1
|
Liu T, Zhang J, Chang F, Sun M, He J, Ai D. Role of endothelial Raptor in abnormal arteriogenesis after lower limb ischaemia in type 2 diabetes. Cardiovasc Res 2024; 120:1218-1234. [PMID: 38722901 DOI: 10.1093/cvr/cvae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Proper arteriogenesis after tissue ischaemia is necessary to rebuild stable blood circulation; nevertheless, this process is impaired in type 2 diabetes mellitus (T2DM). Raptor is a scaffold protein and a component of mammalian target of rapamycin complex 1 (mTORC1). However, the role of the endothelial Raptor in arteriogenesis under the conditions of T2DM remains unknown. This study investigated the role of endothelial Raptor in ischaemia-induced arteriogenesis during T2DM. METHODS AND RESULTS Although endothelial mTORC1 is hyperactive in T2DM, we observed a marked reduction in the expression of endothelial Raptor in two mouse models and in human vessels. Inducible endothelial-specific Raptor knockout severely exacerbated impaired hindlimb perfusion and arteriogenesis after hindlimb ischaemic injury in 12-week high-fat diet fed mice. Additionally, we found that Raptor deficiency dampened vascular endothelial growth factor receptor 2 (VEGFR2) signalling in endothelial cells (ECs) and inhibited VEGF-induced cell migration and tube formation in a PTP1B-dependent manner. Furthermore, mass spectrometry analysis indicated that Raptor interacts with neuropilin 1 (NRP1), the co-receptor of VEGFR2, and mediates VEGFR2 trafficking by facilitating the interaction between NRP1 and Synectin. Finally, we found that EC-specific overexpression of the Raptor mutant (loss of mTOR binding) reversed impaired hindlimb perfusion and arteriogenesis induced by endothelial Raptor knockout in high-fat diet fed mice. CONCLUSION Collectively, our study demonstrated the crucial role of endothelial Raptor in promoting ischaemia-induced arteriogenesis in T2DM by mediating VEGFR2 signalling. Thus, endothelial Raptor is a novel therapeutic target for promoting arteriogenesis and ameliorating perfusion in T2DM.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Jiachen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Fangyuan Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Mengyu Sun
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinlong He
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| |
Collapse
|
2
|
Sun X, Han Y, Yu Y, Chen Y, Dong C, Lv Y, Qu H, Fan Z, Yu Y, Sang Y, Tang W, Liu Y, Ju J, Zhao D, Bai Y. Overexpressing of the GIPC1 protects against pathological cardiac remodelling. Eur J Pharmacol 2024; 971:176488. [PMID: 38458410 DOI: 10.1016/j.ejphar.2024.176488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE Pathological cardiac remodelling, including cardiac hypertrophy and fibrosis, is a key pathological process in the development of heart failure. However, effective therapeutic approaches are limited. The β-adrenergic receptors are pivotal signalling molecules in regulating cardiac function. G-alpha interacting protein (GAIP)-interacting protein, C-terminus 1 (GIPC1) is a multifunctional scaffold protein that directly binds to the C-terminus of β1-adrenergic receptor (β1-adrenergic receptor). However, little is known about its roles in heart function. Therefore, we investigated the role of GIPC1 in cardiac remodelling and its underlying molecular mechanisms. METHODS Pathological cardiac remodelling in mice was established via intraperitoneal injection of isoprenaline for 14 d or transverse aortic constriction surgery for 8 weeks. Myh6-driving cardiomyocyte-specific GIPC1 conditional knockout (GIPC1 cKO) mice and adeno-associated virus 9 (AAV9)-mediated GIPC1 overexpression mice were used. The effect of GIPC1 on cardiac remodelling was assessed using echocardiographic, histological, and biochemical analyses. RESULTS GIPC1 expression was consistently reduced in the cardiac remodelling model. GIPC1 cKO mice exhibited spontaneous abnormalities, including cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, AAV9-mediated GIPC1 overexpression in the heart attenuated isoproterenol-induced pathological cardiac remodelling in mice. Mechanistically, GIPC1 interacted with the β1-adrenergic receptor and stabilised its expression by preventing its ubiquitination and degradation, maintaining the balance of β1-adrenergic receptor/β2-adrenergic receptor, and inhibiting hyperactivation of the mitogen-activated protein kinase signalling pathway. CONCLUSIONS These results suggested that GIPC1 plays a cardioprotective role and is a promising therapeutic target for the treatment of cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Xi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Scientific Research, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanna Han
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yahan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yujie Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuan Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Huan Qu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zheyu Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yi Yu
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yaru Sang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Wenxia Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Dan Zhao
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Joint International Research Laboratory of Cardiovascular Medicine, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
3
|
Cho HD, Nhàn NTT, Zhou C, Tu K, Nguyen T, Sarich NA, Yamada KH. KIF13B mediates VEGFR2 recycling to modulate vascular permeability. Cell Mol Life Sci 2023; 80:91. [PMID: 36928770 PMCID: PMC10165967 DOI: 10.1007/s00018-023-04752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Excessive vascular endothelial growth factor-A (VEGF-A) signaling induces vascular leakage and angiogenesis in diseases. VEGFR2 trafficking to the cell surface, mediated by kinesin-3 family protein KIF13B, is essential to respond to VEGF-A when inducing angiogenesis. However, the precise mechanism of how KIF13B regulates VEGF-induced signaling and its effects on endothelial permeability is largely unknown. Here we show that KIF13B-mediated recycling of internalized VEGFR2 through Rab11-positive recycling vesicle regulates endothelial permeability. Phosphorylated VEGFR2 at the cell-cell junction was internalized and associated with KIF13B in Rab5-positive early endosomes. KIF13B mediated VEGFR2 recycling through Rab11-positive recycling vesicle. Inhibition of the function of KIF13B attenuated phosphorylation of VEGFR2 at Y951, SRC at Y416, and VE-cadherin at Y685, which are necessary for endothelial permeability. Failure of VEGFR2 trafficking to the cell surface induced accumulation and degradation of VEGFR2 in lysosomes. Furthermore, in the animal model of the blinding eye disease wet age-related macular degeneration (AMD), inhibition of KIF13B-mediated VEGFR2 trafficking also mitigated vascular leakage. Thus, the present results identify the fundamental role of VEGFR2 recycling to the cell surface in mediating vascular permeability, which suggests a promising strategy for mitigating vascular leakage associated with inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
- Department of Food and Nutrition, Sunchon National University, Sunchon, 57922, Republic of Korea
| | - Nguyễn Thị Thanh Nhàn
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Christopher Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kayeman Tu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Nicolene A Sarich
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kaori H Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Vázquez-Ulloa E, Lin KL, Lizano M, Sahlgren C. Reversible and bidirectional signaling of notch ligands. Crit Rev Biochem Mol Biol 2022; 57:377-398. [PMID: 36048510 DOI: 10.1080/10409238.2022.2113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kai-Lan Lin
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Ahmed T, Mythreye K, Lee NY. Strength and duration of GIPC-dependent signaling networks as determinants in cancer. Neoplasia 2021; 23:181-188. [PMID: 33360508 PMCID: PMC7773760 DOI: 10.1016/j.neo.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 10/25/2022]
Abstract
GIPC is a PDZ-domain containing adaptor protein that regulates the cell surface expression and endocytic trafficking of numerous transmembrane receptors and signaling complexes. Interactions with over 50 proteins have been reported to date including VEGFR, insulin-like growth factor-1 receptor (IGF-1R), GPCRs, and APPL, many of which have essential roles in neuronal and cardiovascular development. In cancer, a major subset of GIPC-binding receptors and cytoplasmic effectors have been shown to promote tumorigenesis or metastatic progression, while other subsets have demonstrated strong tumor-suppressive effects. Given that these diverse pathways are widespread in normal tissues and human malignancies, precisely how these opposing signals are integrated and regulated within the same tumor setting likely depend on the strength and duration of their interactions with GIPC. This review highlights the major pathways and divergent mechanisms of GIPC signaling in various cancers and provide a rationale for emerging GIPC-targeted cancer therapies.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Deparment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Nam Y Lee
- Deparment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
6
|
Syndecans in cancer: A review of function, expression, prognostic value, and therapeutic significance. Cancer Treat Res Commun 2021; 27:100312. [PMID: 33485180 DOI: 10.1016/j.ctarc.2021.100312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
While our understanding of tumors and how to treat them has advanced significantly since the days of Aminopterin and the radical mastectomy, cancer remains among the leading causes of death worldwide. Despite innumerable advancements in medical technology the non-static and highly heterogeneous nature of a tumor can make characterization and treatment exceedingly difficult. Because of this complexity, the identification of new cellular constituents that can be used for diagnostic, prognostic, and therapeutic purposes is crucial in improving patient outcomes worldwide. Growing evidence has demonstrated that among the myriad of changes seen in cancer cells, the Syndecan family of proteins has been observed to undergo drastic alterations in expression. Syndecans are transmembrane heparan sulfate proteoglycans that are responsible for cell signaling, proliferation, and adhesion, and many studies have shed light on their unique involvement in both tumor progression and suppression. This review seeks to discuss Syndecan expression levels in various cancers, whether they make reliable biomarkers for detection and prognosis, and whether they may be viable targets for future cancer therapies. The conclusions drawn from the literature reviewed in this article indicate that changes in expression of Syndecan protein can have profound effects on tumor size, metastatic capability, and overall patient survival rate. Further, while data regarding the therapeutic targeting of Syndecan proteins is sparse, the available literature does demonstrate promise for their use in cancer treatment going forward.
Collapse
|
7
|
Conformationally active integrin endocytosis and traffic: why, where, when and how? Biochem Soc Trans 2020; 48:83-93. [PMID: 32065228 PMCID: PMC7054750 DOI: 10.1042/bst20190309] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
Abstract
Spatiotemporal control of integrin-mediated cell adhesion to the extracellular matrix (ECM) is critical for physiological and pathological events in multicellular organisms, such as embryonic development, angiogenesis, platelet aggregation, leukocytes extravasation, and cancer cell metastatic dissemination. Regulation of integrin adhesive function and signaling relies on the modulation of both conformation and traffic. Indeed, integrins exist in a dynamic equilibrium between a bent/closed (inactive) and an extended/open (active) conformation, respectively endowed with low and high affinity for ECM ligands. Increasing evidence proves that, differently to what hypothesized in the past, detachment from the ECM and conformational inactivation are not mandatory for integrin to get endocytosed and trafficked. Specific transmembrane and cytosolic proteins involved in the control of ECM proteolytic fragment-bound active integrin internalization and recycling exist. In the complex masterplan that governs cell behavior, active integrin traffic is key to the turnover of ECM polymers and adhesion sites, the polarized secretion of endogenous ECM proteins and modifying enzymes, the propagation of motility and survival endosomal signals, and the control of cell metabolism.
Collapse
|
8
|
Kottler VA, Feron R, Nanda I, Klopp C, Du K, Kneitz S, Helmprobst F, Lamatsch DK, Lopez-Roques C, Lluch J, Journot L, Parrinello H, Guiguen Y, Schartl M. Independent Origin of XY and ZW Sex Determination Mechanisms in Mosquitofish Sister Species. Genetics 2020; 214:193-209. [PMID: 31704715 PMCID: PMC6944411 DOI: 10.1534/genetics.119.302698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Fish are known for the outstanding variety of their sex determination mechanisms and sex chromosome systems. The western (Gambusia affinis) and eastern mosquitofish (G. holbrooki) are sister species for which different sex determination mechanisms have been described: ZZ/ZW for G. affinis and XX/XY for G. holbrooki Here, we carried out restriction-site associated DNA (RAD-) and pool sequencing (Pool-seq) to characterize the sex chromosomes of both species. We found that the ZW chromosomes of G. affinis females and the XY chromosomes of G. holbrooki males correspond to different linkage groups, and thus evolved independently from separate autosomes. In interspecific hybrids, the Y chromosome is dominant over the W chromosome, and X is dominant over Z. In G. holbrooki, we identified a candidate region for the Y-linked melanic pigmentation locus, a rare male phenotype that constitutes a potentially sexually antagonistic trait and is associated with other such characteristics, e.g., large body size and aggressive behavior. We developed a SNP-based marker in the Y-linked allele of GIPC PDZ domain containing family member 1 (gipc1), which was linked to melanism in all tested G. holbrooki populations. This locus represents an example for a color locus that is located in close proximity to a putative sex determiner, and most likely substantially contributed to the evolution of the Y.
Collapse
Affiliation(s)
- Verena A Kottler
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
| | - Romain Feron
- INRA, UR1037 Fish Physiology and Genomics, 35000 Rennes, France
- University of Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Indrajit Nanda
- Institute for Human Genetics, Biocenter, University of Wuerzburg, 97074, Germany
| | - Christophe Klopp
- Sigenae, Mathématiques et Informatique Appliquées de Toulouse, INRA, 31326 Castanet Tolosan, France
| | - Kang Du
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
| | | | - Dunja K Lamatsch
- University of Innsbruck, Research Department for Limnology, Mondsee, 5310 Mondsee, Austria
| | | | - Jerôme Lluch
- INRA, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France
| | - Laurent Journot
- Montpellier GenomiX (MGX), University Montpellier, CNRS, INSERM, 34094 France
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), University Montpellier, CNRS, INSERM, 34094 France
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, 35000 Rennes, France
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
9
|
Carretero-Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menéndez-González J, Gay CM, Zygmunt T, Li X, Torres-Vázquez J. GIPC proteins negatively modulate Plexind1 signaling during vascular development. eLife 2019; 8:e30454. [PMID: 31050647 PMCID: PMC6499541 DOI: 10.7554/elife.30454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Semaphorins (SEMAs) and their Plexin (PLXN) receptors are central regulators of metazoan cellular communication. SEMA-PLXND1 signaling plays important roles in cardiovascular, nervous, and immune system development, and cancer biology. However, little is known about the molecular mechanisms that modulate SEMA-PLXND1 signaling. As PLXND1 associates with GIPC family endocytic adaptors, we evaluated the requirement for the molecular determinants of their association and PLXND1's vascular role. Zebrafish that endogenously express a Plxnd1 receptor with a predicted impairment in GIPC binding exhibit low penetrance angiogenesis deficits and antiangiogenic drug hypersensitivity. Moreover, gipc mutant fish show angiogenic impairments that are ameliorated by reducing Plxnd1 signaling. Finally, GIPC depletion potentiates SEMA-PLXND1 signaling in cultured endothelial cells. These findings expand the vascular roles of GIPCs beyond those of the Vascular Endothelial Growth Factor (VEGF)-dependent, proangiogenic GIPC1-Neuropilin 1 complex, recasting GIPCs as negative modulators of antiangiogenic PLXND1 signaling and suggest that PLXND1 trafficking shapes vascular development.
Collapse
Affiliation(s)
- Jorge Carretero-Ortega
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Zinal Chhangawala
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Shane Hunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carlos Narvaez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Javier Menéndez-González
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carl M Gay
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Tomasz Zygmunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Xiaochun Li
- Department of Population HealthNew York University School of MedicineNew YorkUnited States
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
10
|
Corti F, Wang Y, Rhodes JM, Atri D, Archer-Hartmann S, Zhang J, Zhuang ZW, Chen D, Wang T, Wang Z, Azadi P, Simons M. N-terminal syndecan-2 domain selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA 165-dependent neovascularization. Nat Commun 2019; 10:1562. [PMID: 30952866 PMCID: PMC6450910 DOI: 10.1038/s41467-019-09605-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 03/19/2019] [Indexed: 01/26/2023] Open
Abstract
The proteoglycan Syndecan-2 (Sdc2) has been implicated in regulation of cytoskeleton organization, integrin signaling and developmental angiogenesis in zebrafish. Here we report that mice with global and inducible endothelial-specific deletion of Sdc2 display marked angiogenic and arteriogenic defects and impaired VEGFA165 signaling. No such abnormalities are observed in mice with deletion of the closely related Syndecan-4 (Sdc4) gene. These differences are due to a significantly higher 6-O sulfation level in Sdc2 versus Sdc4 heparan sulfate (HS) chains, leading to an increase in VEGFA165 binding sites and formation of a ternary Sdc2-VEGFA165-VEGFR2 complex which enhances VEGFR2 activation. The increased Sdc2 HS chains 6-O sulfation is driven by a specific N-terminal domain sequence; the insertion of this sequence in Sdc4 N-terminal domain increases 6-O sulfation of its HS chains and promotes Sdc2-VEGFA165-VEGFR2 complex formation. This demonstrates the existence of core protein-determined HS sulfation patterns that regulate specific biological activities.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Yingdi Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - John M Rhodes
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Deepak Atri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Dongying Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Tianyun Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Zecchin A, Wong BW, Tembuyser B, Souffreau J, Van Nuffelen A, Wyns S, Vinckier S, Carmeliet P, Dewerchin M. Live imaging reveals a conserved role of fatty acid β-oxidation in early lymphatic development in zebrafish. Biochem Biophys Res Commun 2018; 503:26-31. [DOI: 10.1016/j.bbrc.2018.04.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022]
|
12
|
Culjat M, Razak J, Saadeh‐Haddad R, Driggers R, Kamholz K, Timofeev J. Perinatal findings in a patient with a novel large chromosome 19p deletion. Clin Case Rep 2018; 6:1525-1530. [PMID: 30147897 PMCID: PMC6099042 DOI: 10.1002/ccr3.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 12/02/2022] Open
Abstract
We describe the prenatal and postnatal course of an infant with a large 19p deletion. Cases such as ours will improve the knowledge of specific gene functions for every medical specialist. The goal is to allow for a more rapid diagnosis, accurate prognosis and to decrease the likelihood of complications.
Collapse
Affiliation(s)
- Marko Culjat
- MedStar Georgetown University HospitalNeonatal‐Perinatal MedicineWashingtonDCUSA
| | - Jennifer Razak
- Division of Maternal Fetal MedicineSibley Memorial HospitalWashingtonDCUSA
| | - Reem Saadeh‐Haddad
- Department of PediatricsMedStar Georgetown University HospitalWashingtonDCUSA
| | - Rita Driggers
- Division of Maternal Fetal MedicineSibley Memorial HospitalWashingtonDCUSA
- Division of Maternal Fetal MedicineJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Karen Kamholz
- MedStar Georgetown University HospitalNeonatal‐Perinatal MedicineWashingtonDCUSA
| | - Julia Timofeev
- Division of Maternal Fetal MedicineSibley Memorial HospitalWashingtonDCUSA
- Division of Maternal Fetal MedicineJohns Hopkins School of MedicineBaltimoreMDUSA
| |
Collapse
|
13
|
Peach CJ, Kilpatrick LE, Friedman-Ohana R, Zimmerman K, Robers MB, Wood KV, Woolard J, Hill SJ. Real-Time Ligand Binding of Fluorescent VEGF-A Isoforms that Discriminate between VEGFR2 and NRP1 in Living Cells. Cell Chem Biol 2018; 25:1208-1218.e5. [PMID: 30057299 PMCID: PMC6200776 DOI: 10.1016/j.chembiol.2018.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/23/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
Fluorescent VEGF-A isoforms have been evaluated for their ability to discriminate between VEGFR2 and NRP1 in real-time ligand binding studies in live cells using BRET. To enable this, we synthesized single-site (N-terminal cysteine) labeled versions of VEGF165a, VEGF165b, and VEGF121a. These were used in combination with N-terminal NanoLuc-tagged VEGFR2 or NRP1 to evaluate the selectivity of VEGF isoforms for these two membrane proteins. All fluorescent VEGF-A isoforms displayed high affinity for VEGFR2. Only VEGF165a-TMR bound to NanoLuc-NRP1 with a similar high affinity (4.4 nM). Competition NRP1 binding experiments yielded a rank order of potency of VEGF165a > VEGF189a > VEGF145a. VEGF165b, VEGF-Ax, VEGF121a, and VEGF111a were unable to bind to NRP1. There were marked differences in the kinetic binding profiles of VEGF165a-TMR for NRP1 and VEGFR2. These data emphasize the importance of the kinetic aspects of ligand binding to VEGFR2 and its co-receptors in the dynamics of VEGF signaling. VEGF165a, VEGF121a, and VEGF165b were single-site labeled with tetramethylrhodamine NanoBRET quantified that VEGF-A isoforms have similar binding properties at VEGFR2 NRP1 expressed in live cells does not bind VEGF165b, VEGF121a, VEGF-Ax, or VEGF111a VEGFR2 and NRP1 have markedly distinct kinetic profiles binding VEGF165a-TMR
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, UK
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Kris Zimmerman
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Matthew B Robers
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Keith V Wood
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
14
|
Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, Woolard J. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J Mol Sci 2018; 19:E1264. [PMID: 29690653 PMCID: PMC5979509 DOI: 10.3390/ijms19041264] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGFxxxa or VEGFxxxb isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF165a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Viviane W Mignone
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Maria Augusta Arruda
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Diana C Alcobia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| |
Collapse
|
15
|
Lee MY, Gamez-Mendez A, Zhang J, Zhuang Z, Vinyard DJ, Kraehling J, Velazquez H, Brudvig GW, Kyriakides TR, Simons M, Sessa WC. Endothelial Cell Autonomous Role of Akt1: Regulation of Vascular Tone and Ischemia-Induced Arteriogenesis. Arterioscler Thromb Vasc Biol 2018; 38:870-879. [PMID: 29449333 DOI: 10.1161/atvbaha.118.310748] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/25/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The importance of PI3K/Akt signaling in the vasculature has been demonstrated in several models, as global loss of Akt1 results in impaired postnatal ischemia- and VEGF-induced angiogenesis. The ubiquitous expression of Akt1, however, raises the possibility of cell-type-dependent Akt1-driven actions, thereby necessitating tissue-specific characterization. APPROACH AND RESULTS Herein, we used an inducible, endothelial-specific Akt1-deleted adult mouse model (Akt1iECKO) to characterize the endothelial cell autonomous functions of Akt1 in the vascular system. Endothelial-targeted ablation of Akt1 reduces eNOS (endothelial nitric oxide synthase) phosphorylation and promotes both increased vascular contractility in isolated vessels and elevated diastolic blood pressures throughout the diurnal cycle in vivo. Furthermore, Akt1iECKO mice subject to the hindlimb ischemia model display impaired blood flow and decreased arteriogenesis. CONCLUSIONS Endothelial Akt1 signaling is necessary for ischemic resolution post-injury and likely reflects the consequence of NO insufficiency critical for vascular repair.
Collapse
Affiliation(s)
- Monica Y Lee
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Ana Gamez-Mendez
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Jiasheng Zhang
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Zhenwu Zhuang
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - David J Vinyard
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Jan Kraehling
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Heino Velazquez
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Gary W Brudvig
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Themis R Kyriakides
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Michael Simons
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - William C Sessa
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.).
| |
Collapse
|
16
|
Kofler N, Corti F, Rivera-Molina F, Deng Y, Toomre D, Simons M. The Rab-effector protein RABEP2 regulates endosomal trafficking to mediate vascular endothelial growth factor receptor-2 (VEGFR2)-dependent signaling. J Biol Chem 2018; 293:4805-4817. [PMID: 29425100 DOI: 10.1074/jbc.m117.812172] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/24/2018] [Indexed: 02/02/2023] Open
Abstract
As a master regulator of endothelial cell function, vascular endothelial growth factor receptor-2 (VEGFR2) activates multiple downstream signaling pathways that are critical for vascular development and normal vessel function. VEGFR2 trafficking through various endosomal compartments modulates its signaling output. Accordingly, proteins that regulate the speed and direction by which VEGFR2 traffics through endosomes have been demonstrated to be particularly important for arteriogenesis. However, little is known about how these proteins control VEGFR2 trafficking and about the implications of this control for endothelial cell function. Here, we show that Rab GTPase-binding effector protein 2 (RABEP2), a Rab-effector protein implicated in arteriogenesis, modulates VEGFR2 trafficking. By employing high-resolution microscopy and biochemical assays, we demonstrate that RABEP2 interacts with the small GTPase Rab4 and regulates VEGFR2 endosomal trafficking to maintain cell-surface expression of VEGFR2 and VEGF signaling. Lack of RABEP2 also led to prolonged retention of VEGFR2 in Rab5-positive sorting endosomes, which increased VEGFR2's exposure to phosphotyrosine phosphatase 1b (PTP1b), causing diminished VEGFR2 signaling. Finally, the loss of RABEP2 increased VEGFR2 degradation by diverting VEGFR2 to Rab7-positive endosomes destined for the lysosome. These results implicate RABEP2 as a key modulator of VEGFR2 endosomal trafficking, and demonstrate the importance of RABEP2 and Rab4 for VEGFR2 signaling in endothelial cells.
Collapse
Affiliation(s)
- Natalie Kofler
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, New Haven, Connecticut 06520
| | - Federico Corti
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, New Haven, Connecticut 06520
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Yong Deng
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, New Haven, Connecticut 06520
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Michael Simons
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, New Haven, Connecticut 06520; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
17
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
18
|
Drinane MC, Yaqoob U, Yu H, Luo F, Greuter T, Arab JP, Kostallari E, Verma VK, Maiers J, De Assuncao TM, Simons M, Mukhopadhyay D, Kisseleva T, Brenner DA, Urrutia R, Lomberk G, Gao Y, Ligresti G, Tschumperlin DJ, Revzin A, Cao S, Shah VH. Synectin promotes fibrogenesis by regulating PDGFR isoforms through distinct mechanisms. JCI Insight 2017; 2:92821. [PMID: 29263300 DOI: 10.1172/jci.insight.92821] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/22/2017] [Indexed: 12/30/2022] Open
Abstract
The scaffold protein synectin plays a critical role in the trafficking and regulation of membrane receptor pathways. As platelet-derived growth factor receptor (PDGFR) is essential for hepatic stellate cell (HSC) activation and liver fibrosis, we sought to determine the role of synectin on the PDGFR pathway and development of liver fibrosis. Mice with deletion of synectin from HSC were found to be protected from liver fibrosis. mRNA sequencing revealed that knockdown of synectin in HSC demonstrated reductions in the fibrosis pathway of genes, including PDGFR-β. Chromatin IP assay of the PDGFR-β promoter upon synectin knockdown revealed a pattern of histone marks associated with decreased transcription, dependent on p300 histone acetyltransferase. Synectin knockdown was found to downregulate PDGFR-α protein levels, as well, but through an alternative mechanism: protection from autophagic degradation. Site-directed mutagenesis revealed that ubiquitination of specific PDGFR-α lysine residues was responsible for its autophagic degradation. Furthermore, functional studies showed decreased PDGF-dependent migration and proliferation of HSC after synectin knockdown. Finally, human cirrhotic livers demonstrated increased synectin protein levels. This work provides insight into differential transcriptional and posttranslational mechanisms of synectin regulation of PDGFRs, which are critical to fibrogenesis.
Collapse
Affiliation(s)
- Mary C Drinane
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Usman Yaqoob
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Haibin Yu
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.,Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fanghong Luo
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.,Medical College, Xiamen University, Xiamen, Fujian, China
| | - Thomas Greuter
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Juan P Arab
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Enis Kostallari
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vikas K Verma
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica Maiers
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thiago Milech De Assuncao
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Simons
- Section of Cardiovascular Medicine, Yale University, New Haven, Connecticut, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Raul Urrutia
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gwen Lomberk
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yandong Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Giovanni Ligresti
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Sheng Cao
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Fantin A, Lampropoulou A, Senatore V, Brash JT, Prahst C, Lange CA, Liyanage SE, Raimondi C, Bainbridge JW, Augustin HG, Ruhrberg C. VEGF165-induced vascular permeability requires NRP1 for ABL-mediated SRC family kinase activation. J Exp Med 2017; 214:1049-1064. [PMID: 28289053 PMCID: PMC5379968 DOI: 10.1084/jem.20160311] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 12/07/2016] [Accepted: 01/20/2017] [Indexed: 01/13/2023] Open
Abstract
Fantin et al. show that the VEGF isoform VEGF165 signals through a complex of VEGFR2 and NRP1, in which the NRP1 cytoplasmic domain promotes the ABL-mediated activation of SRC family kinases to evoke a hyperpermeability response, a known cause of pathological edema. The vascular endothelial growth factor (VEGF) isoform VEGF165 stimulates vascular growth and hyperpermeability. Whereas blood vessel growth is essential to sustain organ health, chronic hyperpermeability causes damaging tissue edema. By combining in vivo and tissue culture models, we show here that VEGF165-induced vascular leakage requires both VEGFR2 and NRP1, including the VEGF164-binding site of NRP1 and the NRP1 cytoplasmic domain (NCD), but not the known NCD interactor GIPC1. In the VEGF165-bound receptor complex, the NCD promotes ABL kinase activation, which in turn is required to activate VEGFR2-recruited SRC family kinases (SFKs). These results elucidate the receptor complex and signaling hierarchy of downstream kinases that transduce the permeability response to VEGF165. In a mouse model with choroidal neovascularisation akin to age-related macular degeneration, NCD loss attenuated vessel leakage without affecting neovascularisation. These findings raise the possibility that targeting NRP1 or its NCD interactors may be a useful therapeutic strategy in neovascular disease to reduce VEGF165-induced edema without compromising vessel growth.
Collapse
Affiliation(s)
- Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | | | - Valentina Senatore
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - James T Brash
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Claudia Prahst
- Yale Cardiovascular Research Center, New Haven, CT 06511
| | - Clemens A Lange
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Sidath E Liyanage
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Claudio Raimondi
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - James W Bainbridge
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| |
Collapse
|
20
|
Corti F, Simons M. Modulation of VEGF receptor 2 signaling by protein phosphatases. Pharmacol Res 2017; 115:107-123. [PMID: 27888154 PMCID: PMC5205541 DOI: 10.1016/j.phrs.2016.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Phosphorylation of serines, threonines, and tyrosines is a central event in signal transduction cascades in eukaryotic cells. The phosphorylation state of any particular protein reflects a balance of activity between kinases and phosphatases. Kinase biology has been exhaustively studied and is reasonably well understood, however, much less is known about phosphatases. A large body of evidence now shows that protein phosphatases do not behave as indiscriminate signal terminators, but can function both as negative or positive regulators of specific signaling pathways. Genetic models have also shown that different protein phosphatases play precise biological roles in health and disease. Finally, genome sequencing has unveiled the existence of many protein phosphatases and associated regulatory subunits comparable in number to kinases. A wide variety of roles for protein phosphatase roles have been recently described in the context of cancer, diabetes, hereditary disorders and other diseases. In particular, there have been several recent advances in our understanding of phosphatases involved in regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling. The receptor is the principal signaling molecule mediating a wide spectrum of VEGF signal and, thus, is of paramount significance in a wide variety of diseases ranging from cancer to cardiovascular to ophthalmic. This review focuses on the current knowledge about protein phosphatases' regulation of VEGFR2 signaling and how these enzymes can modulate its biological effects.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
The expanding role of neuropilin: regulation of transforming growth factor-β and platelet-derived growth factor signaling in the vasculature. Curr Opin Hematol 2016; 23:260-7. [PMID: 26849476 DOI: 10.1097/moh.0000000000000233] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Long recognized for its role in regulation of vascular endothelial growth factor signaling, neuropilin (Nrp)1 has emerged as a modulator of additional signaling pathways critical for vascular development and function. Here we review two novel functions of Nrp1 in blood vessels: regulation of transforming growth factor-β (TGFβ) signaling in endothelial cells and regulation of platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells. RECENT FINDINGS Novel mouse models demonstrate that Nrp1 fulfills vascular functions independent of vascular endothelial growth factor signaling. These include modulation of TGFβ-dependent inhibition of endothelial sprouting during developmental angiogenesis and PDGF signaling in vascular smooth muscle cells during development and disease. SUMMARY Broadening our understanding of how and where Nrp1 functions in the vasculature is critical for the development of targeted therapeutics for cancer and vascular diseases such as atherosclerosis and retinopathies.
Collapse
|
22
|
Sharma B, Chang A, Red-Horse K. Coronary Artery Development: Progenitor Cells and Differentiation Pathways. Annu Rev Physiol 2016; 79:1-19. [PMID: 27959616 DOI: 10.1146/annurev-physiol-022516-033953] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronary artery disease (CAD) is the number one cause of death worldwide and involves the accumulation of plaques within the artery wall that can occlude blood flow to the heart and cause myocardial infarction. The high mortality associated with CAD makes the development of medical interventions that repair and replace diseased arteries a high priority for the cardiovascular research community. Advancements in arterial regenerative medicine could benefit from a detailed understanding of coronary artery development during embryogenesis and of how these pathways might be reignited during disease. Recent research has advanced our knowledge on how the coronary vasculature is built and revealed unexpected features of progenitor cell deployment that may have implications for organogenesis in general. Here, we highlight these recent findings and discuss how they set the stage to interrogate developmental pathways during injury and disease.
Collapse
Affiliation(s)
- Bikram Sharma
- Department of Biology, Stanford University, Stanford, California 94305;
| | - Andrew Chang
- Department of Biology, Stanford University, Stanford, California 94305; .,Department of Developmental Biology, Stanford University, Stanford, California 94305
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, California 94305;
| |
Collapse
|
23
|
Abstract
Vascular endothelial growth factor (VEGF) plays a fundamental role in angiogenesis and endothelial cell biology, and has been the subject of intense study as a result. VEGF acts via a diverse and complex range of signaling pathways, with new targets constantly being discovered. This review attempts to summarize the current state of knowledge regarding VEGF cell signaling in endothelial and cardiovascular biology, with a particular emphasis on its role in angiogenesis.
Collapse
Affiliation(s)
- Ian Evans
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK,
| |
Collapse
|
24
|
Pagani E, Ruffini F, Antonini Cappellini GC, Scoppola A, Fortes C, Marchetti P, Graziani G, D'Atri S, Lacal PM. Placenta growth factor and neuropilin-1 collaborate in promoting melanoma aggressiveness. Int J Oncol 2016; 48:1581-9. [PMID: 26846845 DOI: 10.3892/ijo.2016.3362] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
The placenta growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family, which shares with VEGF-A the tyrosine kinase receptor VEGFR-1 and the co-receptor neuropilin-1 (NRP-1). In melanoma models, PlGF enhances tumour growth and neovessel formation, whereas NRP-1 promotes the metastatic process. Increased secretion of PlGF and expression of NRP-1 have also been involved in intrinsic or acquired resistance to anti‑angiogenic therapies. In this study we investigated whether PlGF and NRP-1 cooperate in promoting melanoma aggressiveness independently of VEGFR-1. For this purpose, the melanoma cell clones M14-N, expressing NRP-1 and lacking VEGFR-1, and M14-C, devoid of both receptors, were used. M14-N cells are characterized by an invasive phenotype and vasculogenic mimicry, whereas M14-C cells possess a negligible invasive capacity. The results indicated that M14-N cells secrete higher levels of PlGF than M14-C cells and that PlGF is involved in the invasion of the extracellular matrix (ECM) and vasculogenic mimicry of M14-N cells. In fact, neutralizing antibodies against PlGF reverted ECM invasion in response to PlGF and markedly reduced the formation of tubule-like structures. Moreover, M14-N cells migrated in response to PlGF and chemotaxis was specifically abrogated by anti-NRP-1 antibodies, demonstrating that PlGF directly activates NRP-1 in the absence of VEGFR-1. We also compared the levels of PlGF in the plasma of patients affected by metastatic melanoma with those of healthy donors and evaluated whether PlGF levels could be affected by a bevacizumab-containing chemotherapy regimen. Melanoma patients showed a 20-fold increase in plasma PlGF and the bevacizumab-containing regimen induced a reduction of VEGF-A and in a further increase of PlGF. In conclusion, our studies suggest that the activation of NRP-1 by PlGF directly contributes to melanoma aggressiveness and represents a potential compensatory pro-angiogenic mechanism that may contribute to the resistance to therapies targeting VEGF-A.
Collapse
Affiliation(s)
- Elena Pagani
- Laboratory of Molecular Oncology, 'Istituto Dermopatico dell'Immacolata'- IRCCS, Rome, Italy
| | - Federica Ruffini
- Laboratory of Molecular Oncology, 'Istituto Dermopatico dell'Immacolata'- IRCCS, Rome, Italy
| | | | - Alessandro Scoppola
- Department of Oncology and Dermatological Oncology, 'Istituto Dermopatico dell'Immacolata'- IRCCS, Rome, Italy
| | - Cristina Fortes
- Epidemiology Unit, 'Istituto Dermopatico dell'Immacolata'- IRCCS, Rome, Italy
| | - Paolo Marchetti
- Department of Oncology, Sant'Andrea Hospital, University of Rome 'La Sapienza', Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, 'Istituto Dermopatico dell'Immacolata'- IRCCS, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, 'Istituto Dermopatico dell'Immacolata'- IRCCS, Rome, Italy
| |
Collapse
|
25
|
Smith G, Tomlinson D, Harrison M, Ponnambalam S. Chapter Eight - Ubiquitin-Mediated Regulation of Cellular Responses to Vascular Endothelial Growth Factors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:313-38. [DOI: 10.1016/bs.pmbts.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Yang X, Liaw L, Prudovsky I, Brooks PC, Vary C, Oxburgh L, Friesel R. Fibroblast growth factor signaling in the vasculature. Curr Atheroscler Rep 2015; 17:509. [PMID: 25813213 DOI: 10.1007/s11883-015-0509-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite their discovery as angiogenic factors and mitogens for endothelial cells more than 30 years ago, much remains to be determined about the role of fibroblast growth factors (FGFs) and their receptors in vascular development, homeostasis, and disease. In vitro studies show that members of the FGF family stimulate growth, migration, and sprouting of endothelial cells, and growth, migration, and phenotypic plasticity of vascular smooth muscle cells. Recent studies have revealed important roles for FGFs and their receptors in the regulation of endothelial cell sprouting and vascular homeostasis in vivo. Furthermore, recent work has revealed roles for FGFs in atherosclerosis, vascular calcification, and vascular dysfunction. The large number of FGFs and their receptors expressed in endothelial and vascular smooth muscle cells complicates these studies. In this review, we summarize recent studies in which new and unanticipated roles for FGFs and their receptors in the vasculature have been revealed.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Fish JE, Wythe JD. The molecular regulation of arteriovenous specification and maintenance. Dev Dyn 2015; 244:391-409. [PMID: 25641373 DOI: 10.1002/dvdy.24252] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 12/21/2022] Open
Abstract
The formation of a hierarchical vascular network, composed of arteries, veins, and capillaries, is essential for embryogenesis and is required for the production of new functional vasculature in the adult. Elucidating the molecular mechanisms that orchestrate the differentiation of vascular endothelial cells into arterial and venous cell fates is requisite for regenerative medicine, as the directed formation of perfused vessels is desirable in a myriad of pathological settings, such as in diabetes and following myocardial infarction. Additionally, this knowledge will enhance our understanding and treatment of vascular anomalies, such as arteriovenous malformations (AVMs). From studies in vertebrate model organisms, such as mouse, zebrafish, and chick, a number of key signaling pathways have been elucidated that are required for the establishment and maintenance of arterial and venous fates. These include the Hedgehog, Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor-β (TGF-β), Wnt, and Notch signaling pathways. In addition, a variety of transcription factor families acting downstream of, or in concert with, these signaling networks play vital roles in arteriovenous (AV) specification. These include Notch and Notch-regulated transcription factors (e.g., HEY and HES), SOX factors, Forkhead factors, β-Catenin, ETS factors, and COUP-TFII. It is becoming apparent that AV specification is a highly coordinated process that involves the intersection and carefully orchestrated activity of multiple signaling cascades and transcriptional networks. This review will summarize the molecular mechanisms that are involved in the acquisition and maintenance of AV fate, and will highlight some of the limitations in our current knowledge of the molecular machinery that directs AV morphogenesis.
Collapse
Affiliation(s)
- Jason E Fish
- Toronto General Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | | |
Collapse
|
28
|
Guo HF, Vander Kooi CW. Neuropilin Functions as an Essential Cell Surface Receptor. J Biol Chem 2015; 290:29120-6. [PMID: 26451046 DOI: 10.1074/jbc.r115.687327] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Neuropilins (Nrps) are a family of essential cell surface receptors involved in multiple fundamental cellular signaling cascades. Nrp family members have key functions in VEGF-dependent angiogenesis and semaphorin-dependent axon guidance, controlling signaling and cross-talk between these fundamental physiological processes. More recently, Nrp function has been found in diverse signaling and adhesive functions, emphasizing their role as pleiotropic co-receptors. Pathological Nrp function has been shown to be important in aberrant activation of both canonical and alternative pathways. Here we review key recent insights into Nrp function in human health and disease.
Collapse
Affiliation(s)
- Hou-Fu Guo
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Craig W Vander Kooi
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
29
|
The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis. Biosci Rep 2015; 35:BSR20150171. [PMID: 26285805 PMCID: PMC4613718 DOI: 10.1042/bsr20150171] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/18/2015] [Indexed: 01/18/2023] Open
Abstract
VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments.
Collapse
|
30
|
Abstract
Formation of arterial vasculature, here termed arteriogenesis, is a central process in embryonic vascular development as well as in adult tissues. Although the process of capillary formation, angiogenesis, is relatively well understood, much remains to be learned about arteriogenesis. Recent discoveries point to the key role played by vascular endothelial growth factor receptor 2 in control of this process and to newly identified control circuits that dramatically influence its activity. The latter can present particularly attractive targets for a new class of therapeutic agents capable of activation of this signaling cascade in a ligand-independent manner, thereby promoting arteriogenesis in diseased tissues.
Collapse
Affiliation(s)
- Michael Simons
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (M.S., A.E.) and Departments of Cell Biology (M.S.) and Molecular Physiology (A.E.), Yale University School of Medicine, New Haven, CT.
| | - Anne Eichmann
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (M.S., A.E.) and Departments of Cell Biology (M.S.) and Molecular Physiology (A.E.), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
31
|
Abstract
Blood vessel formation during vertebrate development relies on a process called angiogenesis and is essential for organ growth and tissue viability. In addition, angiogenesis leads to pathological blood vessel growth in diseases with tissue ischaemia, such as neovascular eye disease and cancer. Neuropilin 1 (NRP1) is a transmembrane protein that serves as a receptor for the VEGF₁₆₅ isoform of the vascular endothelial growth factor (VEGF) to enhance cell migration during angiogenesis via VEGF receptor 2 (VEGFR2), and it is also essential for VEGF-induced vascular permeability and arteriogenesis. In addition, NRP1 activation affects angiogenesis independently of VEGF signalling by activating the intracellular kinase ABL1. NRP1 also acts as a receptor for the class 3 semaphorin (SEMA3A) to regulate vessel maturation during tumour angiogenesis and vascular permeability in eye disease. In the present paper, we review current knowledge of NRP1 regulation during angiogenesis and vascular pathology.
Collapse
|
32
|
Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun 2015; 6:7264. [PMID: 26081042 PMCID: PMC4557308 DOI: 10.1038/ncomms8264] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/14/2015] [Indexed: 02/07/2023] Open
Abstract
Sprouting angiogenesis drives blood vessel growth in healthy and diseased tissues. Vegf and Dll4/Notch signalling cooperate in a negative feedback loop that specifies endothelial tip and stalk cells to ensure adequate vessel branching and function. Current concepts posit that endothelial cells default to the tip-cell phenotype when Notch is inactive. Here we identify instead that the stalk-cell phenotype needs to be actively repressed to allow tip-cell formation. We show this is a key endothelial function of neuropilin-1 (Nrp1), which suppresses the stalk-cell phenotype by limiting Smad2/3 activation through Alk1 and Alk5. Notch downregulates Nrp1, thus relieving the inhibition of Alk1 and Alk5, thereby driving stalk-cell behaviour. Conceptually, our work shows that the heterogeneity between neighbouring endothelial cells established by the lateral feedback loop of Dll4/Notch utilizes Nrp1 levels as the pivot, which in turn establishes differential responsiveness to TGF-β/BMP signalling. Notch signals are crucial for organization of angiogenic sprouting cells into the leading ‘tip' and trailing ‘stalk' cells. Here the authors show that endothelial neuropilin-1 quantitatively inhibits TGF-β/BMP signalling, explaining how Notch-mediated regulation of neuropilin-1 specifies endothelial tip and stalk cells.
Collapse
|
33
|
Graziani G, Lacal PM. Neuropilin-1 as Therapeutic Target for Malignant Melanoma. Front Oncol 2015; 5:125. [PMID: 26090340 PMCID: PMC4453476 DOI: 10.3389/fonc.2015.00125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/19/2015] [Indexed: 01/13/2023] Open
Abstract
Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that acts as a co-receptor for various members of the vascular endothelial growth factor (VEGF) family. Its ability to bind or modulate the activity of a number of other extracellular ligands, such as class 3 semaphorins, TGF-β, HGF, FGF, and PDGF, has suggested the involvement of NRP-1 in a variety of physiological and pathological processes. Actually, this co-receptor has been implicated in axon guidance, angiogenesis, and immune responses. NRP-1 is also expressed in a variety of cancers (prostate, lung, pancreatic, or colon carcinoma, melanoma, astrocytoma, glioblastoma, and neuroblastoma), suggesting a critical role in tumor progression. Moreover, a growing amount of evidence indicates that NRP-1 might display important functions independently of other VEGF receptors. In particular, in the absence of VEGFR-1/2, NRP-1 promotes melanoma invasiveness, through the activation of selected integrins, by stimulating VEGF-A and metalloproteinases secretion and modulating specific signal transduction pathways. This review is focused on the role of NRP-1 in melanoma aggressiveness and on the evidence supporting its use as target of therapies for metastatic melanoma.
Collapse
Affiliation(s)
- Grazia Graziani
- Department of Systems Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata", Istituto di Ricovero e Cura a Carattere Scientifico , Rome , Italy
| |
Collapse
|
34
|
Kofler NM, Simons M. Angiogenesis versus arteriogenesis: neuropilin 1 modulation of VEGF signaling. F1000PRIME REPORTS 2015; 7:26. [PMID: 25926977 PMCID: PMC4371373 DOI: 10.12703/p7-26] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In development and disease, vascular endothelial growth factor (VEGF) regulates the expansion of the vascular tree. In response to hypoxia, VEGF promotes new capillary formation through the process of angiogenesis by inducing endothelial cell sprouting, proliferation, and migration. Wound healing, tissue regeneration, and tumor growth depend on angiogenesis for adequate nutrient and oxygen delivery. Under different conditions, VEGF promotes arterial growth, modulates lumen expansion, and induces collateral vessel formation, events collectively referred to as arteriogenesis. Induction of arteriogenesis after cardiac or cerebral arterial occlusion can reduce ischemia and improve disease outcome. Endothelial VEGF receptor 2 (VEGFR2) signaling governs both processes. However, modulation of downstream VEGF signaling effectors, such as extracellular-signal-regulated kinase (ERK) activation, differs in order to achieve angiogenic versus arteriogenic outcomes. Recent reports show that neuropilin 1 (NRP1), a VEGF receptor, can instill VEGF signaling outcomes that specifically regulate either angiogenesis or arteriogenesis. Here, we discuss how NRP1 functions as a VEGFR2 co-receptor in angiogenesis and a modulator of VEGFR2 trafficking in arteriogenesis. The unique role played by neuropilin in different endothelial processes makes it an exciting therapeutic target to specifically enhance angiogenesis or arteriogenesis in disease settings.
Collapse
Affiliation(s)
- Natalie M. Kofler
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine300 George Street, New Haven, CT 06520USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine300 George Street, New Haven, CT 06520USA
- Department of Cell Biology, Yale University School of Medicine300 George Street, New Haven, CT 06520USA
| |
Collapse
|
35
|
Plein A, Fantin A, Ruhrberg C. Neuropilin regulation of angiogenesis, arteriogenesis, and vascular permeability. Microcirculation 2015; 21:315-23. [PMID: 24521511 PMCID: PMC4230468 DOI: 10.1111/micc.12124] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022]
Abstract
The formation of the cardiovasculature, consisting of both the heart and blood vessels, is a critical step in embryonic development and relies on three processes termed vasculogenesis, angiogenesis, and vascular remodeling. The transmembrane protein NRP1 is an essential modulator of embryonic angiogenesis with additional roles in vessel remodeling and arteriogenesis. NRP1 also enhances arteriogenesis in adults to alleviate pathological tissue ischemia. However, in certain circumstances, vascular NRP1 signaling can be detrimental, as it may promote cancer by enhancing tumor angiogenesis or contribute to tissue edema by increasing vascular permeability. Understanding the mechanisms of NRP1 signaling is, therefore, of profound importance for the design of therapies aiming to control vascular functions. Previous work has shown that vascular NRP1 can variably serve as a receptor for two secreted glycoproteins, the VEGF-A and SEMA3A, but it also has a poorly understood role as an adhesion receptor. Here, we review current knowledge of NRP1 function during blood vessel growth and homeostasis, with special emphasis on the vascular roles of its multiple ligands and signaling partners.
Collapse
Affiliation(s)
- Alice Plein
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | | |
Collapse
|
36
|
Ji YR, Kim HJ, Park SJ, Bae KB, Park SJ, Jang WY, Kang MC, Jeong J, Sung YH, Choi M, Lee W, Lee DG, Park SJ, Lee S, Kim MO, Ryoo ZY. Critical role of Rgs19 in mouse embryonic stem cell proliferation and differentiation. Differentiation 2015; 89:42-50. [DOI: 10.1016/j.diff.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 10/23/2022]
|
37
|
Ren B. Endothelial Cells: A Key Player in Angiogenesis and Lymphangiogenesis. MOJ CELL SCIENCE & REPORT 2014; 1. [DOI: 10.15406/mojcsr.2014.01.00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
38
|
Bancroft T, Bouaouina M, Roberts S, Lee M, Calderwood DA, Schwartz M, Simons M, Sessa WC, Kyriakides TR. Up-regulation of thrombospondin-2 in Akt1-null mice contributes to compromised tissue repair due to abnormalities in fibroblast function. J Biol Chem 2014; 290:409-22. [PMID: 25389299 DOI: 10.1074/jbc.m114.618421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular remodeling is essential for tissue repair and is regulated by multiple factors, including thrombospondin-2 (TSP2) and hypoxia/VEGF-induced activation of Akt. In contrast to TSP2 knock-out (KO) mice, Akt1 KO mice have elevated TSP2 expression and delayed tissue repair. To investigate the contribution of increased TSP2 to Akt1 KO mice phenotypes, we generated Akt1/TSP2 double KO (DKO) mice. Full-thickness excisional wounds in DKO mice healed at an accelerated rate when compared with Akt1 KO mice. Isolated dermal Akt1 KO fibroblasts expressed increased TSP2 and displayed altered morphology and defects in migration and adhesion. These defects were rescued in DKO fibroblasts or after TSP2 knockdown. Conversely, the addition of exogenous TSP2 to WT cells induced cell morphology and migration rates that were similar to those of Akt1 KO cells. Akt1 KO fibroblasts displayed reduced adhesion to fibronectin with manganese stimulation when compared with WT and DKO cells, revealing an Akt1-dependent role for TSP2 in regulating integrin-mediated adhesions; however, this effect was not due to changes in β1 integrin surface expression or activation. Consistent with these results, Akt1 KO fibroblasts displayed reduced Rac1 activation that was dependent upon expression of TSP2 and could be rescued by a constitutively active Rac mutant. Our observations show that repression of TSP2 expression is a critical aspect of Akt1 function in tissue repair.
Collapse
Affiliation(s)
- Tara Bancroft
- From the Departments of Pathology, the Program of Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | - Sophia Roberts
- the Program of Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Monica Lee
- the Program of Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut 06520 Pharmacology
| | - David A Calderwood
- the Program of Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut 06520 Cell Biology, Pharmacology
| | - Martin Schwartz
- the Program of Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut 06520 Cardiology, and
| | - Michael Simons
- the Program of Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut 06520 Cardiology, and
| | - William C Sessa
- the Program of Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut 06520 Pharmacology
| | - Themis R Kyriakides
- From the Departments of Pathology, the Program of Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut 06520 Biomedical Engineering and
| |
Collapse
|
39
|
Fibroblast growth factor signaling affects vascular outgrowth and is required for the maintenance of blood vessel integrity. ACTA ACUST UNITED AC 2014; 21:1310-1317. [PMID: 25200605 DOI: 10.1016/j.chembiol.2014.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 01/21/2023]
Abstract
Angiogenesis contributes to the development of numerous disorders. Even though fibroblast growth factors (FGFs) were discovered as mediators of angiogenesis more than 30 years ago, their role in developmental angiogenesis still remains elusive. We use a recently described chemical probe, SSR128129E (SSR), that selectively inhibits the action of multiple FGF receptors (FGFRs), in combination with the zebrafish model to examine the role of FGF signaling in vascular development. We observe that while FGFR signaling is less important for vessel guidance, it affects vascular outgrowth and is especially required for the maintenance of blood vessel integrity by ensuring proper cell-cell junctions between endothelial cells. In conclusion, our work illustrates the power of a small molecule probe to reveal insights into blood vessel formation and stabilization and thus of broad interest to the vascular biology community.
Collapse
|
40
|
Lanahan AA, Lech D, Dubrac A, Zhang J, Zhuang ZW, Eichmann A, Simons M. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation 2014; 130:902-9. [PMID: 24982127 DOI: 10.1161/circulationaha.114.009683] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Regulation of vascular endothelial growth factor receptor-2 (VEGFR2) signaling is a control point that determines the extent of vascular tree formation. Recent studies demonstrated an important role played by VEGFR2 endothelial trafficking in control of its activity and suggested the involvement of a phosphotyrosine phosphatase 1b (PTP1b) in this process. This study was designed to define the role of PTP1b in endothelial VEGFR2 signaling and its role in regulation of angiogenesis and arteriogenesis. METHODS AND RESULTS We generated mice carrying an endothelial-specific deletion of PTP1b and examined the effect of this knockout on VEGF signaling, angiogenesis, and arteriogenesis in vitro and in vivo. PTP1b knockout endothelial cells had increased VEGF-dependent activation of extracellular signal-regulated kinase signaling, sprouting, migration, and proliferation compared with controls. Endothelial PTP1b null mice had increased retinal and Matrigel implant angiogenesis and accelerated wound healing, pointing to enhanced angiogenesis. Increased arteriogenesis was demonstrated by observations of faster recovery of arterial blood flow and large numbers of newly formed arterioles in the hindlimb ischemia mouse model. PTP1b endothelial knockout also rescued impaired blood flow recovery after common femoral artery ligation in synectin null mice. CONCLUSIONS PTP1b is a key regulator of endothelial VEGFR2 signaling and plays an important role in regulation of the extent of vascular tree formation.
Collapse
Affiliation(s)
- Anthony A Lanahan
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Diana Lech
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Alexandre Dubrac
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Jiasheng Zhang
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Zhen W Zhuang
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Anne Eichmann
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Michael Simons
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
41
|
Abstract
Cerebral cavernous malformation is a clinically well-defined microvascular disorder predisposing to stroke; however, the major phenotype observed in zebrafish is the cardiac defect, specifically an enlarged heart. Less effort has been made to explore this phenotypic discrepancy between human and zebrafish. Given the fact that the gene products from Ccm1/Ccm2 are nearly identical between the two species, the common sense has dictated that the zebrafish animal model would provide a great opportunity to dissect the detailed molecular function of Ccm1/Ccm2 during angiogenesis. We recently reported on the cellular role of the Ccm1 gene in biochemical processes that permit proper angiogenic microvascular development in the zebrafish model. In the course of this experimentation, we encountered a vast amount of recent research on the relationship between dysfunctional angiogenesis and cardiovascular defects in zebrafish. Here we compile the findings of our research with the most recent contributions in this field and glean conclusions about the effect of defective angiogenesis on the developing cardiovascular system. Our conclusion also serves as a bridge for the phenotypic discrepancy between humans and animal models, which might provide some insights into future translational research on human stroke.
Collapse
|
42
|
Abstract
RATIONALE Arteriogenesis is the process of formation of arterial conduits. Its promotion is an attractive therapeutic strategy in occlusive atherosclerotic diseases. Despite the functional and clinical importance of arteriogenesis, the biology of the process is poorly understood. Synectin, a gene previously implicated in the regulation of vascular endothelial cell growth factor signaling, offers a unique opportunity to determine relative contributions of various cell types to arteriogenesis. OBJECTIVE We investigated the cell-autonomous effects of a synectin knockout in arterial morphogenesis. METHODS AND RESULTS A floxed synectin knockin mouse line was crossbred with endothelial-specific (Tie2, Cdh5, Pdgfb) and smooth muscle myosin heavy chain-specific Cre driver mouse lines to produce cell type-specific deletions. Ablation of synectin expression in endothelial, but not smooth muscle cells resulted in the presence of developmental arterial morphogenetic defects (smaller size of the arterial tree, reduced number of arterial branches and collaterals) and impaired arteriogenesis in adult mice. CONCLUSIONS Synectin modulates developmental and adult arteriogenesis in an endothelial cell-autonomous fashion. These findings show for the first time that endothelial cells are central to both developmental and adult arteriogenesis and provide a model for future studies of factors involved in this process.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Arteries/metabolism
- Cells, Cultured
- Endothelial Cells/metabolism
- Genotype
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Neovascularization, Physiologic
- Phenotype
- Time Factors
Collapse
Affiliation(s)
- Filipa Moraes
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Hanover, NH
| | | | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, New Haven, CT 06520
| | - Zhen W. Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Hanover, NH
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Hanover, NH
| | - Anthony Lanahan
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Hanover, NH
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Hanover, NH
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
43
|
Abstract
Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.
Collapse
Affiliation(s)
- Arye Elfenbein
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
44
|
Ruffini F, D'Atri S, Lacal PM. Neuropilin-1 expression promotes invasiveness of melanoma cells through vascular endothelial growth factor receptor-2-dependent and -independent mechanisms. Int J Oncol 2013; 43:297-306. [PMID: 23685409 DOI: 10.3892/ijo.2013.1948] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/28/2013] [Indexed: 11/06/2022] Open
Abstract
The majority of human melanoma cell lines secretes vascular endothelial growth factor-A (VEGF-A) and expresses its receptors VEGFR-1, VEGFR-2 and neuropilin-1 (NRP‑1), a co-receptor for VEGF-A that amplifies the signalling through VEGFR-2. Since it is known that the VEGF-A/VEGFR-2 autocrine loop promotes melanoma cell invasiveness, the aim of the present study was to investigate the involvement of NPR-1 in melanoma progression. Syngeneic human melanoma cell lines expressing either VEGFR-2 or NRP-1, both or none of them, were analyzed for their in vitro ability to migrate, invade the extracellular matrix (ECM) and secrete active metalloproteinase-2 (MMP-2). The results indicate that NRP-1 cooperates with VEGFR-2 in melanoma cell migration induced by VEGF-A. Moreover, NRP-1 expression is sufficient to promote MMP-2 secretion and melanoma cell invasiveness, as demonstrated by the ability of cells expressing solely NRP-1 to spontaneously invade the ECM. This ability is specifically downregulated by anti-NRP-1 antibodies or by interfering with NRP-1 expression using an shRNA construct. Investigation of the signal transduction pathways triggered by NRP-1 in melanoma cells, indicated that NRP-1-dependent promotion of cell invasiveness involves Akt activation through its phosphorylation on T308. Overall, the results demonstrate that NRP-1 is involved in melanoma progression through VEGFR-2-dependent and -independent mechanisms and suggest NRP-1 as a target for the treatment of the metastatic disease.
Collapse
Affiliation(s)
- Federica Ruffini
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, I-00167 Rome, Italy
| | | | | |
Collapse
|
45
|
Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F, Speichinger K, Prahst C, Zhang J, Wang Y, Davis G, Toomre D, Ruhrberg C, Simons M. The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev Cell 2013; 25:156-68. [PMID: 23639442 PMCID: PMC3774154 DOI: 10.1016/j.devcel.2013.03.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/25/2013] [Accepted: 03/27/2013] [Indexed: 12/19/2022]
Abstract
Neuropilin 1 (NRP1) plays an important but ill-defined role in VEGF-A signaling and vascular morphogenesis. We show that mice with a knockin mutation that ablates the NRP1 cytoplasmic tail (Nrp1cyto) have normal angiogenesis but impaired developmental and adult arteriogenesis. The arteriogenic defect was traced to the absence of a PDZ-dependent interaction between NRP1 and VEGF receptor 2 (VEGFR2) complex and synectin, which delayed trafficking of endocytosed VEGFR2 from Rab5+ to EAA1+ endosomes. This led to increased PTPN1 (PTP1b)-mediated dephosphorylation of VEGFR2 at Y1175, the site involved in activating ERK signaling. The Nrp1cyto mutation also impaired endothelial tubulogenesis in vitro, which could be rescued by expressing full-length NRP1 or constitutively active ERK. These results demonstrate that the NRP1 cytoplasmic domain promotes VEGFR2 trafficking in a PDZ-dependent manner to regulate arteriogenic ERK signaling and establish a role for NRP1 in VEGF-A signaling during vascular morphogenesis. The NRP1 cytoplasmic domain promotes VEGF receptor (VEGFR) 2 endocytic trafficking In its absence, VEGR2 trafficking is delayed in sorting endosomes PTP1b binds to Rab5+ sorting endosomes and dephosphorylates the Y1175 site of VEGFR2 Loss of the NRP1 cytoplasmic domain impairs developmental and adult arteriogenesis
Collapse
Affiliation(s)
- Anthony Lanahan
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Arterial morphogenesis is one of the most critical events during embryonic vascular development. Although arterial fate specification is mainly controlled by the Notch signaling pathway, arterial-venous patterning is modulated by a number of guidance factors. How these pathways are regulated is still largely unknown. Here, we demonstrate that endothelial activation of RAF1/extracellular signal-regulated kinase (ERK) pathway regulates arterial morphogenesis and arterial-venous patterning via Δ/Notch and semaphorin signaling. Introduction of a single amino acid RAF1 mutant (RAF1 Ser259Ala), which renders it resistant to inhibition by phosphorylation, into endothelial cells in vitro induced expression of virtually the entire embryonic arteriogenic program and activated semaphorin 6A-dependent endothelial cell-cell repulsion. In vivo, endothelial-specific expression of RAF1(S259A) during development induced extensive arterial morphogenesis both in the yolk sac and the embryo proper and disrupted arterial-venous patterning. Our results suggest that endothelial ERK signaling is critical for both arteriogenesis and arterial-venous patterning and that RAF1 Ser(259) phosphorylation plays a critical role in preventing unopposed ERK activation.
Collapse
|
47
|
Orsenigo F, Giampietro C, Ferrari A, Corada M, Galaup A, Sigismund S, Ristagno G, Maddaluno L, Koh GY, Franco D, Kurtcuoglu V, Poulikakos D, Baluk P, McDonald D, Grazia Lampugnani M, Dejana E. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat Commun 2013; 3:1208. [PMID: 23169049 PMCID: PMC3514492 DOI: 10.1038/ncomms2199] [Citation(s) in RCA: 351] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/12/2012] [Indexed: 12/23/2022] Open
Abstract
Endothelial adherens junctions maintain vascular integrity. Arteries and veins differ in their permeability but whether organization and strength of their adherens junctions vary has not been demonstrated in vivo. Here we report that vascular endothelial cadherin, an endothelial specific adhesion protein located at adherens junctions, is phosphorylated in Y658 and Y685 in vivo in veins but not in arteries under resting conditions. This difference is due to shear stress-induced junctional Src activation in veins. Phosphorylated vascular endothelial-cadherin is internalized and ubiquitinated in response to permeability-increasing agents such as bradykinin and histamine. Inhibition of Src blocks vascular endothelial cadherin phosphorylation and bradykinin-induced permeability. Point mutation of Y658F and Y685F prevents vascular endothelial cadherin internalization, ubiquitination and an increase in permeability by bradykinin in vitro. Thus, phosphorylation of vascular endothelial cadherin contributes to a dynamic state of adherens junctions, but is not sufficient to increase vascular permeability in the absence of inflammatory agents. Vascular endothelial-cadherin is a junctional protein implicated in the control of vascular permeability. Orsenigo et al. find that vascular endothelial-cadherin is phosphorylated in veins but not in arteries of mice, and that this sensitizes vessels to rapid changes in permeability in response to inflammatory mediators.
Collapse
Affiliation(s)
- Fabrizio Orsenigo
- FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakayama M, Berger P. Coordination of VEGF receptor trafficking and signaling by coreceptors. Exp Cell Res 2013; 319:1340-7. [PMID: 23499743 DOI: 10.1016/j.yexcr.2013.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/25/2013] [Accepted: 03/02/2013] [Indexed: 02/01/2023]
Abstract
During development, regeneration and in certain pathological settings, the vasculature is expanded and remodeled substantially. Proper morphogenesis and function of blood vessels are essential in multicellular organisms. Upon stimulation with growth factors including vascular endothelial growth factors (VEGFs), the activation, internalization and sorting of receptor tyrosine kinases (RTKs) orchestrate developmental processes and the homeostatic maintenance of all organs including the vasculature. Previously, RTK signaling was thought to occur exclusively at the plasma membrane, a process that was subsequently terminated by endocytosis and receptor degradation. However, this model turned out to be an oversimplification and there is now a substantial amount of reports indicating that receptor internalization and trafficking to intracellular compartments depends on coreceptors leading to the activation of specific signaling pathways. Here we review the latest findings concerning endocytosis and intracellular trafficking of VEGFRs. The body of evidence is compelling that VEGF receptor trafficking is coordinated with other proteins such as Neuropilin-1, ephrin-B2, VE-cadherin and protein phosphatases.
Collapse
Affiliation(s)
- Masanori Nakayama
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, D-48149 Münster, Germany
| | | |
Collapse
|
49
|
Gu C, Giraudo E. The role of semaphorins and their receptors in vascular development and cancer. Exp Cell Res 2013; 319:1306-16. [PMID: 23422037 DOI: 10.1016/j.yexcr.2013.02.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 02/07/2023]
Abstract
Semaphorins (Semas) are a large family of traditional axon guidance molecules. Through interactions with their receptors, Plexins and Neuropilins, Semas play critical roles in a continuously growing list of diverse biological systems. In this review, we focus on their function in regulating vascular development. In addition, over the past few years a number of findings have shown the crucial role that Semas and their receptors play in the regulation of cancer progression and tumor angiogenesis. In particular, Semas control tumor progression by directly influencing the behavior of cancer cells or, indirectly, by modulating angiogenesis and the function of other cell types in the tumor microenvironment (i.e., inflammatory cells and fibroblasts). Some Semas can activate or inhibit tumor progression and angiogenesis, while others may have the opposite effect depending on specific post-translational modifications. Here we will also discuss the diverse biological effects of Semas and their receptor complexes on cancer progression as well as their impact on the tumor microenvironment.
Collapse
Affiliation(s)
- Chenghua Gu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA.
| | | |
Collapse
|
50
|
Abstract
Vascular endothelial growth factors (VEGF) and their receptors play a central role in the development of cardiovascular system and in vasculature-related processes in the adult organism. Given the critical role of this signaling cascade, intricate control systems have evolved to regulate its function. A new layer of added complexity has been the demonstration of the importance of endocytosis and intracellular trafficking of VEGF receptors in the regulation of VEGF signaling. In this review, we consider an evolving link between VEGF receptor endocytosis, trafficking, and signaling and their biological function.
Collapse
Affiliation(s)
- Michael Simons
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut, USA.
| |
Collapse
|