1
|
Sun Y, Zhou J, Debnath A, Xie B, Wang Z, Jin Y. Multiple regulators constrain the abundance of Caenorhabditis elegans DLK-1 in ciliated sensory neurons. G3 (BETHESDA, MD.) 2025; 15:jkaf004. [PMID: 39854273 PMCID: PMC11917482 DOI: 10.1093/g3journal/jkaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C. elegans for altered patterns of GFP-tagged DLK-1 expressed from the endogenous locus, we have recently uncovered a mechanism by which the abundance of DLK-1 is tightly regulated by intraflagellar transport in ciliated sensory neurons. Here, we report additional mutants identified from the genetic screen. Most mutants exhibit increased accumulation of GFP::DLK-1 in sensory endings, and the levels of misaccumulated GFP::DLK-1 are exacerbated by loss of function in cebp-1, the b-Zip transcription factor acting downstream of DLK-1. We identify several new mutations in genes encoding proteins functioning in intraflagellar transport and cilia assembly, in components of BBSome, MAPK-15, and DYF-5 kinases. We report a novel mutation in the chaperone HSP90 that causes misaccumulation of GFP::DLK-1 and up-regulation of CEBP-1 selectively in ciliated sensory neurons. We also find that the guanylate cyclase ODR-1 constrains GFP::DLK-1 abundance throughout cilia and dendrites of AWC neurons. Moreover, in odr-1 mutants, AWC cilia display distorted morphology, which is ameliorated by loss of function in dlk-1 or cebp-1. These data expand the landscape of DLK-1 signaling in ciliated sensory neurons and underscore a high degree of cell- and neurite- specific regulation.
Collapse
Affiliation(s)
- Yue Sun
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Junxiang Zhou
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Arunima Debnath
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bokun Xie
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhiping Wang
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Peedikayil-Kurien S, Haque R, Gat A, Oren-Suissa M. Modulation by NPY/NPF-like receptor underlies experience-dependent, sexually dimorphic learning. Nat Commun 2025; 16:662. [PMID: 39809755 PMCID: PMC11733012 DOI: 10.1038/s41467-025-55950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The evolutionary paths taken by each sex within a given species sometimes diverge, resulting in behavioral differences. Given their distinct needs, the mechanism by which each sex learns from a shared experience is still an open question. Here, we reveal sexual dimorphism in learning: C. elegans males do not learn to avoid the pathogenic bacteria PA14 as efficiently and rapidly as hermaphrodites. Notably, neuronal activity following pathogen exposure was dimorphic: hermaphrodites generate robust representations, while males, in line with their behavior, exhibit contrasting representations. Transcriptomic and behavioral analysis revealed that the neuropeptide receptor npr-5, an ortholog of the mammalian NPY/NPF-like receptor, regulates male learning by modulating neuronal activity. Furthermore, we show the dependency of the males' decision-making on their sexual status and demonstrate the role of npr-5 as a modulator of incoming sensory cues. Taken together, these findings illustrate how neuromodulators drive sex-specific behavioral plasticity in response to a shared experience.
Collapse
Affiliation(s)
- Sonu Peedikayil-Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
3
|
Xue W, Lei Z, Liu B, Guo H, Yan W, Jin YN, Yu YV. Olfactory dysfunction as an early pathogenic indicator in C. elegans models of Alzheimer's and polyglutamine diseases. Front Aging Neurosci 2024; 16:1462238. [PMID: 39411283 PMCID: PMC11473296 DOI: 10.3389/fnagi.2024.1462238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease and polyglutamine diseases are characterized by abnormal accumulation of misfolded proteins, leading to neuronal dysfunction and subsequent neuron death. However, there is a lack of studies that integrate molecular, morphological, and functional analyses in neurodegenerative models to fully characterize these time-dependent processes. In this study, we used C. elegans models expressing Aβ1-42 and polyglutamine to investigate early neuronal pathogenic features in olfactory neurons. Both models demonstrated significant reductions in odor sensitivity in AWB and AWC chemosensory neurons as early as day 1 of adulthood, while AWA chemosensory neurons showed no such decline, suggesting cell-type-specific early neuronal dysfunction. At the molecular level, Aβ1-42 or Q40 expression caused age-dependent protein aggregation and morphological changes in neurons. By day 6, both models displayed prominent protein aggregates in neuronal cell bodies and neurites. Notably, AWB neurons in both models showed significantly shortened cilia and increased instances of enlarged cilia as early as day 1 of adulthood. Furthermore, AWC neurons expressing Aβ1-42 displayed calcium signaling defects, with significantly reduced responses to odor stimuli on day 1, further supporting early behavioral dysfunction. In contrast, AWA neuron did not exhibit reduced calcium responses, consistent with the absence of detectable decreases in olfactory sensitivity in these neurons. These findings suggest that decreased calcium signaling and dysfunction in specific sensory neuron subtypes are early indicators of neurodegeneration in C. elegans, occurring prior to the formation of visible protein aggregates. We found that the ER unfolded protein response (UPR) is significantly activated in worms expressing Aβ1-42. Activation of the AMPK pathway alleviates olfactory defects and reduces fibrillar Aβ in these worms. This study underscores the use of C. elegans olfactory neurons as a model to elucidate mechanisms of proteostasis in neurodegenerative diseases and highlights the importance of integrated approaches.
Collapse
Affiliation(s)
- Weikang Xue
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ziyi Lei
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Bin Liu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hanxin Guo
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Weiyi Yan
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youngnam N. Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Deretic J, Odabasi E, Firat-Karalar EN. The multifaceted roles of microtubule-associated proteins in the primary cilium and ciliopathies. J Cell Sci 2023; 136:jcs261148. [PMID: 38095645 DOI: 10.1242/jcs.261148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The primary cilium is a conserved microtubule-based organelle that is critical for transducing developmental, sensory and homeostatic signaling pathways. It comprises an axoneme with nine parallel doublet microtubules extending from the basal body, surrounded by the ciliary membrane. The axoneme exhibits remarkable stability, serving as the skeleton of the cilium in order to maintain its shape and provide tracks to ciliary trafficking complexes. Although ciliary trafficking and signaling have been exhaustively characterized over the years, less is known about the unique structural and functional complexities of the axoneme. Recent work has yielded new insights into the mechanisms by which the axoneme is built with its proper length and architecture, particularly regarding the activity of microtubule-associated proteins (MAPs). In this Review, we first summarize current knowledge about the architecture, composition and specialized compartments of the primary cilium. Next, we discuss the mechanistic underpinnings of how a functional cilium is assembled, maintained and disassembled through the regulation of its axonemal microtubules. We conclude by examining the diverse localizations and functions of ciliary MAPs for the pathobiology of ciliary diseases.
Collapse
Affiliation(s)
- Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
- School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
5
|
Campagna CM, McMahon H, Nechipurenko I. The G protein alpha chaperone and guanine-nucleotide exchange factor RIC-8 regulates cilia morphogenesis in Caenorhabditis elegans sensory neurons. PLoS Genet 2023; 19:e1011015. [PMID: 37910589 PMCID: PMC10642896 DOI: 10.1371/journal.pgen.1011015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Heterotrimeric G (αβγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.
Collapse
Affiliation(s)
- Christina M. Campagna
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Hayley McMahon
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Inna Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
6
|
Campagna CM, McMahon H, Nechipurenko I. The G protein alpha Chaperone and Guanine-Nucleotide Exchange Factor RIC-8 Regulates Cilia Morphogenesis in Caenorhabditis elegans Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554856. [PMID: 37662329 PMCID: PMC10473713 DOI: 10.1101/2023.08.25.554856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Heterotrimeric G (αβγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite severe defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.
Collapse
Affiliation(s)
- Christina M. Campagna
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Hayley McMahon
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Inna Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
7
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Brewer KM, Engle SE, Bansal R, Brewer KK, Jasso KR, McIntyre JC, Vaisse C, Reiter JF, Berbari NF. Physiological Condition-Dependent Changes in Ciliary GPCR Localization in the Brain. eNeuro 2023; 10:ENEURO.0360-22.2023. [PMID: 36849261 PMCID: PMC10012409 DOI: 10.1523/eneuro.0360-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 03/01/2023] Open
Abstract
Primary cilia are cellular appendages critical for diverse types of Signaling. They are found on most cell types, including cells throughout the CNS. Cilia preferentially localize certain G-protein-coupled receptors (GPCRs) and are critical for mediating the signaling of these receptors. Several of these neuronal GPCRs have recognized roles in feeding behavior and energy homeostasis. Cell and model systems, such as Caenorhabditis elegans and Chlamydomonas, have implicated both dynamic GPCR cilia localization and cilia length and shape changes as key for signaling. It is unclear whether mammalian ciliary GPCRs use similar mechanisms in vivo and under what conditions these processes may occur. Here, we assess two neuronal cilia GPCRs, melanin-concentrating hormone receptor 1 (MCHR1) and neuropeptide-Y receptor 2 (NPY2R), as mammalian model ciliary receptors in the mouse brain. We test the hypothesis that dynamic localization to cilia occurs under physiological conditions associated with these GPCR functions. Both receptors are involved in feeding behaviors, and MCHR1 is also associated with sleep and reward. Cilia were analyzed with a computer-assisted approach allowing for unbiased and high-throughput analysis. We measured cilia frequency, length, and receptor occupancy. We observed changes in ciliary length, receptor occupancy, and cilia frequency under different conditions for one receptor but not another and in specific brain regions. These data suggest that dynamic cilia localization of GPCRs depends on properties of individual receptors and cells where they are expressed. A better understanding of subcellular localization dynamics of ciliary GPCRs could reveal unknown molecular mechanisms regulating behaviors like feeding.
Collapse
Affiliation(s)
- Kathryn M Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Staci E Engle
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Katlyn K Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Kalene R Jasso
- Department of Neuroscience and Center for Smell and Taste, University of Florida, Gainesville, Florida 32603
| | - Jeremy C McIntyre
- Department of Neuroscience and Center for Smell and Taste, University of Florida, Gainesville, Florida 32603
| | - Christian Vaisse
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, California 94143
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
9
|
Davis K, Mitchell C, Weissenfels O, Bai J, Raizen DM, Ailion M, Topalidou I. G protein-coupled receptor kinase-2 (GRK-2) controls exploration through neuropeptide signaling in Caenorhabditis elegans. PLoS Genet 2023; 19:e1010613. [PMID: 36652499 PMCID: PMC9886303 DOI: 10.1371/journal.pgen.1010613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Animals alter their behavior in manners that depend on environmental conditions as well as their developmental and metabolic states. For example, C. elegans is quiescent during larval molts or during conditions of satiety. By contrast, worms enter an exploration state when removed from food. Sensory perception influences movement quiescence (defined as a lack of body movement), as well as the expression of additional locomotor states in C. elegans that are associated with increased or reduced locomotion activity, such as roaming (exploration behavior) and dwelling (local search). Here we find that movement quiescence is enhanced, and exploration behavior is reduced in G protein-coupled receptor kinase grk-2 mutant animals. grk-2 was previously shown to act in chemosensation, locomotion, and egg-laying behaviors. Using neuron-specific rescuing experiments, we show that GRK-2 acts in multiple ciliated chemosensory neurons to control exploration behavior. grk-2 acts in opposite ways from the cGMP-dependent protein kinase gene egl-4 to control movement quiescence and exploration behavior. Analysis of mutants with defects in ciliated sensory neurons indicates that grk-2 and the cilium-structure mutants act in the same pathway to control exploration behavior. We find that GRK-2 controls exploration behavior in an opposite manner from the neuropeptide receptor NPR-1 and the neuropeptides FLP-1 and FLP-18. Finally, we show that secretion of the FLP-1 neuropeptide is negatively regulated by GRK-2 and that overexpression of FLP-1 reduces exploration behavior. These results define neurons and molecular pathways that modulate movement quiescence and exploration behavior.
Collapse
Affiliation(s)
- Kristen Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Excellence in Environmental Toxicology (CEET), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christo Mitchell
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Olivia Weissenfels
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jihong Bai
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - David M. Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Nakazato R, Otani H, Ijaz F, Ikegami K. Time-lapse imaging of primary cilium behavior with physiological expression of fluorescent ciliary proteins. Methods Cell Biol 2023; 175:45-68. [PMID: 36967145 DOI: 10.1016/bs.mcb.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Almost all cell types of mammals have a small protrusion named a primary cilium on their surface. Primary cilia are enriched by cilia-specific ion channels and G-protein-coupled receptors. They are known to regulate various cellular functions that contribute to the development and homeostasis of living organisms by receiving extracellular signals and transfusing them to the cell body. All functions are performed when the structure of the primary cilia is maintained properly. Abnormalities in primary cilia or their signaling can lead to a collection of diseases in various organs called ciliopathies. The primary cilium is dynamic, static, or fixed. The length of primary cilia varies as the cell cycle progresses and is also altered by extracellular stimuli. Ligand binding to cilia-specific receptors is also known to alter the length. Thus, there is a need for a method to study the morphological changes of the primary cilium in a time-dependent manner, especially under stimuli or mechanical shocks. Time-lapse imaging of primary cilia is one of the most powerful methods to capture the time-dependent behavior of primary cilia. Overexpression of ciliary proteins fused to fluorescent proteins is commonly used for the time-lapse imaging of primary cilia. However, overexpression has drawbacks in terms of artifacts. In addition, the time-lapse imaging of the tiny primary cilia requires some technical tricks. Here, we present a detailed description of the methods for time-lapse imaging of primary cilium, from the generation of cell lines that stably express fluorescent protein-labeled cilia-localized proteins at the physiological level to image analysis, including quantification through image acquisition.
Collapse
|
11
|
Scamfer SR, Lee MD, Hilgendorf KI. Ciliary control of adipocyte progenitor cell fate regulates energy storage. Front Cell Dev Biol 2022; 10:1083372. [PMID: 36561368 PMCID: PMC9763467 DOI: 10.3389/fcell.2022.1083372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The primary cilium is a cellular sensory organelle found in most cells in our body. This includes adipocyte progenitor cells in our adipose tissue, a complex organ involved in energy storage, endocrine signaling, and thermogenesis. Numerous studies have shown that the primary cilium plays a critical role in directing the cell fate of adipocyte progenitor cells in multiple adipose tissue types. Accordingly, diseases with dysfunctional cilia called ciliopathies have a broad range of clinical manifestations, including obesity and diabetes. This review summarizes our current understanding of how the primary cilium regulates adipocyte progenitor cell fate in multiple contexts and illustrates the importance of the primary cilium in regulating energy storage and adipose tissue function.
Collapse
Affiliation(s)
| | | | - Keren I. Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
12
|
O'Hagan R, Avrutis A, Ramicevic E. Functions of the tubulin code in the C. elegans nervous system. Mol Cell Neurosci 2022; 123:103790. [PMID: 36368428 DOI: 10.1016/j.mcn.2022.103790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Due to their elongated and polarized morphology, neurons rely on the microtubule (MT) cytoskeleton for their shape, as well as for efficient intracellular transport that maintains neuronal function, survival, and connectivity. Although all MTs are constructed from α- and β-tubulins that are highly conserved throughout eukaryotes, different MT networks within neurons exhibit different dynamics and functions. For example, molecular motors must be able to differentially recognize the axonal and dendritic MTs to deliver appropriate cargos to sensory endings and synaptic regions. The Tubulin Code hypothesis proposes that MTs can be specialized in form and function by chemical differences in their composition by inclusion of different α- and β-tubulins into the MT lattice, as well as differences in post-translational enzymatic modifications. The chemical differences encode information that allow MTs to regulate interactions with various microtubule-based molecular motors such as kinesins and dyneins as well as with structural microtubule-associated proteins (MAPs), which can, in turn, modify the function or stability of MTs. Here, we review studies involving C. elegans, a model organism with a relatively simple nervous system that is amenable to genetic analysis, that have contributed to our understanding of how the Tubulin Code can specialize neuronal MT networks to establish differences in neuronal morphology and function. Such studies have revealed molecules and mechanisms that are conserved in vertebrates and have the potential to inform our understanding of neurological diseases involving defects in the cytoskeleton and intracellular transport.
Collapse
Affiliation(s)
- Robert O'Hagan
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America.
| | - Alexandra Avrutis
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| | - Ema Ramicevic
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| |
Collapse
|
13
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
14
|
Ruach R, Yellinek S, Itskovits E, Deshe N, Eliezer Y, Bokman E, Zaslaver A. A negative feedback loop in the GPCR pathway underlies efficient coding of external stimuli. Mol Syst Biol 2022; 18:e10514. [PMID: 36106925 PMCID: PMC9476886 DOI: 10.15252/msb.202110514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Efficient navigation based on chemical cues is an essential feature shared by all animals. These cues may be encountered in complex spatiotemporal patterns and with orders of magnitude varying intensities. Nevertheless, sensory neurons accurately extract the relevant information from such perplexing signals. Here, we show how a single sensory neuron in Caenorhabditis elegans animals can cell-autonomously encode complex stimulus patterns composed of instantaneous sharp changes and of slowly changing continuous gradients. This encoding relies on a simple negative feedback in the G-protein-coupled receptor (GPCR) signaling pathway in which TAX-6/Calcineurin plays a key role in mediating the feedback inhibition. This negative feedback supports several important coding features that underlie an efficient navigation strategy, including exact adaptation and adaptation to the magnitude of the gradient's first derivative. A simple mathematical model explains the fine neural dynamics of both wild-type and tax-6 mutant animals, further highlighting how the calcium-dependent activity of TAX-6/Calcineurin dictates GPCR inhibition and response dynamics. As GPCRs are ubiquitously expressed in all sensory neurons, this mechanism may be a general solution for efficient cell-autonomous coding of external stimuli.
Collapse
Affiliation(s)
- Rotem Ruach
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Shai Yellinek
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Eyal Itskovits
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Noa Deshe
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Yifat Eliezer
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Eduard Bokman
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| |
Collapse
|
15
|
Dutta P, Ray K. Ciliary membrane, localised lipid modification and cilia function. J Cell Physiol 2022; 237:2613-2631. [PMID: 35661356 DOI: 10.1002/jcp.30787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Cilium, a tiny microtubule-based cellular appendage critical for cell signalling and physiology, displays a large variety of receptors. The composition and turnover of ciliary lipids and receptors determine cell behaviour. Due to the exclusion of ribosomal machinery and limited membrane area, a cilium needs adaptive logistics to actively reconstitute the lipid and receptor compositions during development and differentiation. How is this dynamicity generated? Here, we examine whether, along with the Intraflagellar-Transport, targeted changes in sector-wise lipid composition could control the receptor localisation and functions in the cilia. We discuss how an interplay between ciliary lipid composition, localised lipid modification, and receptor function could contribute to cilia growth and signalling. We argue that lipid modification at the cell-cilium interface could generate an added thrust for a selective exchange of membrane lipids and the transmembrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Priya Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
16
|
Kanamaru T, Neuner A, Kurtulmus B, Pereira G. Balancing the length of the distal tip by septins is key for stability and signalling function of primary cilia. EMBO J 2022; 41:e108843. [PMID: 34981518 PMCID: PMC8724769 DOI: 10.15252/embj.2021108843] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Primary cilia are antenna-like organelles required for signalling transduction. How cilia structure is mechanistically maintained at steady-state to promote signalling is largely unknown. Here, we define that mammalian primary cilia axonemes are formed by proximal segment (PS) and distal segment (DS) delineated by tubulin polyglutamylation-rich and -poor regions, respectively. The analysis of proximal/distal segmentation indicated that perturbations leading to cilia over-elongation influenced PS or DS length with a different impact on cilia behaviour. We identified septins as novel repressors of DS growth. We show that septins control the localisation of MKS3 and CEP290 required for a functional transition zone (TZ), and the cilia tip accumulation of the microtubule-capping kinesin KIF7, a cilia-growth inhibitor. Live-cell imaging and analysis of sonic-hedgehog (SHH) signalling activation established that DS over-extension increased cilia ectocytosis events and decreased SHH activation. Our data underlines the importance of understanding cilia segmentation for length control and cilia-dependent signalling.
Collapse
Affiliation(s)
- Taishi Kanamaru
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Annett Neuner
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Bahtiyar Kurtulmus
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Gislene Pereira
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| |
Collapse
|
17
|
Britz S, Markert SM, Witvliet D, Steyer AM, Tröger S, Mulcahy B, Kollmannsberger P, Schwab Y, Zhen M, Stigloher C. Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy. Front Neuroanat 2021; 15:732520. [PMID: 34819841 PMCID: PMC8607169 DOI: 10.3389/fnana.2021.732520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
At the end of the first larval stage, the nematode Caenorhabditis elegans developing in harsh environmental conditions is able to choose an alternative developmental path called the dauer diapause. Dauer larvae exhibit different physiology and behaviors from non-dauer larvae. Using focused ion beam-scanning electron microscopy (FIB-SEM), we volumetrically reconstructed the anterior sensory apparatus of C. elegans dauer larvae with unprecedented precision. We provide a detailed description of some neurons, focusing on structural details that were unknown or unresolved by previously published studies. They include the following: (1) dauer-specific branches of the IL2 sensory neurons project into the periphery of anterior sensilla and motor or putative sensory neurons at the sub-lateral cords; (2) ciliated endings of URX sensory neurons are supported by both ILso and AMso socket cells near the amphid openings; (3) variability in amphid sensory dendrites among dauers; and (4) somatic RIP interneurons maintain their projection into the pharyngeal nervous system. Our results support the notion that dauer larvae structurally expand their sensory system to facilitate searching for more favorable environments.
Collapse
Affiliation(s)
- Sebastian Britz
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| | - Sebastian Matthias Markert
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Physiology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anna Maria Steyer
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Sarah Tröger
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Physiology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Yannick Schwab
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Physiology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| |
Collapse
|
18
|
Razzauti A, Laurent P. Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons. eLife 2021; 10:67670. [PMID: 34533135 PMCID: PMC8492061 DOI: 10.7554/elife.67670] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cilia are sensory organelles protruding from cell surfaces. Release of extracellular vesicles (EVs) from cilia was previously observed in mammals, Chlamydomonas, and in male Caenorhabditis elegans. Using the EV marker TSP-6 (an ortholog of mammalian CD9) and other ciliary receptors, we show that EVs are formed from ciliated sensory neurons in C. elegans hermaphrodites. Release of EVs is observed from two ciliary locations: the cilia tip and/or periciliary membrane compartment (PCMC). Outward budding of EVs from the cilia tip leads to their release into the environment. EVs' budding from the PCMC is concomitantly phagocytosed by the associated glial cells. To maintain cilia composition, a tight regulation of cargo import and removal is achieved by the action of intra-flagellar transport (IFT). Unbalanced IFT due to cargo overexpression or mutations in the IFT machinery leads to local accumulation of ciliary proteins. Disposal of excess ciliary proteins via EVs reduces their local accumulation and exports them to the environment and/or to the glia associated to these ciliated neurons. We suggest that EV budding from cilia subcompartments acts as a safeguard mechanism to remove deleterious excess of ciliary material.
Collapse
Affiliation(s)
- Adria Razzauti
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles(ULB), Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles(ULB), Brussels, Belgium
| |
Collapse
|
19
|
Jana SC, Dutta P, Jain A, Singh A, Adusumilli L, Girotra M, Kumari D, Shirolikar S, Ray K. Kinesin-2 transports Orco into the olfactory cilium of Drosophila melanogaster at specific developmental stages. PLoS Genet 2021; 17:e1009752. [PMID: 34411092 PMCID: PMC8407544 DOI: 10.1371/journal.pgen.1009752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/31/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
The cilium, the sensing centre for the cell, displays an extensive repertoire of receptors for various cell signalling processes. The dynamic nature of ciliary signalling indicates that the ciliary entry of receptors and associated proteins must be regulated and conditional. To understand this process, we studied the ciliary localisation of the odour-receptor coreceptor (Orco), a seven-pass transmembrane protein essential for insect olfaction. Little is known about when and how Orco gets into the cilia. Here, using Drosophila melanogaster, we show that the bulk of Orco selectively enters the cilia on adult olfactory sensory neurons in two discrete, one-hour intervals after eclosion. A conditional loss of heterotrimeric kinesin-2 during this period reduces the electrophysiological response to odours and affects olfactory behaviour. We further show that Orco binds to the C-terminal tail fragments of the heterotrimeric kinesin-2 motor, which is required to transfer Orco from the ciliary base to the outer segment and maintain within an approximately four-micron stretch at the distal portion of the ciliary outer-segment. The Orco transport was not affected by the loss of critical intraflagellar transport components, IFT172/Oseg2 and IFT88/NompB, respectively, during the adult stage. These results highlight a novel developmental regulation of seven-pass transmembrane receptor transport into the cilia and indicate that ciliary signalling is both developmentally and temporally regulated.
Collapse
Affiliation(s)
- Swadhin Chandra Jana
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Priya Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Akanksha Jain
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Anjusha Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Lavanya Adusumilli
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mukul Girotra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Diksha Kumari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Seema Shirolikar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
20
|
Guha S, Pujol A, Dalfo E. Anti-oxidant MitoQ rescue of AWB chemosensory neuron impairment in a C. elegans model of X-linked Adrenoleukodystrophy. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 33474532 PMCID: PMC7812386 DOI: 10.17912/micropub.biology.000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
X-linked Adrenoleukodystrophy (X-ALD) is a neurometabolic disorder caused by a defective peroxisomal ABCD1 transporter of very long-chain fatty acids (VLCFAs). We have characterized a nematode model of X-ALD with loss of the pmp-4 gene, the worm orthologue of ABCD1. These mutants recapitulated the key hallmarks of X-ALD and importantly mitochondria targeted antioxidant MitoQ prevented axonal degeneration and locomotor disability. In this study, we further demonstrated that the AWB chemosensory neuron of the pmp-4 mutant worm is defective, both in morphology and function. Interestingly, MitoQ could rescue both the phenotypes. Collectively, our results suggest that C. elegans’ chemosensation might provide a novel setting for exploring peroxisomal disease related disorders.
Collapse
Affiliation(s)
- Sanjib Guha
- University of Rochester, Department of Anesthesiology & Perioperative Medicine, Rochester, NY
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Esther Dalfo
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
21
|
Ma Q, He J. Enhanced expression of queuine tRNA-ribosyltransferase 1 ( QTRT1) predicts poor prognosis in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1658. [PMID: 33490170 PMCID: PMC7812218 DOI: 10.21037/atm-20-7424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Lung adenocarcinoma (LUAD) is the most frequently diagnosed type of lung cancer with high percentage of tumor relapse and metastasis. The correlation between queuine tRNA-ribosyltransferase 1 (QTRT1) expression and LUAD remains largely unknown. In this study, we aim to investigate the potential role of QTRT1 expression in the prognosis of LUAD. Methods We abstracted data from The Cancer Genome Atlas (TCGA) and four independent Gene Expression Omnibus (GEO) datasets. In total, 1,012 LUAD samples and 112 normal tissue samples were selected. The relationship between QTRT1 expression, methylation, and clinical features in LUAD were determined, and bioinformatics analyses were also performed. Results The expression of QTRT1 was higher in LUAD patients. A marked downregulation in QTRT1 methylation in LUAD was also found. Low QTRT1 expression was associated with longer overall survival across the GEO and TCGA datasets (P=0.0033, 0.0022, respectively). Furthermore, QTRT1 expression was significantly correlated with 'axoneme assembly', 'androgen response', and 'epithelial mesenchymal transition', as determined by Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) term enrichment analysis. Conclusions QTRT1 was highly expressed in LUAD, and enhanced expression of QTRT1 might therefore serve as a biomarker for poor prognosis in LUAD. The result of bioinformatic analyses might present a new insight for investigating the pathogenesis of LUAD.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Thoracic Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Kazatskaya A, Yuan L, Amin-Wetzel N, Philbrook A, de Bono M, Sengupta P. The URX oxygen-sensing neurons in C. elegans are ciliated. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000303. [PMID: 33005885 PMCID: PMC7520127 DOI: 10.17912/micropub.biology.000303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Affiliation(s)
| | - Lisa Yuan
- Brandeis University, Waltham, MA 02454
| | - Niko Amin-Wetzel
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Mario de Bono
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | |
Collapse
|
23
|
Mijalkovic J, Girard J, van Krugten J, van Loo J, Zhang Z, Loseva E, Oswald F, Peterman EJG. Cutting off ciliary protein import: intraflagellar transport after dendritic femtosecond-laser ablation. Mol Biol Cell 2020; 31:324-334. [PMID: 31940255 PMCID: PMC7183794 DOI: 10.1091/mbc.e18-06-0399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Primary cilia, organelles protruding from the surface of eukaryotic cells, act as cellular antennae to detect and transmit signals from the extracellular environment. They are built and maintained by continuous cycles of intraflagellar transport (IFT), where ciliary proteins are transported between the ciliary base and tip. These proteins originate from the cell body because cilia lack protein synthesis machinery. How input from the cell body affects IFT and ciliary function is not well understood. Here, we use femtosecond-laser ablation to perturb the dendritic input of proteins to chemosensory cilia in living Caenorhabditis elegans. Using fluorescence microscopy, we visualize and quantify the real-time response of ciliary proteins to dendritic ablation. We find that the response occurs in three distinct stages. First, IFT dynein is activated within seconds, redistributing IFT components toward the ciliary base; second, the ciliary axoneme shortens and motors slow down; and third, motors leave the cilium. Depletion of ATP by adding azide also results in IFT slowdown and IFT components leaving the cilium, but not in activation of retrograde IFT. These results indicate that laser ablation triggers a specific mechanism important for IFT regulation that allows the cilium to rapidly adapt to changes in the outside environment.
Collapse
Affiliation(s)
- Jona Mijalkovic
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jules Girard
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jaap van Krugten
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jasmijn van Loo
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Zhiqing Zhang
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Elizaveta Loseva
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Felix Oswald
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Erwin J G Peterman
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
24
|
Long-term activity drives dendritic branch elaboration of a C. elegans sensory neuron. Dev Biol 2020; 461:66-74. [PMID: 31945343 PMCID: PMC7170766 DOI: 10.1016/j.ydbio.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Neuronal activity often leads to alterations in gene expression and cellular architecture. The nematode Caenorhabditis elegans, owing to its compact translucent nervous system, is a powerful system in which to study conserved aspects of the development and plasticity of neuronal morphology. Here we focus on one pair of sensory neurons, termed URX, which the worm uses to sense and avoid high levels of environmental oxygen. Previous studies have reported that the URX neuron pair has variable branched endings at its dendritic sensory tip. By controlling oxygen levels and analyzing mutants, we found that these microtubule-rich branched endings grow over time as a consequence of neuronal activity in adulthood. We also find that the growth of these branches correlates with an increase in cellular sensitivity to particular ranges of oxygen that is observable in the behavior of older worms. Given the strengths of C. elegans as a model organism, URX may serve as a potent system for uncovering genes and mechanisms involved in activity-dependent morphological changes in neurons and possible adaptive changes in the aging nervous system. The dendritic tip of an oxygen-sensing neuron grows elaborate microtubule-rich processes in adult C. elegans. Dendritic tip elaboration depends on the long-term activity of the neuron and calcium. The elaboration correlates with increased sensitivity of the neuron to certain ranges of oxygen as well as higher avoidance of oxygen during bordering behavior. The dendritic tip changes may reflect adaptive changes in physiology and behavior during adulthood.
Collapse
|
25
|
Horowitz LB, Brandt JP, Ringstad N. Repression of an activity-dependent autocrine insulin signal is required for sensory neuron development in C. elegans. Development 2019; 146:dev.182873. [PMID: 31628111 DOI: 10.1242/dev.182873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022]
Abstract
Nervous system development is instructed by genetic programs and refined by distinct mechanisms that couple neural activity to gene expression. How these processes are integrated remains poorly understood. Here, we report that the regulated release of insulin-like peptides (ILPs) during development of the Caenorhabditis elegans nervous system accomplishes such an integration. We find that the p38 MAP kinase PMK-3, which is required for the differentiation of chemosensory BAG neurons, limits an ILP signal that represses expression of a BAG neuron fate. ILPs are released from BAGs themselves in an activity-dependent manner during development, indicating that ILPs constitute an autocrine signal that regulates the differentiation of BAG neurons. Expression of a specialized neuronal fate is, therefore, coordinately regulated by a genetic program that sets levels of ILP expression during development, and by neural activity, which regulates ILP release. Autocrine signals of this kind might have general and conserved functions as integrators of deterministic genetic programs with activity-dependent mechanisms during neurodevelopment.
Collapse
Affiliation(s)
- Lauren Bayer Horowitz
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Julia P Brandt
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
26
|
Soares H, Carmona B, Nolasco S, Viseu Melo L. Polarity in Ciliate Models: From Cilia to Cell Architecture. Front Cell Dev Biol 2019; 7:240. [PMID: 31681771 PMCID: PMC6813674 DOI: 10.3389/fcell.2019.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Tetrahymena and Paramecium are highly differentiated unicellular organisms with elaborated cortical patterns showing a regular arrangement of hundreds to thousands of basal bodies in longitudinal rows that extend from the anterior to the posterior region of the cell. Thus both ciliates exhibit a permanent antero–posterior axis and left–right asymmetry. This cell polarity is reflected in the direction of the structures nucleated around each basal body such as the ciliary rootlets. Studies in these ciliates showed that basal bodies assemble two types of cilia, the cortical cilia and the cilia of the oral apparatus, a complex structure specialized in food capture. These two cilia types display structural differences at their tip domain. Basal bodies possessing distinct compositions creating specialized landmarks are also present. Cilia might be expected to express and transmit polarities throughout signaling pathways given their recognized role in signal transduction. This review will focus on how local polarities in basal bodies/cilia are regulated and transmitted through cell division in order to maintain the global polarity and shape of these cells and locally constrain the interpretation of signals by different cilia. We will also discuss ciliates as excellent biological models to study development and morphogenetic mechanisms and their relationship with cilia diversity and function in metazoans.
Collapse
Affiliation(s)
- Helena Soares
- Centro de Química e Bioquímica/Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Bruno Carmona
- Centro de Química e Bioquímica/Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Viseu Melo
- Physics Department and CEFEMA, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
27
|
Woldemariam S, Nagpal J, Hill T, Li J, Schneider MW, Shankar R, Futey M, Varshney A, Ali N, Mitchell J, Andersen K, Barsi-Rhyne B, Tran A, Costa WS, Krzyzanowski MC, Yu YV, Brueggemann C, Hamilton OS, Ferkey DM, VanHoven M, Sengupta P, Gottschalk A, L'Etoile N. Using a Robust and Sensitive GFP-Based cGMP Sensor for Real-Time Imaging in Intact Caenorhabditis elegans. Genetics 2019; 213:59-77. [PMID: 31331946 PMCID: PMC6727795 DOI: 10.1534/genetics.119.302392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/05/2019] [Indexed: 12/31/2022] Open
Abstract
cGMP plays a role in sensory signaling and plasticity by regulating ion channels, phosphodiesterases, and kinases. Studies that primarily used genetic and biochemical tools suggest that cGMP is spatiotemporally regulated in multiple sensory modalities. FRET- and GFP-based cGMP sensors were developed to visualize cGMP in primary cell culture and Caenorhabditis elegans to corroborate these findings. While a FRET-based sensor has been used in an intact animal to visualize cGMP, the requirement of a multiple emission system limits its ability to be used on its own as well as with other fluorophores. Here, we demonstrate that a C. elegans codon-optimized version of the cpEGFP-based cGMP sensor FlincG3 can be used to visualize rapidly changing cGMP levels in living, behaving C. elegans We coexpressed FlincG3 with the blue-light-activated guanylyl cyclases BeCyclOp and bPGC in body wall muscles, and found that the rate of change in FlincG3 fluorescence correlated with the rate of cGMP production by each cyclase. Furthermore, we show that FlincG3 responds to cultivation temperature, NaCl concentration changes, and sodium dodecyl sulfate in the sensory neurons AFD, ASEL/R, and PHB, respectively. Intriguingly, FlincG3 fluorescence in ASEL and ASER decreased in response to a NaCl concentration upstep and downstep, respectively, which is opposite in sign to the coexpressed calcium sensor jRGECO1a and previously published calcium recordings. These results illustrate that FlincG3 can be used to report rapidly changing cGMP levels in an intact animal, and that the reporter can potentially reveal unexpected spatiotemporal landscapes of cGMP in response to stimuli.
Collapse
Affiliation(s)
- Sarah Woldemariam
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94158
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Jatin Nagpal
- Department of Molecular Membrane Biology and Neurobiology, The Goethe University, 60323 Frankfurt, Germany
| | - Tyler Hill
- Neuroscience Graduate Program, Brandeis University, Waltham, Massachusetts 02453
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Joy Li
- Department of Biological Sciences, San Jose State University, California 95192
| | - Martin W Schneider
- Department of Molecular Membrane Biology and Neurobiology, The Goethe University, 60323 Frankfurt, Germany
| | - Raakhee Shankar
- Department of Biological Sciences, San Jose State University, California 95192
| | - Mary Futey
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Aruna Varshney
- Department of Biological Sciences, San Jose State University, California 95192
| | - Nebat Ali
- Department of Biological Sciences, San Jose State University, California 95192
| | - Jordan Mitchell
- Department of Biological Sciences, San Jose State University, California 95192
| | - Kristine Andersen
- Department of Biological Sciences, San Jose State University, California 95192
| | | | - Alan Tran
- Department of Biological Sciences, San Jose State University, California 95192
| | - Wagner Steuer Costa
- Department of Molecular Membrane Biology and Neurobiology, The Goethe University, 60323 Frankfurt, Germany
| | - Michelle C Krzyzanowski
- Department of Biological Sciences, University at Buffalo, The State University of New York, New York 14260
| | - Yanxun V Yu
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Chantal Brueggemann
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - O Scott Hamilton
- Center for Neuroscience, University of California, Davis, California 95618
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, New York 14260
| | - Miri VanHoven
- Department of Biological Sciences, San Jose State University, California 95192
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Alexander Gottschalk
- Department of Molecular Membrane Biology and Neurobiology, The Goethe University, 60323 Frankfurt, Germany
| | - Noelle L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| |
Collapse
|
28
|
DiTirro D, Philbrook A, Rubino K, Sengupta P. The Caenorhabditis elegans Tubby homolog dynamically modulates olfactory cilia membrane morphogenesis and phospholipid composition. eLife 2019; 8:48789. [PMID: 31259686 PMCID: PMC6624019 DOI: 10.7554/elife.48789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Plasticity in sensory signaling is partly mediated via regulated trafficking of signaling molecules to and from primary cilia. Tubby-related proteins regulate ciliary protein transport; however, their roles in remodeling cilia properties are not fully understood. We find that the C. elegans TUB-1 Tubby homolog regulates membrane morphogenesis and signaling protein transport in specialized sensory cilia. In particular, TUB-1 is essential for sensory signaling-dependent reshaping of olfactory cilia morphology. We show that compromised sensory signaling alters cilia membrane phosphoinositide composition via TUB-1-dependent trafficking of a PIP5 kinase. TUB-1 regulates localization of this lipid kinase at the cilia base in part via localization of the AP-2 adaptor complex subunit DPY-23. Our results describe new functions for Tubby proteins in the dynamic regulation of cilia membrane lipid composition, morphology, and signaling protein content, and suggest that this conserved family of proteins plays a critical role in mediating cilia structural and functional plasticity.
Collapse
Affiliation(s)
- Danielle DiTirro
- Department of Biology, Brandeis University, Waltham, United States
| | - Alison Philbrook
- Department of Biology, Brandeis University, Waltham, United States
| | - Kendrick Rubino
- Department of Biology, Brandeis University, Waltham, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
29
|
King CR, A A Quadros AR, Chazeau A, Saarloos I, van der Graaf AJ, Verhage M, Toonen RF. Fbxo41 Promotes Disassembly of Neuronal Primary Cilia. Sci Rep 2019; 9:8179. [PMID: 31160656 PMCID: PMC6546786 DOI: 10.1038/s41598-019-44589-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 01/02/2023] Open
Abstract
Neuronal primary cilia are signaling organelles with crucial roles in brain development and disease. Cilia structure is decisive for their signaling capacities but the mechanisms regulating it are poorly understood. We identify Fbxo41 as a novel Skp1/Cullin1/F-box (SCF) E3-ligase complex subunit that targets to neuronal centrioles where its accumulation promotes disassembly of primary cilia, and affects sonic hedgehog signaling, a canonical ciliary pathway. Fbxo41 targeting to centrioles requires its Coiled-coil and F-box domains. Levels of Fbxo41 at the centrioles inversely correlate with neuronal cilia length, and mutations that disrupt Fbxo41 targeting or assembly into SCF-complexes also disturb its function in cilia disassembly and signaling. Fbxo41 dependent cilia disassembly in mitotic and post-mitotic cells requires rearrangements of the actin-cytoskeleton, but requires Aurora A kinase activation only in mitotic cells, highlighting important mechanistical differences controlling cilia size between mitotic and post-mitotic cells. Phorbol esters induce recruitment of overexpressed Fbxo41 to centrioles and cilia disassembly in neurons, but disassembly can also occur in absence of Fbxo41. We propose that Fbxo41 targeting to centrosomes regulates neuronal cilia structure and signaling capacity in addition to Fbxo41-independent pathways controlling cilia size.
Collapse
Affiliation(s)
- Cillian R King
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Ana R A A Quadros
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Anaël Chazeau
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Ingrid Saarloos
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands.,Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Anne Jolien van der Graaf
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands.,Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Cilia Distal Domain: Diversity in Evolutionarily Conserved Structures. Cells 2019; 8:cells8020160. [PMID: 30769894 PMCID: PMC6406257 DOI: 10.3390/cells8020160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cilia are microtubule-based organelles that protrude from the cell surface to fulfill sensory and motility functions. Their basic structure consists of an axoneme templated by a centriole/basal body. Striking differences in ciliary ultra-structures can be found at the ciliary base, the axoneme and the tip, not only throughout the eukaryotic tree of life, but within a single organism. Defects in cilia biogenesis and function are at the origin of human ciliopathies. This structural/functional diversity and its relationship with the etiology of these diseases is poorly understood. Some of the important events in cilia function occur at their distal domain, including cilia assembly/disassembly, IFT (intraflagellar transport) complexes' remodeling, and signal detection/transduction. How axonemal microtubules end at this domain varies with distinct cilia types, originating different tip architectures. Additionally, they show a high degree of dynamic behavior and are able to respond to different stimuli. The existence of microtubule-capping structures (caps) in certain types of cilia contributes to this diversity. It has been proposed that caps play a role in axoneme length control and stabilization, but their roles are still poorly understood. Here, we review the current knowledge on cilia structure diversity with a focus on the cilia distal domain and caps and discuss how they affect cilia structure and function.
Collapse
|
31
|
Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem 2018; 62:753-763. [PMID: 30287585 DOI: 10.1042/ebc20180030] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare inherited disease caused by defects in the BBSome, an octameric complex of BBS proteins. The BBSome is conserved in most organisms with cilia, which are microtubule (MT)-based cell organelles that protrude from the cell surface and function in motility and sensing. Cilia assembly, maintenance, and function require intraflagellar transport (IFT), a bidirectional motility of multi-megadalton IFT trains propelled by molecular motors along the ciliary MTs. IFT has been shown to transport structural proteins, including tubulin, into growing cilia. The BBSome is an adapter for the transport of ciliary membrane proteins and cycles through cilia via IFT. While both the loss and the abnormal accumulation of ciliary membrane proteins have been observed in bbs mutants, recent data converge on a model where the BBSome mainly functions as a cargo adapter for the removal of certain transmembrane and peripheral membrane proteins from cilia. Here, we review recent data on the ultrastructure of the BBSome and how the BBSome recognizes its cargoes and mediates their removal from cilia.
Collapse
|
32
|
Agarwal K, Hwang S, Bartnik A, Buchele N, Mishra A, Cho JH. Small-Scale Biological and Artificial Multidimensional Sensors for 3D Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801145. [PMID: 30062866 DOI: 10.1002/smll.201801145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/08/2018] [Indexed: 06/08/2023]
Abstract
A vast majority of existing sub-millimeter-scale sensors have a planar, 2D geometry as a result of conventional top-down lithographic procedures. However, 2D sensors often suffer from restricted sensing capability, allowing only partial measurements of 3D quantities. Here, nano/microscale sensors with different geometric (1D, 2D, and 3D) configurations are reviewed to introduce their advantages and limitations when sensing changes in quantities in 3D space. This Review categorizes sensors based on their geometric configuration and sensing capabilities. Among the sensors reviewed here, the 3D configuration sensors defined on polyhedral structures are especially advantageous when sensing spatially distributed 3D quantities. The nano- and microscale vertex configuration forming polyhedral structures enable full 3D spatial sensing due to orthogonally aligned sensing elements. Particularly, the cubic configuration leveraged in 3D sensors offers an array of diverse applications in the field of biosensing for micro-organisms and proteins, optical metamaterials for invisibility cloaking, 3D imaging, and low-power remote sensing of position and angular momentum for use in microbots. Here, various 3D sensors are compared to assess the advantages of their geometry and its impact on sensing mechanisms. 3D biosensors in nature are also explored to provide vital clues for the development of novel 3D sensors.
Collapse
Affiliation(s)
- Kriti Agarwal
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sehyun Hwang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Aaron Bartnik
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nicholas Buchele
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Avishek Mishra
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
33
|
McLachlan IG, Beets I, de Bono M, Heiman MG. A neuronal MAP kinase constrains growth of a Caenorhabditis elegans sensory dendrite throughout the life of the organism. PLoS Genet 2018; 14:e1007435. [PMID: 29879119 PMCID: PMC6007932 DOI: 10.1371/journal.pgen.1007435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/19/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurons develop elaborate morphologies that provide a model for understanding cellular architecture. By studying C. elegans sensory dendrites, we previously identified genes that act to promote the extension of ciliated sensory dendrites during embryogenesis. Interestingly, the nonciliated dendrite of the oxygen-sensing neuron URX is not affected by these genes, suggesting it develops through a distinct mechanism. Here, we use a visual forward genetic screen to identify mutants that affect URX dendrite morphogenesis. We find that disruption of the MAP kinase MAPK-15 or the βH-spectrin SMA-1 causes a phenotype opposite to what we had seen before: dendrites extend normally during embryogenesis but begin to overgrow as the animals reach adulthood, ultimately extending up to 150% of their normal length. SMA-1 is broadly expressed and acts non-cell-autonomously, while MAPK-15 is expressed in many sensory neurons including URX and acts cell-autonomously. MAPK-15 acts at the time of overgrowth, localizes at the dendrite ending, and requires its kinase activity, suggesting it acts locally in time and space to constrain dendrite growth. Finally, we find that the oxygen-sensing guanylate cyclase GCY-35, which normally localizes at the dendrite ending, is localized throughout the overgrown region, and that overgrowth can be suppressed by overexpressing GCY-35 or by genetically mimicking elevated cGMP signaling. These results suggest that overgrowth may correspond to expansion of a sensory compartment at the dendrite ending, reminiscent of the remodeling of sensory cilia or dendritic spines. Thus, in contrast to established pathways that promote dendrite growth during early development, our results reveal a distinct mechanism that constrains dendrite growth throughout the life of the animal, possibly by controlling the size of a sensory compartment at the dendrite ending.
Collapse
Affiliation(s)
- Ian G McLachlan
- Department of Genetics, Harvard Medical School and Boston Children's Hospital, Boston MA, United States of America
| | - Isabel Beets
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mario de Bono
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Maxwell G Heiman
- Department of Genetics, Harvard Medical School and Boston Children's Hospital, Boston MA, United States of America
| |
Collapse
|
34
|
Garcia G, Raleigh DR, Reiter JF. How the Ciliary Membrane Is Organized Inside-Out to Communicate Outside-In. Curr Biol 2018; 28:R421-R434. [PMID: 29689227 PMCID: PMC6434934 DOI: 10.1016/j.cub.2018.03.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cilia, organelles that move to execute functions like fertilization and signal to execute functions like photoreception and embryonic patterning, are composed of a core of nine-fold doublet microtubules overlain by a membrane. Distinct types of cilia display distinct membrane morphologies, ranging from simple domed cylinders to the highly ornate invaginations and membrane disks of photoreceptor outer segments. Critical for the ability of cilia to signal, both the protein and the lipid compositions of ciliary membranes are different from those of other cellular membranes. This specialization presents a unique challenge for the cell as, unlike membrane-bounded organelles, the ciliary membrane is contiguous with the surrounding plasma membrane. This distinct ciliary membrane is generated in concert with multiple membrane remodeling events that comprise the process of ciliogenesis. Once the cilium is formed, control of ciliary membrane composition relies on discrete molecular machines, including a barrier to membrane proteins entering the cilium at a specialized region of the base of the cilium called the transition zone and a trafficking adaptor that controls G protein-coupled receptor (GPCR) localization to the cilium called the BBSome. The ciliary membrane can be further remodeled by the removal of membrane proteins by the release of ciliary extracellular vesicles that may function in intercellular communication, removal of unneeded proteins or ciliary disassembly. Here, we review the structures and transport mechanisms that control ciliary membrane composition, and discuss how membrane specialization enables the cilium to function as the antenna of the cell.
Collapse
Affiliation(s)
- Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - David R Raleigh
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Radiation Oncology, University of California, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
35
|
Abstract
Cilia are microtubule-based organelles extending from a basal body at the surface of eukaryotic cells. Cilia regulate cell and fluid motility, sensation and developmental signaling, and ciliary defects cause human diseases (ciliopathies) affecting the formation and function of many tissues and organs. Over the past decade, various Rab and Rab-like membrane trafficking proteins have been shown to regulate cilia-related processes such as basal body maturation, ciliary axoneme extension, intraflagellar transport and ciliary signaling. In this review, we provide a comprehensive overview of Rab protein ciliary associations, drawing on findings from multiple model systems, including mammalian cell culture, mice, zebrafish, C. elegans, trypanosomes, and green algae. We also discuss several emerging mechanistic themes related to ciliary Rab cascades and functional redundancy.
Collapse
Affiliation(s)
- Oliver E Blacque
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Noemie Scheidel
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Stefanie Kuhns
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| |
Collapse
|
36
|
Antagonistic regulation of trafficking to Caenorhabditis elegans sensory cilia by a Retinal Degeneration 3 homolog and retromer. Proc Natl Acad Sci U S A 2017; 115:E438-E447. [PMID: 29282322 DOI: 10.1073/pnas.1712302115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sensory neurons often possess cilia with elaborate membrane structures that are adapted to the sensory modality of the host cell. Mechanisms that target sensory transduction proteins to these specialized membrane domains remain poorly understood. Here, we show that a homolog of the human retinal dystrophy gene Retinal Degeneration 3 (RD3) is a Golgi-associated protein required for efficient trafficking of a sensory receptor, the receptor-type guanylate cyclase GCY-9, to cilia in chemosensory neurons of the nematode Caenorhabditis elegans The trafficking defect caused by mutation of the nematode RD3 homolog is suppressed in vivo by mutation of key components of the retromer complex, which mediates recycling of cargo from endosomes to the Golgi. Our data show that there exists a critical balance in sensory neurons between the rates of anterograde and retrograde trafficking of cargo destined for the sensory cilium and this balance requires molecular specialization at an early stage of the secretory pathway.
Collapse
|
37
|
Adachi T, Nagahama K, Izumi S. The C. elegans mRNA decapping enzyme shapes morphology of cilia. Biochem Biophys Res Commun 2017; 493:382-387. [PMID: 28887031 DOI: 10.1016/j.bbrc.2017.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Cilia and flagella are evolutionarily conserved organelles that protrude from cell surfaces. Most cilia and flagella are single rod-shaped but some cilia show a variety of shapes. For example, human airway epithelial cells are multiciliated, flagella of crayfish spermatozoon are star-like shaped, and fruit fly spermatozoon extends long flagella. In Caenorhabditis elegans, cilia display morphological diversity of shapes (single, dual rod-type and wing-like and highly-branched shapes). Here we show that DCAP-1 and DCAP-2, which are the homologues of mammalian DCP1 and DCP2 mRNA decapping enzymes, respectively, are involved in formation of dual rod-type and wing-like shaped cilia in C. elegans. mRNA decapping enzyme catalyzes hydrolysis of 5' cap structure of mRNA, which leads to degradation of mRNA. Rescue experiments showed that DCAP-2 acts not in glial cells surrounding cilia but in neurons. This is the first evidence to demonstrate that mRNA decapping is involved in ciliary shape formation.
Collapse
Affiliation(s)
- Takeshi Adachi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan.
| | - Keigo Nagahama
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan
| | - Susumu Izumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan
| |
Collapse
|
38
|
Abstract
Cilia are microtubule-based organelles extending from a basal body at the surface of eukaryotic cells. Cilia regulate cell and fluid motility, sensation and developmental signaling, and ciliary defects cause human diseases (ciliopathies) affecting the formation and function of many tissues and organs. Over the past decade, various Rab and Rab-like membrane trafficking proteins have been shown to regulate cilia-related processes such as basal body maturation, ciliary axoneme extension, intraflagellar transport and ciliary signaling. In this review, we provide a comprehensive overview of Rab protein ciliary associations, drawing on findings from multiple model systems, including mammalian cell culture, mice, zebrafish, C. elegans, trypanosomes, and green algae. We also discuss several emerging mechanistic themes related to ciliary Rab cascades and functional redundancy.
Collapse
Affiliation(s)
- Oliver E Blacque
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Noemie Scheidel
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Stefanie Kuhns
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| |
Collapse
|
39
|
Wallace SW, Shaham S. Sensory Cilia: Generating Diverse Shapes One Ig Domain at a Time. Curr Biol 2017; 27:R654-R656. [PMID: 28697365 DOI: 10.1016/j.cub.2017.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
How morphologically complex cilia form is not well understood. A key regulator of ciliary shape has now been identified that links the establishment of neuronal fate with the formation of cell-specific ciliary structures in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Sean W Wallace
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Shai Shaham
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
40
|
Abstract
Nearly all cell types in mammals contain cilia, small rod-like or more elaborate structures that extend from the cell surface. Cilia house signaling proteins that allow the cell to sample their environment and respond appropriately. Mutations in ciliary genes alter the functions of a broad range of cell and tissue types, including sensory and central neurons, and underlie a collection of heterogeneous human disorders called ciliopathies. Here, I highlight the critical contributions of nearly three centuries of research in diverse organisms to our current knowledge of cilia function in sensory signaling and human disease.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Malicki JJ, Johnson CA. The Cilium: Cellular Antenna and Central Processing Unit. Trends Cell Biol 2017; 27:126-140. [PMID: 27634431 PMCID: PMC5278183 DOI: 10.1016/j.tcb.2016.08.002] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/14/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
Abstract
Cilia mediate an astonishing diversity of processes. Recent advances provide unexpected insights into the regulatory mechanisms of cilium formation, and reveal diverse regulatory inputs that are related to the cell cycle, cytoskeleton, proteostasis, and cilia-mediated signaling itself. Ciliogenesis and cilia maintenance are regulated by reciprocal antagonistic or synergistic influences, often acting in parallel to each other. By receiving parallel inputs, cilia appear to integrate multiple signals into specific outputs and may have functions similar to logic gates of digital systems. Some combinations of input signals appear to impose higher hierarchical control related to the cell cycle. An integrated view of these regulatory inputs will be necessary to understand ciliogenesis and its wider relevance to human biology.
Collapse
Affiliation(s)
- Jarema J Malicki
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank Sheffield, S10 2TN, UK.
| | - Colin A Johnson
- Wellcome Trust Brenner Building, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Beckett Street, Leeds LS9 7TF, UK.
| |
Collapse
|
42
|
Zhang Z, Yang D, Zhang M, Zhu N, Zhou Y, Storm DR, Wang Z. Deletion of Type 3 Adenylyl Cyclase Perturbs the Postnatal Maturation of Olfactory Sensory Neurons and Olfactory Cilium Ultrastructure in Mice. Front Cell Neurosci 2017; 11:1. [PMID: 28154525 PMCID: PMC5243839 DOI: 10.3389/fncel.2017.00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023] Open
Abstract
Type 3 adenylyl cyclase (Adcy3) is localized to the cilia of olfactory sensory neurons (OSNs) and is an essential component of the olfactory cyclic adenosine monophosphate (cAMP) signaling pathway. Although the role of this enzyme in odor detection and axonal projection in OSNs was previously characterized, researchers will still have to determine its function in the maturation of postnatal OSNs and olfactory cilium ultrastructure. Previous studies on newborns showed that the anatomic structure of the main olfactory epithelium (MOE) of Adcy3 knockout mice (Adcy3-/-) is indistinguishable from that of their wild-type littermates (Adcy3+/+), whereas the architecture and associated composition of MOE are relatively underdeveloped at this early age. The full effects of sensory deprivation on OSNs may not also be exhibited in such age. In the present study, following a comparison of postnatal OSNs in seven-, 30-, and 90-day-old Adcy3-/- mice and wild-type controls (Adcy3+/+), we observed that the absence of Adcy3 leads to cumulative defects in the maturation of OSNs. Upon aging, Adcy3-/- OSNs exhibited increase in immature cells and reduction in mature cells along with elevated apoptosis levels. The density and ultrastructure of Adcy3-/- cilia were also disrupted in mice upon aging. Collectively, our results reveal an indispensable role of Adcy3 in postnatal maturation of OSNs and maintenance of olfactory cilium ultrastructure in mice through adulthood.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Life Science, Hebei UniversityBaoding, China; Medical College, Hebei UniversityBaoding, China
| | - Dong Yang
- College of Life Science, Hebei University Baoding, China
| | - Mengdi Zhang
- College of Life Science, Hebei University Baoding, China
| | - Ning Zhu
- Department of Cardiology, Baoding First Center Hospital Baoding, China
| | - Yanfen Zhou
- College of Life Science, Hebei University Baoding, China
| | - Daniel R Storm
- Department of Pharmacology, University of Washington, Seattle WA, USA
| | - Zhenshan Wang
- College of Life Science, Hebei University Baoding, China
| |
Collapse
|
43
|
Small GTPases Rab8a and Rab11a Are Dispensable for Rhodopsin Transport in Mouse Photoreceptors. PLoS One 2016; 11:e0161236. [PMID: 27529348 PMCID: PMC4987053 DOI: 10.1371/journal.pone.0161236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023] Open
Abstract
Rab11a and Rab8a are ubiquitous small GTPases shown as required for rhodopsin transport in Xenopus laevis and zebrafish photoreceptors by dominant negative (dn) disruption of function. Here, we generated retina-specific Rab11a (retRab11a) and Rab8a (retRab8a) single and double knockout mice to explore the consequences in mouse photoreceptors. Rhodopsin and other outer segment (OS) membrane proteins targeted correctly to OS and electroretinogram (ERG) responses in all three mutant mouse lines were indistinguishable from wild-type (WT). Further, AAV (adeno-associated virus)-mediated expression of dnRab11b in retRab11a-/- retina, or expression of dnRab8b in retRab8a-/- retina did not cause OS protein mislocalization. Finally, a retRab8a-/- retina injected at one month of age with AAVs expressing dnRab11a, dnRab11b, dnRab8b, and dnRab10 (four dn viruses on Rab8a-/- background) and harvested three months later exhibited normal OS protein localization. In contrast to results obtained with dnRab GTPases in Xenopus and zebrafish, mouse Rab11a and Rab8a are dispensable for proper rhodopsin and outer segment membrane protein targeting. Absence of phenotype after expression of four dn Rab GTPases in a Rab8a-/- retina suggests that Rab8b and Rab11b paralogs maybe dispensable as well. Our data thus demonstrate significant interspecies variation in photoreceptor membrane protein and rhodopsin trafficking.
Collapse
|
44
|
Krzyzanowski MC, Woldemariam S, Wood JF, Chaubey AH, Brueggemann C, Bowitch A, Bethke M, L’Etoile ND, Ferkey DM. Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network. PLoS Genet 2016; 12:e1006153. [PMID: 27459302 PMCID: PMC4961389 DOI: 10.1371/journal.pgen.1006153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/08/2016] [Indexed: 01/03/2023] Open
Abstract
All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal's life history and its present internal state. Based on the integration of these variables, an animal's needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful stimuli and allow for the initiation of protective behavioral responses. The polymodal ASH sensory neurons are the primary nociceptors in C. elegans. We show here that the guanylyl cyclase ODR-1 functions non-cell-autonomously to downregulate ASH-mediated aversive behaviors and that ectopic cGMP generation in ASH is sufficient to dampen ASH sensitivity. We define a gap junction neural network that regulates nociception and propose that decentralized regulation of ASH signaling can allow for rapid correlation between an animal's internal state and its behavioral output, lending modulatory flexibility to this hard-wired nociceptive neural circuit.
Collapse
Affiliation(s)
- Michelle C. Krzyzanowski
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Sarah Woldemariam
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Jordan F. Wood
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Aditi H. Chaubey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Chantal Brueggemann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander Bowitch
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Mary Bethke
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Noelle D. L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
45
|
Neto MF, Nguyen QH, Marsili J, McFall SM, Voisine C. The nematode Caenorhabditis elegans displays a chemotaxis behavior to tuberculosis-specific odorants. J Clin Tuberc Other Mycobact Dis 2016; 4:44-49. [PMID: 31723687 PMCID: PMC6850256 DOI: 10.1016/j.jctube.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/28/2016] [Accepted: 06/01/2016] [Indexed: 01/02/2023] Open
Abstract
A simple, affordable diagnostic test for pulmonary tuberculosis (TB) is urgently needed to improve detection of active Mycobacterium tuberculosis. Recently, it has been suggested that animal behavior can be used as a biosensor to signal the presence of human disease. For example, the giant African pouched rats can detect tuberculosis by sniffing sputum specimens while trained honeybees respond to three of the volatile organic compounds (VOCs) detected in the breath of TB positive patients by proboscis extension. However, both rats and honeybees require animal housing facilities and professional trainers, which are outside the scope of most disease testing facilities. Here, we report that the innate olfactory behavioral response of the roundworm nematode Caenorhabditis elegans can be used to detect the TB-specific VOCs methyl p-anisate, methyl nicotinate, methyl phenylacetate and o-phenylanisole, in chemotaxis assays. Dauer larvae, a long-lived stress resistant alternative development state of C. elegans in which the animals can survive for extended periods of time in dry conditions with no food, were also demonstrated to detect the VOCs. We propose that exposing naive dauer larvae to TB-related VOCs and recording their response in this behavioral assay could lead to the development of a new method for TB diagnostics using breath as the sample type.
Collapse
Affiliation(s)
- Mário F Neto
- Center for Innovation in Global Health Technologies (CIGHT), Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Quan H Nguyen
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Joseph Marsili
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Sally M McFall
- Center for Innovation in Global Health Technologies (CIGHT), Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cindy Voisine
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| |
Collapse
|
46
|
Yulan XU, Yadan X, Lijun K. [The effect of glial cells in the function and development of the nervous system in Caenorhabditis elegans]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2016; 45:315-22. [PMID: 27651199 PMCID: PMC10396986 DOI: 10.3785/j.issn.1008-9292.2016.05.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/23/2015] [Indexed: 06/06/2023]
Abstract
There are three types of glial cells in Caenorhabditis elegans (C. elegans for short): sheath glia, socket glia and glutamate receptor glia. They are mainly located in four sensory organs including the amphid, the cephalic organ, the outer labial sensilla and the inner labial sensilla. C. elegans glial cells play key roles in dendrite extension, neurite guidance and extension, and are essential for synaptogenesis and maintain the normal morphology and the function of sensory nerve endings as well. A recent study shown that some nematode neurons are derived from the glial cells. Moreover, nematodes glial cells can directly modulate the function of sensory neurons. Some glial cells can also respond to certain external stimuli, such as mechanical stimulation, and adjust the accompanying neuronal activities.The article summarizes the progress on effects of nematodes glial cells on the nervous system development and function.
Collapse
Affiliation(s)
- X U Yulan
- Institute of Neuroscience, Zhengjiang University School of Medicine, Hangzhou 310058, China
| | - Xue Yadan
- Institute of Neuroscience, Zhengjiang University School of Medicine, Hangzhou 310058, China
| | - Kang Lijun
- Institute of Neuroscience, Zhengjiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
47
|
Lee J, Chung YD. Ciliary subcompartments: how are they established and what are their functions? BMB Rep 2016; 48:380-7. [PMID: 25936781 PMCID: PMC4577287 DOI: 10.5483/bmbrep.2015.48.7.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 12/15/2022] Open
Abstract
Cilia are conserved subcellular organelles with diverse sensory and developmental roles. Recently, they have emerged as crucial organelles whose dysfunction causes a wide spectrum of disorders called ciliopathies. Recent studies on the pathological mechanisms underlying ciliopathies showed that the ciliary compartment is further divided into subdomains with specific roles in the biogenesis, maintenance and function of cilia. Several conserved sets of molecules that play specific roles in each subcompartment have been discovered. Here we review recent progress on our understanding of ciliary subcompartments, especially focusing on the molecules required for their structure and/or function. [BMB Reports 2015; 48(7): 380-387]
Collapse
Affiliation(s)
- Jeongmi Lee
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Yun Doo Chung
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| |
Collapse
|
48
|
Zhang Q, Li Y, Zhang Y, Torres VE, Harris PC, Ling K, Hu J. GTP-binding of ARL-3 is activated by ARL-13 as a GEF and stabilized by UNC-119. Sci Rep 2016; 6:24534. [PMID: 27102355 PMCID: PMC4840320 DOI: 10.1038/srep24534] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are sensory organelles indispensable for organogenesis and tissue pattern formation. Ciliopathy small GTPase ARLs are proposed as prominent ciliary switches, which when disrupted result in dysfunctional cilia, yet how ARLs are activated remain elusive. Here, we discover a novel small GTPase functional module, which contains ARL-3, ARL-13, and UNC-119, localizes near the poorly understood inversin (InV)-like compartment in C. elegans. ARL-13 acts synergistically with UNC-119, but antagonistically with ARL-3, in regulating ciliogenesis. We demonstrate that ARL-3 is a unique small GTPase with unusual high intrinsic GDP release but low intrinsic GTP binding rate. Importantly, ARL-13 acts as a nucleotide exchange factor (GEF) of ARL-3, while UNC-119 can stabilize the GTP binding of ARL-3. We further show that excess inactivated ARL-3 compromises ciliogenesis. The findings reveal a novel mechanism that one ciliopathy GTPase ARL-13, as a GEF, coordinates with UNC-119, which may act as a GTP-binding stabilizing factor, to properly activate another GTPase ARL-3 in cilia, a regulatory process indispensable for ciliogenesis.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yan Li
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yuxia Zhang
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vicente E Torres
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Translational PKD Center Mayo Clinic, Rochester, Minnesota, USA
| | - Peter C Harris
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Translational PKD Center Mayo Clinic, Rochester, Minnesota, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jinghua Hu
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Translational PKD Center Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
49
|
Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose. PLoS One 2016; 11:e0150638. [PMID: 26942602 PMCID: PMC4778765 DOI: 10.1371/journal.pone.0150638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022] Open
Abstract
We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII), a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE) 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter) and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found), similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice) have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology.
Collapse
|
50
|
Hilgendorf KI, Johnson CT, Jackson PK. The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr Opin Cell Biol 2016; 39:84-92. [PMID: 26926036 DOI: 10.1016/j.ceb.2016.02.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
The primary cilium is an antenna-like cellular protrusion mediating sensory and neuroendocrine signaling. Its localization within tissue architecture and a growing list of cilia-localized receptors, in particular G-protein-coupled receptors, determine a host of crucial physiologies, which are disrupted in human ciliopathies. Here, we discuss recent advances in the identification and characterization of ciliary signaling components and pathways. Recent studies have highlighted the unique signaling environment of the primary cilium and we are just beginning to understand how this design allows for highly amplified and regulated signaling.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carl T Johnson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stem Cell and Regenerative Medicine PhD Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter K Jackson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|