1
|
Chalifoux M, Avdeeva M, Posfai E. Geometric, cell cycle and maternal-to-zygotic transition-associated YAP dynamics during preimplantation embryo development. Dev Biol 2025; 524:105-115. [PMID: 40349907 DOI: 10.1016/j.ydbio.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
During the first cell fate decision in mammalian embryos, the inner cell mass cells, which will give rise to the embryo proper and other extraembryonic tissues, segregate from the trophectoderm cells, the precursors of the placenta. Cell fate segregation proceeds in a gradual manner encompassing two rounds of cell division, as well as cell positional and morphological changes. While it is known that the activity of the Hippo signaling pathway and the subcellular localization of its downstream effector YAP dictate lineage specific gene expression, the response of YAP to these dynamic cellular changes remains incompletely understood. Here we address these questions by quantitative live imaging of endogenously tagged YAP while simultaneously monitoring geometric cellular features and cell cycle progression throughout cell fate segregation. We apply a probabilistic model to our dynamic data, providing a quantitative characterization of the mutual effects of YAP and cellular relative exposed area, which has previously been shown to correlate with subcellular YAP localization in fixed samples. Additionally, we study how nuclear YAP levels are influenced by other factors, such as the decreasing pool of maternally provided YAP that is partitioned to daughter cells through cleavage divisions, cell cycle-associated nuclear volume changes, and a delay after divisions in adjusting YAP levels to new cell positions. Interestingly, we find that establishing low nuclear YAP levels required for the inner cell mass fate is largely achieved by passive cell cycle-associated mechanisms. Moreover, contrary to expectations, we find that mechanical perturbations that result in cell and nuclear shape changes do not influence YAP localization in the embryo. Together our work identifies how various inputs are integrated over a dynamic developmental time course to shape the levels of a key molecular determinant of the first cell fate choice.
Collapse
Affiliation(s)
- Madeleine Chalifoux
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Maria Avdeeva
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
McGinnis AJ, Cull ME, Peterson NT, Tang MK, Natale BV, Natale DRC. Exploring the differentiation potential of Eomes POS mouse trophoblast cells in mid-gestation. Dev Biol 2025; 521:75-84. [PMID: 39922418 DOI: 10.1016/j.ydbio.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Mouse trophoblast stem (mTS) cells can be derived from the blastocyst or extraembryonic ectoderm as late as embryonic day (E) 6.5 and when cultured in vitro, can differentiate to all trophoblast subtypes of the mature placenta. Expression of the T-box transcription factor, Eomes, is required for the maintenance of, and used to identify mTS cells. During development, Eomes is restricted to the ExE and, by E7.5, to the chorion, after which its expression declines. The placental junctional zone and labyrinth layers are thought to develop exclusively from the ectoplacental cone and chorion, respectively. While it is well established that mTS cells express Eomes in vitro, it is unknown if Eomes-positive (EomesPOS) trophoblast that reside in the chorion after E6.5 are restricted in their developmental potential to the labyrinth layer in vivo. This study utilized a lineage tracing technique to evaluate the in vivo differentiation of EomesPOS trophoblast. Using an Ai6 reporter mouse crossed with a tamoxifen-inducible Eomes-Cre-ERT2 mouse, Cre was activated from E7.5 to E9.5, permanently marking all EomesPOS trophoblast and daughter cells with the ZsGreen fluorescent protein. This approach was complemented with immunofluorescence staining to assess how the EomesPOS trophoblast had contributed to the differentiated trophoblast population within the placenta by E17.5. Importantly, the results show that daughter cells of EomesPOS trophoblast in which Cre was activated, contributed to both placental layers; specifically, spongiotrophoblast and glycogen trophoblast within the junctional zone and syncytiotrophoblast and sinusoidal trophoblast giant cells within the labyrinth. This confirms that EomesPOS trophoblast maintain the capacity to contribute to both placental layers in vivo and do so after E7.5. This study expands our understanding of trophoblast differentiation in vivo and may prove useful in assessing how EomesPOS trophoblast contribute placental development later in gestation and in the context of placental pathology, where Eomes expression has been reported.
Collapse
Affiliation(s)
- Avery J McGinnis
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Megan E Cull
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Nichole T Peterson
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Matthew K Tang
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Bryony V Natale
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - David R C Natale
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
3
|
Hua L, Peng Y, Yan L, Yuan P, Qiao J. Moving toward totipotency: the molecular and cellular features of totipotent and naive pluripotent stem cells. Hum Reprod Update 2025:dmaf006. [PMID: 40299455 DOI: 10.1093/humupd/dmaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/06/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Dissecting the key molecular mechanism of embryonic development provides novel insights into embryogenesis and potential intervention strategies for clinical practices. However, the ability to study the molecular mechanisms of early embryo development in humans, such as zygotic genome activation and lineage segregation, is meaningfully constrained by methodological limitations and ethical concerns. Totipotent stem cells have an extended developmental potential to differentiate into embryonic and extraembryonic tissues, providing a suitable model for studying early embryo development. Recently, a series of ground-breaking results on stem cells have identified totipotent-like cells or induced pluripotent stem cells into totipotent-like cells. OBJECTIVE AND RATIONALE This review followed the PRISMA guidelines, surveys the current works of literature on totipotent, naive, and formative pluripotent stem cells, introduces the molecular and biological characteristics of those stem cells, and gives advice for future research. SEARCH METHODS The search method employed the terms 'totipotent' OR 'naive pluripotent stem cell' OR 'formative pluripotent stem cell' for unfiltered search on PubMed, Web of Science, and Cochrane Library. Papers included were those with information on totipotent stem cells, naive pluripotent stem cells, or formative pluripotent stem cells until June 2024 and were published in the English language. Articles that have no relevance to stem cells, or totipotent, naive pluripotent, or formative pluripotent cells were excluded. OUTCOMES There were 152 records included in this review. These publications were divided into four groups according to the species of the cells included in the studies: 67 human stem cell studies, 70 mouse stem cell studies, 9 porcine stem cell studies, and 6 cynomolgus stem cell studies. Naive pluripotent stem cell models have been established in other species such as porcine and cynomolgus. Human and mouse totipotent stem cells, e.g. human 8-cell-like cells, human totipotent blastomere-like cells, and mouse 2-cell-like cells, have been successfully established and exhibit high developmental potency for both embryonic and extraembryonic contributions. However, the observed discrepancies between these cells and real embryos in terms of epigenetics and transcription suggest that further research is warranted. Our results systematically reviewed the established methods, molecular characteristics, and developmental potency of different naive, formative pluripotent, and totipotent stem cells. Furthermore, we provide a parallel comparison between animal and human models, and offer recommendations for future applications to advance early embryo research and assisted reproduction technologies. WIDER IMPLICATIONS Totipotent cell models provide a valuable resource to understand the underlying mechanisms of embryo development and forge new paths toward future treatment of infertility and regenerative medicine. However, current in vitro cell models exhibit epigenetic and transcriptional differences from in vivo embryos, and many cell models are unstable across passages, thus imperfectly recapitulating embryonic development. In this regard, standardizing and expanding current research on totipotent stem cell models are essential to enhance our capability to resemble and decipher embryogenesis.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuyang Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Peng Yuan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| |
Collapse
|
4
|
Ren H, Jia X, Yu L. The building blocks of embryo models: embryonic and extraembryonic stem cells. Cell Discov 2025; 11:40. [PMID: 40258839 PMCID: PMC12012135 DOI: 10.1038/s41421-025-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/10/2025] [Indexed: 04/23/2025] Open
Abstract
The process of a single-celled zygote developing into a complex multicellular organism is precisely regulated at spatial and temporal levels in vivo. However, understanding the mechanisms underlying development, particularly in humans, has been constrained by technical and ethical limitations associated with studying natural embryos. Harnessing the intrinsic ability of embryonic stem cells (ESCs) to self-organize when induced and assembled, researchers have established several embryo models as alternative approaches to studying early development in vitro. Recent studies have revealed the critical role of extraembryonic cells in early development; and many groups have created more sophisticated and precise ESC-derived embryo models by incorporating extraembryonic stem cell lines, such as trophoblast stem cells (TSCs), extraembryonic mesoderm cells (EXMCs), extraembryonic endoderm cells (XENs, in rodents), and hypoblast stem cells (in primates). Here, we summarize the characteristics of existing mouse and human embryonic and extraembryonic stem cells and review recent advancements in developing mouse and human embryo models.
Collapse
Affiliation(s)
- Hongan Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Leqian Yu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Meinhardt G, Waldhäusl H, Lackner AI, Wächter J, Maxian T, Höbler AL, Vondra S, Kunihs V, Saleh L, Haslinger P, Kiraly P, Szilagyi A, Than NG, Pollheimer J, Haider S, Knöfler M. The multifaceted roles of the transcriptional coactivator TAZ in extravillous trophoblast development of the human placenta. Proc Natl Acad Sci U S A 2025; 122:e2426385122. [PMID: 40228123 PMCID: PMC12037006 DOI: 10.1073/pnas.2426385122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
Insights into the molecular processes that drive early development of the human placenta is crucial for our understanding of pregnancy complications such as preeclampsia and fetal growth restriction, since defects in maturation of its epithelial cell, the trophoblast, have been detected in the severe forms of these diseases. However, key regulators specifying the differentiated trophoblast subtypes of the placenta are only slowly emerging. By using diverse trophoblast cell models, we herein show that the transcriptional coactivator of HIPPO signaling, TAZ, plays a pivotal role in the development of invasive extravillous trophoblasts (EVTs), cells that are essential for decidual vessel remodeling and adaption of maternal blood flow to the placenta. Ribonucleic acid sequencing (RNA-seq) or protein analyses upon TAZ gene silencing or CRISPR-Cas9-mediated knockout in differentiating trophoblast stem cells, organoids, primary EVTs, choriocarcinoma cells, or villous explant cultures unraveled that the coactivator promoted expression of genes associated with EVT identity, motility, and survival. Accordingly, depletion or chemical inhibition of TAZ, interacting with TEA domain family member 1 (TEAD1), impaired EVT differentiation, invasion, and migration and triggered apoptosis in the different trophoblast models. Notably, the coactivator also suppressed cell cycle genes and regulators of trophoblast self-renewal and prevented EVTs from cell fusion in organoids and primary cultures. Moreover, TAZ promoted human leukocyte antigen G (HLA-G) surface expression and increased NUAK1 kinase in EVTs thereby maintaining its own expression. In summary, the transcriptional coactivator TAZ plays a multifaceted role in the development of the EVT cell lineage by controlling different biological processes that initiate and preserve differentiation.
Collapse
Affiliation(s)
- Gudrun Meinhardt
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Hanna Waldhäusl
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Andreas I. Lackner
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Jasmin Wächter
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Anna-Lena Höbler
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Sigrid Vondra
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Victoria Kunihs
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Leila Saleh
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Peter Haslinger
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
| | - Andras Szilagyi
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
| | - Nandor G. Than
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest1126, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest1088, Hungary
| | - Jürgen Pollheimer
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Martin Knöfler
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| |
Collapse
|
6
|
Kim MJ, Kang HG, Jeon SB, Yun JH, Choi EY, Jeong PS, Song BS, Kim SU, Cho SK, Sim BW. IGF-1 promotes trophectoderm cell proliferation of porcine embryos by activating the Wnt/β-catenin pathway. Cell Commun Signal 2025; 23:188. [PMID: 40254588 PMCID: PMC12010624 DOI: 10.1186/s12964-025-02191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Insulin-like growth factor 1 (IGF-1) influences various aspects of embryogenesis, including embryonic development. This study investigated the effects of IGF-1 on early embryonic development in pig embryos, focusing on its interaction with the Wnt/β-catenin signaling pathway, a key regulator of cell adhesion and proliferation. METHODS Porcine embryos were used for experiments with chemical treatments to study blastocyst development and underlying mechanism. Apoptosis, immunochemistry, gene expression, and protein quantification were performed, with statistical significance assessed. RESULTS IGF-1 treatment during the early stages of embryonic development significantly enhanced developmental parameters, in particular blastocyst formation rates. Interestingly, IGF-1 increased trophectoderm (TE) cell proliferation. The TE is an essential component of the blastocyst, maintaining its structure. Successful development of pig embryos was dependent on the proper formation and function of the TE. IGF-1 upregulated the expression of functional proteins related to TE differentiation and tight junctions. Notably, these effects were more pronounced when IGF-1 treatment was performed during the last 3 days of embryonic development (days 3-6) compared to the first 3 days (days 0-3). In addition, we found that IGF-1 promoted activation of the Wnt/β-catenin signaling pathway, including increasing β-catenin levels and related gene expression. To confirm the interaction between IGF-1 signaling and the Wnt/β-catenin pathway in TE development, embryos were cultured with picropodophyllin, an IGF-1 receptor inhibitor. Picropodophyllin suppressed developmental parameters, β-catenin levels, TE cell differentiation, and tight junction formation. These effects were successfully rescued by IGF-1 and the Wnt/β-catenin signaling activator ChiR99021. CONCLUSION Our findings provide new insights into the interaction between IGF-1 and the Wnt/β-catenin signaling pathway during embryogenesis and highlight the potential of IGF-1 to improve reproductive outcomes by enhancing TE formation and quality.
Collapse
Affiliation(s)
- Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Ji Hyeon Yun
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Animal BioScience, School of Animal Life Convergence, Hankyong National University, Ansung, Republic of Korea
| | - Eun Young Choi
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seong-Keun Cho
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea.
- Department of Animal Science, College of Natural Resources and Life Science, Life and Industry Convergence Research Institute (LICRI), Pusan National University, Miryang, Republic of Korea.
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Nakanoh S. Exploring early extraembryonic cells of epiblast origin: Questions on human amniotic ectoderm and extraembryonic mesoderm. Dev Biol 2025; 524:80-86. [PMID: 40228781 DOI: 10.1016/j.ydbio.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/29/2025] [Accepted: 04/12/2025] [Indexed: 04/16/2025]
Abstract
Extraembryonic tissues are essential for proper fetal development and exhibit great diversity across species. Despite its importance, human extraembryonic development has been relatively overlooked. Previously, we established an in vitro model to study human amniogenesis and extraembryonic mesoderm formation. In this article, I develop discussions on four topics inspired by this study: (1) Features of amniotic cell populations described to date. A recently reported early amniotic cell type is examined based on its signature genes to consider how this population should be incorporated into models of primate amniogenesis. (2) Molecular mechanisms underlying the effect of cell density in regulating non-neural ectoderm specification. Fate specification by positional cues in mouse is revisited and possible mechanisms are suggested by drawing insights from human epiblast models. (3) Potential applications of the three-dimensional culture we established. Primate amniotic ectoderm is postulated as a gastrulation-inducing signaling center, and our technique could be used to effectively model its interactions with epiblast. (4) Extraembryonic mesoderm development in human embryos. The obscure origin of primate extraembryonic mesoderm and implications from recent in vitro differentiation models using human pluripotent stem cells are explained. The key concepts explored here will stimulate further studies into both amnion and extraembryonic mesoderm during human and non-human primate development.
Collapse
Affiliation(s)
- Shota Nakanoh
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
8
|
Dalal K, McAnany C, Weilert M, McKinney MC, Krueger S, Zeitlinger J. Interpreting regulatory mechanisms of Hippo signaling through a deep learning sequence model. CELL GENOMICS 2025; 5:100821. [PMID: 40174587 PMCID: PMC12008814 DOI: 10.1016/j.xgen.2025.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/23/2024] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Signaling pathway components are well studied, but how they mediate cell-type-specific transcription responses is an unresolved problem. Using the Hippo pathway in mouse trophoblast stem cells as a model, we show that the DNA binding of signaling effectors is driven by cell-type-specific sequence rules that can be learned genome wide by deep learning models. Through model interpretation and experimental validation, we show that motifs for the cell-type-specific transcription factor TFAP2C enhance TEAD4/YAP1 binding in a nucleosome-range and distance-dependent manner, driving synergistic enhancer activation. We also discovered that Tead double motifs are widespread, highly active canonical response elements. Molecular dynamics simulations suggest that TEAD4 binds them cooperatively through surprisingly labile protein-protein interactions that depend on the DNA template. These results show that the response to signaling pathways is encoded in the cis-regulatory sequences and that interpreting the rules reveals insights into the mechanisms by which signaling effectors influence cell-type-specific enhancer activity.
Collapse
Affiliation(s)
- Khyati Dalal
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Charles McAnany
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
9
|
Tian C, Rump A, Ebeid C, Mamidi A, Semb H. Salt-inducible kinases transduce mechanical forces into the specification of the pancreatic endocrine lineage. Stem Cell Reports 2025; 20:102444. [PMID: 40054471 PMCID: PMC12069894 DOI: 10.1016/j.stemcr.2025.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 04/11/2025] Open
Abstract
The extracellular matrix-F-actin-Yes-associated protein 1 (YAP1)-Notch mechanosignaling axis is a gatekeeper in the fate decisions of bipotent pancreatic progenitors (bi-PPs). However, the link between F-actin dynamics and YAP1 activity remains poorly understood. Here, we identify salt-inducible kinases (SIKs) as mediators of F-actin-triggered changes in YAP1 activity. Interestingly, sodium chloride treatment promotes the differentiation of bi-PPs into NEUROG3+ endocrine progenitors (EPs) through enhanced SIK expression. Consistently, the pan-SIK inhibitor HG-9-09-01 (HG) inhibits latrunculin B (LatB)-induced EP differentiation via nuclear YAP1 accumulation. Unexpectedly, withdrawal of HG after a 12-h treatment increased SIK expression by a negative feedback mechanism, leading to significantly enhanced endocrinogenesis. Therefore, the combined treatment of bi-PPs with LatB and HG for 12 h boosted endocrinogenesis, ultimately leading to an increased number of beta cells. In summary, we identify SIKs as new transducers of mechanotransduction-triggered induction of pancreatic endocrine cell fates.
Collapse
Affiliation(s)
- Chenglei Tian
- Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum Munchen, Munich, Germany; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Adam Rump
- Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum Munchen, Munich, Germany; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Christine Ebeid
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Anant Mamidi
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Henrik Semb
- Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum Munchen, Munich, Germany; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Saito S, Nishiyama K, Bai H, Takahashi M, Kawahara M. Polarization-independent regulation of the subcellular localization of Yes-associated protein 1 during preimplantation development. J Biol Chem 2025; 301:108429. [PMID: 40118454 PMCID: PMC12018982 DOI: 10.1016/j.jbc.2025.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025] Open
Abstract
Cell polarization is a crucial developmental process that determines cell differentiation in mouse embryos. During this process, an extensively expressed transcriptional regulator, Yes-associated protein 1 (YAP1), is localized either to the cytoplasm or to the nucleus via HIPPO signaling. In mouse premorula embryos, YAP1 is present in the nuclei of all cells. Thereafter, YAP1 is distributed to the nuclei of outer cells or cytoplasm of inner cells, depending on the establishment of cell polarity and morula formation. However, the dynamics of YAP1 localization in other species, including ruminants, remain unclear. To gain an in-depth understanding of cell differentiation in mammalian embryos, we investigated YAP1 localization changes in bovine embryos. Unlike in mouse morulae, YAP1 displayed cytoplasmic localization in most cells, including the outer cells of bovine morulae, after the 32-cell stage. Next, we analyzed the relationship between cell polarity and nuclear localization of YAP1. Polarization of outer cells in the bovine morula began at the late 16-cell stage and was established by the late 32-cell stage, indicating that polarization preceded the nuclear localization of YAP1 in bovine embryos. To explore the regulation of YAP1 localization in bovine morula, we analyzed zona-free embryos and found that the presence of the zona pellucida significantly enhanced YAP1 cytoplasmic localization. Moreover, we observed ectopic expression of SRY-box transcription factor 2 in zona-free blastocysts, which indicated that cytoplasmic localization of YAP1 was associated with the suppression of pluripotency in the trophectoderm. These findings provide valuable insights into the molecular mechanisms underlying the first cell differentiation in mammalian embryos.
Collapse
Affiliation(s)
- Shun Saito
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Koji Nishiyama
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masashi Takahashi
- Graduate School of Global Food Resources/Global Center for Food, Land and Water Resources, Hokkaido University, Sapporo, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
11
|
Canizo JR, Zhao C, Petropoulos S. The guinea pig serves as an alternative model to study human preimplantation development. Nat Cell Biol 2025; 27:696-710. [PMID: 40185949 PMCID: PMC11991919 DOI: 10.1038/s41556-025-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Preimplantation development is an important window of human embryogenesis. However, ethical constraints and the limitations involved in studying human embryos often necessitate the use of alternative model systems. Here we identify the guinea pig as a promising small animal model to study human preimplantation development. Using single-cell RNA-sequencing, we generated an atlas of guinea pig preimplantation development, revealing its close resemblance to early human embryogenesis in terms of the timing of compaction, early-, mid- and late-blastocyst formation, and implantation, and the spatio-temporal expression of key lineage markers. We also show conserved roles of Hippo, MEK-ERK and JAK-STAT signalling. Furthermore, multi-species analysis highlights the spatio-temporal expression of conserved and divergent genes during preimplantation development and pluripotency. The guinea pig serves as a valuable animal model for advancing preimplantation development and stem cell research, and can be leveraged to better understand the longer-term impact of early exposures on offspring outcomes.
Collapse
Affiliation(s)
- Jesica Romina Canizo
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Canada
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, Canada
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Canada.
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, Canada.
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Liu OX, Lin LB, Bunk S, Chew T, Wu SK, Motegi F, Low BC. A ZO-2 scaffolding mechanism regulates the Hippo signalling pathway. FEBS J 2025; 292:1587-1601. [PMID: 39462647 DOI: 10.1111/febs.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Contact inhibition of proliferation is a critical cell density control mechanism governed by the Hippo signalling pathway. The biochemical signalling underlying cell density-dependent cues regulating Hippo signalling and its downstream effectors, YAP, remains poorly understood. Here, we reveal that the tight junction protein ZO-2 is required for the contact-mediated inhibition of proliferation. We additionally determined that the well-established molecular players of this process, namely Hippo kinase LATS1 and YAP, are regulated by ZO-2 and that the scaffolding function of ZO-2 promotes the interaction with and phosphorylation of YAP by LATS1. Mechanistically, YAP is phosphorylated when ZO-2 brings LATS1 and YAP together via its SH3 and PDZ domains, respectively, subsequently leading to the cytoplasmic retention and inactivation of YAP. In conclusion, we demonstrate that ZO-2 maintains Hippo signalling pathway activation by promoting the stability of LATS1 to inactivate YAP.
Collapse
Affiliation(s)
- Olivia Xuan Liu
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Soumya Bunk
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tiweng Chew
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Selwin K Wu
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fumio Motegi
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life-Sciences Laboratory, Singapore, Singapore
- Institute for Genetic Medicine, Hokkaido University, Japan
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS College, National University of Singapore, Singapore
| |
Collapse
|
13
|
Guo Z, Yao J, Zheng X, Cao J, Lv X, Gao Z, Guo S, Li H, Guan D, Li L, Qin D, Li D, Wang X, Tan M, Zhang J, Zhang Y, Wang B, Bu W, Li J, Zhao X, Meng F, Feng Y, Li L, Du J, Fan Y. Cavity oscillation drives pattern formation in early mammalian embryos. Cell Rep 2025; 44:115342. [PMID: 39985766 DOI: 10.1016/j.celrep.2025.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
During the second cell fate in mouse embryos, the inner cell mass (ICM) segregates into the spatially distinct epiblast (EPI) and primitive endoderm (PrE) layers. The mechanism driving this pattern formation, however, remains unresolved. Here, we report that, concomitant with the segregation process of EPI/PrE precursors starting from mid-blastocyst, the blastocyst cavity begins to oscillate cyclically with rapid contraction yet slow expansion, triggering a phase transition in the ICM to a fluid-like state. This asymmetric oscillation of the blastocyst cavity facilitates EPI/PrE segregation by enhancing cell-cell contact fluctuations within the ICM and initiating convergent cell flows, which induce movement of these two cell types in opposite directions, wherein PrE precursors move toward the ICM-lumen interface, whereas EPI precursors move toward the trophectoderm. Last, we found that both PDGFRα expression and YAP nuclear accumulation in PrE precursors increase in response to blastocyst cavity oscillation. This study reveals the foundational role of physical oscillation in driving embryonic pattern formation during early mammalian embryonic development.
Collapse
Affiliation(s)
- Zheng Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jie Yao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jialing Cao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xinxin Lv
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Shuyu Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hangyu Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Tan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jing Zhang
- Laboratory Animal Research Center, Tsinghua University, Beijing 100084, China
| | - Yanli Zhang
- Imaging Core Facility, Technology Center for Protein Science, Tsinghua University, Beijing 100084, China
| | - Bo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810008, China
| | - Wanjuan Bu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jianwen Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xinbin Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Fanzhe Meng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
14
|
Ahuja N, Maynard C, Bierschenck T, Cleaver O. Characterization of Hippo signaling components in the early dorsal pancreatic bud. Gene Expr Patterns 2025; 55:119392. [PMID: 40081783 DOI: 10.1016/j.gep.2025.119392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
All pancreatic lineages originate from a transitory structure known as the multipotent progenitor epithelium (MPE), which is an endodermal placode formed via epithelial stratification. Cells within the MPE undergo de novo lumenogenesis to give rise to an epithelial plexus, which serves as a progenitor niche for subsequent development of endocrine, ductal and acinar cell types. Recent evidence suggests that Hippo signaling is required for pancreatic cell differentiation, but little is known about the function of Hippo signaling in the development of the MPE. Here, we characterize the expression of YAP1, TAZ, and the Hippo regulators LATS1/2 kinases and MERLIN in early murine pancreatic epithelium, during epithelial stratification, plexus development and emergence of endocrine cells. We find that YAP1 expression is relatively low in the pancreas bud during stratification but increases by E11.5. Intriguingly, we find differing patterns of TAZ and YAP1 immunoreactivty throughout pancreatic development. We further find that MERLIN and LATS1/2 kinases are expressed during the period of rapid stratification and become markedly apical at nascent lumens. To gain a better understanding of how Hippo signaling and lumen formation are connected, we analyzed the subcellular localization of Hippo signaling components during varying stages of lumen formation and found that they are dynamically localized during lumenogenesis. Together, our results point to a previously unsuspected relationship between Hippo signaling and lumen formation during pancreatic development.
Collapse
Affiliation(s)
- Neha Ahuja
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Caitlin Maynard
- Department of Biology, The University of Texas at Arlington, 501 S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Tyler Bierschenck
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
15
|
Gao J, Wang J, Liu S, Song J, Zhang C, Liu B, Wu K. The asymmetric expression of HSPA2 in blastomeres governs the first embryonic cell-fate decision. eLife 2025; 13:RP100730. [PMID: 40063400 PMCID: PMC11893103 DOI: 10.7554/elife.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
The first cell-fate decision is the process by which cells of an embryo take on distinct lineage identities for the first time, thus representing the beginning of developmental patterning. Here, we demonstrate that the molecular chaperone heat shock protein A2 (HSPA2), a member of the 70 kDa heat shock protein (HSP70) family, is asymmetrically expressed in the late 2-cell stage of mouse embryos. The knockdown of Hspa2 in one of the 2-cell blastomeres prevented its progeny predominantly towards the inner cell mass (ICM) fate. In contrast, the overexpression of Hspa2 in one of the 2-cell blastomeres did not induce the blastomere to differentiate towards the ICM fate. Furthermore, we demonstrated that HSPA2 interacted with CARM1 and its levels correlated with ICM-associated genes. Collectively, our results identify HSPA2 as a critical early regulator of the first cell-fate decision in mammalian 2-cell embryos.
Collapse
Affiliation(s)
- Jiayin Gao
- Institute of Women, Children and Reproductive Health, Shandong UniversityJinanChina
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical SciencesJinanChina
| | - Jiawei Wang
- Institute of Women, Children and Reproductive Health, Shandong UniversityJinanChina
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical SciencesJinanChina
| | - Shiyu Liu
- Institute of Women, Children and Reproductive Health, Shandong UniversityJinanChina
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical SciencesJinanChina
| | - Jinzhu Song
- Institute of Women, Children and Reproductive Health, Shandong UniversityJinanChina
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical SciencesJinanChina
| | - Chuanxin Zhang
- Institute of Women, Children and Reproductive Health, Shandong UniversityJinanChina
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical SciencesJinanChina
| | - Boyang Liu
- Institute of Women, Children and Reproductive Health, Shandong UniversityJinanChina
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical SciencesJinanChina
| | - Keliang Wu
- Institute of Women, Children and Reproductive Health, Shandong UniversityJinanChina
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical SciencesJinanChina
| |
Collapse
|
16
|
Peng B, Wang Q, Zhang F, Shen H, Du P. Mouse totipotent blastomere-like cells model embryogenesis from zygotic genome activation to post implantation. Cell Stem Cell 2025; 32:391-408.e11. [PMID: 39826539 DOI: 10.1016/j.stem.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Embryo development begins with zygotic genome activation (ZGA), eventually generating blastocysts for implantation. However, in vitro systems modeling the pre-implantation development are still absent and challenging. Here, we used mouse totipotent blastomere-like cells (TBLCs) to develop spontaneous differentiation and blastoid formation systems, respectively. We found Wnt signaling enabled the rapid expansion of TBLCs and the optimization of their culture medium. We successfully developed a TBLC-spontaneous differentiation system in which mouse TBLCs (mTBLCs) firstly converted into two types of ZGA-like cells (ZLCs) distinguished by Zscan4 expression. Surprisingly, Zscan4-, but not Zscan4+, ZLCs further passed through intermediate 4-cell and then 8-cell/morula stages to produce epiblast, primitive endoderm, and trophectoderm lineages. Significantly, single TBLCs underwent expansion, compaction, and polarization to efficiently generate blastocyst-like structures and even post-implantation egg-cylinder-like structures. Conclusively, we established TBLC-based differentiation and embryo-like structure formation systems to model early embryonic development, offering criteria for evaluating and understanding totipotency.
Collapse
Affiliation(s)
- Bing Peng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qingyi Wang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feixiang Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Athanasouli P, Vanhessche T, Lluis F. Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination. Life Sci Alliance 2025; 8:e202403091. [PMID: 39779220 PMCID: PMC11711469 DOI: 10.26508/lsa.202403091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac. The formation of EPI and PE as molecularly and morphologically distinct lineages is the final step of a multistage process, which begins when bipotent progenitor cells diverge into separate fates. Despite advances in uncovering the molecular mechanisms underlying the differential transcriptional patterns that dictate how apparently identical cells make fate decisions and how lineage integrity is maintained, a detailed overview of these mechanisms is still lacking. In this review, we dissect the EPI and PE formation process into four stages (initiation, specification, segregation, and maintenance) and we provide a comprehensive understanding of the molecular mechanisms involved in lineage establishment in the mouse. In addition, we discuss the conservation of key processes in humans, based on the most recent findings.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Tijs Vanhessche
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Chalifoux M, Avdeeva M, Posfai E. Geometric, cell cycle and maternal-to-zygotic transition-associated YAP dynamics during preimplantation embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640568. [PMID: 40060487 PMCID: PMC11888467 DOI: 10.1101/2025.02.27.640568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
During the first cell fate decision in mammalian embryos the inner cell mass cells, which will give rise to the embryo proper and other extraembryonic tissues, segregate from the trophectoderm cells, the precursors of the placenta. Cell fate segregation proceeds in a gradual manner encompassing two rounds of cell division, as well as cell positional and morphological changes. While it is known that the activity of the Hippo signaling pathway and the subcellular localization of its downstream effector YAP dictate lineage specific gene expression, the response of YAP to these dynamic cellular changes remains incompletely understood. Here we address these questions by quantitative live imaging of endogenously tagged YAP while simultaneously monitoring geometric cellular features and cell cycle progression throughout cell fate segregation. We apply a probabilistic model to our dynamic data, providing a quantitative characterization of the mutual effects of YAP and cellular relative exposed area, which has previously been shown to correlate with subcellular YAP localization in fixed samples. Additionally, we study how nuclear YAP levels are influenced by other factors, such as the decreasing pool of maternally provided YAP that is partitioned to daughter cells through cleavage divisions, cell cycle-associated nuclear volume changes, and a delay after divisions in adjusting YAP levels to new cell positions. Interestingly, we find that establishing low nuclear YAP levels required for the inner cell mass fate is largely achieved by passive cell cycle-associated mechanisms. Moreover, contrary to expectations, we find that mechanical perturbations that result in cell shape changes do not influence YAP localization in the embryo. Together our work identifies how various inputs are integrated over a dynamic developmental time course to shape the levels of a key molecular determinant of the first cell fate choice.
Collapse
Affiliation(s)
- Madeleine Chalifoux
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Maria Avdeeva
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
19
|
Avdeeva M, Chalifoux M, Joyce B, Shvartsman SY, Posfai E. Generative model for the first cell fate bifurcation in mammalian development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639895. [PMID: 40060535 PMCID: PMC11888292 DOI: 10.1101/2025.02.24.639895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The first cell fate bifurcation in mammalian development directs cells toward either the trophectoderm (TE) or inner cell mass (ICM) compartments in preimplantation embryos. This decision is regulated by the subcellular localization of a transcriptional co-activator YAP and takes place over several progressively asynchronous cleavage divisions. As a result of this asynchrony and variable arrangement of blastomeres, reconstructing the dynamics of the TE/ICM cell specification from fixed embryos is extremely challenging. To address this, we developed a live imaging approach and applied it to measure pairwise dynamics of nuclear YAP and its direct target genes, CDX2 and SOX2, key transcription factors of TE and ICM, respectively. Using these datasets, we constructed a generative model of the first cell fate bifurcation, which reveals the time-dependent statistics of the TE and ICM cell allocation. In addition to making testable predictions for the joint dynamics of the full YAP/CDX2/SOX2 motif, the model revealed the stochastic nature of the induction timing of the key cell fate determinants and identified the features of YAP dynamics that are necessary or sufficient for this induction. Notably, temporal heterogeneity was particularly prominent for SOX2 expression among ICM cells. As heterogeneities within the ICM have been linked to the initiation of the second cell fate decision in the embryo, understanding the origins of this variability is of key significance. The presented approach reveals the dynamics of the first cell fate choice and lays the groundwork for dissecting the next cell fate bifurcations in mouse development.
Collapse
Affiliation(s)
- Maria Avdeeva
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Madeleine Chalifoux
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Stanislav Y Shvartsman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton, New Jersey, USA
| |
Collapse
|
20
|
Wu B, Neupane J, Zhou Y, Zhang J, Chen Y, Surani MA, Zhang Y, Bao S, Li X. Stem cell-based embryo models: a tool to study early human development. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2741-1. [PMID: 39969747 DOI: 10.1007/s11427-024-2741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 02/20/2025]
Abstract
How a mammalian fertilized egg acquires totipotency and develops into a full-term offspring is a fundamental scientific question. Human embryonic development is difficult to study due to limited resources, technical challenges and ethics. Moreover, the precise regulatory mechanism underlying early human embryonic development remains unknown. In recent years, the emergence of stem cell-based embryo models (SCBEM) provides the opportunity to reconstitute pre- to post-implantation development in vitro. These models to some extent mimic the embryo morphologically and transcriptionally, and thus may be used to study key events in mammalian pre- and post-implantation development. Many groups have successfully generated SCBEM of the mouse and human. Here, we provide a comparative review of the mouse and human SCBEM, discuss the capability of these models to mimic natural embryos and give a perspective on their potential future applications.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jitesh Neupane
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yang Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - M Azim Surani
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, 011517, China.
| |
Collapse
|
21
|
Xiao Y, Wang Y, Zhang M, Zhang Y, Ju Z, Wang J, Zhang Y, Yang C, Wang X, Jiang Q, Gao Y, Wei X, Liu W, Gao Y, Hu P, Huang J. Tankyrase inhibitor IWR-1 modulates HIPPO and Transforming Growth Factor β signaling in primed bovine embryonic stem cells cultured on mouse embryonic fibroblasts. Theriogenology 2025; 233:100-111. [PMID: 39613494 DOI: 10.1016/j.theriogenology.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
The use of tankyrase inhibitors is essential for capturing livestock embryonic stem cells (ESC), yet their mechanisms of action remain largely uncharacterized. Previous studies indicate that their roles extend beyond the suppression of canonical WNT signaling. This study investigates the effects of the tankyrase inhibitor IWR-1 on maintaining the pluripotency of bovine embryonic stem cells (bESC) cultured on mitotically inactivated mouse embryonic fibroblasts (MEF). Notably, bESC exhibited significant differentiation after one month of IWR-1 withdrawal, without a clear bias toward any specific germ layer. IWR-1 effectively inhibited TNKS2 activity in bESC, whereas it suppressed TNKS1 protein level in growth-arrested MEF. Early differentiation upon IWR-1 removal induced more substantial transcriptomic changes in MEF than in bESC. Furthermore, cell communication analysis predicted that IWR-1 influenced several paracrine and autocrine signals within the culture system. We also observed that IWR-1 repressed protein abundance of the HIPPO pathway components including TEAD4 and YAP1 in bESC and decreased transcription of HIPPO targeted genes CYR61. Protein analysis in growth-arrested MEF suggested that IWR-1 modulated MEF function by impeding TGF-β1 activation and activin A secretion which mitigated nuclear localization of SMAD2/3 in the bESC. This study underscores the role of tankyrase inhibitors in ESC self-renewal by modulating key signaling pathways and orchestrating cell-cell interactions, which may be meaningful in understanding the delicate signaling control of pluripotency in livestock and improving the culture system.
Collapse
Affiliation(s)
- Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yujie Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Minghao Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Zhang
- Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenhao Liu
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
22
|
Zhang W, Zhao Y, Yang Z, Yan J, Wang H, Nie S, Jia Q, Ding D, Tong C, Zhang X, Gao Q, Shuai L. Capture of Totipotency in Mouse Embryonic Stem Cells in the Absence of Pdzk1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408852. [PMID: 39630006 PMCID: PMC11809344 DOI: 10.1002/advs.202408852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Indexed: 02/11/2025]
Abstract
Totipotent cells can differentiate into three lineages: the epiblast, primitive endoderm, and trophectoderm. Naturally, only early fertilized embryos possess totipotency, and they lose this ability as they develop. The expansion of stem cell differentiation potential has been a hot topic in developmental biology for years, particularly with respect to the generation totipotent-like stem cells. Here, the study describes the establishment of totipotency in embryonic stem cells (ESCs) via the deletion of a single gene, Pdzk1. Pdzk1-knockout (KO) ESCs substantially contribute to the fetus, placenta, and yolk sac in chimera assays but can also self-organize to form standard blastocyst-like structures containing the three lineages efficiently; thus, they exhibit full developmental potential as early blastomeres. Single-cell transcriptome and bulk RNA-seq comprehensive analyses revealed that Pdzk1-KO activates several lineage inducers (C1qa, C1qb, Fgf5, and Cdx2) to break down barriers between embryonic and extraembryonic tissues, making these lineages switch smoothly and resulting in a totipotent-like state. This versatile and scalable system provides a robust experimental model for differentiation potency and cell fate studies.
Collapse
Affiliation(s)
- Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai Animal Resources Center and Reproductive RegulationInstitute of Transplantation MedicineNankai UniversityTianjin300350China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai Animal Resources Center and Reproductive RegulationInstitute of Transplantation MedicineNankai UniversityTianjin300350China
| | - Zhe Yang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai Animal Resources Center and Reproductive RegulationInstitute of Transplantation MedicineNankai UniversityTianjin300350China
| | - Jing Yan
- Shanghai Key Laboratory of Maternal and Fetal MedicineClinical and Translational Research Center of Shanghai First Maternity and Infant HospitalFrontier Science Center for Stem Cell ResearchSchool of Life and Science and TechnologyTongji UniversityShanghai200092China
| | - Haisong Wang
- Reproductive Medical CenterHenan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Shaochen Nie
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai Animal Resources Center and Reproductive RegulationInstitute of Transplantation MedicineNankai UniversityTianjin300350China
| | - Qingshen Jia
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai Animal Resources Center and Reproductive RegulationInstitute of Transplantation MedicineNankai UniversityTianjin300350China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai Animal Resources Center and Reproductive RegulationInstitute of Transplantation MedicineNankai UniversityTianjin300350China
| | - Chao Tong
- National Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren’s Hospital of Chongqing Medical UniversityChongqing401122China
| | - Xiao‐Ou Zhang
- Shanghai Key Laboratory of Maternal and Fetal MedicineClinical and Translational Research Center of Shanghai First Maternity and Infant HospitalFrontier Science Center for Stem Cell ResearchSchool of Life and Science and TechnologyTongji UniversityShanghai200092China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai Animal Resources Center and Reproductive RegulationInstitute of Transplantation MedicineNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Animal and Plant ResistanceCollege of Life SciencesTianjin Normal UniversityTianjin300387China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai Animal Resources Center and Reproductive RegulationInstitute of Transplantation MedicineNankai UniversityTianjin300350China
| |
Collapse
|
23
|
Wu J, Shao T, Tang Z, Liu G, Li Z, Shi Y, Kang Y, Zuo J, Zhao B, Hu G, Liu J, Ji W, Zhang L, Niu Y. Highly efficient construction of monkey blastoid capsules from aged somatic cells. Nat Commun 2025; 16:1130. [PMID: 39875393 PMCID: PMC11775175 DOI: 10.1038/s41467-025-56447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Blastoids-blastocyst-like structures created in vitro-emerge as a valuable model for early embryonic development research. Non-human primates stem cell-derived blastoids are an ethically viable alternative to human counterparts, yet the low formation efficiency of monkey blastoid cavities, typically below 30%, has limited their utility. Prior research has predominantly utilized embryonic stem cells. In this work, we demonstrate the efficient generation of blastoids from induced pluripotent stem cells and somatic cell nuclear transfer embryonic stem cells derived from aged monkeys, achieving an 80% formation efficiency. We also introduce a hydrogel-based microfluidics platform for the scalable and reproducible production of size-adjustable, biodegradable blastoid capsules, providing a stable 3D structure and mechanical protection. This advancement in the high-efficiency, scalable production of monkey blastoid capsules from reprogrammed aged somatic cells significantly enhances the study of embryonic development and holds promise for regenerative medicine.
Collapse
Affiliation(s)
- Junmo Wu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Tianao Shao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Zengli Tang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Southwest United Graduate School, Kunming, Yunnan, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuoyao Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yuxi Shi
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Jiawei Zuo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Southwest United Graduate School, Kunming, Yunnan, China
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guangyu Hu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Jiaqi Liu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| | - Lei Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Southwest United Graduate School, Kunming, Yunnan, China.
| |
Collapse
|
24
|
Vasilev F, Mihajlović AI, Rémillard-Labrosse G, FitzHarris G. Long-lived cytokinetic bridges coordinate sister-cell elimination in mouse embryos. Dev Cell 2025:S1534-5807(25)00002-4. [PMID: 39862857 DOI: 10.1016/j.devcel.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Apoptosis is a key feature of preimplantation development, but whether it occurs in a cell-autonomous or coordinated manner was unknown. Here, we report that plasma membrane abscission, the final step of cell division, is profoundly delayed in early mouse embryos such that a cytokinetic bridge is maintained for the vast majority of the following interphase. Early embryos thus consist of many pairs of sister cells connected by stable cytokinetic bridges that allow them to share diffusible molecules. We show that apoptotic regulators are shared through cytokinetic bridges and that these bridges ensure that if one cell enters apoptosis, its sister cell does as well. Long-lived cytokinetic bridges are thus a previously unappreciated form of cell-cell communication within the mouse embryo that coordinate the clearance of pairs of cells with similar developmental histories.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Aleksandar I Mihajlović
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | - Greg FitzHarris
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Obstetrics and Gynaecology, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
25
|
Srinivas S, Watanabe T. Establishment of early embryonic lineages and the basic body plan. KAUFMAN’S ATLAS OF MOUSE DEVELOPMENT SUPPLEMENT 2025:67-77. [DOI: 10.1016/b978-0-443-23739-3.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Marikawa Y, Alarcon VB. Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development. Differentiation 2025; 141:100835. [PMID: 39874642 PMCID: PMC11790356 DOI: 10.1016/j.diff.2025.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of the mammalian embryo. It forms the outer layer of the blastocyst and is responsible for generating the blastocoel, a fluid-filled cavity whose expansion is essential for successful hatching and implantation. Here, we investigated the role of the small GTPase RHOA in the morphogenesis of the TE, particularly its relationship with HIPPO signaling, using mouse embryos as a model. Inhibition of RHOA resulted in the failure to form a blastocoel and significantly altered the expression of numerous genes. Transcriptomic analysis revealed that 330 genes were down-regulated and 168 genes were up-regulated by more than two-fold. Notably, 98.4% of these transcriptional changes were reversed by simultaneous inhibition of LATS kinases, indicating that the transcriptional influence of RHOA is primarily mediated through HIPPO signaling. Many of the down-regulated genes are involved in critical processes of TE morphogenesis, such as apical-basal cell polarization, tight junction formation, and sodium and water transport, suggesting that RHOA supports TE development by enhancing the expression of morphogenesis-related genes through HIPPO signaling, specifically via TEAD transcription factors. However, RHOA inhibition also disrupted apical-basal polarity and tight junctions, effects that were not restored by LATS inhibition, pointing to additional HIPPO signaling-independent mechanisms by which RHOA controls TE morphogenesis. Furthermore, RHOA inhibition impaired cell viability at the late blastocyst stage, with partial rescue observed upon LATS inhibition, suggesting that RHOA maintains cell survival through both HIPPO signaling-dependent and -independent pathways. A deeper knowledge of the molecular mechanisms governing TE morphogenesis, including blastocoel expansion and cell viability, could significantly advance assisted reproductive technologies aimed at producing healthy blastocysts.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA
| | - Vernadeth B Alarcon
- Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA.
| |
Collapse
|
27
|
Maeda H, Sasaki H. Blastocoel expansion and AMOT degradation cooperatively promote YAP nuclear localization during epiblast formation. Dev Biol 2025; 517:234-247. [PMID: 39486633 DOI: 10.1016/j.ydbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The epiblast is a pluripotent cell population formed in the late blastocyst stage of preimplantation embryos. During the process of epiblast formation from the inner cell mass (ICM) of the early blastocyst, activation of the Hippo pathway transcription factor TEAD by the nuclear translocation of the coactivator protein YAP is required for the robust expression of pluripotency factors. However, the mechanisms that alter YAP localization during epiblast formation remain unknown. Here, we reveal two such mechanisms. Expansion of the blastocoel promotes nuclear YAP localization by increasing cytoplasmic F-actin and reducing YAP phosphorylation. Additionally, cell differentiation regulates YAP. Expression of the junctional Hippo component, AMOT, gradually decreases during epiblast formation through a tankyrase-mediated degradation. SOX2 expression in the ICM is necessary for the reduction of AMOT and YAP phosphorylation. These two mechanisms function in parallel. Thus, the blastocoel-F-actin and SOX2-AMOT axes cooperatively suppress YAP phosphorylation and promote YAP nuclear localization during epiblast formation. The cooperation of these two distinct mechanisms likely contributes to the robustness of epiblast cell differentiation.
Collapse
Affiliation(s)
- Hinako Maeda
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
28
|
Hirono N, Hashimoto M, Shimojo H, Sasaki H. Fate specification triggers a positive feedback loop of TEAD-YAP and NANOG to promote epiblast formation in preimplantation embryos. Development 2025; 152:dev203091. [PMID: 39629521 DOI: 10.1242/dev.203091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
In preimplantation embryos, epiblast (EPI) fate specification from the inner cell mass is controlled by the segregation of NANOG and GATA6 expression. TEAD-YAP interaction is activated during EPI formation and is required for pluripotency factor expression. These events occur asynchronously with similar timing during EPI formation, and their relationship remains elusive. Here, we examined the relationship between NANOG-GATA6 and TEAD-YAP. The nuclear accumulation of YAP takes place only in EPI-specified cells, and a positive feedback loop operates between NANOG and TEAD-YAP. The effects of TEAD-YAP on SOX2 upregulation in EPI-specified cells are likely indirect. EPI fate specification also alters the response of Nanog, Sox2 and Cdx2 to TEAD-YAP. These results suggest that EPI-fate specification alters the transcriptional network from the morula-like to the EPI-specified state and activates TEAD-YAP to trigger a positive feedback loop with NANOG, which stabilizes the EPI fate. The coordinated occurrence of these processes in individual cells likely supports proper EPI formation under the condition of asynchronous EPI-fate specification.
Collapse
Affiliation(s)
- Naoki Hirono
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Shimojo
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Fleming TP. Preimplantation trophectoderm: A 'quick-fix' protector for embryo survival? Dev Biol 2025; 517:278-285. [PMID: 39481626 DOI: 10.1016/j.ydbio.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
The trophectoderm (TE) epithelium forms the outer layer of the mammalian blastocyst and generates the blastocoel through vectorial transport. Its differentiation during cleavage, studied mainly in mouse, is integrated with blastocyst morphogenesis with key roles for cell polarisation, asymmetric cell divisions, cell signalling, regulatory transcription factors and cellular inheritance. The TE provides a physical and cellular protection to the emerging lineages of the embryo essential for the integrity of blastocyst development. Here, two examples of TE differentiation are considered in some detail where this immediate protective function for embryo survival is assessed: (i) cellular processes from TE at the polar-mural junctional zone in the early blastocyst that later form filopodia traversing the blastocoel, and (ii) the endocytic system which matures and polarises during differentiation. Understanding the broad role for TE in regulating early morphogenesis and environmental protection of the embryo, including these two examples, have clinical as well as biological relevance.
Collapse
Affiliation(s)
- Tom P Fleming
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
30
|
Proks M, Salehin N, Brickman JM. Deep learning-based models for preimplantation mouse and human embryos based on single-cell RNA sequencing. Nat Methods 2025; 22:207-216. [PMID: 39543284 PMCID: PMC11725497 DOI: 10.1038/s41592-024-02511-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
The rapid growth of single-cell transcriptomic technology has produced an increasing number of datasets for both embryonic development and in vitro pluripotent stem cell-derived models. This avalanche of data surrounding pluripotency and the process of lineage specification has meant it has become increasingly difficult to define specific cell types or states in vivo, and compare these with in vitro differentiation. Here we utilize a set of deep learning tools to integrate and classify multiple datasets. This allows the definition of both mouse and human embryo cell types, lineages and states, thereby maximizing the information one can garner from these precious experimental resources. Our approaches are built on recent initiatives for large-scale human organ atlases, but here we focus on material that is difficult to obtain and process, spanning early mouse and human development. Using publicly available data for these stages, we test different deep learning approaches and develop a model to classify cell types in an unbiased fashion at the same time as defining the set of genes used by the model to identify lineages, cell types and states. We used our models trained on in vivo development to classify pluripotent stem cell models for both mouse and human development, showcasing the importance of this resource as a dynamic reference for early embryogenesis.
Collapse
Affiliation(s)
- Martin Proks
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nazmus Salehin
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Voutsadakis IA. Gastric Adenocarcinomas with CDX2 Induction Show Higher Frequency of TP53 and KMT2B Mutations and MYC Amplifications but Similar Survival Compared with Cancers with No CDX2 Induction. J Clin Med 2024; 13:7635. [PMID: 39768557 PMCID: PMC11727917 DOI: 10.3390/jcm13247635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Gastric cancer is one of the most prevalent gastrointestinal cancers. Mortality is high, and improved treatments are needed. A better understanding of the pathophysiology of the disease and discovery of biomarkers for targeted therapies are paramount for therapeutic progress. CDX2, a transcription factor of hindgut specification, is induced in several gastric cancers, especially with intestinal differentiation, and could be helpful for defining sub-types with particular characteristics. Methods: Gastric cancers with induced CDX2 mRNA expression were identified from the gastric cohort of The Cancer Genome Atlas (TCGA) and were compared with cancers that had no CDX2 mRNA induction. Induced CDX2 mRNA expression was defined as mRNA expression z-score relative to all samples above 0, and non-induced CDX2 mRNA expression was defined as mRNA expression z-score relative to all samples below -1. Results: Patients with gastric cancers with CDX2 mRNA induction were older, had less frequently diffuse histology, and more often had mutations in TP53 and KMT2B and amplifications in MYC. CDX2 induction was correlated with HNF4α induction and was reversely correlated with SOX2. Gastric cancers with CDX2 mRNA induction showed lower PD-L1 expression than cancers with lower CDX2 expression but did not differ in CLDN18 mRNA expression. Progression-free and overall survival of the two groups was also not significantly different. Conclusion: Gastric cancers with CDX2 mRNA induction displayed specific characteristics that differentiate them from cancers with no CDX2 induction and could be of interest for optimizing current and future therapies.
Collapse
Affiliation(s)
- Ioannis A. Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, ON P6B 0A8, Canada; or
- Division of Clinical Sciences, Section of Internal Medicine, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
32
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
33
|
Liu L, Tang L, Chen S, Zheng L, Ma X. Decoding the molecular pathways governing trophoblast migration and placental development; a literature review. Front Endocrinol (Lausanne) 2024; 15:1486608. [PMID: 39665023 PMCID: PMC11631628 DOI: 10.3389/fendo.2024.1486608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Placental development is a multifaceted process critical for a fruitful pregnancy, reinforced by a complex network of molecular pathways that synchronize trophoblast migration, differentiation, and overall placental function. This review provides an in-depth analysis of the key signaling pathways, such as Wnt, Notch, TGF-β, and VEGF, which play fundamental roles in trophoblast proliferation, invasion, and the complicated process of placental vascular development. For instance, the Wnt signaling pathway is essential to balance trophoblast stem cell proliferation and differentiation, while Notch signaling stimulates cell fate decisions and invasive behavior. TGF-β signaling plays a critical role in trophoblast invasion and differentiation, predominantly in response to the low oxygen environment of early pregnancy, regulated by hypoxia-inducible factors (HIFs). These factors promote trophoblast adaptation, ensure proper placental attachment and vascularization, and facilitate adequate fetal-maternal exchange. Further, we explore the epigenetic and post-transcriptional regulatory mechanisms that regulate trophoblast function, including DNA methylation and the contribution of non-coding RNAs, which contribute to the fine-tuning of gene expression during placental development. Dysregulation of these pathways is associated with severe pregnancy complications, such as preeclampsia, intrauterine growth restriction, and recurrent miscarriage, emphasizing the critical need for targeted therapeutic strategies. Finally, emerging technologies like trophoblast organoids, single-cell RNA sequencing, and placenta-on-chip models are discussed as innovative tools that hold promise for advancing our understanding of placental biology and developing novel interventions to improve pregnancy outcomes. This review emphasizes the importance of understanding these molecular mechanisms to better address placental dysfunctions and associated pregnancy disorders.
Collapse
Affiliation(s)
- Lianlian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lin Tang
- Obstetrics Department, Foshan Maternity and Child Health Care Hospital, Foshan, China
| | - Shuai Chen
- Pathology Department, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoyan Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Wong KW, Zeng Y, Tay E, Teo JHJ, Cipta NO, Hamashima K, Yi Y, Liu H, Warrier T, Le MTN, Ng SC, Li QJ, Li H, Loh YH. Nuclear receptor-SINE B1 network modulates expanded pluripotency in blastoids and blastocysts. Nat Commun 2024; 15:10011. [PMID: 39562549 PMCID: PMC11577042 DOI: 10.1038/s41467-024-54381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Embryonic stem cells possess the remarkable ability to self-organize into blastocyst-like structures upon induction. These stem cell-based embryo models serve as invaluable platforms for studying embryogenesis and therapeutic developments. Nevertheless, the specific intrinsic regulators that govern this potential for blastoid formation remain unknown. Here we demonstrate an intrinsic program that plays a crucial role in both blastoids and blastocysts across multiple species. We first establish metrics for grading the resemblance of blastoids to mouse blastocysts, and identify the differential activation of gene regulons involved in lineage specification among various blastoid grades. Notably, abrogation of nuclear receptor subfamily 1, group H, member 2 (Nr1h2) drastically reduces blastoid formation. Nr1h2 activation alone is sufficient to rewire conventional ESC into a distinct pluripotency state, enabling them to form blastoids with enhanced implantation capacity in the uterus and contribute to both embryonic and extraembryonic lineages in vivo. Through integrative multi-omics analyses, we uncover the broad regulatory role of Nr1h2 in the transcriptome, chromatin accessibility and epigenome, targeting genes associated with embryonic lineage and the transposable element SINE-B1. The Nr1h2-centred intrinsic program governs and drives the development of both blastoids and early embryos.
Collapse
Grants
- R03 OD038392 NIH HHS
- U19 AG074879 NIA NIH HHS
- R03 OD034496 NIH HHS
- P30 CA015083 NCI NIH HHS
- P30 DK084567 NIDDK NIH HHS
- P50 CA136393 NCI NIH HHS
- National Research Foundation, Singapore (NRF) Investigatorship award [NRFI2018- 02]; National Medical Research Council [NMRC/OFIRG21nov-0088]; Singapore Food Story (SFS) R&D Programme [W22W3D0007]; A*STAR Biomedical Research Council, Central Research Fund, Use-Inspired Basic Research (CRF UIBR); Competitive Research Programme (CRP) [NRF-CRP29-2022-0005]; Industry Alignment Fund - Prepositioning (IAF-PP) [H23J2a0095, H23J2a0097].
- NMRC grant MOH-000937-00 and A*STAR grant C210812003
- M.T.N.L. was supported by the Industry Alignment Fund - Prepositioning (IAF-PP) [H23J2a0097].
- H.L. was supported by grants from the Mayo Clinic Center for Biomedical Discovery, Center for Individualized Medicine, the Mayo Clinic Comprehensive Cancer Center (NIH; P30CA015083), the Mayo Clinic Center for Cell Signaling in Gastroenterology (NIH: P30DK084567), the Mayo Clinic Nutrition Obesity Research Program, the Glenn Foundation for Medical Research, the Eric & Wendy Schmidt Fund for AI Research & Innovation and the National Institutes of Health (NIH; U19AG74879, P50CA136393, R03OD038392).
Collapse
Affiliation(s)
- Ka Wai Wong
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Edison Tay
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jia Hao Jackie Teo
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Nadia Omega Cipta
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yao Yi
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Haijun Liu
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Soon Chye Ng
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Sincere Healthcare Group, Singapore, Republic of Singapore
| | - Qi-Jing Li
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.
- NUS Graduate School's Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
35
|
Kuracha MR, Radhakrishna U, Kuracha SV, Vegi N, Gurung JL, McVicker BL. New Horizons in Cancer Progression and Metastasis: Hippo Signaling Pathway. Biomedicines 2024; 12:2552. [PMID: 39595118 PMCID: PMC11591698 DOI: 10.3390/biomedicines12112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo pathway is highly evolved to maintain tissue homeostasis in diverse species by regulating cell proliferation, differentiation, and apoptosis. In tumor biology, the Hippo pathway is a prime example of signaling molecules involved in cancer progression and metastasis. Hippo core elements LATS1, LATS2, MST1, YAP, and TAZ have critical roles in the maintenance of traditional tissue architecture and cell homeostasis. However, in cancer development, dysregulation of Hippo signaling results in tumor progression and the formation secondary cancers. Hippo components not only transmit biochemical signals but also act as mediators of mechanotransduction pathways during malignant neoplasm development and metastatic disease. This review confers knowledge of Hippo pathway core components and their role in cancer progression and metastasis and highlights the clinical role of Hippo pathway in cancer treatment. The Hippo signaling pathway and its unresolved mechanisms hold great promise as potential therapeutic targets in the emerging field of metastatic cancer research.
Collapse
Affiliation(s)
- Murali R. Kuracha
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Sreenaga V. Kuracha
- Comparative Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Navyasri Vegi
- Shri Vishnu College of Pharmacy, Andhra University, Bhimavaram 534202, Andhra Pradesh, India;
| | - Jhyama Lhamo Gurung
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Benita L. McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
36
|
Ahuja N, Maynard C, Bierschenck T, Cleaver O. Characterization of Hippo Signaling Components in the Early Dorsal Pancreatic Bud. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.619721. [PMID: 39484500 PMCID: PMC11527122 DOI: 10.1101/2024.10.26.619721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
All pancreatic lineages originate from a transitory structure known as the multipotent progenitor epithelium (MPE), which is a placode formed via epithelial stratification. Cells within the MPE undergo de novo lumenogenesis to give rise to an epithelial plexus, which serves as a progenitor niche for subsequent development of endocrine, ductal and acinar cell types. Recent evidence suggests that Hippo signaling is required for pancreatic cell differentiation, but little is known about the function of Hippo signaling in the development of the MPE. Here, we characterize the expression of YAP1, TAZ, and the Hippo regulators LATS1/2 kinases and MERLIN in early murine pancreatic epithelium, during epithelial stratification, plexus development and emergence of endocrine cells. We find that YAP1 expression is relatively low in the pancreas bud during stratification, but increases by E11.5. Intriguingly, we find that TAZ, but not YAP1, is expressed in early endocrine cells. We further find that MERLIN and LATS1/2 kinases are robustly expressed during the period of rapid stratification and become markedly apical at nascent lumens. To gain a better understanding of how Hippo signaling and lumen formation are connected, we analyzed the expression of Hippo signaling components in an in vitro model of lumen formation and found that they are dynamically regulated during lumenogenesis. Together, our results point to a relationship between Hippo signaling and lumen formation during pancreatic development. HIGHLIGHTS YAP1 expression in the early mouse pancreatic anlagen is low until approximately E11.5, when it becomes localized to cell nuclei in multipotent progenitor cells. At E14.5, we find nuclear YAP1 in ductal cells.YAP1 is not expressed in early and midgestation endocrine cells. By contrast, TAZ is expressed in first transition endocrine cells.Hippo regulators MERLIN and LATS1/2 kinases are robustly expressed in the early pancreatic bud by E10.5. Both MERLIN and LATS1/2 exhibit strong apical localization in epithelial cells at nascent microlumens. Using in vitro models of de novo pancreas lumen formation, we show that YAP1 nuclear localization is high in early phases of lumen formation and gradually decreases as lumens matures.
Collapse
|
37
|
Pérez-Gómez A, González-Brusi L, Flores-Borobia I, Galiano-Cogolludo B, Lamas-Toranzo I, Hamze JG, Toledano-Díaz A, Santiago-Moreno J, Ramos-Ibeas P, Bermejo-Álvarez P. The role of TEAD4 in trophectoderm commitment and development is not conserved in non-rodent mammals. Development 2024; 151:dev202993. [PMID: 39171364 PMCID: PMC11463960 DOI: 10.1242/dev.202993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
The first lineage differentiation in mammals gives rise to the inner cell mass and the trophectoderm (TE). In mice, TEAD4 is a master regulator of TE commitment, as it regulates the expression of other TE-specific genes and its ablation prevents blastocyst formation, but its role in other mammals remains unclear. Herein, we have observed that TEAD4 ablation in two phylogenetically distant species (bovine and rabbit) does not impede TE differentiation, blastocyst formation and the expression of TE markers, such as GATA3 and CDX2, although a reduced number of cells in the inner cell mass was observed in bovine TEAD4 knockout (KO) blastocysts. Transcriptional analysis in bovine blastocysts revealed no major transcriptional effect of the ablation, although the expression of hypoblast and Hippo signalling-related genes tended to be decreased in KO embryos. Experiments were conducted in the bovine model to determine whether TEAD4 was required for post-hatching development. TEAD4 KO spherical conceptuses showed normal development of the embryonic disc and TE, but hypoblast migration rate was reduced. At later stages of development (tubular conceptuses), no differences were observed between KO and wild-type conceptuses.
Collapse
|
38
|
Branch B, Yuan Y, Cascone M, Raimondi F, Iglesias-Bartolome R. An improved TEAD dominant-negative protein inhibitor to study Hippo YAP1/TAZ-dependent transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.615022. [PMID: 39502361 PMCID: PMC11537315 DOI: 10.1101/2024.10.03.615022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Hippo signaling is one of the top pathways altered in human cancer, and intensive focus has been devoted to developing therapies targeting Hippo-dependent transcription mediated by YAP1 and TAZ interaction with TEAD proteins. However, a significant challenge in evaluating the efficacy of these approaches is the lack of models that can precisely characterize the consequences of TEAD inhibition. To address this gap, our laboratory developed a strategy that utilizes a fluorescently traceable, dominant-negative protein named TEADi. TEADi specifically blocks the nuclear interactions of TEAD with YAP1 and TAZ, enabling precise dissection of Hippo TEAD-dependent and independent effects on cell fate. In this study, we aimed to enhance TEADi effectiveness by altering post-transcriptional modification sites within its TEAD-binding domains (TBDs). We demonstrate that a D93E mutation in the YAP1 TBD significantly increases TEADi inhibitory capacity. Additionally, we find that TBDs derived from VGLL4 and YAP1 are insufficient to block TAZ-induced TEAD activity, revealing crucial differences in YAP1 and TAZ displacement mechanisms by dominant-negative TBDs. Structural differences in YAP1 and TAZ TBDs were also identified, which may contribute to the distinct binding of these proteins to TEAD. Our findings expand our understanding of TEAD regulation and highlight the potential of an optimized TEADi as a more potent, specific, and versatile tool for studying TEAD-transcriptional activity.
Collapse
Affiliation(s)
- Briana Branch
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
- Department of Cellular, Molecular, Developmental Biology and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland, United States
| | - Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | | | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
39
|
Huang H, Gao S, Bao M. Exploring Mechanical Forces Shaping Self-Organization and Morphogenesis During Early Embryo Development. Annu Rev Cell Dev Biol 2024; 40:75-96. [PMID: 38608312 DOI: 10.1146/annurev-cellbio-120123-105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Embryonic development is a dynamic process orchestrated by a delicate interplay of biochemical and biophysical factors. While the role of genetics and biochemistry in embryogenesis has been extensively studied, recent research has highlighted the significance of mechanical regulation in shaping and guiding this intricate process. Here, we provide an overview of the current understanding of the mechanical regulation of embryo development. We explore how mechanical forces generated by cells and tissues play a crucial role in driving the development of different stages. We examine key morphogenetic processes such as compaction, blastocyst formation, implantation, and egg cylinder formation, and discuss the mechanical mechanisms and cues involved. By synthesizing the current body of literature, we highlight the emerging concepts and open questions in the field of mechanical regulation. We aim to provide an overview of the field, inspiring future investigations and fostering a deeper understanding of the mechanical aspects of embryo development.
Collapse
Affiliation(s)
- Hong Huang
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China;
| | - Min Bao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
| |
Collapse
|
40
|
Latham KE. Early Cell Lineage Formation in Mammals: Complexity, Species Diversity, and Susceptibility to Disruptions Impacting Embryo Viability. Mol Reprod Dev 2024; 91:e70002. [PMID: 39463042 DOI: 10.1002/mrd.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
The emergence of the earliest cell lineages in mammalian embryos is a complex process that utilizes an extensive network of chromatin regulators, transcription factors, cell polarity regulators, and cellular signaling pathways. These factors and pathways operate over a protracted period of time as embryos cleave, undergo compaction, and form blastocysts. The first cell fate specification event separates the pluripotent inner cell mass from the trophectoderm lineage. The second event separates pluripotent epiblast from hypoblast. This review summarizes over 50 years of study of these early lineage forming events, addressing the complexity of the network of interacting molecules, cellular functions and pathways that drive them, interspecies differences, and aspects of these mechanisms that likely underlie their high susceptibility to disruption by numerous environmental factors that can compromise embryo viability, such as maternal health and diet, environmental toxins, and other stressors.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, Lansing, Michigan, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Lansing, Michigan, USA
- Reproductive and Developmental Sciences Program, Michigan State University, Lansing, Michigan, USA
| |
Collapse
|
41
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
42
|
Meyer NP, Singh T, Kutys ML, Nystul TG, Barber DL. Arp2/3 complex activity enables nuclear YAP for naïve pluripotency of human embryonic stem cells. eLife 2024; 13:e89725. [PMID: 39319536 PMCID: PMC11509671 DOI: 10.7554/elife.89725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Our understanding of the transitions of human embryonic stem cells (hESCs) between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of hESCs as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for formation of the actin ring, to establish uniform cell mechanics within naïve colonies, to promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and for effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.
Collapse
Affiliation(s)
- Nathaniel Paul Meyer
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Tania Singh
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Matthew L Kutys
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Todd G Nystul
- Departments of Anatomy and OB-GYN/RS, University of California, San FranciscoSan FranciscoUnited States
| | - Diane L Barber
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
43
|
Corujo-Simon E, Bates LE, Yanagida A, Jones K, Clark S, von Meyenn F, Reik W, Nichols J. Human trophectoderm becomes multi-layered by internalization at the polar region. Dev Cell 2024; 59:2497-2505.e4. [PMID: 38889726 DOI: 10.1016/j.devcel.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
To implant in the uterus, mammalian embryos form blastocysts comprising trophectoderm (TE) surrounding an inner cell mass (ICM), confined to the polar region by the expanding blastocoel. The mode of implantation varies between species. Murine embryos maintain a single layered TE until they implant in the characteristic thick deciduum, whereas human blastocysts attach via polar TE directly to the uterine wall. Using immunofluorescence (IF) of rapidly isolated ICMs, blockade of RNA and protein synthesis in whole embryos, or 3D visualization of immunostained embryos, we provide evidence of multi-layering in human polar TE before implantation. This may be required for rapid uterine invasion to secure the developing human embryo and initiate formation of the placenta. Using sequential fluorescent labeling, we demonstrate that the majority of inner TE in human blastocysts arises from existing outer cells, with no evidence of conversion from the ICM in the context of the intact embryo.
Collapse
Affiliation(s)
- Elena Corujo-Simon
- Wellcome - MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Lawrence Edward Bates
- Wellcome - MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Ayaka Yanagida
- Wellcome - MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Kenneth Jones
- Wellcome - MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Stephen Clark
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Jennifer Nichols
- Wellcome - MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Chen R, Fan R, Chen F, Govindasamy N, Brinkmann H, Stehling M, Adams RH, Jeong HW, Bedzhov I. Analyzing embryo dormancy at single-cell resolution reveals dynamic transcriptional responses and activation of integrin-Yap/Taz prosurvival signaling. Cell Stem Cell 2024; 31:1262-1279.e8. [PMID: 39047740 PMCID: PMC7617458 DOI: 10.1016/j.stem.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/03/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Embryonic diapause is a reproductive adaptation that enables some mammalian species to halt the otherwise continuous pace of embryonic development. In this dormant state, the embryo exploits poorly understood regulatory mechanisms to preserve its developmental potential for prolonged periods of time. Here, using mouse embryos and single-cell RNA sequencing, we molecularly defined embryonic diapause at single-cell resolution, revealing transcriptional dynamics while the embryo seemingly resides in a state of suspended animation. Additionally, we found that the dormant pluripotent cells rely on integrin receptors to sense their microenvironment and preserve their viability via Yap/Taz-mediated prosurvival signaling.
Collapse
Affiliation(s)
- Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Fei Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Niraimathi Govindasamy
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; Single Cell Multi-Omics Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
45
|
Balestrini PA, Abdelbaki A, McCarthy A, Devito L, Senner CE, Chen AE, Munusamy P, Blakeley P, Elder K, Snell P, Christie L, Serhal P, Odia RA, Sangrithi M, Niakan KK, Fogarty NME. Transcription factor-based transdifferentiation of human embryonic to trophoblast stem cells. Development 2024; 151:dev202778. [PMID: 39250534 PMCID: PMC11556314 DOI: 10.1242/dev.202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.
Collapse
Affiliation(s)
- Paula A. Balestrini
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Ahmed Abdelbaki
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Liani Devito
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Claire E. Senner
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Alice E. Chen
- Trestle Biotherapeutics, Centre for Novel Therapeutics, 9310 Athena Circle, La Jolla, CA 92037, USA
| | - Prabhakaran Munusamy
- KK Women's and Children's Hospital, Division of Obstetrics and Gynecology, 100 Bukit Timah Road, Singapore229899, Singapore
| | - Paul Blakeley
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Paul Serhal
- The Centre for Reproductive & Genetic Health, 230–232 Great Portland Street, London W1W 5QS, UK
| | - Rabi A. Odia
- The Centre for Reproductive & Genetic Health, 230–232 Great Portland Street, London W1W 5QS, UK
| | - Mahesh Sangrithi
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
- KK Women's and Children's Hospital, Division of Obstetrics and Gynecology, 100 Bukit Timah Road, Singapore229899, Singapore
- Duke-NUS Graduate Medical School, Cancer Stem Cell Biology/OBGYN ACP, 8 College Road, Singapore 169857, Singapore
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Norah M. E. Fogarty
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
46
|
Pfeffer PL. The first lineage determination in mammals. Dev Biol 2024; 513:12-30. [PMID: 38761966 DOI: 10.1016/j.ydbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
This review describes in detail the morphological, cytoskeletal and gene expression events leading to the gene regulatory network bifurcation point of trophoblast and inner cell mass cells in a variety of mammalian preimplantation embryos. The interrelated processes of compaction and polarity establishment are discussed in terms of how they affect YAP/WWTR activity and the location and fate of cells. Comparisons between mouse, human, cattle, pig and rabbit embryos suggest a conserved role for YAP/WWTR signalling in trophoblast induction in eutherian animals though the mechanisms for, and timing of, YAP/WWTR activation differs among species. Downstream targets show further differences, with the trophoblast marker GATA3 being a direct target in all examined mammals, while CDX2-positive and SOX2-negative regulation varies.
Collapse
Affiliation(s)
- Peter L Pfeffer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
47
|
Skory RM. Revisiting trophectoderm-inner cell mass lineage segregation in the mammalian preimplantation embryo. Hum Reprod 2024; 39:1889-1898. [PMID: 38926157 DOI: 10.1093/humrep/deae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.
Collapse
Affiliation(s)
- Robin M Skory
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Jiang L, Yan C, Yi Y, Zhu L, Liu Z, Zhang D, Jiang W. Cell size regulates human endoderm specification through actomyosin-dependent AMOT-YAP signaling. Stem Cell Reports 2024; 19:1137-1155. [PMID: 39094563 PMCID: PMC11368700 DOI: 10.1016/j.stemcr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Cell size is a crucial physical property that significantly impacts cellular physiology and function. However, the influence of cell size on stem cell specification remains largely unknown. Here, we investigated the dynamic changes in cell size during the differentiation of human pluripotent stem cells into definitive endoderm (DE). Interestingly, cell size exhibited a gradual decrease as DE differentiation progressed with higher stiffness. Furthermore, the application of hypertonic pressure or chemical to accelerate the reduction in cell size significantly and specifically enhanced DE differentiation. By functionally intervening in mechanosensitive elements, we have identified actomyosin activity as a crucial mediator of both DE differentiation and cell size reduction. Mechanistically, the reduction in cell size induces actomyosin-dependent angiomotin (AMOT) nuclear translocation, which suppresses Yes-associated protein (YAP) activity and thus facilitates DE differentiation. Together, our study has established a novel connection between cell size diminution and DE differentiation, which is mediated by AMOT nuclear translocation. Additionally, our findings suggest that the application of osmotic pressure can effectively promote human endodermal lineage differentiation.
Collapse
Affiliation(s)
- Lai Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China; Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Yi
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lihang Zhu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
49
|
Goda N, Ito Y, Saito S, Suzuki M, Bai H, Takahashi M, Wakai T, Kawahara M. Hippo pathway inactivation through subcellular localization of NF2/merlin in outer cells of mouse embryos. Development 2024; 151:dev202639. [PMID: 39077779 DOI: 10.1242/dev.202639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024]
Abstract
The Hippo pathway plays a crucial role in cell proliferation and differentiation during tumorigenesis, tissue homeostasis and early embryogenesis. Scaffold proteins from the ezrin-radixin-moesin (ERM) family, including neurofibromin 2 (NF2; Merlin), regulate the Hippo pathway through cell polarity. However, the mechanisms underlying Hippo pathway regulation via cell polarity in establishing outer cells remain unclear. In this study, we generated artificial Nf2 mutants in the N-terminal FERM domain (L64P) and examined Hippo pathway activity by assessing the subcellular localization of YAP1 in early embryos expressing these mutant mRNAs. The L64P-Nf2 mutant inhibited NF2 localization around the cell membrane, resulting in YAP1 cytoplasmic translocation in the polar cells. L64P-Nf2 expression also disrupted the apical centralization of both large tumor suppressor 2 (LATS2) and ezrin in the polar cells. Furthermore, Lats2 mutants in the FERM binding domain (L83K) inhibited YAP1 nuclear translocation. These findings demonstrate that NF2 subcellular localization mediates cell polarity establishment involving ezrin centralization. This study provides previously unreported insights into how the orchestration of the cell-surface components, including NF2, LATS2 and ezrin, modulates the Hippo pathway during cell polarization.
Collapse
Affiliation(s)
- Nanami Goda
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yui Ito
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shun Saito
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Miyabi Suzuki
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masashi Takahashi
- Graduate School of Global Food Resources/Global Center for Food, Land and Water Resources, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
50
|
Yu T, Zhao X, Tang Y, Zhang Y, Ji B, Song W, Su J. Deubiquitylase ubiquitin-specific protease 7 plays a crucial role in the lineage differentiation of preimplantation blastocysts†. Biol Reprod 2024; 111:28-42. [PMID: 38438135 DOI: 10.1093/biolre/ioae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 02/24/2024] [Indexed: 03/06/2024] Open
Abstract
Preimplantation embryos undergo a series of important biological events, including epigenetic reprogramming and lineage differentiation, and the key genes and specific mechanisms that regulate these events are critical to reproductive success. Ubiquitin-specific protease 7 (USP7) is a deubiquitinase involved in the regulation of a variety of cellular functions, yet its precise function and mechanism in preimplantation embryonic development remain unknown. Our results showed that RNAi-mediated silencing of USP7 in mouse embryos or treatment with P5091, a small molecule inhibitor of USP7, significantly reduced blastocyst rate and blastocyst quality, and decreased total and trophectoderm cell numbers per blastocyst, as well as destroyed normal lineage differentiation. The results of single-cell RNA-seq, reverse transcription-quantitative polymerase chain reaction, western blot, and immunofluorescence staining indicated that interference with USP7 caused failure of the morula-to-blastocyst transition and was accompanied by abnormal expression of key genes (Cdx2, Oct4, Nanog, Sox2) for lineage differentiation, decreased transcript levels, increased global DNA methylation, elevated repressive histone marks (H3K27me3), and decreased active histone marks (H3K4me3 and H3K27ac). Notably, USP7 may regulate the transition from the morula to blastocyst by stabilizing the target protein YAP through the ubiquitin-proteasome pathway. In conclusion, our results suggest that USP7 may play a crucial role in preimplantation embryonic development by regulating lineage differentiation and key epigenetic modifications.
Collapse
Affiliation(s)
- Tong Yu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingbing Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Bozhen Ji
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Weijia Song
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianmin Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|