1
|
Sun J, Lee K, Kutseikin S, Guerrero A, Rius B, Madhavan A, Buasakdi C, Cheong KN, Chatterjee P, Rosen DA, Yoon L, Ardejani MS, Mendoza A, Rosarda JD, Saez E, Kelly JW, Wiseman RL. Identification of a Selective Pharmacologic IRE1/XBP1s Activator with Enhanced Tissue Exposure. ACS Chem Biol 2025; 20:993-1003. [PMID: 40231944 DOI: 10.1021/acschembio.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) has emerged as a promising strategy to mitigate etiologically diverse diseases. Despite this promise, few compounds are available to selectively activate IRE1/XBP1s signaling to probe the biologic and therapeutic implications of this pathway in human disease. Recently, we identified the compound IXA4 as a highly selective activator of protective IRE1/XBP1s signaling. While IXA4 has proven useful for increasing IRE1/XBP1s signaling in cultured cells and mouse liver, the utility of this compound is restricted by its limited activity in other tissues. To broaden our ability to pharmacologically interrogate the impact of IRE1/XBP1s signaling in vivo, we sought to identify IRE1/XBP1s activators with greater tissue activity than IXA4. We reanalyzed 'hits' from the high throughput screen used to identify IXA4, selecting compounds from structural classes not previously pursued. We then performed global RNAseq to confirm that these compounds showed transcriptome-wide selectivity for IRE1/XBP1s activation. Functional profiling revealed compound IXA62 as a selective IRE1/XBP1s activator that reduced Aβ secretion from CHO7PA2 cells and enhanced glucose-stimulated insulin secretion from rat insulinoma cells, mimicking the effects of IXA4 in these assays. IXA62 robustly and selectively activated IRE1/XBP1s signaling in the liver of mice dosed compound intraperitoneally or orally. In treated mice, IXA62 showed broader tissue activity, relative to IXA4, inducing expression of IRE1/XBP1s target genes in additional tissues such as kidney and lung. Collectively, our results designate IXA62 as a selective IRE1/XBP1s signaling activating compound with enhanced tissue activity, which increases our ability to pharmacologically probe the biologic significance and potential therapeutic utility of enhancing adaptive IRE1/XBP1s signaling in vivo.
Collapse
Affiliation(s)
- Jie Sun
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Kyunga Lee
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Sergei Kutseikin
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Adrian Guerrero
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Bibiana Rius
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Aparajita Madhavan
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Chavin Buasakdi
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Ka-Neng Cheong
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, California 92037, United States
| | - Priyadarshini Chatterjee
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Dorian A Rosen
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Leonard Yoon
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Maziar S Ardejani
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Alejandra Mendoza
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, California 92037, United States
| | - Jessica D Rosarda
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Enrique Saez
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037, United States
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Bin H, Wen W. Metformin attenuates endoplasmic reticulum stress in diabetic kidney disease: mechanistic insights and future perspectives. Int Urol Nephrol 2025:10.1007/s11255-025-04562-7. [PMID: 40343634 DOI: 10.1007/s11255-025-04562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes that can lead to end-stage renal failure. Emerging evidence suggests that endoplasmic reticulum (ER) stress plays a crucial role in the pathogenesis of DKD by affecting various renal parenchymal cells, including endothelial cells, podocytes, and mesangial cells. This review comprehensively examines the relationship between ER stress and DKD, focusing on how metformin, a first-line antidiabetic medication, ameliorates ER stress-induced kidney injury. Multiple factors, including reactive oxygen species (ROS), proteinuria, and advanced glycation end products (AGEs), contribute to ER stress in DKD. Metformin's renoprotective effects are primarily mediated through activation of the AMPK signaling pathway, which modulates ER stress response, reduction of oxidative stress and its impact on ER function, and improvement of mitochondrial function. These mechanisms collectively lead to decreased proteinuria, reduced cell apoptosis, and attenuated epithelial-mesenchymal transition in diabetic kidneys. Understanding these molecular mechanisms provides new insights into the therapeutic potential of metformin in DKD treatment. However, further research is needed to elucidate the precise molecular pathways through which metformin regulates ER stress in different renal cell types under diabetic conditions.
Collapse
Affiliation(s)
- Huang Bin
- Department of Endocrinology, Division of Life Science and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230000, China
| | - Wenjie Wen
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
3
|
Huo Y, Liu X, Lu C, Li T, Yang Z, Xu F, Chen S, Yin K, Wang L. Ceramide mediates cell-to-cell ER stress transmission by modulating membrane fluidity. J Cell Biol 2025; 224:e202405060. [PMID: 40136051 PMCID: PMC11938942 DOI: 10.1083/jcb.202405060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/28/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Under endoplasmic reticulum (ER) stress (ERS), cells initiate the unfolded protein response (UPR) to maintain ER homeostasis. Recent studies revealed ERS transmission between cells and tissues, by activating the cell-nonautonomous UPR in cells that do not experience ERS directly. Here, we report that ERS triggers a rapid release of ceramide independent of the UPR, but requiring the acid sphingomyelinase activity. Carried by lipoproteins, ceramide is delivered to receiving cells to induce the UPR and regulate cell functions at multiple aspects, including lipid accumulation, cell death, and cytokine production. Mechanistically, extracellular ceramide stimulates ceramide synthesis at the transcription level in receiving cells, leading to ceramide accumulation in the ER so as to reduce membrane fluidity to disrupt ER calcium homeostasis, thus activating the UPR. Sphingomyelin counterbalanced the effect of ceramide. UPR induction is the frontline response to protect cells from ceramide insult. Our study suggests ceramide-mediated ERS transmission as a universal cell-cell communication model regulating a wide range of physiological events.
Collapse
Affiliation(s)
- Yazhen Huo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xinlu Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Chen Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Tao Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Zaili Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Fenfen Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Si Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Kailin Yin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
4
|
Huang S, Hua M, Liu W, Zhuang Z, Han X, Zhang X, Liang Z, Liu X, Lou N, Yu S, Chen S, Zhuang X. Phosphatidate phosphatase Lipin1 alters mitochondria-associated endoplasmic reticulum membranes (MAMs) homeostasis: effects which contribute to the development of diabetic encephalopathy. J Neuroinflammation 2025; 22:111. [PMID: 40251630 PMCID: PMC12008933 DOI: 10.1186/s12974-025-03441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
Diabetic encephalopathy (DE) is a common, chronic central nervous system complication of diabetes mellitus, and represents a condition without a clear pathogenesis or effective therapy. Findings from recent studies have indicated that a dyshomeostasis of mitochondria-associated endoplasmic reticulum membranes (MAMs) may be involved in the development of neurodegenerative diseases such as DE. MAMs represent a dynamic contact site between mitochondrial and endoplasmic reticulum (ER) membranes, where phospholipid components are exchanged with each other. Previous work within our laboratory has revealed that Lipin1, a critical enzyme related to phospholipid synthesis, is involved in the pathogenesis of DE. Here, we show that Lipin1 is downregulated within the hippocampus of a DE mouse model, an effect which was accompanied with a decrease in MAMs. Knockdown of Lipin1 in the hippocampus of normal mice resulted in a reduction of MAMs, ER stress, abnormal mitochondrial function, as well as impaired synaptic plasticity and cognitive function. These same phenomena were observed in the DE model, while an upregulation of Lipin1 within the hippocampus of DE mice improved these symptoms. Low levels of Lipin1 in DE mice were also associated with neuroinflammation, while an overexpression of Lipin1 significantly ameliorated the neuroinflammation observed in DE mice. In conclusion, Lipin1 ameliorates pathological changes associated with DE in a mouse model via prevention of dyshomeostasis in MAMs. Such findings suggest that Lipin1 may be serve as a new potential target for the treatment of DE.
Collapse
Affiliation(s)
- Shan Huang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Mengyu Hua
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Wei Liu
- Rehabilitation Hospital, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China
| | - Ziyun Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Jinan, Jinan, 250011, China
| | - Xiaolin Han
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiaochen Zhang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
- Department of Clinical Medicine, Heze Medical College, Heze, 274009, China
| | - Zhonghao Liang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiaojing Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
- Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan, 250033, China
| | - Nengjun Lou
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
- Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan, 250033, China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China.
- Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan, 250033, China.
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China.
- Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
5
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
6
|
Li X, Rao Z, Hu W, Lu W, Luo Y. Treating metabolic dysfunction-associated steatohepatitis: The fat-trimming FGF21 approach. Obes Rev 2025; 26:e13861. [PMID: 39546893 DOI: 10.1111/obr.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a condition characterized by hepatosteatosis, inflammation, and tissue damage, with steatosis as the initial stage, which involves chronic, excess deposition of lipids in hepatic lipid droplets. Despite the growing prevalence and serious risks it poses, including liver decompensation, the need for transplantation, and increased patient mortality, MASH currently faces no approved pharmacotherapy. Several promising treatment candidates have emerged from recent clinical trials, including analogs of FGF21 and agonists of the associated FGFR1-KLB complex. These agents were well-tolerated in trials and have demonstrated significant improvements in both histological and biochemical markers of liver fat content, inflammation, injury, and fibrosis in patients with MASH. Endocrine FGF21 plays a vital role in maintaining homeostasis of lipid, glucose, and energy metabolism. It achieves this through pathways that target lipids or lipid droplets in adipocytes and hepatocytes. Mechanistically, pharmacological FGF21 acts as a potent catabolic factor to promote lipid or lipid droplet lipolysis, fatty acid oxidation, mitochondrial catabolic flux, and heat-dissipating energy expenditure, leading to effective clearance of hepatic and systemic gluco-lipotoxicity and inflammatory stress, thereby preventing obesity, diabetes, and MASH pathologies. In this review, we aim to provide an update on the outcomes of clinical trials for several FGF21 mimetics. We compare these outcomes with preclinical studies and offer a lipid-centric perspective on the mechanisms underlying the clinical benefits of these agents for MASH.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Wenhao Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Saunders RA, Allen WE, Pan X, Sandhu J, Lu J, Lau TK, Smolyar K, Sullivan ZA, Dulac C, Weissman JS, Zhuang X. A platform for multimodal in vivo pooled genetic screens reveals regulators of liver function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.18.624217. [PMID: 39605605 PMCID: PMC11601512 DOI: 10.1101/2024.11.18.624217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Organ function requires coordinated activities of thousands of genes in distinct, spatially organized cell types. Understanding the basis of emergent tissue function requires approaches to dissect the genetic control of diverse cellular and tissue phenotypes in vivo. Here, we develop paired imaging and sequencing methods to construct large-scale, multi-modal genotype-phenotypes maps in tissue with pooled genetic perturbations. Using imaging, we identify genetic perturbations in individual cells while simultaneously measuring their gene expression and subcellular morphology. Using single-cell sequencing, we measure transcriptomic responses to the same genetic perturbations. We apply this approach to study hundreds of genetic perturbations in the mouse liver. Our study reveals regulators of hepatocyte zonation and liver unfolded protein response, as well as distinct pathways that cause hepatocyte steatosis. Our approach enables new ways of interrogating the genetic basis of complex cellular and organismal physiology and provides crucial training data for emerging machine-learning models of cellular function.
Collapse
Affiliation(s)
- Reuben A. Saunders
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- University of California, San Francisco, San Francisco, CA 94158, USA
- Present address: Society of Fellows, Harvard University, MA 02138, USA
- These authors contributed equally
| | - William E. Allen
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Present address: Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; Arc Institute, Palo Alto, CA 94304
- These authors contributed equally
- Lead contact
| | - Xingjie Pan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Lead AI Scientist
| | - Jaspreet Sandhu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jiaqi Lu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas K. Lau
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - Karina Smolyar
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Zuri A. Sullivan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catherine Dulac
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan S. Weissman
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Zhang P, Ye QH, Zhu WX, Zhao YH, Zhu HX, Wei BF. Association of serum and local GRP78 and CHOP expressions with disease progression in patients with non-traumatic osteonecrosis of femoral head. J Orthop Surg Res 2025; 20:108. [PMID: 39881366 PMCID: PMC11776197 DOI: 10.1186/s13018-025-05541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND The endoplasmic reticulum stress (ER stress) has been involved in various musculoskeletal disorders including non-traumatic osteonecrosis of femoral head (NT-ONFH). OBJECTIVE The current study aimed to investigate the association of glucose-regulated protein 78 (GRP78) as well as CCAAT/enhancer-binding protein homologous protein (CHOP) expressions in serum and femoral head (FH) tissues with NT-ONFH's severity. METHODS We enrolled NT-ONFH patients (n = 150) alongside healthy controls (HCs, n = 150). Meanwhile, 49 patients with femoral neck fracture (FNF) were also enrolled. Serum CHOP and GRP78 levels were determined through enzyme linked immunosorbent assay (ELISA). Local CHOP and GRP78 expressions were detected by immunohistochemistry, western blot, alongside real-time polymerase chain reaction (RT-PCR). Radiographic severity was assessed by FICAT grading system. The visual analogue scale (VAS) together with Harris hip score (HHS) were utilized to determine symptomatic severity. RESULTS Serum CHOP and GRP78 levels were markedly increased in NT-ONFH patients than HCs. NT-ONFH patients at FICAT stage 4 showed significant higher serum CHOP and GRP78 levels in contrast with those at stage 3. Furthermore, patients at stage 3 demonstrated higher serum CHOP and GRP78 levels than those at stage 2. There was a positive correlation observed between the serum CHOP and GRP78 levels and the severity of the FICAT stages. A total of 42 ONFH patients at FICAT stage 3, 40 patients at FICAT stage 4, and 49 FNF patients received total hip replacement (THR). The mRNA and protein levels of CHOP and GRP78 were elevated in necrotic area compared to the non-necrotic area of ONFH patients and the FH tissues of FNF patients with statistical significance. The expression levels of CHOP and GRP78 within the local tissues were significantly elevated in patients at FICAT stage 4 as opposed to those at stage 3. Besides, ROC curve analysis indicated that serum and local CHOP and GRP78 expressions may act as indicators of disease progression. The levels of CHOP and GRP78, both in serum and at the local site, were in a positive correlation with VAS scores but an inverse relationship with HHS. CONCLUSIONS Serum and local GRP78 as well as CHOP expressions were positively linked with disease progression in NT-ONFH patients. Potential therapeutics targeting ER stress related protein may serve as a method for alleviating NT-ONFH.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong, 276000, China
| | - Qing-He Ye
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong, 276000, China
| | - Wen-Xiu Zhu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong, 276000, China
| | - Yong-Heng Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong, 276000, China
| | - Hong-Xun Zhu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong, 276000, China
| | - Biao-Fang Wei
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong, 276000, China.
| |
Collapse
|
9
|
Iturbe-Rey S, Maccali C, Arrese M, Aspichueta P, Oliveira CP, Castro RE, Lapitz A, Izquierdo-Sanchez L, Bujanda L, Perugorria MJ, Banales JM, Rodrigues PM. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis 2025; 400:119053. [PMID: 39581063 DOI: 10.1016/j.atherosclerosis.2024.119053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of liver lesions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may further progress to cirrhosis. MASLD is estimated to affect more than one third of the general population and it represents a risk factor for end-stage liver failure and liver cancer, substantially contributing to liver-related morbidity and mortality. Although the pathogenesis of MASLD is incompletely understood, it is known to consist of a multifactorial process influenced by extrinsic and intrinsic factors such as metabolic, environmental and demographic features, gut microbiota and genetics. Dysregulation of both extracellular and intracellular lipid composition is known to promote the generation of toxic lipid species, thereby triggering lipotoxicity and cellular stress. These events ultimately lead to the activation of distinct cell death pathways, resulting in inflammation, fibrogenesis and, eventually, carcinogenesis. In this manuscript, we provide a comprehensive review of the role of lipotoxicity during MASLD pathogenesis, discussing the most relevant lipid species and related molecular mechanisms, summarizing the cell type-specific effects and highlighting the most promising putative therapeutic strategies for modulating lipotoxicity and lipid metabolism in MASLD.
Collapse
Affiliation(s)
- Santiago Iturbe-Rey
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Claudia Maccali
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, 8330077, Chile
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biobizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Claudia P Oliveira
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
10
|
Locke B, Lu R. Establishment of immortalized porcine intramuscular preadipocytes for the study of lipid metabolism. Biochem Cell Biol 2025; 103:1-11. [PMID: 40127467 DOI: 10.1139/bcb-2024-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Intramuscular adipose tissue is associated with an increased risk for the development of metabolic syndrome. A cellular model of adipogenesis in muscular tissues would be an invaluable tool for studying regulatory factors in this important process. Cellular stress can impact the homeostasis of various metabolic pathways, including lipid metabolism. In this study, a porcine intramuscular preadipocyte cell line was established, which displayed mature adipocyte attributes such as lipid accumulation and increased expression of adipogenic gene markers. Since it is well established that endoplasmic reticulum (ER) and Golgi stress impact adipogenesis, we sought to investigate the effects of ER/Golgi stress and an associated protein, CREB3, in this cell line model. We found that this novel model maintains robust adipogenic capabilities, and that ER stress can negatively affect adipogenic markers. Overall, these findings demonstrate the strength of the new cell model for studying adipogenesis, and highlight the impact of ER stress on lipid metabolism.
Collapse
Affiliation(s)
- Briana Locke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Yang Z, Chen Q, Wang J, Qiu Y, Thepsuwan P, Yi Z, Heng HH, Sun Q, Chen X, Li L, He P, Zhang R, Zhang K. Inhalation exposure to airborne PM 2.5 attenuates hepatic metabolic pathways through S-nitrosylation of the primary ER stress sensor. Am J Physiol Cell Physiol 2025; 328:C212-C226. [PMID: 39607384 PMCID: PMC11901345 DOI: 10.1152/ajpcell.00385.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Inhalation exposure to airborne fine particulate matter (aerodynamic diameter: <2.5 µm, PM2.5) is known to cause metabolic dysfunction-associated steatohepatitis (MASH) and the associated metabolic syndrome. Hepatic lipid accumulation and inflammation are the key characteristics of MASH. However, the mechanism by which PM2.5 exposure induces lipid accumulation and inflammation in the liver remains to be further elucidated. In this study, we revealed that inhalation exposure to PM2.5 induces nitrosative stress in mouse livers by suppressing hepatic S-nitrosoglutathione reductase activities, which leads to S-nitrosylation modification of the primary unfolded protein response (UPR) transducer inositol-requiring 1 α (IRE1α), an endoplasmic reticulum-resident protein kinase and endoribonuclease (RNase). S-nitrosylation suppresses the RNase activity of IRE1α and subsequently decreases IRE1α-mediated splicing of the mRNA encoding X-box binding protein 1 (XBP1) and IRE1α-dependent degradation of select microRNAs (miRNAs), including miR-200 family members, miR-34, miR-223, miR-155, and miR-146, in the livers of the mice exposed to PM2.5. Elevation of IRE1α-target miRNAs, due to impaired IRE1α RNase activity by PM2.5-triggered S-nitrosylation, leads to decreased expression of the major regulators of fatty acid oxidation, lipolysis, and anti-inflammatory response, including XBP1, sirtuin 1, peroxisome proliferator-activated receptor α, and peroxisome proliferator-activated receptor γ, in the liver, which account at least partially for hepatic lipid accumulation and inflammation in mice exposed to airborne PM2.5. In summary, our study revealed a novel pathway by which PM2.5 causes cytotoxicity and promotes MASH-like phenotypes through inducing hepatic nitrosative stress and S-nitrosylation of the primary UPR transducer and subsequent elevation of select miRNAs involved in metabolism and inflammation in the liver.NEW & NOTEWORTHY Exposure to fine airborne particulate matter PM2.5 causes metabolic dysfunction-associated steatohepatitis characterized by hepatic steatosis, inflammation, and fibrosis. Here, we discovered that inhalation exposure to environmental PM2.5 induces nitrosative stress in livers by suppressing hepatic S-nitrosoglutathione reductase activities, which leads to S-nitrosylation of the unfolded protein response transducer IRE1α. S-nitrosylation decreases IRE1α-dependent degradation of miRNAs in the livers of mice exposed to PM2.5, leading to downregulation of major regulators of energy metabolism and anti-inflammatory response.
Collapse
Affiliation(s)
- Zhao Yang
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Qi Chen
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jiemei Wang
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Yining Qiu
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Pattaraporn Thepsuwan
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Henry H Heng
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Xuequn Chen
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Li Li
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ren Zhang
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kezhong Zhang
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Biochemistry, Microbiology, and Immunology, The Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
12
|
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol 2025; 31:1-31. [PMID: 39355873 PMCID: PMC11791611 DOI: 10.3350/cmh.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
The prevalence of drug-induced liver injury (DILI) and viral liver infections presents significant challenges in modern healthcare and contributes to considerable morbidity and mortality worldwide. Concurrently, metabolic dysfunctionassociated steatotic liver disease (MASLD) has emerged as a major public health concern, reflecting the increasing rates of obesity and leading to more severe complications such as fibrosis and hepatocellular carcinoma. X-box binding protein 1 (XBP1) is a distinct transcription factor with a basic-region leucine zipper structure, whose activity is regulated by alternative splicing in response to disruptions in endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR) activation. XBP1 interacts with a key signaling component of the highly conserved UPR and is critical in determining cell fate when responding to ER stress in liver diseases. This review aims to elucidate the emerging roles and molecular mechanisms of XBP1 in liver pathogenesis, focusing on its involvement in DILI, viral liver infections, MASLD, fibrosis/cirrhosis, and liver cancer. Understanding the multifaceted functions of XBP1 in these liver diseases offers insights into potential therapeutic strategies to restore ER homeostasis and mitigate liver damage.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
13
|
Dion W, Zhu B. Basic research and opportunities for translational advancement in the field of mammalian ∼12-hour ultradian chronobiology. Front Physiol 2024; 15:1497836. [PMID: 39633646 PMCID: PMC11614809 DOI: 10.3389/fphys.2024.1497836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Repetitive variations, such as oscillation, are ubiquitous in biology. In this mini review, we present a general summary of the ∼24 h circadian clock and provide a fundamental overview of another biological timekeeper that maintains ∼12 h oscillations. This ∼12 h oscillator is proposed to function independently of the circadian clock to regulate ultradian biological rhythms relevant to both protein homeostasis and liver health. Recent studies exploring these ∼12 h rhythms in humans are discussed, followed by our proposal that mammary gland physiology represents a promising area for further research. We conclude by highlighting potential translational applications in ∼12 h ultradian chronobiology.
Collapse
Affiliation(s)
- William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Zhao W, Wang X, Nie W, Jiang M, Zhao Y, Zhang T, Ding Y. Zhimu-Huangbai herb-pair ameliorates hepatic steatosis in mice by regulating IRE1α/XBP1s pathway to inhibit SREBP-1c. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156017. [PMID: 39265443 DOI: 10.1016/j.phymed.2024.156017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Currently, there is a lack of validated pharmacological interventions for non-alcoholic fatty liver disease (NAFLD), which is characterized by the accumulation of hepatic triglyceride. Zhimu-Huangbai (ZH) herb-pair is a traditional Chinese medicine that regulates glucose and lipid metabolism disorders. However, the precise mechanisms underlying the preventive effects of hepatic triglyceride induced by high-fat diet (HFD) remain elusive. PURPOSE The study aimed to examine the impact of ZH herb-pair on NAFLD in mice and explore the underlying mechanisms, particularly its effects on endoplasmic reticulum (ER) stress and lipid metabolism. METHODS NAFLD was induced in mice using HFD, and the treated mice were orally administered ZH, metformin (Glucophage) or lovastatin. The lipid metabolism factors, ER stress markers, and the unfolded protein response (UPR) branch factors were measured using immunohistochemistry, western blotting or qRT-PCR. Co-Immunoprecipitation (CoIP) was performed to reveal the connection between SCAP and SREBP-1c. Tunicamycin (TM) and plasmid delivery were used to induce acute ER stress or crease XBP1 gain function models. The main compounds in ZH binding to IRE1α protein were studied by molecular docking and cellular thermal shift assay (CETSA). RESULTS Treatment with ZH significantly ameliorated hepatic steatosis and reduced lipid synthesis process mainly inhibiting the expression of mature active form of SREBP-1c through relieving ER stress. The expression of IRE1α and XBP1s was inhibited after treatment with ZH. In addition, ZH improved the fatty liver phenotype caused by XBP1 overexpression via decreasing srebp1c transcription. In vitro experimental results suggested that the main compounds in ZH decreased cellular TG contents. Mechanistically, ZH targeted IRE1α and inhibited XBP1s mRNA expression to relieve ER stress and inhibit SREBP-1c production. CONCLUSIONS ZH herb-pair can protect against NAFLD by reducing the expression of SREBP-1c, in part, via regulating IRE1α/XBP1s pathway.
Collapse
Affiliation(s)
- Wenjun Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiaoying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wenlong Nie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Min Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yuan Zhao
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; National Innovation Platform for Medical Industry-education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
15
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
16
|
Bieerkehazhi S, Abdullahi A, Khalaf F, Barayan D, de Brito Monteiro L, Samadi O, Rix G, Jeschke MG. β-Adrenergic blockade attenuates adverse adipose tissue responses after burn. J Mol Med (Berl) 2024; 102:1245-1254. [PMID: 39145814 DOI: 10.1007/s00109-024-02478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Severe burn injuries are defined by a prolonged hypermetabolic response characterized by increases in resting energy expenditure, systemic catabolism, and multi-organ dysfunction. The sustained elevation of catecholamines following a burn injury is thought to significantly contribute to this hypermetabolic response, leading to changes in adipose tissue such as increased lipolysis and the browning of subcutaneous white adipose tissue (WAT). Failure to mitigate these adverse changes within the adipose tissue has been shown to exacerbate the post-burn hypermetabolic response and lead to negative outcomes. Propranolol, a non-selective β-blocker, has been clinically administered to improve outcomes of pediatric and adult burn patients, but there is inadequate knowledge of its effects on the distinct adipose tissue depots. In this study, we investigated the adipose depot-specific alterations that occur in response to burn injury. Moreover, we explored the therapeutic effects of β-adrenoceptor blockade via the drug propranolol in attenuating these burn-induced pathophysiological changes within the different fat depots. Using a murine model of thermal injury, we show that burn injury induces endoplasmic reticulum (ER) stress in the epididymal (eWAT) but not in the inguinal (iWAT) WAT depot. Conversely, burn injury induces the activation of key lipolytic pathways in both eWAT and iWAT depots. Treatment of burn mice with propranolol effectively mitigated adverse burn-induced alterations in the adipose by alleviating ER stress in the eWAT and reducing lipolysis in both depots. Furthermore, propranolol treatment in post-burn mice attenuated UCP1-mediated subcutaneous WAT browning following injury. Overall, our findings suggest that propranolol serves as an effective therapeutic intervention to mitigate the adverse changes induced by burn injury, including ER stress, lipotoxicity, and WAT browning, in both adipose tissue depots. KEY MESSAGES: Burn injury adversely affects adipose tissue metabolism via distinct changes in both visceral and subcutaneous adipose depots. Propranolol, a non-selective β-adrenergic blocker, attenuates many of the adverse adipose tissue changes mediated by burn injury.
Collapse
Affiliation(s)
- Shayahati Bieerkehazhi
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Abdikarim Abdullahi
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Fadi Khalaf
- Department of Biochemistry, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Dalia Barayan
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Lauar de Brito Monteiro
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Osai Samadi
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Graham Rix
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Department of Surgery, McMaster University, Hamilton, ON, Canada.
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada.
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Kubra S, Sun M, Dion W, Catak A, Luong H, Wang H, Pan Y, Liu JJ, Ponna A, Sipula I, Jurczak MJ, Liu S, Zhu B. Epigenetic regulation of global proteostasis dynamics by RBBP5 ensures mammalian organismal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612812. [PMID: 39314427 PMCID: PMC11419162 DOI: 10.1101/2024.09.13.612812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Proteostasis is vital for cellular health, with disruptions leading to pathologies including aging, neurodegeneration and metabolic disorders. Traditionally, proteotoxic stress responses were studied as acute reactions to various noxious factors; however, recent evidence reveals that many proteostasis stress-response genes exhibit ~12-hour ultradian rhythms under physiological conditions in mammals. These rhythms, driven by an XBP1s-dependent 12h oscillator, are crucial for managing proteostasis. By exploring the chromatin landscape of the murine 12h hepatic oscillator, we identified RBBP5, a key subunit of the COMPASS complex writing H3K4me3, as an essential epigenetic regulator of proteostasis. RBBP5 is indispensable for regulating both the hepatic 12h oscillator and transcriptional response to acute proteotoxic stress, acting as a co-activator for proteostasis transcription factor XBP1s. RBBP5 ablation leads to increased sensitivity to proteotoxic stress, chronic inflammation, and hepatic steatosis in mice, along with impaired autophagy and reduced cell survival in vitro. In humans, lower RBBP5 expression is associated with reduced adaptive stress-response gene expression and hepatic steatosis. Our findings establish RBBP5 as a central regulator of proteostasis, essential for maintaining mammalian organismal health.
Collapse
Affiliation(s)
- Syeda Kubra
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Michelle Sun
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Ahmet Catak
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Hannah Luong
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Haokun Wang
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | | | - Jia-Jun Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Aishwarya Ponna
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Ian Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
18
|
Yang Y, Zhang X, Zhao Q, Zhang J, Lou X. Compromised COPII vesicle trafficking leads to glycogenic hepatopathy. Dis Model Mech 2024; 17:dmm050748. [PMID: 39139065 PMCID: PMC11463966 DOI: 10.1242/dmm.050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Being a vital cellular process, coat protein complex II (COPII) vesicle trafficking has been found to play a crucial role in liver metabolism. However, its functions and the underlying mechanisms in systemic metabolic homeostasis have not been fully understood. Here, with a newly identified gene trap zebrafish line (sec31anju221), we show that compromised COPII vesicle trafficking leads to biphasic abnormal hepatic metabolism. During the larval stage, deficiency of COPII-mediated trafficking leads to activation of the unfolded protein response and the development of hepatic steatosis. By using epistasis analysis, we found that the eIF2α-ATF4 pathway serves as the primary effector for liver steatosis. In adult sec31anju221 fish, the hepatosteatosis was reversed and the phenotype switched to glycogenic hepatopathy. Proteomic profiling and biochemical assays indicate that sec31anju221 fish are in a state of hypothyroidism. Moreover, our study shows that thyroid hormone treatment alleviates the metabolic defects. This study provides insights into processes of liver diseases associated with vesicle trafficking impairments and expands our understanding of the pathological interplay between thyroid and liver.
Collapse
Affiliation(s)
- Yuxi Yang
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xue Zhang
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou 311100, China
| | - Qingshun Zhao
- Medical School, Nanjing University, Nanjing 210093, China
| | - Jingzi Zhang
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xin Lou
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
19
|
Ji M, Wang B, Xie J, Wang G, Yu E, Jiang P, Lu R, Tian J. Effects of low protein feed on hepato-intestinal health and muscle quality of grass carp (Ctenopharyngodon idellus). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110989. [PMID: 38759883 DOI: 10.1016/j.cbpb.2024.110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
In this study, grass carp (33.28 ± 0.05 g) were fed three diets for 8 weeks: control (crude protein [CP] 30%, crude lipid [CL] 6%), low protein (LP; CP16%, CL6%), and low protein with high-fat (LPHF; CP16%, CL10%). The final body weight decreased in the LP and LPHF groups compared to the Control (P < 0.05). Liver triglycerides, total cholesterol, and nonesterified fatty acids were higher in the LP group than the Control, whereas these indexes in the LPHF group were higher than those in the LP group (P < 0.05). The LP group had intestinal barrier damage, while the LPHF group had a slight recovery. TNF-α, IL-8, and IL-1β content were lower in the LP group than in the Control (P < 0.05), and even higher in the LPHF group (P < 0.05). The expressions of endoplasmic reticulum stress-related genes Activating transcription factor 6 (ATF-6) and Glucose-regulated protein (GRP78) were higher in the LPHF group against the LP group (P < 0.05). The IL-1β and TNF-α content negatively correlated with intestinal Actinomycetes and Mycobacterium abundance (P < 0.05). The muscle fiber diameter was smaller in both the LP and LPHF groups than the control (P < 0.05), with the LP group showing metabolites related to protein digestion and absorption, and LPHF group exhibiting metabolites related to taste transmission. The results demonstrate reducing dietary protein affects growth, causing liver lipid accumulation, reduced enteritis response, and increased muscle tightness, while increasing fat content accelerates fat accumulation and inflammation.
Collapse
Affiliation(s)
- Mengmeng Ji
- College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute Guangzhou, Guangdong 510380, China
| | - Binbin Wang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute Guangzhou, Guangdong 510380, China
| | - Jun Xie
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute Guangzhou, Guangdong 510380, China
| | - Guangjun Wang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute Guangzhou, Guangdong 510380, China
| | - Ermeng Yu
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute Guangzhou, Guangdong 510380, China
| | - Peng Jiang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute Guangzhou, Guangdong 510380, China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jingjing Tian
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute Guangzhou, Guangdong 510380, China.
| |
Collapse
|
20
|
Hemagirri M, Chen Y, Gopinath SCB, Sahreen S, Adnan M, Sasidharan S. Crosstalk between protein misfolding and endoplasmic reticulum stress during ageing and their role in age-related disorders. Biochimie 2024; 221:159-181. [PMID: 37918463 DOI: 10.1016/j.biochi.2023.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600, Malaysia
| | - Sumaira Sahreen
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P. O. Box 2440, Saudi Arabia.
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
21
|
Fan Y, Li S, Yang X, Bai S, Tang M, Zhang X, Lu C, Ji C, Du G, Qin Y. Multi-omics approach characterizes the role of Bisphenol F in disrupting hepatic lipid metabolism. ENVIRONMENT INTERNATIONAL 2024; 187:108690. [PMID: 38685157 DOI: 10.1016/j.envint.2024.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Bisphenol F (BPF), a substitute for bisphenol A (BPA), is ubiquitous existed in various environmental media. Exposure to BPF may promote non-alcoholic fatty liver disease (NAFLD), while the potential mechanism is still unknown. In current study, we used in vitro and in vivo model to evaluate its hepatotoxicity and molecular mechanism. Using multi-omics approach, we found that BPF exposure led to changes in hepatic transcriptome, metabolome and chromatin accessible regions that were enriched for binding sites of transcription factors in bZIP family. These alterations were enriched with pathways integral to the endoplasmic reticulum stress and NAFLD. These findings suggested that BPF exposure might reprogram the chromatin accessibility and enhancer landscape in the liver, with downstream effects on genes associated with endoplasmic reticulum stress and lipid metabolism, which relied on bZIP family transcription factors. Overall, our study describes comprehensive molecular alterations in hepatocytes after BPF exposure and provides new insights into the understanding of the hepatoxicity of BPF.
Collapse
Affiliation(s)
- Yun Fan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shiqi Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiancheng Yang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Tang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueer Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yufeng Qin
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Hazari Y, Chevet E, Bailly-Maitre B, Hetz C. ER stress signaling at the interphase between MASH and HCC. Hepatology 2024:01515467-990000000-00844. [PMID: 38626349 DOI: 10.1097/hep.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.
Collapse
Affiliation(s)
- Younis Hazari
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Team "Metainflammation and Hematometabolism", Metabolism Department, France
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
23
|
Welters A, Nortmann O, Wörmeyer L, Freiberg C, Eberhard D, Bachmann N, Bergmann C, Mayatepek E, Meissner T, Kummer S. Congenital Hyperinsulinism in Humans and Insulin Secretory Dysfunction in Mice Caused by Biallelic DNAJC3 Variants. Int J Mol Sci 2024; 25:1270. [PMID: 38279270 PMCID: PMC10816850 DOI: 10.3390/ijms25021270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
The BiP co-chaperone DNAJC3 protects cells during ER stress. In mice, the deficiency of DNAJC3 leads to beta-cell apoptosis and the gradual onset of hyperglycemia. In humans, biallelic DNAJC3 variants cause a multisystem disease, including early-onset diabetes mellitus. Recently, hyperinsulinemic hypoglycemia (HH) has been recognized as part of this syndrome. This report presents a case study of an individual with HH caused by DNAJC3 variants and provides an overview of the metabolic phenotype of individuals with HH and DNAJC3 variants. The study demonstrates that HH may be a primary symptom of DNAJC3 deficiency and can persist until adolescence. Additionally, glycemia and insulin release were analyzed in young DNACJ3 knockout (K.O.) mice, which are equivalent to human infants. In the youngest experimentally accessible age group of 4-week-old mice, the in vivo glycemic phenotype was already dominated by a reduced total insulin secretion capacity. However, on a cellular level, the degree of insulin release of DNAJC3 K.O. islets was higher during periods of increased synthetic activity (high-glucose stimulation). We propose that calcium leakage from the ER into the cytosol, due to disrupted DNAJC3-controlled gating of the Sec61 channel, is the most likely mechanism for HH. This is the first genetic mechanism explaining HH solely by the disruption of intracellular calcium homeostasis. Clinicians should screen for HH in DNAJC3 deficiency and consider DNAJC3 variants in the differential diagnosis of congenital hyperinsulinism.
Collapse
Affiliation(s)
- Alena Welters
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany;
| | - Oliver Nortmann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany;
| | - Laura Wörmeyer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany;
| | - Clemens Freiberg
- Department of Pediatrics and Adolescent Medicine, Pediatric Endocrinology, University Medicine Göttingen, D-37075 Göttingen, Germany;
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany;
| | - Nadine Bachmann
- Medizinische Genetik Mainz, Limbach Genetics, D-55128 Mainz, Germany; (N.B.); (C.B.)
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, D-55128 Mainz, Germany; (N.B.); (C.B.)
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
| |
Collapse
|
24
|
Shreya S, Alam MJ, Anupriya, Jaiswal S, Rani V, Jain BP. Lipotoxicity, ER Stress, and Cardiovascular Disease: Current Understanding and Future Directions. Cardiovasc Hematol Agents Med Chem 2024; 22:319-335. [PMID: 37859305 DOI: 10.2174/0118715257262366230928051902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The endoplasmic reticulum (ER) is a sub-cellular organelle that is responsible for the correct folding of proteins, lipid biosynthesis, calcium storage, and various post-translational modifications. In the disturbance of ER functioning, unfolded or misfolded proteins accumulate inside the ER lumen and initiate downstream signaling called unfolded protein response (UPR). The UPR signaling pathway is involved in lipolysis, triacylglycerol synthesis, lipogenesis, the mevalonate pathway, and low-density lipoprotein receptor recycling. ER stress also affects lipid metabolism by changing the levels of enzymes that are involved in the synthesis or modifications of lipids and causing lipotoxicity. Lipid metabolism and cardiac diseases are in close association as the deregulation of lipid metabolism leads to the development of various cardiovascular diseases (CVDs). Several studies have suggested that lipotoxicity is one of the important factors for cardiovascular disorders. In this review, we will discuss how ER stress affects lipid metabolism and their interplay in the development of cardiovascular disorders. Further, the current therapeutics available to target ER stress and lipid metabolism in various CVDs will be summarized.
Collapse
Affiliation(s)
- Smriti Shreya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Md Jahangir Alam
- Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupriya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Saumya Jaiswal
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
25
|
Piña F, Yan B, Hu J, Niwa M. Reticulons bind sphingolipids to activate the endoplasmic reticulum cell cycle checkpoint, the ER surveillance pathway. Cell Rep 2023; 42:113403. [PMID: 37979174 PMCID: PMC11647836 DOI: 10.1016/j.celrep.2023.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2022] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
The inheritance of a functional endoplasmic reticulum (ER) is ensured by the ER stress surveillance (ERSU) pathway. Here, we made the unexpected discovery that reticulon 1 (Rtn1) and Yop1, well-known ER-curvature-generating proteins, each possess two sphingolipid-binding motifs within their transmembrane domains and that these motifs recognize the ER-stress-induced sphingolipid phytosphingosine (PHS), resulting in an ER inheritance block. Upon binding PHS, Rtn1/Yop1 accumulate on the ER tubule, poised to enter the emerging daughter cell, and cause its misdirection to the bud scars (i.e., previous cell division sites). Amino acid changes in the conserved PHS-binding motifs preclude Rtn1 or Yop1 from binding PHS and diminish their enrichment on the tubular ER, ultimately preventing the ER-stress-induced inheritance block. Conservation of these sphingolipid-binding motifs in human reticulons suggests that sphingolipid binding to Rtn1 and Yop1 represents an evolutionarily conserved mechanism that enables cells to respond to ER stress.
Collapse
Affiliation(s)
- Francisco Piña
- Division of Biological Sciences, Molecular Biology Section, University of California, San Diego, NSB#1, Rm. 5328, 9500 Gilman Drive, San Diego, CA 92093-0377, USA
| | - Bing Yan
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Rm. 6210, Chaoyang District, Beijing 100101, China
| | - Junjie Hu
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Rm. 6210, Chaoyang District, Beijing 100101, China
| | - Maho Niwa
- Division of Biological Sciences, Molecular Biology Section, University of California, San Diego, NSB#1, Rm. 5328, 9500 Gilman Drive, San Diego, CA 92093-0377, USA.
| |
Collapse
|
26
|
Li N, Li X, Ding Y, Liu X, Diggle K, Kisseleva T, Brenner DA. SREBP Regulation of Lipid Metabolism in Liver Disease, and Therapeutic Strategies. Biomedicines 2023; 11:3280. [PMID: 38137501 PMCID: PMC10740981 DOI: 10.3390/biomedicines11123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are master transcription factors that play a crucial role in regulating genes involved in the biogenesis of cholesterol, fatty acids, and triglycerides. As such, they are implicated in several serious liver diseases, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). SREBPs are subject to regulation by multiple cofactors and critical signaling pathways, making them an important target for therapeutic interventions. In this review, we first introduce the structure and activation of SREBPs, before focusing on their function in liver disease. We examine the mechanisms by which SREBPs regulate lipogenesis, explore how alterations in these processes are associated with liver disease, and evaluate potential therapeutic strategies using small molecules, natural products, or herb extracts that target these pathways. Through this analysis, we provide new insights into the versatility and multitargets of SREBPs as factors in the modulation of different physiological stages of liver disease, highlighting their potential targets for therapeutic treatment.
Collapse
Affiliation(s)
- Na Li
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaodan Li
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifu Ding
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200031, China;
| | - Xiao Liu
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
| | - Karin Diggle
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
| | - David A. Brenner
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
- Sanford Burnham Prebys, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Abasubong KP, Jiang GZ, Guo HX, Wang X, Li XF, Yan-Zou D, Liu WB, Desouky HE. High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1079-1095. [PMID: 37831370 DOI: 10.1007/s10695-023-01240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023]
Abstract
The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006. The transcriptional levels of glucose-regulated protein 78 (grp78), inositol requiring enzyme 1 (ire1), spliced X box-binding protein 1 (xbp1), DnaJ heat shock protein family (Hsp40) member B9 (dnajb9), tumor necrosis factor alpha (tnf-α), nuclear factor-kappa B (nf-κb), monocyte chemoattractant protein-1 (mcp-1), and interleukin-6 (il-6) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax, caspases-3, and caspases-9, ZO-1, Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Dong Yan-Zou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| | - Hesham Eed Desouky
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Beheria, 22713, Egypt
| |
Collapse
|
28
|
Shen Y, Zhao W, Bao Y, Zhu J, Jiao L, Duan X, Pan T, Monroig Ó, Zhou Q, Jin M. Molecular cloning and characterization of endoplasmic reticulum stress related genes grp78 and atf6α from black seabream (Acanthopagrus schlegelii) and their expressions in response to nutritional regulation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1115-1128. [PMID: 37855969 DOI: 10.1007/s10695-023-01242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023]
Abstract
Glucose-regulated protein 78 (grp78) and activating transcription factor 6α (atf6α) are considered vital endoplasmic reticulum (ER) molecular chaperones and ER stress (ERS) sensors, respectively. In the present study, the full cDNA sequences of these two ERS-related genes were first cloned and characterized from black seabream (Acanthopagrus schlegelii). The grp78 cDNA sequence is 2606 base pair (bp) encoding a protein of 654 amino acids (aa). The atf6α cDNA sequence is 2168 base pair (bp) encoding a protein of 645 aa. The predicted aa sequences of A. schlegelii grp78 and atf6α indicated that the proteins contain all the structural features, which were characteristic of the two genes in other species. Tissues transcript abundance analysis revealed that the mRNAs of grp78 and atf6α were expressed in all measured tissues, but the highest expression of these two genes was all recorded in the gill followed by liver/ brain. Moreover, in vivo experiment found that fish intake of a high lipid diet (HLD) can trigger ERS by activating grp78/Grp78 and atf6α/Atf6α. However, it can be alleviated by dietary betaine supplementation, similar results were also obtained by in vitro experiment using primary hepatocytes of A. schlegelii. These findings will be beneficial for us to evaluate the regulator effects of HLD supplemented with betaine on ERS at the molecular level, and thus provide some novel insights into the functions of betaine in marine fish fed with an HLD.
Collapse
Affiliation(s)
- Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiayun Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xuemei Duan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Tingting Pan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595, Castellón, Spain
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
29
|
Venkatesan N, Doskey LC, Malhi H. The Role of Endoplasmic Reticulum in Lipotoxicity during Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1887-1899. [PMID: 37689385 PMCID: PMC10699131 DOI: 10.1016/j.ajpath.2023.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
Perturbations in lipid and protein homeostasis induce endoplasmic reticulum (ER) stress in metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease. Lipotoxic and proteotoxic stress can activate the unfolded protein response (UPR) transducers: inositol requiring enzyme1α, PKR-like ER kinase, and activating transcription factor 6α. Collectively, these pathways induce expression of genes that encode functions to resolve the protein folding defect and ER stress by increasing the protein folding capacity of the ER and degradation of misfolded proteins. The ER is also intimately connected with lipid metabolism, including de novo ceramide synthesis, phospholipid and cholesterol synthesis, and lipid droplet formation. Following their activation, the UPR transducers also regulate lipogenic pathways in the liver. With persistent ER stress, cellular adaptation fails, resulting in hepatocyte apoptosis, a pathological marker of liver disease. In addition to the ER-nucleus signaling activated by the UPR, the ER can interact with other organelles via membrane contact sites. Modulating intracellular communication between ER and endosomes, lipid droplets, and mitochondria to restore ER homeostasis could have therapeutic efficacy in ameliorating liver disease. Recent studies have also demonstrated that cells can convey ER stress by the release of extracellular vesicles. This review discusses lipotoxic ER stress and the central role of the ER in communicating ER stress to other intracellular organelles in MASLD pathogenesis.
Collapse
Affiliation(s)
- Nanditha Venkatesan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Luke C Doskey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
30
|
Na M, Yang X, Deng Y, Yin Z, Li M. Endoplasmic reticulum stress in the pathogenesis of alcoholic liver disease. PeerJ 2023; 11:e16398. [PMID: 38025713 PMCID: PMC10655704 DOI: 10.7717/peerj.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in protein synthesis, folding, and modification. Under stress conditions such as oxidative stress and inflammation, the ER can become overwhelmed, leading to an accumulation of misfolded proteins and ensuing ER stress. This triggers the unfolded protein response (UPR) designed to restore ER homeostasis. Alcoholic liver disease (ALD), a spectrum disorder resulting from chronic alcohol consumption, encompasses conditions from fatty liver and alcoholic hepatitis to cirrhosis. Metabolites of alcohol can incite oxidative stress and inflammation in hepatic cells, instigating ER stress. Prolonged alcohol exposure further disrupts protein homeostasis, exacerbating ER stress which can lead to irreversible hepatocellular damage and ALD progression. Elucidating the contribution of ER stress to ALD pathogenesis may pave the way for innovative therapeutic interventions. This review delves into ER stress, its basic signaling pathways, and its role in the alcoholic liver injury.
Collapse
Affiliation(s)
- Man Na
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Xingbiao Yang
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Yongkun Deng
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Zhaoheng Yin
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Mingwei Li
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| |
Collapse
|
31
|
Shah A, Huck I, Duncan K, Gansemer ER, Liu K, Adajar RC, Apte U, Stamnes MA, Rutkowski DT. Interference with the HNF4-dependent gene regulatory network diminishes endoplasmic reticulum stress in hepatocytes. Hepatol Commun 2023; 7:e0278. [PMID: 37820274 PMCID: PMC10578741 DOI: 10.1097/hc9.0000000000000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND In all eukaryotic cell types, the unfolded protein response (UPR) upregulates factors that promote protein folding and misfolded protein clearance to help alleviate endoplasmic reticulum (ER) stress. Yet, ER stress in the liver is uniquely accompanied by the suppression of metabolic genes, the coordination and purpose of which are largely unknown. METHODS Here, we combined in silico machine learning, in vivo liver-specific deletion of the master regulator of hepatocyte differentiation HNF4α, and in vitro manipulation of hepatocyte differentiation state to determine how the UPR regulates hepatocyte identity and toward what end. RESULTS Machine learning identified a cluster of correlated genes that were profoundly suppressed by persistent ER stress in the liver. These genes, which encode diverse functions including metabolism, coagulation, drug detoxification, and bile synthesis, are likely targets of the master regulator of hepatocyte differentiation HNF4α. The response of these genes to ER stress was phenocopied by liver-specific deletion of HNF4α. Strikingly, while deletion of HNF4α exacerbated liver injury in response to an ER stress challenge, it also diminished UPR activation and partially preserved ER ultrastructure, suggesting attenuated ER stress. Conversely, pharmacological maintenance of hepatocyte identity in vitro enhanced sensitivity to stress. CONCLUSIONS Together, our findings suggest that the UPR regulates hepatocyte identity through HNF4α to protect ER homeostasis even at the expense of liver function.
Collapse
Affiliation(s)
- Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ian Huck
- Department of Pharmacology, Toxicology, and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Kaylia Duncan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Erica R. Gansemer
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kaihua Liu
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Reed C. Adajar
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
32
|
Askar ME, Ali SI, Younis NN, Shaheen MA, Zaher ME. Raspberry ketone ameliorates nonalcoholic fatty liver disease in rats by activating the AMPK pathway. Eur J Pharmacol 2023; 957:176001. [PMID: 37598925 DOI: 10.1016/j.ejphar.2023.176001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The current study aimed to investigate the effect of orally administered raspberry ketone (RK) on ameliorating nonalcoholic fatty liver disease (NAFLD) induced in rats by high-fat high-fructose diet (HFFD) in comparison to calorie restriction (CR) regimen. Thirty male Wistar rats were divided into two experimental groups; one was fed normal chow diet (NCD, n = 6) for 15 weeks to serve as normal control group and the other group was fed HFFD (n = 24) for 7 weeks to induce NAFLD. After induction, rats in the HFFD group were randomly allocated into four groups (n = 6 rats each). One group continued on HFFD feeding for 8 weeks (NAFLD control group). The remaining 3 groups received NCD, calorie-restricted diet, or NCD along with RK (55 mg/kg/day, orally) for 8 weeks. Like CR, RK effectively attenuated NAFLD and ameliorated the changes attained by HFFD. RK upregulated the expression of the phosphorylated AMP-activated protein kinase (P-AMPK) and fatty acid oxidation factors; peroxisome proliferator-activated receptor alpha (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) and downregulated lipogenic factors; sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) in the hepatic tissue. Also, RK improved lipid profile parameters, liver enzymes and both body and liver tissue weights. Altogether, these findings suggest that oral administration of RK, along with normal diet, ameliorated NAFLD in a way similar to CR. This approach could be an alternative to CR in the management of NAFLD, overcoming the poor compliance to long term CR regimen.
Collapse
Affiliation(s)
- Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt.
| | - Mohamed A Shaheen
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519, Egypt
| | - Mahmoud E Zaher
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| |
Collapse
|
33
|
Kakehashi A, Suzuki S, Wanibuchi H. Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers (Basel) 2023; 15:4566. [PMID: 37760534 PMCID: PMC10527326 DOI: 10.3390/cancers15184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (NASH) are chronic hepatic conditions leading to hepatocellular carcinoma (HCC) development. According to the recent "multiple-parallel-hits hypothesis", NASH could be caused by abnormal metabolism, accumulation of lipids, mitochondrial dysfunction, and oxidative and endoplasmic reticulum stresses and is found in obese and non-obese patients. Recent translational research studies have discovered new proteins and signaling pathways that are involved not only in the development of NAFLD but also in its progression to NASH, cirrhosis, and HCC. Nevertheless, the mechanisms of HCC developing from precancerous lesions have not yet been fully elucidated. Now, it is of particular importance to start research focusing on the discovery of novel molecular pathways that mediate alterations in glucose and lipid metabolism, which leads to the development of liver steatosis. The role of mTOR signaling in NASH progression to HCC has recently attracted attention. The goals of this review are (1) to highlight recent research on novel genetic and protein contributions to NAFLD/NASH; (2) to investigate how recent scientific findings might outline the process that causes NASH-associated HCC; and (3) to explore the reliable biomarkers/targets of NAFLD/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.S.); (H.W.)
| | | | | |
Collapse
|
34
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
35
|
Yeh YT, Wu X, Ma Y, Ying Z, He L, Xue B, Shi H, Choi Y, Yu L. Single ethanol binge causes severe liver injury in mice fed Western diet. Hepatol Commun 2023; 7:e00174. [PMID: 37314747 PMCID: PMC10270551 DOI: 10.1097/hc9.0000000000000174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/13/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease (ALD) and NAFLD often coexist in Western societies that consume energy-rich and cholesterol-containing Western diets. Increased rates of ALD mortality in young people in these societies are likely attributable to binge drinking. It is largely unknown how alcohol binge causes liver damage in the setting of Western diets. APPROACH AND RESULTS In this study, we showed that a single ethanol binge (5 g/kg body weight) induced severe liver injury as shown by marked increases in serum activities of the 2 aminotransferases AST and ALT in C57BL/6J mice that have been fed a Western diet for 3 weeks. The Western diet plus binge ethanol-fed mice also displayed severe lipid droplet deposition and high contents of triglycerides and cholesterol in the liver, which were associated with increased lipogenic and reduced fatty acid oxidative gene expression. These animals had the highest Cxcl1 mRNA expression and myeloperoxidase (MPO)-positive neutrophils in the liver. Their hepatic ROS and lipid peroxidation were the highest, but their hepatic levels of mitochondrial oxidative phosphorylation proteins remained largely unaltered. Hepatic levels of several ER stress markers, including mRNAs for CHOP, ERO1A, ERO1B, BIM, and BIP, as well as Xbp1 splicing and proteins for BIP/GRP78 and IRE-α were also the highest in these animals. Interestingly, Western diet feeding for 3 weeks or ethanol binge dramatically increased hepatic caspase 3 cleavage, and the combination of the 2 did not further increase it. Thus, we successfully established a murine model of acute liver injury by mimicking human diets and binge drinking. CONCLUSIONS This simple Western diet plus single ethanol binge model recapitulates major hepatic phenotypes of ALD, including steatosis and steatohepatitis characterized by neutrophil infiltration, oxidative stress, and ER stress.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiangdong Wu
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yinyan Ma
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhekang Ying
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, Baltimore Street, Maryland, USA
| | - Ling He
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bingzhong Xue
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, Baltimore Street, Maryland, USA
| | - Hang Shi
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, Baltimore Street, Maryland, USA
| | - Youngshim Choi
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Liqing Yu
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Sakai E, Imaizumi T, Suzuki R, Taracena-Gándara M, Fujimoto T, Sakurai F, Mizuguchi H. miR-27b targets MAIP1 to mediate lipid accumulation in cultured human and mouse hepatic cells. Commun Biol 2023; 6:669. [PMID: 37355744 PMCID: PMC10290684 DOI: 10.1038/s42003-023-05049-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Non-alcoholic liver disease (NAFLD) is a condition caused by excessive fat accumulation in the liver and developed via multiple pathways. miR-27b has been suggested to play crucial roles in the development of NAFLD, assuming via targeting genes involved in lipid catabolism and anabolism. However, other pathways regulated by miR-27b are largely unknown. Here we show that lipid accumulation was induced in miR-27b-transfected human and mouse hepatic cells and that knockdowns of three miR-27b-target genes, β-1,4-galactosyltransferase 3 (B4GALT3), matrix AAA peptidase interacting protein 1 (MAIP1) and PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2), induced lipid accumulation. We also show that B4GALT3 and MAIP1 were direct targets of miR-27b and overexpression of MAIP1 ameliorated miR-27b-induced lipid accumulation. In addition, we show that hepatic Maip1 expression declined in mice fed a high-fat diet, suggesting the involvement of decreased Maip1 expression in the condition of fatty liver. Overall, we identified MAIP1/miR-27b axis as a mediator of hepatic lipid accumulation, a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Eiko Sakai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsutomu Imaizumi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ruruka Suzuki
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Marcos Taracena-Gándara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiki Fujimoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
37
|
Cai N, Chen X, Liu J, Wen Z, Wen S, Zeng W, Lin S, Chen Y, Shi G, Zeng L. Glucokinase activator improves glucose tolerance and induces hepatic lipid accumulation in mice with diet-induced obesity. LIVER RESEARCH 2023; 7:124-135. [PMID: 39958949 PMCID: PMC11791924 DOI: 10.1016/j.livres.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 02/18/2025]
Abstract
Background and aims Type 2 diabetes mellitus remains a substantial medical problem with increasing global prevalence. Pharmacological research is becoming increasingly focused on personalized treatment strategies. Drug development based on glucokinase (GK) activation is an important strategy for lowering blood glucose. This study aimed to investigate the effect of GK activation on glucose and lipid metabolism in diet-induced obese mice. Materials and methods Mice were fed with a high-fat diet (HFD) for 16 weeks to induce obesity, followed by a GK activator (GKA, AZD1656) or vehicle treatment by gavage for 4 weeks. The effect of GKA treatment on glucose metabolism was evaluated using glucose and insulin tolerance tests. Hepatic lipid accumulation was assessed by hematoxylin and eosin staining, Oil Red O staining, and transmission electron microscopy. The underlying mechanism of GK activation in glucose and lipid metabolism in the liver was studied using transcriptomic analysis, with a mechanistic study in mouse livers in vivo and AML12 cells in vitro. Results GK activation by GKA treatment improved glucose tolerance in HFD-fed mice while increasing hepatic lipid accumulation. Transcriptomic analysis of liver tissues indicated the lipogenesis and protein kinase RNA-like endoplasmic reticulum kinase (PERK)-unfolded protein response (UPR) pathway activations in GKA-treated HFD-fed mice. Inhibition of the ACC activity, which is an important protein in lipogenesis, attenuated GKA treatment-induced lipid accumulation and PERK-UPR activation in vitro. Conclusions GK activation improved glucose tolerance and insulin sensitivity while inducing hepatic lipid accumulation by increasing the lipogenic gene expression, which subsequently activated the hepatic PERK-UPR signaling pathway.
Collapse
Affiliation(s)
- Nan Cai
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuanrong Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheyao Wen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siyin Wen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuo Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanming Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Guangzhou, Guangdong, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Guangzhou, Guangdong, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Guangzhou, Guangdong, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Frontini-López YR, Rivera L, Pocognoni CA, Roldán JS, Colombo MI, Uhart M, Delgui LR. Infectious Bursal Disease Virus Assembly Causes Endoplasmic Reticulum Stress and Lipid Droplet Accumulation. Viruses 2023; 15:1295. [PMID: 37376595 DOI: 10.3390/v15061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Gumboro illness is caused by the highly contagious immunosuppressive infectious bursal disease virus (IBDV), which affects the poultry industry globally. We have previously shown that IBDV hijacks the endocytic pathway to construct viral replication complexes on endosomes linked to the Golgi complex (GC). Then, analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b, the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), and its substrate, the small GTPase ADP-ribosylation factor 1 (ARF1), for IBDV replication. In the current work, we focused on elucidating the IBDV assembly sites. We show that viral assembly occurs within single-membrane compartments closely associated with endoplasmic reticulum (ER) membranes, though we failed to elucidate the exact nature of the virus-wrapping membranes. Additionally, we show that IBDV infection promotes the stress of the ER, characterized by an accumulation of the chaperone binding protein (BiP) and lipid droplets (LDs) in the host cells. Overall, our results represent further original data showing the interplay between IBDV and the secretory pathway, making a substantial contribution to the field of birnaviruses-host cell interactions.
Collapse
Affiliation(s)
- Yesica R Frontini-López
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Lautaro Rivera
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Cristian A Pocognoni
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Julieta S Roldán
- Instituto de Virología e Innovaciones Tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham 1686, Argentina
| | - María I Colombo
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marina Uhart
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| |
Collapse
|
39
|
Xue X, Wu X, Liu L, Liu L, Zhu F. ERVW-1 Activates ATF6-Mediated Unfolded Protein Response by Decreasing GANAB in Recent-Onset Schizophrenia. Viruses 2023; 15:1298. [PMID: 37376599 PMCID: PMC10304270 DOI: 10.3390/v15061298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Schizophrenia, a mental disorder, afflicts 1% of the worldwide population. The dysregulation of homeostasis in the endoplasmic reticulum (ER) has been implicated in schizophrenia. Moreover, recent studies indicate that ER stress and the unfolded protein response (UPR) are linked to this mental disorder. Our previous research has verified that endogenous retrovirus group W member 1 envelope (ERVW-1), a risk factor for schizophrenia, is elevated in individuals with schizophrenia. Nevertheless, no literature is available regarding the underlying relationship between ER stress and ERVW-1 in schizophrenia. The aim of our research was to investigate the molecular mechanism connecting ER stress and ERVW-1 in schizophrenia. Here, we employed Gene Differential Expression Analysis to predict differentially expressed genes (DEGs) in the human prefrontal cortex of schizophrenic patients and identified aberrant expression of UPR-related genes. Subsequent research indicated that the UPR gene called XBP1 had a positive correlation with ATF6, BCL-2, and ERVW-1 in individuals with schizophrenia using Spearman correlation analysis. Furthermore, results from the enzyme-linked immunosorbent assay (ELISA) suggested increased serum protein levels of ATF6 and XBP1 in schizophrenic patients compared with healthy controls, exhibiting a strong correlation with ERVW-1 using median analysis and Mann-Whitney U analysis. However, serum GANAB levels were decreased in schizophrenic patients compared with controls and showed a significant negative correlation with ERVW-1, ATF6, and XBP1 in schizophrenic patients. Interestingly, in vitro experiments verified that ERVW-1 indeed increased ATF6 and XBP1 expression while decreasing GANAB expression. Additionally, the confocal microscope experiment suggested that ERVW-1 could impact the shape of the ER, leading to ER stress. GANAB was found to participate in ER stress regulated by ERVW-1. In conclusion, ERVW-1 induced ER stress by suppressing GANAB expression, thereby upregulating the expression of ATF6 and XBP1 and ultimately contributing to the development of schizophrenia.
Collapse
Affiliation(s)
- Xing Xue
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
| | - Lijuan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| | | | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
40
|
Almog T, Keshet R, Kandel-Kfir M, Shaish A, Apte RN, Harats D, Kamari Y. Gene deletion of Interleukin-1α reduces ER stress-induced CHOP expression in macrophages and attenuates the progression of atherosclerosis in apoE-deficient mice. Cytokine 2023; 167:156212. [PMID: 37146542 DOI: 10.1016/j.cyto.2023.156212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
The pathophysiology of atherosclerosis initiation and progression involves many inflammatory cytokines, one of them is interleukin (IL)-1α that has been shown to be secreted by activated macrophages. We have previously shown that IL-1α from bone marrow-derived cells is critical for early atherosclerosis development in mice. It is known that endoplasmic reticulum (ER) stress in macrophages is involved in progression to more advanced atherosclerosis, but it is still unknown whether this effect is mediated through cytokine activation or secretion. We previously demonstrated that IL-1α is required in ER stress-induced activation of inflammatory cytokines in hepatocytes and in the associated induction of steatohepatitis. In the current study, we aimed to examine the potential role of IL-1α in ER stress-induced activation of macrophages, which is relevant to progression of atherosclerosis. First, we demonstrated that IL-1α is required for atherosclerosis development and progression in the apoE knockout (KO) mouse model of atherosclerosis. Next, we showed that ER stress in mouse macrophages results in the protein production and secretion of IL-1α in a dose-dependent manner, and that IL-1α is required in ER stress-induced production of the C/EBP homologous protein (CHOP), a critical step in ER stress-mediated apoptosis. We further demonstrated that IL-1α-dependent CHOP production in macrophages is specifically mediated through the PERK-ATF4 signaling pathway. Altogether, these findings highlight IL-1α as a potential target for prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Tal Almog
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Rom Keshet
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Michal Kandel-Kfir
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel; Achva Academic College, Israel
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dror Harats
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yehuda Kamari
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
41
|
Fatima M, Khan MR. Jasminum humile (Linn) ameliorates CCl 4-induced oxidative stress by regulating ER stress, inflammatory, and fibrosis markers in rats. Inflammopharmacology 2023; 31:1405-1421. [PMID: 37103691 DOI: 10.1007/s10787-023-01230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
Jasminum humile (Linn) is highly valued for its medicinal properties. The pulp and decoction made from its leaves are effective for skin diseases. Juice prepared from roots is used against ringworm illness. Our current study aims to illustrate the non-toxicity and protective potential of methanol extract of Jasminum humile (JHM) against CCl4-induced oxidative stress in the liver of rats. Qualitative phytochemical screening, total flavonoids (TFC), and total phenolic content (TPC) assays were performed with JHM. The toxicity of the plant was estimated by treating female rats at different JHM doses while to assess anti-inflammatory potential of plant nine groups of male rats (six rats/group) received different treatments such as: CCl4 only (1 ml/kg mixed with olive oil in a ratio of 3:7), silymarin (200 mg/kg) + CCl4, different doses of JHM alone at a ratio of 1:2:4, and JHM (at a ratio of 1:2:4) + CCl4, and were examined for different antioxidant enzymes, serum markers, and histological changes, while mRNA expression of stress, inflammatory and fibrosis markers were assessed by real-time polymerase chain reaction analysis. Different phytochemicals were found in JHM. A high amount of total phenolic and flavonoid content was found (89.71 ± 2.79 mg RE/g and 124.77 ± 2.41 mg GAE/g) in the methanolic extract of the plant. Non-toxicity of JHM was revealed even at higher doses of JHM. Normal levels of serum markers in blood serum and antioxidant enzymes in tissue homogenates were found after co-administration of JHM along with CCl4. However, CCl4 treatment caused oxidative stress in the liver by enhancing the levels of stress and inflammatory markers and reducing antioxidant enzyme levels, while JHM treatment showed significant (P < 0.05) downregulation was in mRNA expression of those markers. Investigation of mechanism of specific signaling pathways related to apoptosis and clinical trials to assess safety and efficacy of optimal dosage of Jasminum humile will be helpful to develop FDA-approved drug.
Collapse
Affiliation(s)
- Mehreen Fatima
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
42
|
Asher G, Zhu B. Beyond circadian rhythms: emerging roles of ultradian rhythms in control of liver functions. Hepatology 2023; 77:1022-1035. [PMID: 35591797 PMCID: PMC9674798 DOI: 10.1002/hep.32580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/08/2022]
Abstract
The mammalian liver must cope with various metabolic and physiological changes that normally recur every day and primarily stem from daily cycles of rest-activity and fasting-feeding. Although a large body of evidence supports the reciprocal regulation of circadian rhythms and liver function, the research on the hepatic ultradian rhythms have largely been lagging behind. However, with the advent of more cost-effective high-throughput omics technologies, high-resolution time-lapse imaging, and more robust and powerful mathematical tools, several recent studies have shed new light on the presence and functions of hepatic ultradian rhythms. In this review, we will first very briefly discuss the basic principles of circadian rhythms, and then cover in greater details the recent literature related to ultradian rhythms. Specifically, we will highlight the prevalence and mechanisms of hepatic 12-h rhythms, and 8-h rhythms, which cycle at the second and third harmonics of circadian frequency. Finally, we also refer to ultradian rhythms with other frequencies and examine the limitations of the current approaches as well as the challenges related to identifying ultradian rhythm and addressing their molecular underpinnings.
Collapse
Affiliation(s)
- Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Batool R, Khan MR, Ijaz MU, Naz I, Batool A, Ali S, Zahra Z, Gul S, Uddin MN, Kazi M, Khan R. Linum corymbulosum Protects Rats against CCl 4-Induced Hepatic Injuries through Modulation of an Unfolded Protein Response Pathway and Pro-Inflammatory Intermediates. Molecules 2023; 28:2257. [PMID: 36903503 PMCID: PMC10004795 DOI: 10.3390/molecules28052257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Liver fibrosis is a major pathological feature of chronic liver disease and effective therapies are limited at present. The present study focuses on the hepatoprotective potential of L. corymbulosum against carbon tetrachloride (CCl4)-induced liver damage in rats. Analysis of Linum corymbulosum methanol extract (LCM) using high-performance liquid chromatography (HPLC) revealed the presence of rutin, apigenin, catechin, caffeic acid and myricetin. CCl4 administration lowered (p < 0.01) the activities of antioxidant enzymes and reduced glutathione (GSH) content as well as soluble proteins, whereas the concentration of H2O2, nitrite and thiobarbituric acid reactive substances was higher in hepatic samples. In serum, the level of hepatic markers and total bilirubin was elevated followed by CCl4 administration. The expression of glucose-regulated protein (GRP78), x-box binding protein-1 total (XBP-1 t), x-box binding protein-1 spliced (XBP-1 s), x-box binding protein-1 unspliced (XBP-1 u) and glutamate-cysteine ligase catalytic subunit (GCLC) was enhanced in CCl4-administered rats. Similarly, the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemo attractant protein-1 (MCP-1) was strongly increased with CCl4 administration to rats. Co-administration of LCM along with CCl4 to rats lowered (p < 0.05) the expression of the above genes. Histopathology of the liver showed hepatocyte injury, leukocyte infiltration and damaged central lobules in CCl4-treated rats. However, LCM administration to CCl4-intoxicated rats restored the altered parameters towards the levels of control rats. These outcomes indicate the existence of antioxidant and anti-inflammatory constituents in the methanol extract of L. corymbulosum.
Collapse
Affiliation(s)
- Riffat Batool
- Directorate of BASR, Allama Iqbal Open University, Islamabad 44310, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Irum Naz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Afsheen Batool
- Faculty RMU & Allied Hospitals, Rawalpindi Medical University and Allied Hospital, Rawalpindi 46000, Pakistan
| | - Saima Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zartash Zahra
- Gujrat Institute of Management Sciences, Peer Mehar Ali Shah Arid Agriculture University, Gujrat 50700, Pakistan
| | - Safia Gul
- Department of Botany, Sardar Bahadur Khan Women’s University Quetta, Quetta 87300, Pakistan
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raees Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
44
|
Rohbeck E, Niersmann C, Köhrer K, Wachtmeister T, Roden M, Eckel J, Romacho T. Positive allosteric GABA A receptor modulation counteracts lipotoxicity-induced gene expression changes in hepatocytes in vitro. Front Physiol 2023; 14:1106075. [PMID: 36860523 PMCID: PMC9968943 DOI: 10.3389/fphys.2023.1106075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: We have previously shown that the novel positive allosteric modulator of the GABAA receptor, HK4, exerts hepatoprotective effects against lipotoxicity-induced apoptosis, DNA damage, inflammation and ER stress in vitro. This might be mediated by downregulated phosphorylation of the transcription factors NF-κB and STAT3. The current study aimed to investigate the effect of HK4 on lipotoxicity-induced hepatocyte injury at the transcriptional level. Methods: HepG2 cells were treated with palmitate (200 μM) in the presence or absence of HK4 (10 μM) for 7 h. Total RNA was isolated and the expression profiles of mRNAs were assessed. Differentially expressed genes were identified and subjected to the DAVID database and Ingenuity Pathway Analysis software for functional and pathway analysis, all under appropriate statistical testing. Results: Transcriptomic analysis showed substantial modifications in gene expression in response to palmitate as lipotoxic stimulus with 1,457 differentially expressed genes affecting lipid metabolism, oxidative phosphorylation, apoptosis, oxidative and ER stress among others. HK4 preincubation resulted in the prevention of palmitate-induced dysregulation by restoring initial gene expression pattern of untreated hepatocytes comprising 456 genes. Out of the 456 genes, 342 genes were upregulated and 114 downregulated by HK4. Enriched pathways analysis of those genes by Ingenuity Pathway Analysis, pointed towards oxidative phosphorylation, mitochondrial dysregulation, protein ubiquitination, apoptosis, and cell cycle regulation as affected pathways. These pathways are regulated by the key upstream regulators TP53, KDM5B, DDX5, CAB39 L and SYVN1, which orchestrate the metabolic and oxidative stress responses including modulation of DNA repair and degradation of ER stress-induced misfolded proteins in the presence or absence of HK4. Discussion: We conclude that HK4 specifically targets mitochondrial respiration, protein ubiquitination, apoptosis and cell cycle. This not only helps to counteract lipotoxic hepatocellular injury through modification of gene expression, but - by targeting transcription factors responsible for DNA repair, cell cycle progression and ER stress - might even prevent lipotoxic mechanisms. These findings suggest that HK4 has a great potential for the treatment of non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Elisabeth Rohbeck
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany,CureDiab Metabolic Research GmbH, Düsseldorf, Germany
| | - Corinna Niersmann
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany,CureDiab Metabolic Research GmbH, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Centre (BMFZ), Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Centre (BMFZ), Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Eckel
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,CureDiab Metabolic Research GmbH, Düsseldorf, Germany
| | - Tania Romacho
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,Chronic Complications of Diabetes Lab (ChroCoDiL), Department of Nursing Sciences, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería, Spain,*Correspondence: Tania Romacho,
| |
Collapse
|
45
|
Shah A, Huck I, Duncan K, Gansemer ER, Apte U, Stamnes MA, Rutkowski DT. Interference with the HNF4-dependent gene regulatory network diminishes ER stress in hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527889. [PMID: 36798396 PMCID: PMC9934629 DOI: 10.1101/2023.02.09.527889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In all eukaryotic cell types, the unfolded protein response (UPR) upregulates factors that promote protein folding and misfolded protein clearance to help alleviate endoplasmic reticulum (ER) stress. Yet ER stress in the liver is uniquely accompanied by the suppression of metabolic genes, the coordination and purpose of which is largely unknown. Here, we used unsupervised machine learning to identify a cluster of correlated genes that were profoundly suppressed by persistent ER stress in the liver. These genes, which encode diverse functions including metabolism, coagulation, drug detoxification, and bile synthesis, are likely targets of the master regulator of hepatocyte differentiation HNF4α. The response of these genes to ER stress was phenocopied by liver-specific deletion of HNF4 α. Strikingly, while deletion of HNF4α exacerbated liver injury in response to an ER stress challenge, it also diminished UPR activation and partially preserved ER ultrastructure, suggesting attenuated ER stress. Conversely, pharmacological maintenance of hepatocyte identity in vitro enhanced sensitivity to stress. Several pathways potentially link HNF4α to ER stress sensitivity, including control of expression of the tunicamycin transporter MFSD2A; modulation of IRE1/XBP1 signaling; and regulation of Pyruvate Dehydrogenase. Together, these findings suggest that HNF4α activity is linked to hepatic ER homeostasis through multiple mechanisms.
Collapse
Affiliation(s)
- Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Ian Huck
- Department of Pharmacology, Toxicology, and Therapeutics, Kansas University Medical Center, Kansas City, KS
| | - Kaylia Duncan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Erica R. Gansemer
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, Kansas University Medical Center, Kansas City, KS
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
46
|
Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H, Ren J. Endoplasmic reticulum stress in liver diseases. Hepatology 2023; 77:619-639. [PMID: 35524448 PMCID: PMC9637239 DOI: 10.1002/hep.32562] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that fosters the correct folding of linear polypeptides and proteins, a process tightly governed by the ER-resident enzymes and chaperones. Failure to shape the proper 3-dimensional architecture of proteins culminates in the accumulation of misfolded or unfolded proteins within the ER, disturbs ER homeostasis, and leads to canonically defined ER stress. Recent studies have elucidated that cellular perturbations, such as lipotoxicity, can also lead to ER stress. In response to ER stress, the unfolded protein response (UPR) is activated to reestablish ER homeostasis ("adaptive UPR"), or, conversely, to provoke cell death when ER stress is overwhelmed and sustained ("maladaptive UPR"). It is well documented that ER stress contributes to the onset and progression of multiple hepatic pathologies including NAFLD, alcohol-associated liver disease, viral hepatitis, liver ischemia, drug toxicity, and liver cancers. Here, we review key studies dealing with the emerging role of ER stress and the UPR in the pathophysiology of liver diseases from cellular, murine, and human models. Specifically, we will summarize current available knowledge on pharmacological and non-pharmacological interventions that may be used to target maladaptive UPR for the treatment of nonmalignant liver diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
47
|
Arruda AP, Parlakgül G. Endoplasmic Reticulum Architecture and Inter-Organelle Communication in Metabolic Health and Disease. Cold Spring Harb Perspect Biol 2023; 15:a041261. [PMID: 35940911 PMCID: PMC9899651 DOI: 10.1101/cshperspect.a041261] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in the regulation of lipid and glucose metabolism, proteostasis, Ca2+ signaling, and detoxification. The structural organization of the ER is very dynamic and complex, with distinct subdomains such as the nuclear envelope and the peripheral ER organized into ER sheets and tubules. ER also forms physical contact sites with all other cellular organelles and with the plasma membrane. Both form and function of the ER are highly adaptive, with a potent capacity to respond to transient changes in environmental cues such as nutritional fluctuations. However, under obesity-induced chronic stress, the ER fails to adapt, leading to ER dysfunction and the development of metabolic pathologies such as insulin resistance and fatty liver disease. Here, we discuss how the remodeling of ER structure and contact sites with other organelles results in diversification of metabolic function and how perturbations to this structural flexibility by chronic overnutrition contribute to ER dysfunction and metabolic pathologies in obesity.
Collapse
Affiliation(s)
- Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Güneş Parlakgül
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
48
|
Ehrlich A, Ioannidis K, Nasar M, Abu Alkian I, Daskal Y, Atari N, Kliker L, Rainy N, Hofree M, Shafran Tikva S, Houri I, Cicero A, Pavanello C, Sirtori CR, Cohen JB, Chirinos JA, Deutsch L, Cohen M, Gottlieb A, Bar-Chaim A, Shibolet O, Mandelboim M, Maayan SL, Nahmias Y. Efficacy and safety of metabolic interventions for the treatment of severe COVID-19: in vitro, observational, and non-randomized open-label interventional study. eLife 2023; 12:e79946. [PMID: 36705566 PMCID: PMC9937660 DOI: 10.7554/elife.79946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/26/2023] [Indexed: 01/28/2023] Open
Abstract
Background Viral infection is associated with a significant rewire of the host metabolic pathways, presenting attractive metabolic targets for intervention. Methods We chart the metabolic response of lung epithelial cells to SARS-CoV-2 infection in primary cultures and COVID-19 patient samples and perform in vitro metabolism-focused drug screen on primary lung epithelial cells infected with different strains of the virus. We perform observational analysis of Israeli patients hospitalized due to COVID-19 and comparative epidemiological analysis from cohorts in Italy and the Veteran's Health Administration in the United States. In addition, we perform a prospective non-randomized interventional open-label study in which 15 patients hospitalized with severe COVID-19 were given 145 mg/day of nanocrystallized fenofibrate added to the standard of care. Results SARS-CoV-2 infection produced transcriptional changes associated with increased glycolysis and lipid accumulation. Metabolism-focused drug screen showed that fenofibrate reversed lipid accumulation and blocked SARS-CoV-2 replication through a PPARα-dependent mechanism in both alpha and delta variants. Analysis of 3233 Israeli patients hospitalized due to COVID-19 supported in vitro findings. Patients taking fibrates showed significantly lower markers of immunoinflammation and faster recovery. Additional corroboration was received by comparative epidemiological analysis from cohorts in Europe and the United States. A subsequent prospective non-randomized interventional open-label study was carried out on 15 patients hospitalized with severe COVID-19. The patients were treated with 145 mg/day of nanocrystallized fenofibrate in addition to standard-of-care. Patients receiving fenofibrate demonstrated a rapid reduction in inflammation and a significantly faster recovery compared to patients admitted during the same period. Conclusions Taken together, our data suggest that pharmacological modulation of PPARα should be strongly considered as a potential therapeutic approach for SARS-CoV-2 infection and emphasizes the need to complete the study of fenofibrate in large randomized controlled clinical trials. Funding Funding was provided by European Research Council Consolidator Grants OCLD (project no. 681870) and generous gifts from the Nikoh Foundation and the Sam and Rina Frankel Foundation (YN). The interventional study was supported by Abbott (project FENOC0003). Clinical trial number NCT04661930.
Collapse
Affiliation(s)
- Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and EngineeringJerusalemIsrael
- Department of Cell and Developmental Biology, Silberman Institute of Life SciencesJerusalemIsrael
| | - Konstantinos Ioannidis
- Grass Center for Bioengineering, Benin School of Computer Science and EngineeringJerusalemIsrael
- Department of Cell and Developmental Biology, Silberman Institute of Life SciencesJerusalemIsrael
| | - Makram Nasar
- Division of Infectious Diseases, Barzilai Medical CenterAshkelonIsrael
| | | | - Yuval Daskal
- Grass Center for Bioengineering, Benin School of Computer Science and EngineeringJerusalemIsrael
- Department of Cell and Developmental Biology, Silberman Institute of Life SciencesJerusalemIsrael
| | - Nofar Atari
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical CenterTel HashomerIsrael
| | - Limor Kliker
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical CenterTel HashomerIsrael
| | - Nir Rainy
- Laboratory Division, Shamir (Assaf Harofeh) Medical CenterZerifinItaly
| | - Matan Hofree
- Klarman Cell Observatory, The Broad Institute of Harvard and MITCambridgeUnited States
| | - Sigal Shafran Tikva
- Laboratory Division, Shamir (Assaf Harofeh) Medical CenterZerifinItaly
- Hadassah Research and Innovation CenterJerusalemIsrael
- Department of Nursing, Faculty of School of Life and Health Sciences, The Jerusalem College of Technology Lev Academic CenterJerusalemIsrael
| | - Inbal Houri
- Department of Gastroenterology, Sourasky Medical CenterTel AvivIsrael
| | - Arrigo Cicero
- IRCSS S.Orsola-Malpighi University HospitalBolognaItaly
| | - Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di MilanoMilanoItaly
- Centro Dislipidemie, Niguarda HospitalMilanoItaly
| | | | - Jordana B Cohen
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Julio A Chirinos
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | | | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and EngineeringJerusalemIsrael
- Department of Cell and Developmental Biology, Silberman Institute of Life SciencesJerusalemIsrael
| | - Amichai Gottlieb
- Division of Infectious Diseases, Barzilai Medical CenterAshkelonIsrael
| | - Adina Bar-Chaim
- Laboratory Division, Shamir (Assaf Harofeh) Medical CenterZerifinItaly
| | - Oren Shibolet
- Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | | | - Shlomo L Maayan
- Division of Infectious Diseases, Barzilai Medical CenterAshkelonIsrael
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and EngineeringJerusalemIsrael
- Department of Cell and Developmental Biology, Silberman Institute of Life SciencesJerusalemIsrael
| |
Collapse
|
49
|
Naringin reduces fat deposition by promoting the expression of lipolysis and β-oxidation related genes. Obes Res Clin Pract 2023; 17:74-81. [PMID: 36494293 DOI: 10.1016/j.orcp.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
AIMS Naringin, a flavonoid present in citrus fruits, has been known for the capacity to reduce lipid synthesis and anti-inflammatory. In this study, we investigated whether naringin increases lipolysis and fatty acid β-oxidation to change fat deposition. METHODS In in vivo experiment, obese adult mice (20-weeks-old, n = 18) were divided into control group fed with normal diet and naringin-treated group fed with naringin-supplemented diet (5 g/kg) for 60 days, respectively. In in vitro experiment, differentiated 3T3-L1 adipocytes were treated for four days with or without naringin (100 µg/mL). RESULTS Supplementing naringin significantly reduced the body weight, abdominal fat weight, blood total cholesterol content of mice, but did not affect food intake. In addition, naringin decreased levels of pro-inflammatory factors in adipose tissue including interleukin-1β (IL-1β), interleukin-6 (IL-6), and monocyte chemotactic protein 1 (MCP-1). Naringin increased the expression of AMP-activated protein kinase (AMPK), a key factor in cellular energy metabolism, and raised the ratio of p-AMPK/AMPK in mouse liver tissue. The protein expression of hormone-sensitive lipase (HSL), phospho-HSL563 (p-HSL563), p-HSL563/HSL, and adipocyte triglyceride lipase (ATGL) was significantly increased in the adipose tissue of naringin-treated mice. Furthermore, naringin enhanced the expression of fatty acid β-oxidation genes, including carnitine palmitoyl transferase 1 (CPT1), uncoupling protein 2 (UCP2), and acyl-coenzyme A oxidase 1 (AOX1) in mouse adipose tissue. In in vitro experiment, similar findings were observed in differentiated 3T3-L1 adipocytes with naringin treatment. The treatment remarkably reduced intracellular lipid content, increased the number of mitochondria and promoted the gene expression of HSL, ATGL, CPT1, AOX1, and UCP2 and the phosphorylation of HSL protein. CONCLUSION Naringin reduced body fat in obese mice and lipid content in differentiated 3T3-L1 adipocytes, which was associated with enhanced AMPK activation and upregulation of the expression of the lipolytic genes HSL, ATGL, and β-oxidation genes CPT1, AOX1, and UCP2.
Collapse
|
50
|
Qi Q, Niture S, Gadi S, Arthur E, Moore J, Levine KE, Kumar D. Per- and polyfluoroalkyl substances activate UPR pathway, induce steatosis and fibrosis in liver cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:225-242. [PMID: 36251517 PMCID: PMC10092267 DOI: 10.1002/tox.23680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 05/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), which include perfluorooctanoic acid (PFOA), heptafluorobutyric acid (HFBA), and perfluorotetradecanoic acid (PFTA), are commonly occurring organic pollutants. Exposure to PFAS affects the immune system, thyroid and kidney function, lipid metabolism, and insulin signaling and is also involved in the development of fatty liver disease and cancer. The molecular mechanisms by which PFAS cause fatty liver disease are not understood in detail. In the current study, we investigated the effect of low physiologically relevant concentrations of PFOA, HFBA, and PFTA on cell survival, steatosis, and fibrogenic signaling in liver cell models. Exposure of PFOA and HFBA (10 to 1000 nM) specifically promoted cell survival in HepaRG and HepG2 cells. PFAS increased the expression of TNFα and IL6 inflammatory markers, increased endogenous reactive oxygen species (ROS) production, and activated unfolded protein response (UPR). Furthermore, PFAS enhanced cell steatosis and fibrosis in HepaRG and HepG2 cells which were accompanied by upregulation of steatosis (SCD1, ACC, SRBP1, and FASN), and fibrosis (TIMP2, p21, TGFβ) biomarkers expression, respectively. RNA-seq data suggested that chronic exposures to PFOA modulated the expression of fatty acid/lipid metabolic genes that are involved in the development of NFALD and fatty liver disease. Collectively our data suggest that acute/chronic physiologically relevant concentrations of PFAS enhance liver cell steatosis and fibrosis by the activation of the UPR pathway and by modulation of NFALD-related gene expression.
Collapse
Affiliation(s)
- Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| | - Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
- NCCU‐RTI Center for Applied Research in Environmental Sciences (CARES)RTI International, Research Triangle ParkDurhamNorth CarolinaUSA
| | - Sashi Gadi
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| | - Elena Arthur
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| | - John Moore
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| | - Keith E. Levine
- NCCU‐RTI Center for Applied Research in Environmental Sciences (CARES)RTI International, Research Triangle ParkDurhamNorth CarolinaUSA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
- NCCU‐RTI Center for Applied Research in Environmental Sciences (CARES)RTI International, Research Triangle ParkDurhamNorth CarolinaUSA
- Department of Pharmaceutical SciencesNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| |
Collapse
|