgd constitutes a state of reduced activity of Shrub/CHMP4/ESCRT-III. This hypomorphic shrub mutant situation causes a slight decrease in the rate of ILV formation that appears to result in incomplete incorporation of Notch into ILVs. We found that the forced incorporation in ILVs of lgd mutant MEs suppresses the uncontrolled and ligand-independent activation of Notch. Moreover, the analysis of Su(dx) lgd double mutants clarifies their relationship and suggests that they are not operating in a linear pathway. We could show that, despite prolonged lifetime, the MEs of lgd mutants have a similar ILV density as wild-type but less than rab7 mutant MEs, suggesting the rate in lgd mutants is slightly reduced. The analysis of the MEs of wild-type and mutant cells in the electron microscope revealed that the ESCRT-containing electron-dense microdomains of ILV formation at the limiting membrane are elongated, indicating a change in ESCRT activity. Since lgd mutants can be rescued to normal adult flies if extra copies of shrub (or its mammalian ortholog CHMP4B) are added into the genome, we conclude that the net activity of Shrub is reduced upon loss of lgd function. Finally, we show that, in solution, CHMP4B/Shrub exists in two conformations. LGD1/Lgd binding does not affect the conformational state of Shrub, suggesting that Lgd is not a chaperone for Shrub/CHMP4B. Conclusion Our results suggest that Lgd is required for the full activity of Shrub/ESCRT-III. In its absence, the activity of the ESCRT machinery is reduced. This reduction causes the escape of a fraction of cargo, among it Notch, from incorporation into ILVs, which in turn leads to an activation of this fraction of Notch after fusion of the ME with the lysosome. Our results highlight the importance of the incorporation of Notch into ILV not only to assure complete degradation, but also to avoid uncontrolled activation of the pathway.
Collapse
Affiliation(s)
- Miriam Baeumers
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Kristina Ruhnau
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Thomas Breuer
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Hendrik Pannen
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Bastian Goerlich
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Anna Kniebel
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sebastian Haensch
- Center of Advanced Imaging (CAi), Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- Center of Advanced Imaging (CAi), Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry I, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
30
|
Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development. Sci Rep 2020; 10:21731. [PMID: 33303974 PMCID: PMC7729928 DOI: 10.1038/s41598-020-78831-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022] Open
Abstract
Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of Drosophila melanogaster. The regulated trafficking of Sanpodo, a transmembrane protein that potentiates receptor activity, plays a pivotal role in this process. Membrane lipids can regulate many signalling pathways by affecting receptor and ligand trafficking. It remains unknown, however, whether phosphatidic acid regulates Notch-mediated binary cell-fate decisions during asymmetric cell divisions, and what are the cellular mechanisms involved. Here we show that increased phosphatidic acid derived from Phospholipase D leads to defects in binary cell-fate decisions that are compatible with ectopic Notch activation in precursor cells, where it is normally inactive. Null mutants of numb or the α-subunit of Adaptor Protein complex-2 enhance dominantly this phenotype while removing a copy of Notch or sanpodo suppresses it. In vivo analyses show that Sanpodo localization decreases at acidic compartments, associated with increased internalization of Notch. We propose that Phospholipase D-derived phosphatidic acid promotes ectopic Notch signalling by increasing receptor endocytosis and inhibiting Sanpodo trafficking towards acidic endosomes.
Collapse
|
31
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
32
|
Unravelling of Hidden Secrets: The Tumour Suppressor Lethal (2) Giant Discs (Lgd)/CC2D1, Notch Signalling and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:31-46. [PMID: 33034024 DOI: 10.1007/978-3-030-55031-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endosomal pathway plays a pivotal role upon signal transduction in the Notch pathway. Recent work on lethal (2) giant discs (lgd) points to an additional critical role in avoiding uncontrolled ligand-independent signalling during trafficking of the Notch receptor through the endosomal pathway to the lysosome for degradation. In this chapter, we will outline the journey of Notch through the endosomal system and present an overview of the current knowledge about Lgd and its mammalian orthologs Lgd1/CC2D1b and Lgd2/CC2D1a. We will then discuss how Notch is activated in the absence of lgd function in Drosophila and ask whether there is evidence that a similar ligand-independent activation of the Notch pathway can also happen in mammals if the orthologs are inactivated.
Collapse
|
33
|
Hattori T, Takahashi Y, Chen L, Tang Z, Wills CA, Liang X, Wang HG. Targeting the ESCRT-III component CHMP2A for noncanonical Caspase-8 activation on autophagosomal membranes. Cell Death Differ 2020; 28:657-670. [PMID: 32807832 DOI: 10.1038/s41418-020-00610-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagosomal membranes can serve as activation platforms for intracellular death-inducing signaling complexes (iDISCs) to initiate Caspase-8-dependent apoptosis. In this study, we explore the impact of ESCRT-III-dependent phagophore closure on iDISC assemblies and cell death in osteosarcoma and neuroblastoma cells. Inhibition of phagophore closure by conditional depletion of CHMP2A, an ESCRT-III component, stabilizes iDISCs on immature autophagosomal membranes and induces Caspase-8-dependent cell death. Importantly, suppression of the iDISC formation via deletion of ATG7, an E1 enzyme for ubiquitin-like autophagy-related proteins, blocks Caspase-8 activation and cell death following CHMP2A depletion. Although DR5 expression and TRAIL-induced apoptosis are enhanced in CHMP2A-depleted cells, the canonical extrinsic pathway of apoptosis is not responsible for the initiation of cell death by CHMP2A depletion. Furthermore, the loss of CHMP2A impairs neuroblastoma tumor growth associated with decreased autophagy and increased apoptosis in vivo. Together, these findings indicate that inhibition of the ESCRT-III-dependent autophagosome sealing process triggers noncanonical Caspase-8 activation and apoptosis, which may open new avenues for therapeutic targeting of autophagy in cancer.
Collapse
Affiliation(s)
- Tatsuya Hattori
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA.
| | - Longgui Chen
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Zhenyuan Tang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Carson A Wills
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Xinwen Liang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA. .,Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
34
|
Abstract
The growth and survival of cells within tissues can be affected by 'cell competition' between different cell clones. This phenomenon was initially recognized between wild-type cells and cells with mutations in ribosomal protein (Rp) genes in Drosophila melanogaster. However, competition also affects D. melanogaster cells with mutations in epithelial polarity genes, and wild-type cells exposed to 'super-competitor' cells with mutation in the Salvador-Warts-Hippo tumour suppressor pathway or expressing elevated levels of Myc. More recently, cell competition and super-competition were recognized in mammalian development, organ homeostasis and cancer. Genetic and cell biological studies have revealed that mechanisms underlying cell competition include the molecular recognition of 'different' cells, signalling imbalances between distinct cell populations and the mechanical consequences of differential growth rates; these mechanisms may also involve innate immune proteins, p53 and changes in translation.
Collapse
|
35
|
Kanda H, Igaki T. Mechanism of tumor-suppressive cell competition in flies. Cancer Sci 2020; 111:3409-3415. [PMID: 32677169 PMCID: PMC7541003 DOI: 10.1111/cas.14575] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Oncogenic mutations often trigger antitumor cellular response such as induction of apoptosis or cellular senescence. Studies in the last decade have identified the presence of the third guardian against mutation‐induced tumorigenesis, namely “cell competition.” Cell competition is a context‐dependent cell elimination whereby cells with higher fitness eliminate neighboring cells with lower fitness by inducing cell death. While oncogene‐induced apoptosis or oncogene‐induced senescence acts as a cell‐autonomous tumor suppressor, cell competition protects the tissue from tumorigenesis via cell‐cell communication. For instance, in Drosophila epithelium, oncogenic cells with cell polarity mutations overproliferate and develop into tumors on their own but are eliminated from the tissue when surrounded by wild‐type cells. Genetic studies in flies have unraveled that such tumor‐suppressive cell competition is regulated by at least three mechanisms: direct cell‐cell interaction between polarity‐deficient cells and wild‐type cells, secreted factors from epithelial cells, and systemic factors from distant organs. Molecular manipulation of tumor‐suppressive cell competition could provide a novel therapeutic strategy against human cancers.
Collapse
Affiliation(s)
- Hiroshi Kanda
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Diwanji N, Bergmann A. Basement membrane damage by ROS- and JNK-mediated Mmp2 activation drives macrophage recruitment to overgrown tissue. Nat Commun 2020; 11:3631. [PMID: 32686670 PMCID: PMC7371875 DOI: 10.1038/s41467-020-17399-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/25/2020] [Indexed: 01/25/2023] Open
Abstract
Macrophages are a major immune cell type infiltrating tumors and promoting tumor growth and metastasis. To elucidate the mechanism of macrophage recruitment, we utilize an overgrowth tumor model ("undead" model) in larval Drosophila imaginal discs that are attached by numerous macrophages. Here we report that changes to the microenvironment of the overgrown tissue are important for recruiting macrophages. First, we describe a correlation between generation of reactive oxygen species (ROS) and damage of the basement membrane (BM) in all neoplastic, but not hyperplastic, models examined. ROS and the stress kinase JNK mediate the accumulation of matrix metalloproteinase 2 (Mmp2), damaging the BM, which recruits macrophages to the tissue. We propose a model where macrophage recruitment to and activation at overgrowing tissue is a multi-step process requiring ROS- and JNK-mediated Mmp2 upregulation and BM damage. These findings have implications for understanding the role of the tumor microenvironment for macrophage activation.
Collapse
Affiliation(s)
- Neha Diwanji
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, LRB 419, Worcester, MA, 01605, USA
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, LRB 419, Worcester, MA, 01605, USA.
| |
Collapse
|
37
|
Cui Y, Liu P, Mooney BP, Franz AWE. Quantitative Proteomic Analysis of Chikungunya Virus-Infected Aedes aegypti Reveals Proteome Modulations Indicative of Persistent Infection. J Proteome Res 2020; 19:2443-2456. [PMID: 32375005 DOI: 10.1021/acs.jproteome.0c00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mosquito-borne chikungunya virus (CHIKV) poses a threat to human health in tropical countries throughout the world. The molecular interactions of CHIKV with its mosquito vector Aedes aegypti are not fully understood. Following oral acquisition of CHIKV via salinemeals, we analyzed changes in the proteome of Ae. aegypti in 12 h intervals by label-free quantification using a timsTOF Pro mass spectrometer. For each of the seven time points, between 2647 and 3167 proteins were identified among CHIKV-infected and noninfected mosquito samples, and fewer than 6% of those identified proteins were affected by the virus. Functional enrichment analysis revealed that the three pathways, Endocytosis, Oxidative phosphorylation, and Ribosome biogenesis, were enriched during CHIKV infection. On the other hand, three pathways of the cellular RNA machinery and five metabolism related pathways were significantly attenuated in the CHIKV-infected samples. Furthermore, proteins associated with cytoskeleton and vesicular transport, as well as various serine-type endopeptidases and metallo-proteinases, were modulated in the presence of CHIKV. Our study reveals biological pathways and novel proteins interacting with CHIKV in the mosquito. Overall, CHIKV infection caused minor changes to the mosquito proteome demonstrating a high level of adaption between the vector and the virus, essentially coexisting in a nonpathogenic relationship. The mass spectrometry data have been deposited to the MassIVE repository (https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=abfd14f7015243c69854731998d55df1) with the data set identifier MSV000085115.
Collapse
Affiliation(s)
- Yingjun Cui
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, United States
| | - Pei Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Brian P Mooney
- Department of Biochemistry and Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
38
|
Du G, Xiong L, Li X, Zhuo Z, Zhuang X, Yu Z, Wu L, Xiao D, Liu Z, Jie M, Liu X, Luo G, Guo Z, Chen H. Peroxisome Elevation Induces Stem Cell Differentiation and Intestinal Epithelial Repair. Dev Cell 2020; 53:169-184.e11. [PMID: 32243783 DOI: 10.1016/j.devcel.2020.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
Abstract
Epithelial-repair-dependent mucosal healing (MH) is associated with a more favorable prognosis for patients with inflammatory bowel disease (IBD). MH is accomplished via repair and regeneration of the intestinal epithelium. However, the mechanism underlying MH is ill defined. We found a striking upregulation of peroxisomes in the injured crypts of IBD patients. By increasing peroxisome levels in Drosophila midguts, we found that peroxisome elevation enhanced RAB7-dependent late endosome maturation, which then promoted stem and/or progenitor-cell differentiation via modulation of Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT)-SOX21A signaling. This in turn enhanced ISC-mediated regeneration. Importantly, RAB7 and SOX21 were upregulated in the crypts of IBD patients. Moreover, administration of drugs that increased peroxisome levels reversed the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice. This study demonstrates a peroxisome-mediated epithelial repair mechanism, which opens a therapeutic avenue for the enhancement of MH in IBD patients.
Collapse
Affiliation(s)
- Gang Du
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China; Laboratory for Stem Cell and anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaorong Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xiaojun Zhuang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zihua Yu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Lijian Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Danqing Xiao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhiming Liu
- Laboratory for Stem Cell and anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Minwen Jie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xuehong Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haiyang Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China; Laboratory for Stem Cell and anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
39
|
Shen W, Sun J. Different modes of Notch activation and strength regulation in the spermathecal secretory lineage. Development 2020; 147:dev184390. [PMID: 31988187 PMCID: PMC7033723 DOI: 10.1242/dev.184390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/10/2020] [Indexed: 01/09/2023]
Abstract
The strength of Notch signaling contributes to pleiotropic actions of Notch; however, we do not yet have a full understanding of the molecular regulation of Notch-signaling strength. We have investigated the mode of Notch activation in binary fate specification in the Drosophila spermathecal linage, where Notch is asymmetrically activated across three divisions to specify different cell fates. Using clonal analysis, we show that Delta (Dl) serves as the ligand for Notch in the first and second divisions. Dl and Serrate (Ser) function redundantly in the third division. Compared with the third division, cell-fate decision in the second division requires a lower level of Suppressor of Hairless protein, and, consequently, a lower level of Notch signaling. Several Notch endosomal trafficking regulators differentially regulate Notch signaling between the second and third divisions. Here, we demonstrate that cell differentiation in spermathecae involves different Notch-activation modes, Notch-signaling strengths and Notch-trafficking regulations. Thus, the Drosophila spermathecal lineage is an exciting model for probing the molecular mechanisms that modulate the Notch signaling pathway.
Collapse
Affiliation(s)
- Wei Shen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
40
|
Cell Competition Is Driven by Autophagy. Dev Cell 2019; 51:99-112.e4. [PMID: 31543447 DOI: 10.1016/j.devcel.2019.08.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 05/21/2019] [Accepted: 08/21/2019] [Indexed: 11/20/2022]
Abstract
Cell competition is a quality control process that selectively eliminates unfit cells from the growing tissue via cell-cell interaction. Despite extensive mechanistic studies, the mechanism by which cell elimination is triggered has been elusive. Here, through a genetic screen in Drosophila, we discover that V-ATPase, an essential factor for autophagy, is required for triggering cell competition. Strikingly, autophagy is specifically elevated in prospective "loser" cells nearby wild-type "winner" cells, and blocking autophagy in loser cells abolishes their elimination. Mechanistically, elevated autophagy upregulates a proapoptotic gene hid through NFκB, and the elevated hid cooperates with JNK signaling to effectively induce loser's death. Crucially, this mechanism generally applies to cell competition caused by differences in protein synthesis between cells. Our findings establish a common mechanism of cell competition whereby cells with higher protein synthesis induce autophagy in their neighboring cells, leading to elimination of unfit cells.
Collapse
|
41
|
The Initial Stage of Tumorigenesis in Drosophila Epithelial Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31520350 DOI: 10.1007/978-3-030-23629-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer development originates in a single mutant cell transformed from a normal cell, including further evolution of pro-tumor cells through additional mutations into malignant cancer tissues. Data from recent studies, however, suggest that most pro-tumor cells do not develop into tumors but remain dormant within or are prophylactically eliminated from tissues unless bestowed with additional driver mutations. Drosophila melanogaster has provided very efficient model systems, such as imaginal discs and ovarian follicular epithelia, to study the initial stage of tumorigenesis. This review will focus on the behaviors of emerging pro-tumor cells surrounded by normal cells and situations where they initiate tumor development.
Collapse
|
42
|
Bäumers M, Klose S, Brüser C, Haag C, Hänsch S, Pannen H, Weidtkamp-Peters S, Feldbrügge M, Klein T. The auxiliary ESCRT complexes provide robustness to cold in poikilothermic organisms. Biol Open 2019; 8:bio.043422. [PMID: 31412999 PMCID: PMC6777356 DOI: 10.1242/bio.043422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ESCRT pathway, comprising the in sequence acting ESCRT-0, -I, -II, -III and Vps4 complexes, conducts the abscission of membranes away from the cytosol. Whereas the components of the central ESCRT-III core complex have been thoroughly investigated, the function of the components of the associated two auxiliary ESCRT sub-complexes are not well-understood in metazoans, especially at the organismal level. We here present the developmental analysis of the Drosophila orthologs of the auxiliary ESCRTs Chmp5 and Ist1, DChmp5 and DIst1, which belong to the two auxiliary sub-complexes. While each single null mutant displayed mild defects in development, the Dist1 Dchmp5 double mutant displayed a severe defect, indicating that the two genes act synergistically, but in separate pathways. Moreover, the presented results indicate that the auxiliary ESCRTs provide robustness against cold during development of diverse poikilothermic organisms, probably by preventing the accumulation of the ESCRT-III core component Shrub on the endosomal membrane. Summary: The analysis of Chmp5 and Ist1, which belong to the two ESCRT auxiliary sub-complexes in Drosophila, suggests that these ESCRT proteins provide robustness against cold in diverse poikilothermic organisms.
Collapse
Affiliation(s)
- Miriam Bäumers
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sven Klose
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Christian Brüser
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Carl Haag
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sebastian Hänsch
- Center of Advanced Imaging (CAi), Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Hendrik Pannen
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- Center of Advanced Imaging (CAi), Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
43
|
Tracy Cai X, Li H, Safyan A, Gawlik J, Pyrowolakis G, Jasper H. AWD regulates timed activation of BMP signaling in intestinal stem cells to maintain tissue homeostasis. Nat Commun 2019; 10:2988. [PMID: 31278345 PMCID: PMC6611797 DOI: 10.1038/s41467-019-10926-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
Precise control of stem cell (SC) proliferation ensures tissue homeostasis. In the Drosophila intestine, injury-induced regeneration involves initial activation of intestinal SC (ISC) proliferation and subsequent return to quiescence. These two phases of the regenerative response are controlled by differential availability of the BMP type I receptor Thickveins (Tkv), yet how its expression is dynamically regulated remains unclear. Here we show that during homeostasis, the E3 ubiquitin ligase Highwire and the ubiquitin-proteasome system maintain low Tkv protein expression. After ISC activation, Tkv is stabilized by proteasome inhibition and undergoes endocytosis due to the induction of the nucleoside diphosphate kinase Abnormal Wing Disc (AWD). Tkv internalization is required for the activation of the Smad protein Mad, and for the return to quiescence after a regenerative episode. Our data provide insight into the mechanisms ensuring tissue homeostasis by dynamic control of somatic stem cell activity. Regeneration after injury in the Drosophila intestine involves early activation of intestinal stem cells (ISCs) and subsequent return to quiescence. Here the authors show that return to quiescence by ISCs involves BMP Type I receptor Tkv protein stabilization along with AWD mediated internalization into endocytic vesicles.
Collapse
Affiliation(s)
- Xiaoyu Tracy Cai
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Abu Safyan
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.,Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Jennifer Gawlik
- Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - George Pyrowolakis
- Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centre BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA. .,Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA. .,Leibniz Institute on Aging - Fritz Lipmann Institute, 07745, Jena, Germany.
| |
Collapse
|
44
|
Coelho DS, Moreno E. Emerging links between cell competition and Alzheimer's disease. J Cell Sci 2019; 132:132/13/jcs231258. [PMID: 31263078 DOI: 10.1242/jcs.231258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) causes a progressive loss of memory and other cognitive functions, which inexorably debilitates patients. There is still no cure for AD and effective treatments to delay or revert AD are urgently needed. On a molecular level, the excessive accumulation of amyloid-β (Aβ) peptides triggers a complex cascade of pathological events underlying neuronal death, whose details are not yet completely understood. Our laboratory recently discovered that cell competition may play a protective role against AD by eliminating less fit neurons from the brain of Aβ-transgenic flies. Loss of Aβ-damaged neurons through fitness comparison with healthy counterparts is beneficial for the organism, delaying cognitive decline and motor disability. In this Review, we introduce the molecular mechanisms of cell competition, including seminal works on the field and latest advances regarding genetic triggers and effectors of cell elimination. We then describe the biological relevance of competition in the nervous system and discuss how competitive interactions between neurons may arise and be exacerbated in the context of AD. Selection of neurons through fitness comparison is a promising, but still emerging, research field that may open new avenues for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Dina S Coelho
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília., 1400-038 Lisbon, Portugal
| | - Eduardo Moreno
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília., 1400-038 Lisbon, Portugal
| |
Collapse
|
45
|
Snigdha K, Gangwani KS, Lapalikar GV, Singh A, Kango-Singh M. Hippo Signaling in Cancer: Lessons From Drosophila Models. Front Cell Dev Biol 2019; 7:85. [PMID: 31231648 PMCID: PMC6558396 DOI: 10.3389/fcell.2019.00085] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Hippo pathway was initially identified through genetic screens for genes regulating organ size in fruitflies. Recent studies have highlighted the role of Hippo signaling as a key regulator of homeostasis, and in tumorigenesis. Hippo pathway is comprised of genes that act as tumor suppressor genes like hippo (hpo) and warts (wts), and oncogenes like yorkie (yki). YAP and TAZ are two related mammalian homologs of Drosophila Yki that act as effectors of the Hippo pathway. Hippo signaling deficiency can cause YAP- or TAZ-dependent oncogene addiction for cancer cells. YAP and TAZ are often activated in human malignant cancers. These transcriptional regulators may initiate tumorigenic changes in solid tumors by inducing cancer stem cells and proliferation, culminating in metastasis and chemo-resistance. Given the complex mechanisms (e.g., of the cancer microenvironment, and the extrinsic and intrinsic cues) that overpower YAP/TAZ inhibition, the molecular roles of the Hippo pathway in tumor growth and progression remain poorly defined. Here we review recent findings from studies in whole animal model organism like Drosophila on the role of Hippo signaling regarding its connection to inflammation, tumor microenvironment, and other oncogenic signaling in cancer growth and progression.
Collapse
Affiliation(s)
- Kirti Snigdha
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | | - Gauri Vijay Lapalikar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States.,Pre-Medical Programs, University of Dayton, Dayton, OH, United States.,Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, OH, United States.,Integrated Science and Engineering Center, University of Dayton, Dayton, OH, United States
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, United States.,Pre-Medical Programs, University of Dayton, Dayton, OH, United States.,Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, OH, United States.,Integrated Science and Engineering Center, University of Dayton, Dayton, OH, United States
| |
Collapse
|
46
|
Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery. Proc Natl Acad Sci U S A 2019; 116:6858-6867. [PMID: 30894482 DOI: 10.1073/pnas.1817898116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The formation of multivesicular endosomes (MVEs) mediates the turnover of numerous integral membrane proteins and has been implicated in the down-regulation of growth factor signaling, thereby exhibiting properties of a tumor suppressor. The endosomal sorting complex required for transport (ESCRT) machinery plays a key role in MVE biogenesis, enabling cargo selection and intralumenal vesicle (ILV) budding. However, the spatiotemporal pattern of endogenous ESCRT complex assembly and disassembly in mammalian cells remains poorly defined. By combining CRISPR/Cas9-mediated genome editing and live cell imaging using lattice light sheet microscopy (LLSM), we determined the native dynamics of both early- and late-acting ESCRT components at MVEs under multiple growth conditions. Specifically, our data indicate that ESCRT-0 accumulates quickly on endosomes, typically in less than 30 seconds, and its levels oscillate in a manner dependent on the downstream recruitment of ESCRT-I. Similarly, levels of the ESCRT-I complex also fluctuate on endosomes, but its average residency time is more than fivefold shorter compared with ESCRT-0. Vps4 accumulation is the most transient, however, suggesting that the completion of ILV formation occurs rapidly. Upon addition of epidermal growth factor (EGF), both ESCRT-I and Vps4 are retained at endosomes for dramatically extended periods of time, while ESCRT-0 dynamics are only modestly affected. Our findings are consistent with a model in which growth factor stimulation stabilizes late-acting components of the ESCRT machinery at endosomes to accelerate the rate of ILV biogenesis and attenuate signal transduction initiated by receptor activation.
Collapse
|
47
|
Khezri R, Rusten TE. Autophagy and Tumorigenesis in Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:113-127. [PMID: 31520352 DOI: 10.1007/978-3-030-23629-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The resurgence of Drosophila as a recognized model for carcinogenesis has contributed greatly to our conceptual advance and mechanistic understanding of tumor growth in vivo. With its powerful genetics, Drosophila has emerged as a prime model organism to study cell biology and physiological functions of autophagy. This has enabled exploration of the contributions of autophagy in several tumor models. Here we review the literature of autophagy related to tumorigenesis in Drosophila. Functional analysis of core autophagy components does not provide proof for a classical tumor suppression role for autophagy alone. Autophagy both serve to suppress or support tumor growth. These effects are context-specific, depending on cell type and oncogenic or tumor suppressive lesion. Future delineation of how autophagy impinges on tumorigenesis will demand to untangle in detail, the regulation and flux of autophagy in the respective tumor models. The downstream tumor-regulative roles of autophagy through organelle homeostasis, metabolism, selective autophagy or alternative mechanisms remain largely unexplored.
Collapse
Affiliation(s)
- Rojyar Khezri
- Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, The Medical Faculty, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tor Erik Rusten
- Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, The Medical Faculty, University of Oslo, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
48
|
Fahey-Lozano N, La Marca JE, Portela M, Richardson HE. Drosophila Models of Cell Polarity and Cell Competition in Tumourigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:37-64. [PMID: 31520348 DOI: 10.1007/978-3-030-23629-8_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell competition is an important surveillance mechanism that measures relative fitness between cells in a tissue during development, homeostasis, and disease. Specifically, cells that are "less fit" (losers) are actively eliminated by relatively "more fit" (winners) neighbours, despite the less fit cells otherwise being able to survive in a genetically uniform tissue. Originally described in the epithelial tissues of Drosophila larval imaginal discs, cell competition has since been shown to occur in other epithelial and non-epithelial Drosophila tissues, as well as in mammalian model systems. Many genes and signalling pathways have been identified as playing conserved roles in the mechanisms of cell competition. Among them are genes required for the establishment and maintenance of apico-basal cell polarity: the Crumbs/Stardust/Patj (Crb/Sdt/Patj), Bazooka/Par-6/atypical Protein Kinase C (Baz/Par-6/aPKC), and Scribbled/Discs large 1/Lethal (2) giant larvae (Scrib/Dlg1/L(2)gl) modules. In this chapter, we describe the concepts and mechanisms of cell competition, with emphasis on the relationship between cell polarity proteins and cell competition, particularly the Scrib/Dlg1/L(2)gl module, since this is the best described module in this emerging field.
Collapse
Affiliation(s)
- Natasha Fahey-Lozano
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - John E La Marca
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
49
|
Nagata R, Igaki T. Cell competition: Emerging mechanisms to eliminate neighbors. Dev Growth Differ 2018; 60:522-530. [DOI: 10.1111/dgd.12575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Rina Nagata
- Laboratory of GeneticsGraduate School of BiostudiesKyoto University Kyoto Japan
| | - Tatsushi Igaki
- Laboratory of GeneticsGraduate School of BiostudiesKyoto University Kyoto Japan
| |
Collapse
|
50
|
Baron M. Combining genetic and biophysical approaches to probe the structure and function relationships of the notch receptor. Mol Membr Biol 2018; 34:33-49. [PMID: 30246579 DOI: 10.1080/09687688.2018.1503742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Notch is a conserved cell signalling receptor regulating many aspects of development and tissue homeostasis. Notch is activated by ligand-induced proteolytic cleavages that release the Notch intracellular domain, which relocates to the nucleus to regulate gene transcription. Proteolytic activation first requires mechanical force to be applied to the Notch extracellular domain through an endocytic pulling mechanism transmitted through the ligand/receptor interface. This exposes the proteolytic cleavage site allowing the signal to be initiated following removal of the Notch extracellular domain. Ligands can also act, when expressed in the same cell, through non-productive cis-interactions to inhibit Notch activity. Furthermore, ligand selectivity and Notch activation are regulated by numerous post-translational modifications of the extracellular domain. Additional non-canonical trans and cis interactions with other regulatory proteins may modulate alternative mechanisms of Notch activation that depend on endocytic trafficking of the full-length receptor and proteolytic release of the intracellular domain from endo-lysosomal surface. Mutations of Notch, located in different regions of the protein, are associated with a spectrum of different loss and gain of function phenotypes and offer the possibility to dissect distinct regulatory interactions and mechanisms, particularly when combined with detailed structural analysis of Notch in complex with various regulatory partners.
Collapse
Affiliation(s)
- Martin Baron
- a School of Biological Sciences , University of Manchester , Manchester , UK
| |
Collapse
|