1
|
Mendoza H, Jash E, Davis MB, Haines RA, VanDiepenbos S, Csankovszki G. Distinct regulatory mechanisms by the nuclear Argonautes HRDE-1 and NRDE-3 in the soma of Caenorhabditis elegans. G3 (BETHESDA, MD.) 2025; 15:jkaf057. [PMID: 40087923 PMCID: PMC12060244 DOI: 10.1093/g3journal/jkaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
RNA interference (RNAi) is a conserved silencing mechanism that depends on the generation of small RNA molecules that leads to the degradation of the targeted messenger RNAs (mRNAs). Nuclear RNAi is a unique process that triggers regulation through epigenetic alterations to the genome. This pathway has been extensively characterized in Caenorhabditis elegans and involves the nuclear recruitment of H3K9 histone methyltransferases by the Argonautes HRDE-1 and NRDE-3. The coordinate regulation of genetic targets by H3K9 methylation and the nuclear Argonautes is highly complex and has been mainly described based on the small RNA populations that are involved. Recent studies have also linked the nuclear RNAi pathway to the compaction of the hermaphrodite X chromosomes during dosage compensation (DC), a mechanism that balances genetic differences between the biological sexes by repressing X chromosomes in hermaphrodites. This chromosome-wide process provides an excellent opportunity to further investigate the relationship between H3K9 methylation and the nuclear Argonautes. Our work suggests that the nuclear RNAi and the H3K9 methylation pathways each contribute to the condensation of the X chromosomes during DC but the consequences on the transcriptional output of X-linked genes are minimal. Instead, nuclear RNAi mutants exhibit global transcriptional differences, in which HRDE-1 and NRDE-3 affect expression of their mRNA targets through different relationships to H3K9 methylation.
Collapse
Affiliation(s)
- Hector Mendoza
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eshna Jash
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca A Haines
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah VanDiepenbos
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Yu HX, Cao YJ, Yang YB, Shan JX, Ye WW, Dong NQ, Kan Y, Zhao HY, Lu ZQ, Guo SQ, Lei JJ, Liao B, Lin HX. A TT1-SCE1 module integrates ubiquitination and SUMOylation to regulate heat tolerance in rice. MOLECULAR PLANT 2024; 17:1899-1918. [PMID: 39552084 DOI: 10.1016/j.molp.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Heat stress poses a significant threat to grain yield. As an α2 subunit of the 26S proteasome, TT1 has been shown to act as a critical regulator of rice heat tolerance. However, the heat tolerance mechanisms mediated by TT1 remain elusive. In this study, we unveiled that small ubiquitin-like modifier (SUMO)-conjugating enzyme 1 (SCE1), which interacts with TT1 and acts as a downstream component of TT1, is engaged in TT1-mediated 26S proteasome degradation. We showed that SCE1 functions as a negative regulator of heat tolerance in rice, which is associated with its ubiquitination modification. Furthermore, we observed that small heat-shock proteins (sHSPs) such as Hsp24.1 and Hsp40 can undergo SUMOylation mediated by SCE1, leading to increased accumulation of sHSPs in the absence of SCE1. Reducing protein levels of SCE1 significantly enhanced grain yield under high-temperature stress by improving seed-setting rate and rice grain filling capacity. Taken together, these results uncover the critical role of SCE1 in the TT1-mediated heat tolerance pathway by regulating the abundance of sHSPs and SUMOylation, and ultimately modulating rice heat tolerance. These findings underscore the great potential of the TT1-SCE1 module in improving the heat tolerance of crops.
Collapse
Affiliation(s)
- Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Cao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Yang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
3
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Mendoza H, Jash E, Davis MB, Haines RA, Van Diepenbos S, Csankovszki G. Distinct regulatory mechanisms by the nuclear Argonautes HRDE-1 and NRDE-3 in the soma of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615038. [PMID: 39386440 PMCID: PMC11463658 DOI: 10.1101/2024.09.25.615038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA interference is a conserved silencing mechanism that depends on the generation of small RNA molecules that disrupt synthesis of their corresponding transcripts. Nuclear RNA interference is a unique process that triggers regulation through epigenetic alterations to the genome. This pathway has been extensively characterized in Caenorhabditis elegans and involves the nuclear recruitment of H3K9 histone methyltransferases by the Argonautes HRDE-1 and NRDE-3. The coordinate regulation of genetic targets by H3K9 methylation and the nuclear Argonautes is highly complex and has been mainly described based on the small RNA populations that are involved. Recent studies have also linked the nuclear RNAi pathway to the compaction of the hermaphrodite X chromosomes during dosage compensation, a mechanism that balances genetic differences between the biological sexes by repressing X chromosomes in hermaphrodites. This chromosome-wide process provides an excellent opportunity to further investigate the relationship between H3K9 methylation and the nuclear Argonautes from the perspective of the transcriptome. Our work suggests that the nuclear RNAi and the H3K9 methylation pathways each contribute to the condensation of the X chromosomes during dosage compensation but the consequences on their transcriptional output are minimal. Instead, nuclear RNAi mutants exhibit global transcriptional differences, in which HRDE-1 and NRDE-3 affect expression of their native targets through different modes of regulation and different relationships to H3K9 methylation. ARTICLE SUMMARY This study examines the transcriptional consequences during the disruption of the nuclear RNAi silencing mechanism in C. elegans . Through microscopy and bioinformatic work, we demonstrate that although nuclear RNAi mutants exhibit significantly decondensed X chromosomes, chromosome-wide transcriptional de-repression is not detectable. Downstream analyses further explore the global influence of the nuclear RNAi pathway, indicating that the nuclear Argonautes HRDE-1 and NRDE-3 function through two distinct mechanisms.
Collapse
|
5
|
Hammami NEH, Mérindol N, Plourde MB, Maisonnet T, Lebel S, Berthoux L. SUMO-3 promotes the ubiquitin-dependent turnover of TRIM55. Biochem Cell Biol 2024; 102:73-84. [PMID: 37703582 DOI: 10.1139/bcb-2023-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Human muscle-specific RING fingers (MURFs) are members of the tripartite motif (TRIM) family of proteins characterized by their C-terminal subgroup one signature domain. MURFs play a role in sarcomere formation and microtubule dynamics. It was previously established that some TRIMs undergo post-translational modification by small ubiquitin-like modifier (SUMO). In this study, we explored the putative SUMOylation of MURF proteins as well as their interactions with SUMO. MURF proteins (TRIM54, TRIM55, and TRIM63) were not found to be SUMOylated. However, TRIM55 turnover by proteasomal and lysosomal degradation was higher upon overexpression of SUMO-3 but not of SUMO-1. Furthermore, it is predicted that TRIM55 contains two potential SUMO-interacting motifs (SIMs). We found that SIM1- and SIM2-mutated TRIM55 were more stable than the wild-type (WT) protein partly due to decreased degradation. Consistently, SIM-mutated TRIM55 was less polyubiquitinated than the WT protein, despite similar monoubiquitination levels. Using IF microscopy, we observed that SIM motifs influenced TRIM55 subcellular localization. In conclusion, our results suggest that SUMO-3 or SUMO-3-modified proteins modulate the localization, stability, and RING ubiquitin ligase activity of TRIM55.
Collapse
Affiliation(s)
- Nour-El-Houda Hammami
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Mérindol
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mélodie B Plourde
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Tara Maisonnet
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Sophie Lebel
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Lionel Berthoux
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
6
|
Wu W, Huang C. SUMOylation and DeSUMOylation: Prospective therapeutic targets in cancer. Life Sci 2023; 332:122085. [PMID: 37722589 DOI: 10.1016/j.lfs.2023.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
The SUMO family is a type of ubiquitin-like protein modification molecule. Its protein modification mechanism is similar to that of ubiquitination: both involve modifier-activating enzyme E1, conjugating enzyme E2 and substrate-specific ligase E3. However, polyubiquitination can lead to the degradation of substrate proteins, while poly-SUMOylation only leads to the degradation of substrate proteins through the proteasome pathway after being recognized by ubiquitin as a signal factor. There are currently five reported subtypes in the SUMO family, namely SUMO1-5. As a reversible dynamic modification, intracellular sentrin/SUMO-specific proteases (SENPs) mainly regulate the reverse reaction pathway of SUMOylation. The SUMOylation modification system affects the localization, activation and turnover of proteins in cells and participates in regulating most nuclear and extranuclear molecular reactions. Abnormal expression of proteins related to the SUMOylation pathway is commonly observed in tumors, indicating that this pathway is closely related to tumor occurrence, metastasis and invasion. This review mainly discusses the composition of members in the protein family related to SUMOylation pathways, mutual connections between SUMOylation and other post-translational modifications on proteins as well as therapeutic drugs developed based on these pathways.
Collapse
Affiliation(s)
- Wenyan Wu
- Kunming University of Science and Technology, Medical School, Kunming 650500, China
| | - Chao Huang
- Kunming University of Science and Technology, Medical School, Kunming 650500, China.
| |
Collapse
|
7
|
Wang Z, Pan B, Qiu J, Zhang X, Ke X, Shen S, Wu X, Yao Y, Tang N. SUMOylated IL-33 in the nucleus stabilizes the transcription factor IRF1 in hepatocellular carcinoma cells to promote immune escape. Sci Signal 2023; 16:eabq3362. [PMID: 36917642 DOI: 10.1126/scisignal.abq3362] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Interleukin-33 (IL-33) functions both as a secreted cytokine and as a nuclear factor, with pleiotropic roles in cancer and immunity. Here, we explored its role in hepatocellular carcinoma (HCC) and identified that a posttranslational modification altered its nuclear activity and promoted immune escape for HCC. IL-33 abundance was overall decreased but more frequently localized to the nucleus in patient HCC tissues than in normal liver tissues. In human and mouse HCC cells in culture and in vivo, IL-33 overexpression inhibited proliferation and repressed the abundance of programmed death ligand 1 (PD-L1) at the transcriptional level by promoting the ubiquitin-dependent degradation of interferon regulatory factor 1 (IRF1). However, this interaction was disrupted by SUMOylation of IL-33 at Lys54 mediated by the E3 ligase RanBP2. IL-33 SUMOylation correlated with its nuclear localization in HCC cells and tumors. An increase in SUMOylated IL-33 in HCC cells in cocultures and in vivo stabilized IRF1 and increased PD-L1 abundance and chemokine IL-8 secretion, which prevented the activation of cytotoxic T cells and promoted the M2 polarization of macrophages, respectively. Mutating the SUMOylation site in IL-33 reversed these effects and suppressed tumor growth. These findings indicate that SUMOylation of nuclear IL-33 in HCC cells impairs antitumor immunity.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Xiaoling Ke
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Shuling Shen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China.,Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou 350001, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350122, China
| |
Collapse
|
8
|
Chen M, Zhang Q, Wang S, Zheng F. Inhibition of diabetes-induced Drp1 deSUMOylation prevents retinal vascular lesions associated with diabetic retinopathy. Exp Eye Res 2023; 226:109334. [PMID: 36435207 DOI: 10.1016/j.exer.2022.109334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Retinal microvascular endothelial cell (RMEC) injury plays an important role in the pathophysiology diabetic retinopathy (DR). The GTPase dynamin-related protein 1 (Drp1), crucial to mitochondrial dynamics, has been implicated in hyperglycaemia-induced microvascular damage. Moreover, Drp1 can be deSUMOylated by the enzyme sentrin/SUMO-specific protease 3 (SENP3). Whether SENP3/deSUMOylated Drp1 can aggravate DR is unclear. Therefore, we designed this experiment to investigate the role of SENP3/desumoylated Drp1 in DR in vitro and in vivo. Murine RMECs (mRMECs) were classified into a control (CON), high-glucose (HG) and high-glucose + SENP3-siRNA (HG-siRNA) groups. The SENP3 and SUMOylated/deSUMOylated drp1 levels, mitochondrial morphology, mitochondrial membrane potential (MMP) and apoptosis rate were evaluated. In vivo, mice were assigned to a normal, type 2 diabetic or type 2 diabetic SENP3-siRNA mouse groups. Then, blood-retinal barrier function and retinal tissue structure were evaluated. As compared to those in the control group, the SENP3 and Drp1 levels, degree of mitochondrial fragmentation, extent of MMP loss and apoptosis rate of mRMECs were significantly increased in the HG group. However, inhibited SENP3 expression increased the level of SUMOylated Drp1 in the mRMECs and reduced the hyperglycaemia-induced mitochondrial damage and apoptosis rate. These experimental results were confirmed by diabetic animal experiments showing that inhibited SENP3 expression attenuated the increase in retinal permeability and diabetic retinopathy, suggesting that SENP3/deSUMOylated Drp1 activation aggravated DR by disrupting mitochondrial dynamics and apoptosis. Furthermore, blocking SENP3 expression significantly attenuated RMEC damage and DR.
Collapse
Affiliation(s)
- Min Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, China
| | - Qianhui Zhang
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, China
| | - Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, China
| | - Feng Zheng
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, China.
| |
Collapse
|
9
|
The Thermal Stress Coping Network of the Nematode Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms232314907. [PMID: 36499234 PMCID: PMC9737000 DOI: 10.3390/ijms232314907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Response to hyperthermia, highly conserved from bacteria to humans, involves transcriptional upregulation of genes involved in battling the cytotoxicity caused by misfolded and denatured proteins, with the aim of proteostasis restoration. C. elegans senses and responds to changes in growth temperature or noxious thermal stress by well-defined signaling pathways. Under adverse conditions, regulation of the heat shock response (HSR) in C. elegans is controlled by a single transcription factor, heat-shock factor 1 (HSF-1). HSR and HSF-1 in particular are proven to be central to survival under proteotoxic stress, with additional roles in normal physiological processes. For years, it was a common belief that upregulation of heat shock proteins (HSPs) by HSF-1 was the main and most important step toward thermotolerance. However, an ever-growing number of studies have shown that targets of HSF-1 involved in cytoskeletal and exoskeletal integrity preservation as well as other HSF-1 dependent and independent pathways are equally important. In this review, we follow the thermal stimulus from reception by the nematode nerve endings till the activation of cellular response programs. We analyze the different HSF-1 functions in HSR as well as all the recently discovered mechanisms that add to the knowledge of the heat stress coping network of C. elegans.
Collapse
|
10
|
Zhang WH, Koyuncu S, Vilchez D. Insights Into the Links Between Proteostasis and Aging From C. elegans. FRONTIERS IN AGING 2022; 3:854157. [PMID: 35821832 PMCID: PMC9261386 DOI: 10.3389/fragi.2022.854157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 04/20/2023]
Abstract
Protein homeostasis (proteostasis) is maintained by a tightly regulated and interconnected network of biological pathways, preventing the accumulation and aggregation of damaged or misfolded proteins. Thus, the proteostasis network is essential to ensure organism longevity and health, while proteostasis failure contributes to the development of aging and age-related diseases that involve protein aggregation. The model organism Caenorhabditis elegans has proved invaluable for the study of proteostasis in the context of aging, longevity and disease, with a number of pivotal discoveries attributable to the use of this organism. In this review, we discuss prominent findings from C. elegans across the many key aspects of the proteostasis network, within the context of aging and disease. These studies collectively highlight numerous promising therapeutic targets, which may 1 day facilitate the development of interventions to delay aging and prevent age-associated diseases.
Collapse
Affiliation(s)
- William Hongyu Zhang
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
11
|
Barmaver SN, Muthaiyan Shanmugam M, Chang Y, Bayansan O, Bhan P, Wu GH, Wagner OI. Loss of intermediate filament IFB-1 reduces mobility, density and physiological function of mitochondria in C. elegans sensory neurons. Traffic 2022; 23:270-286. [PMID: 35261124 DOI: 10.1111/tra.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axonal transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In C. elegans, among the 11 cytoplasmic IF family proteins, IFB-1 is of particular interest as it is expressed in a subset of sensory neurons. Depletion of IFB-1 leads to mild dye-filling and significant chemotaxis defects as well as reduced life span. Sensory neuron development is affected and mitochondria transport is slowed down leading to reduced densities of these organelles. Mitochondria tend to cluster in neurons of IFB-1 mutants likely independent of the fission and fusion machinery. Oxygen consumption and mitochondrial membrane potential is measurably reduced in worms carrying mutations in the ifb-1 gene. Membrane potential also seems to play a role in transport such as FCCP treatment led to increased directional switching of mitochondria. Mitochondria colocalize with IFB-1 in worm neurons and appear in a complex with IFB-1 in pull-down assays. In summary, we propose a model in which neuronal intermediate filaments may serve as critical (transient) anchor points for mitochondria during their long-range transport in neurons for steady and balanced transport. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Syed Nooruzuha Barmaver
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Muniesh Muthaiyan Shanmugam
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Yen Chang
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Odvogmed Bayansan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Prerana Bhan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.).,Research Center for Healthy Aging, China Medical University, Taichung, Taiwan (R.O.C.)
| | - Gong-Her Wu
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Oliver I Wagner
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| |
Collapse
|
12
|
Liu X, Chen X, Xiao M, Zhu Y, Gong R, Liu J, Zeng Q, Xu C, Chen X, Wang F, Cao K. RANBP2 Activates O-GlcNAcylation through Inducing CEBPα-Dependent OGA Downregulation to Promote Hepatocellular Carcinoma Malignant Phenotypes. Cancers (Basel) 2021; 13:3475. [PMID: 34298689 PMCID: PMC8304650 DOI: 10.3390/cancers13143475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
O-GlcNAcylation is an important post-translational modification (PTM) jointly controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Aberrant hyper-O-GlcNAcylation is reported to yield hepatocellular carcinoma (HCC) malignancy, but the underlying mechanisms of the OGT/OGA imbalance responsible for HCC tumorigenesis remain largely unknown. Here, we report that RAN-binding protein 2 (RANBP2), one of the small ubiquitin-like modifier (SUMO) E3 ligases, contributed to malignant phenotypes in HCC. RANBP2 was found to facilitate CCAAT/enhancer-binding protein alpha (CEBPα) SUMOylation and degradation by direct interplay with CEBPα. As a transcriptional factor, CEBPα was verified to augment OGA transcription, and further experiments demonstrated that RANBP2 enhanced the O-GlcNAc level by downregulating OGA transcription while not affecting OGT expression. Importantly, we provided in vitro and in vivo evidence of HCC malignant phenotypes that RANBP2 triggered through an imbalance of OGT/OGA and subsequent higher O-GlcNAcylation events for oncogenic proteins such as peroxisome proliferative-activated receptor gamma coactivator 1 alpha (PGC1α) in a CEBPα-dependent manner. Altogether, our results show a novel molecular mechanism whereby RANBP2 regulates its function through CEBPα-dependent OGA downregulation to induce a global change in the hyper-O-GlcNAcylation of genes, such as PGC1α, encouraging the further study of promising implications for HCC therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| | - Renjie Gong
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Jianye Liu
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Xiong Chen
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Fen Wang
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| |
Collapse
|
13
|
Bouchard D, Wang W, Yang WC, He S, Garcia A, Matunis MJ. SUMO paralogue-specific functions revealed through systematic analysis of human knockout cell lines and gene expression data. Mol Biol Cell 2021; 32:1849-1866. [PMID: 34232706 PMCID: PMC8684707 DOI: 10.1091/mbc.e21-01-0031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The small ubiquitin-related modifiers (SUMOs) regulate nearly every aspect of cellular function, from gene expression in the nucleus to ion transport at the plasma membrane. In humans, the SUMO pathway has five SUMO paralogues with sequence homologies that range from 45% to 97%. SUMO1 and SUMO2 are the most distantly related paralogues and also the best studied. To what extent SUMO1, SUMO2, and the other paralogues impart unique and nonredundant effects on cellular functions, however, has not been systematically examined and is therefore not fully understood. For instance, knockout studies in mice have revealed conflicting requirements for the paralogues during development and studies in cell culture have relied largely on transient paralogue overexpression or knockdown. To address the existing gap in understanding, we first analyzed SUMO paralogue gene expression levels in normal human tissues and found unique patterns of SUMO1–3 expression across 30 tissue types, suggesting paralogue-specific functions in adult human tissues. To systematically identify and characterize unique and nonredundant functions of the SUMO paralogues in human cells, we next used CRISPR-Cas9 to knock out SUMO1 and SUMO2 expression in osteosarcoma (U2OS) cells. Analysis of these knockout cell lines revealed essential functions for SUMO1 and SUMO2 in regulating cellular morphology, promyelocytic leukemia (PML) nuclear body structure, responses to proteotoxic and genotoxic stress, and control of gene expression. Collectively, our findings reveal nonredundant regulatory roles for SUMO1 and SUMO2 in controlling essential cellular processes and provide a basis for more precise SUMO-targeting therapies.
Collapse
Affiliation(s)
- Danielle Bouchard
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Wei-Chih Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Shuying He
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Anthony Garcia
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
14
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Kim H, Ding YH, Lu S, Zuo MQ, Tan W, Conte D, Dong MQ, Mello CC. PIE-1 SUMOylation promotes germline fates and piRNA-dependent silencing in C. elegans. eLife 2021; 10:e63300. [PMID: 34003111 PMCID: PMC8131105 DOI: 10.7554/elife.63300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Germlines shape and balance heredity, integrating and regulating information from both parental and foreign sources. Insights into how germlines handle information have come from the study of factors that specify or maintain the germline fate. In early Caenorhabditis elegans embryos, the CCCH zinc finger protein PIE-1 localizes to the germline where it prevents somatic differentiation programs. Here, we show that PIE-1 also functions in the meiotic ovary where it becomes SUMOylated and engages the small ubiquitin-like modifier (SUMO)-conjugating machinery. Using whole-SUMO-proteome mass spectrometry, we identify HDAC SUMOylation as a target of PIE-1. Our analyses of genetic interactions between pie-1 and SUMO pathway mutants suggest that PIE-1 engages the SUMO machinery both to preserve the germline fate in the embryo and to promote Argonaute-mediated surveillance in the adult germline.
Collapse
Affiliation(s)
- Heesun Kim
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Yue-He Ding
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Shan Lu
- National Institute of Biological SciencesBeijingChina
| | - Mei-Qing Zuo
- National Institute of Biological SciencesBeijingChina
| | - Wendy Tan
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Meng-Qiu Dong
- National Institute of Biological SciencesBeijingChina
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
16
|
Feng W, Liu R, Xie X, Diao L, Gao N, Cheng J, Zhang X, Li Y, Bao L. SUMOylation of α-tubulin is a novel modification regulating microtubule dynamics. J Mol Cell Biol 2021; 13:91-103. [PMID: 33394042 PMCID: PMC8104938 DOI: 10.1093/jmcb/mjaa076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) are regulated by a number of known posttranslational modifications (PTMs) on α/β-tubulin to fulfill diverse cellular functions. Here, we showed that SUMOylation is a novel PTM on α-tubulin in vivo and in vitro. The SUMOylation on α-tubulin mainly occurred at Lys 96 (K96), K166, and K304 of soluble α-tubulin and could be removed by small ubiquitin-related modifier (SUMO)-specific peptidase 1. In vitro experiments showed that tubulin SUMOylation could reduce interprotofilament interaction, promote MT catastrophe, and impede MT polymerization. In cells, mutation of the SUMOylation sites on α-tubulin reduced catastrophe frequency and increased the proportion of polymerized α-tubulin, while upregulation of SUMOylation with fusion of SUMO1 reduced α-tubulin assembly into MTs. Additionally, overexpression of SUMOylation-deficient α-tubulin attenuated the neurite extension in Neuro-2a cells. Thus, SUMOylation on α-tubulin represents a new player in the regulation of MT properties.
Collapse
Affiliation(s)
- Wenfeng Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Institute of Brain-Intelligence Technology, Zhangjiang Laboratory; Shanghai Research Center for Brain Science & Brain-Inspired Intelligence, Shanghai 201210, China
| | - Rong Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Xie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nannan Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinke Cheng
- Discipline of Neuroscience and Department of Biochemistry, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu Zhang
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory; Shanghai Research Center for Brain Science & Brain-Inspired Intelligence, Shanghai 201210, China.,Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Li
- Discipline of Neuroscience and Department of Biochemistry, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
17
|
Kreyden VA, Mawi EB, Rush KM, Kowalski JR. UBC-9 Acts in GABA Neurons to Control Neuromuscular Signaling in C. elegans. Neurosci Insights 2020; 15:2633105520962792. [PMID: 33089216 PMCID: PMC7543134 DOI: 10.1177/2633105520962792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/10/2020] [Indexed: 11/20/2022] Open
Abstract
Regulation of excitatory to inhibitory signaling balance is essential to nervous system health and is maintained by numerous enzyme systems that modulate the activity, localization, and abundance of synaptic proteins. SUMOylation is a key post-translational regulator of protein function in diverse cells, including neurons. There, its role in regulating synaptic transmission through pre- and postsynaptic effects has been shown primarily at glutamatergic central nervous system synapses, where the sole SUMO-conjugating enzyme Ubc9 is a critical player. However, whether Ubc9 functions globally at other synapses, including inhibitory synapses, has not been explored. Here, we investigated the role of UBC-9 and the SUMOylation pathway in controlling the balance of excitatory cholinergic and inhibitory GABAergic signaling required for muscle contraction in Caenorhabditis elegans. We found inhibition or overexpression of UBC-9 in neurons modestly increased muscle excitation. Similar and even stronger phenotypes were seen with UBC-9 overexpression specifically in GABAergic neurons, but not in cholinergic neurons. These effects correlated with accumulation of synaptic vesicle-associated proteins at GABAergic presynapses, where UBC-9 and the C. elegans SUMO ortholog SMO-1 localized, and with defects in GABA-dependent behaviors. Experiments involving expression of catalytically inactive UBC-9 [UBC-9(C93S)], as well as co-expression of UBC-9 and SMO-1, suggested wild type UBC-9 overexpressed alone may act via substrate sequestration in the absence of sufficient free SUMO, underscoring the importance of tightly regulated SUMO enzyme function. Similar effects on muscle excitation, GABAergic signaling, and synaptic vesicle localization occurred with overexpression of the SUMO activating enzyme subunit AOS-1. Together, these data support a model in which UBC-9 and the SUMOylation system act at presynaptic sites in inhibitory motor neurons to control synaptic signaling balance in C. elegans. Future studies will be important to define UBC-9 targets at this synapse, as well as mechanisms by which UBC-9 and the SUMO pathway are regulated.
Collapse
Affiliation(s)
- Victoria A Kreyden
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | - Elly B Mawi
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | - Kristen M Rush
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | | |
Collapse
|
18
|
Princz A, Pelisch F, Tavernarakis N. SUMO promotes longevity and maintains mitochondrial homeostasis during ageing in Caenorhabditis elegans. Sci Rep 2020; 10:15513. [PMID: 32968203 PMCID: PMC7511317 DOI: 10.1038/s41598-020-72637-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
The insulin/IGF signalling pathway impacts lifespan across distant taxa, by controlling the activity of nodal transcription factors. In the nematode Caenorhabditis elegans, the transcription regulators DAF-16/FOXO and SKN-1/Nrf function to promote longevity under conditions of low insulin/IGF signalling and stress. The activity and subcellular localization of both DAF-16 and SKN-1 is further modulated by specific posttranslational modifications, such as phosphorylation and ubiquitination. Here, we show that ageing elicits a marked increase of SUMO levels in C. elegans. In turn, SUMO fine-tunes DAF-16 and SKN-1 activity in specific C. elegans somatic tissues, to enhance stress resistance. SUMOylation of DAF-16 modulates mitochondrial homeostasis by interfering with mitochondrial dynamics and mitophagy. Our findings reveal that SUMO is an important determinant of lifespan, and provide novel insight, relevant to the complexity of the signalling mechanisms that influence gene expression to govern organismal survival in metazoans.
Collapse
Affiliation(s)
- Andrea Princz
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece. .,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
19
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
20
|
Pimentel-Acosta CA, Ramírez-Salcedo J, Morales-Serna FN, Fajer-Ávila EJ, Chávez-Sánchez C, Lara HH, García-Gasca A. Molecular Effects of Silver Nanoparticles on Monogenean Parasites: Lessons from Caenorhabditis elegans. Int J Mol Sci 2020; 21:ijms21165889. [PMID: 32824343 PMCID: PMC7460582 DOI: 10.3390/ijms21165889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
The mechanisms of action of silver nanoparticles (AgNPs) in monogenean parasites of the genus Cichlidogyrus were investigated through a microarray hybridization approach using genomic information from the nematode Caenorhabditis elegans. The effects of two concentrations of AgNPs were explored, low (6 µg/L Ag) and high (36 µg/L Ag). Microarray analysis revealed that both concentrations of AgNPs activated similar biological processes, although by different mechanisms. Expression profiles included genes involved in detoxification, neurotoxicity, modulation of cell signaling, reproduction, embryonic development, and tegument organization as the main biological processes dysregulated by AgNPs. Two important processes (DNA damage and cell death) were mostly activated in parasites exposed to the lower concentration of AgNPs. To our knowledge, this is the first study providing information on the sub-cellular and molecular effects of exposure to AgNPs in metazoan parasites of fish.
Collapse
Affiliation(s)
- Citlalic A. Pimentel-Acosta
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Jorge Ramírez-Salcedo
- Unidad de Microarreglos, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico;
| | - Francisco Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
- CONACYT, Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico
| | - Emma J. Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Cristina Chávez-Sánchez
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Humberto H. Lara
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
- Correspondence: ; Tel.: +52-66-9989-8700
| |
Collapse
|
21
|
Sapir A. Not So Slim Anymore-Evidence for the Role of SUMO in the Regulation of Lipid Metabolism. Biomolecules 2020; 10:E1154. [PMID: 32781719 PMCID: PMC7466032 DOI: 10.3390/biom10081154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
One of the basic building blocks of all life forms are lipids-biomolecules that dissolve in nonpolar organic solvents but not in water. Lipids have numerous structural, metabolic, and regulative functions in health and disease; thus, complex networks of enzymes coordinate the different compositions and functions of lipids with the physiology of the organism. One type of control on the activity of those enzymes is the conjugation of the Small Ubiquitin-like Modifier (SUMO) that in recent years has been identified as a critical regulator of many biological processes. In this review, I summarize the current knowledge about the role of SUMO in the regulation of lipid metabolism. In particular, I discuss (i) the role of SUMO in lipid metabolism of fungi and invertebrates; (ii) the function of SUMO as a regulator of lipid metabolism in mammals with emphasis on the two most well-characterized cases of SUMO regulation of lipid homeostasis. These include the effect of SUMO on the activity of two groups of master regulators of lipid metabolism-the Sterol Regulatory Element Binding Protein (SERBP) proteins and the family of nuclear receptors-and (iii) the role of SUMO as a regulator of lipid metabolism in arteriosclerosis, nonalcoholic fatty liver, cholestasis, and other lipid-related human diseases.
Collapse
Affiliation(s)
- Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
22
|
Game of Tissues: How the Epidermis Thrones C. elegans Shape. J Dev Biol 2020; 8:jdb8010007. [PMID: 32182901 PMCID: PMC7151205 DOI: 10.3390/jdb8010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The versatility of epithelial cell structure is universally exploited by organisms in multiple contexts. Epithelial cells can establish diverse polarized axes within their tridimensional structure which enables them to flexibly communicate with their neighbors in a 360° range. Hence, these cells are central to multicellularity, and participate in diverse biological processes such as organismal development, growth or immune response and their misfunction ultimately impacts disease. During the development of an organism, the first task epidermal cells must complete is the formation of a continuous sheet, which initiates its own morphogenic process. In this review, we will focus on the C. elegans embryonic epithelial morphogenesis. We will describe how its formation, maturation, and spatial arrangements set the final shape of the nematode C. elegans. Special importance will be given to the tissue-tissue interactions, regulatory tissue-tissue feedback mechanisms and the players orchestrating the process.
Collapse
|
23
|
Qu M, Liu Y, Xu K, Wang D. Activation of p38 MAPK Signaling‐Mediated Endoplasmic Reticulum Unfolded Protein Response by Nanopolystyrene Particles. ACTA ACUST UNITED AC 2019; 3:e1800325. [DOI: 10.1002/adbi.201800325] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/19/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Man Qu
- Key Laboratory of Environmental Medicine Engineering of Ministry of EducationMedical SchoolSoutheast University Nanjing 210009 China
| | - Yaqi Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of EducationMedical SchoolSoutheast University Nanjing 210009 China
| | - Kangni Xu
- Key Laboratory of Environmental Medicine Engineering of Ministry of EducationMedical SchoolSoutheast University Nanjing 210009 China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of EducationMedical SchoolSoutheast University Nanjing 210009 China
| |
Collapse
|
24
|
Karabinos A. Intermediate filament (IF) proteins IFA-1 and IFB-1 represent a basic heteropolymeric IF cytoskeleton of nematodes: A molecular phylogeny of nematode IFs. Gene 2019; 692:44-53. [PMID: 30641223 DOI: 10.1016/j.gene.2018.12.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/17/2018] [Accepted: 12/31/2018] [Indexed: 11/30/2022]
Abstract
Intermediate filaments (IF) belong to major cytoskeletal components of metazoan cells. We have previously determined a tissue specific expression and assembly properties of all eleven cytoplasmic IFs (IFA-1 - IFA-4, IFB-1, IFB-2, IFC-1, IFC-2, IFD-1, IFD-2, IFP-1) in C. elegans and reported an essential function for four (IFA-1, IFA-2, IFA-3 and IFB-1) of them. In this study we continued the characterisation of the IF proteins in C. elegans by searching for in vivo polymerisation partners of the IFA proteins. Using the murine IFA-1 to IFA-3-specific monoclonal Ab MH4 and the immunoprecipitation assay as a tool, we identified the heteropolymeric IFA-1/IFB-1 complexes in the whole nematode protein extract, confirming their existence also in vivo. Moreover, in the present study we also analysed evolutionary aspects of the IF proteins in C. elegans and in nematodes. We found 106 C. elegans IF homologs in different nematode clades. Phylogenetic analyses suggest that all nematode IFs (including the three newly identified IF sequences IFA-5, IFCDP-1 and IFCDP-2) might arose from a AB-type IF ancestor through repeated gene duplications and sequence divergence. Interestingly, the C. elegans IF proteins IFA-1 and IFB-1 represent a heteropolymeric IF cytoskeleton in all investigated nematode clades, in contrast to other sequences restricted to the clade III-V (IFA-2, IFA-4), III (IFA-5) and V (IFB-2, IFCDP) taxa, or even to the Caenorhabditis genus (IFA-3, IFC-1 to IFP-1). These analyses provide an insight into the origin of the multiple IFs in nematodes and also represent a basis for further studies of these sequences in nematodes.
Collapse
Affiliation(s)
- Anton Karabinos
- SEMBID, s.r.o.-Research Centre of Applied Biomedical Diagnostics, Magnezitarska 2/C, 04013 Kosice, Slovakia.
| |
Collapse
|
25
|
Zhu J, Chen Y, Chen Z, Wei J, Zhang H, Ding L. Leukamenin E, an ent-kaurane diterpenoid, is a novel and potential keratin intermediate filament inhibitor. Eur J Pharmacol 2019; 846:86-99. [PMID: 30641059 DOI: 10.1016/j.ejphar.2019.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Many ent-kaurane diterpenoids exhibit notable antitumor activity in vitro and in vivo, and some have been used as cancer therapeutic agents in China. In this study, we identified a novel molecular target of leukamenin E, an ent-kaurane diterpenoid, using an available whole-cell model in combination with immunofluorescence imaging and mass spectrometry (MS). The cytoskeleton-disrupting drugs cytochalasin B and colchicine caused the depolymerization of microfilaments and the collapse of microtubules and vimentin filaments, respectively, but had little effects on HepG2 and NCI-H1299 cells spreading as well as keratin filament (KF) reassembly, indicating that KFs are involved in cell spreading. Leukamenin E blocked HepG2 and NCI-H1299 cells adhesion/spreading and KF reassembly at subtoxic concentrations, indicating that leukamenin E may target KFs. Moreover, leukamenin E, at 3 μM for 24 h or 10 μM for 3 h, induced massive KF depolymerization in well-spread HepG2 and NCI-H1299 cells treated with/without cytochalasin B and colchicine. MS analysis indicated that leukamenin E could covalently modify amino acid residue(s) in a synthetic peptide based on keratin 1 and keratin 10 sequences, suggesting that covalent modification of the synthetic peptide by leukamenin E caused assembly inhibition or disrupted KF polymerization in HepG2 and NCI-H1299 cells. In addition, acridine orange/ethidium bromide staining and western blotting confirmed that there was no correlation between the KF-disrupting effects and apoptosis or keratin expression. Thus, we propose that leukamenin E is a novel inhibitor of KF assembly, and as such, can serve as a chemical probe of KF functions and a potential molecular target for ent-kaurane diterpenoid-based therapeutics.
Collapse
Affiliation(s)
- Jinhui Zhu
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China
| | - Yiping Chen
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China
| | - Zongru Chen
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China
| | - Jingxin Wei
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China
| | - Hui Zhang
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China
| | - Lan Ding
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China.
| |
Collapse
|
26
|
Gujrati M, Mittal R, Ekal L, Mishra RK. SUMOylation of periplakin is critical for efficient reorganization of keratin filament network. Mol Biol Cell 2018; 30:357-369. [PMID: 30516430 PMCID: PMC6589569 DOI: 10.1091/mbc.e18-04-0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The architecture of the cytoskeleton and its remodeling are tightly regulated by dynamic reorganization of keratin-rich intermediate filaments. Plakin family proteins associate with the network of intermediate filaments (IFs) and affect its reorganization during migration, differentiation, and response to stress. The smallest plakin, periplakin (PPL), interacts specifically with intermediate filament proteins K8, K18, and vimentin via its C-terminal linker domain. Here, we show that periplakin is SUMOylated at a conserved lysine in its linker domain (K1646) preferentially by small ubiquitin-like modifier 1 (SUMO1). Our data indicate that PPL SUMOylation is essential for the proper reorganization of the keratin IF network. Stresses perturbing intermediate-filament and cytoskeletal architecture induce hyper--SUMOylation of periplakin. Okadaic acid induced hyperphosphorylation-dependent collapse of the keratin IF network results in a similar hyper-SUMOylation of PPL. Strikingly, exogenous overexpression of a non-SUMOylatable periplakin mutant (K1646R) induced aberrant bundling and loose network interconnections of the keratin filaments. Time-lapse imaging of cells expressing the K1646R mutant showed the enhanced sensitivity of keratin filament collapse upon okadaic acid treatment. Our data identify an important regulatory role for periplakin SUMOylation in dynamic reorganization and stability of keratin IFs.
Collapse
Affiliation(s)
- Mansi Gujrati
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| | - Rohit Mittal
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lakhan Ekal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
27
|
Stankova T, Piepkorn L, Bayer TA, Jahn O, Tirard M. SUMO1-conjugation is altered during normal aging but not by increased amyloid burden. Aging Cell 2018; 17:e12760. [PMID: 29633471 PMCID: PMC6052395 DOI: 10.1111/acel.12760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 01/09/2023] Open
Abstract
A proper equilibrium of post-translational protein modifications is essential for normal cell physiology, and alteration in these processes is key in neurodegenerative disorders such as Alzheimer's disease. Recently, for instance, alteration in protein SUMOylation has been linked to amyloid pathology. In this work, we aimed to elucidate the role of protein SUMOylation during aging and increased amyloid burden in vivo using a His6 -HA-SUMO1 knock-in mouse in the 5XFAD model of Alzheimer's disease. Interestingly, we did not observe any alteration in the levels of SUMO1-conjugation related to Alzheimer's disease. SUMO1 conjugates remained localized to neuronal nuclei upon increased amyloid burden and during aging and were not detected in amyloid plaques. Surprisingly however, we observed age-related alterations in global levels of SUMO1 conjugation and at the level of individual substrates using quantitative proteomic analysis. The identified SUMO1 candidate substrates are dominantly nuclear proteins, mainly involved in RNA processing. Our findings open novel directions of research for studying a functional link between SUMOylation and its role in guarding nuclear functions during aging.
Collapse
Affiliation(s)
- Trayana Stankova
- Department of Molecular Neurobiology; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Lars Piepkorn
- Max Planck Institute of Experimental Medicine; Proteomics Group; Göttingen Germany
| | - Thomas A. Bayer
- Division of Molecular Psychiatry; Department of Psychiatry and Psychotherapy; University Medical Center Göttingen (UMG); Göttingen Germany
| | - Olaf Jahn
- Max Planck Institute of Experimental Medicine; Proteomics Group; Göttingen Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology; Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
28
|
Rytz TC, Miller MJ, McLoughlin F, Augustine RC, Marshall RS, Juan YT, Charng YY, Scalf M, Smith LM, Vierstra RD. SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress. THE PLANT CELL 2018; 30:1077-1099. [PMID: 29588388 PMCID: PMC6002191 DOI: 10.1105/tpc.17.00993] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/15/2018] [Accepted: 03/26/2018] [Indexed: 05/20/2023]
Abstract
The posttranslational addition of small ubiquitin-like modifier (SUMO) is an essential protein modification in plants that provides protection against numerous environmental challenges. Ligation is accomplished by a small set of SUMO ligases, with the SAP-MIZ domain-containing SIZ1 and METHYL METHANESULFONATE-SENSITIVE21 (MMS21) ligases having critical roles in stress protection and DNA endoreduplication/repair, respectively. To help identify their corresponding targets in Arabidopsis thaliana, we used siz1 and mms21 mutants for proteomic analyses of SUMOylated proteins enriched via an engineered SUMO1 isoform suitable for mass spectrometric studies. Through multiple data sets from seedlings grown at normal temperatures or exposed to heat stress, we identified over 1000 SUMO targets, most of which are nuclear localized. Whereas no targets could be assigned to MMS21, suggesting that it modifies only a few low abundance proteins, numerous targets could be assigned to SIZ1, including major transcription factors, coactivators/repressors, and chromatin modifiers connected to abiotic and biotic stress defense, some of which associate into multisubunit regulatory complexes. SIZ1 itself is also a target, but studies with mutants protected from SUMOylation failed to uncover a regulatory role. The catalog of SIZ1 substrates indicates that SUMOylation by this ligase provides stress protection by modifying a large array of key nuclear regulators.
Collapse
Affiliation(s)
- Thérèse C Rytz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marcus J Miller
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Yu-Ting Juan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
29
|
Daniel JA, Cooper BH, Palvimo JJ, Zhang FP, Brose N, Tirard M. Response: Commentary: Analysis of SUMO1-conjugation at synapses. Front Cell Neurosci 2018; 12:117. [PMID: 29766991 PMCID: PMC5938361 DOI: 10.3389/fncel.2018.00117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/12/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
- James A Daniel
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
30
|
Baczyk D, Audette MC, Coyaud E, Raught B, Kingdom JC. Spatiotemporal distribution of small ubiquitin-like modifiers during human placental development and in response to oxidative and inflammatory stress. J Physiol 2018; 596:1587-1600. [PMID: 29468681 PMCID: PMC5924830 DOI: 10.1113/jp275288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/05/2018] [Indexed: 12/28/2022] Open
Abstract
Key points The post‐translational modification of target proteins by SUMOylation occurs in response to stressful stimuli in a variety of organ systems. Small ubiquitin‐like modifier (SUMO) isoforms 1–4 have recently been identified in the human placenta, and are upregulated in the major obstetrical complication of pre‐eclampsia. This is the first study to characterize the spatiotemporal distribution of SUMO isoforms and their targets during placental development across gestation and in response to stress induced by pre‐eclampsia and chorioamnionitis. Keratins were identified as major targets of placental SUMOylation. The interaction with SUMOs and cytoskeletal filaments provides evidence for SUMOylation possibly contributing to underlying dysfunctional trophoblast turnover, which is a hallmark feature of pre‐eclampsia. Further understanding the role of individual SUMO isoforms and SUMOylation underlying placental dysfunction may provide a target for a novel therapeutic candidate as an approach for treating pre‐eclampsia complicated with placental pathology.
Abstract SUMOylation is a dynamic, reversible post‐translational modification that regulates cellular protein stability and localization. SUMOylation occurs in response to various stressors, including hypoxia and inflammation, features common in the obstetrical condition of pre‐eclampsia. SUMO isoforms 1–4 have recently been identified in the human placenta, but less is known about their role in response to pre‐eclamptic stress. We hypothesized that SUMOylation components have a unique spatiotemporal distribution during placental development and that their subcellular localization can be further modulated by extra‐cellular stressors. Placental SUMO expression was examined across gestation. First‐trimester human placental explants and JAR cells were subjected to hypoxia or TNF‐α cytokine, and subcellular translocation of SUMOs was monitored. SUMOylation target proteins were elucidated using mass spectrometry and proximity ligation assay. Placental SUMO‐1 and SUMO‐4 were restricted to villous cytotrophoblast cells in first trimester and syncytium by term, while SUMO‐2/3 staining was evenly distributed throughout the trophoblast across gestation. In placental villous explants, oxidative stress induced hyperSUMOylation of SUMO‐1 and SUMO‐4 in the syncytial cytoplasm, whereas SUMO‐2/3 nuclear expression increased. Oxidative stress also upregulated cytoplasmic SUMO‐1 and SUMO‐4 protein expression (P < 0.05), similar to pre‐eclamptic placentas. Keratins were identified as major targets of placental SUMOylation. Oxidative stress increased the cytokeratin‐7 to SUMO‐1 and SUMO‐4 interactions, while inflammatory stress increased its interaction with SUMO‐2/3. Overall, SUMOs display a unique spatiotemporal distribution in normal human placental development. Our data indicate SUMOylation in pre‐eclampsia, which may impair the stability of cytoskeleton filaments and thus promote trophoblast shedding into the maternal circulation in this condition. The post‐translational modification of target proteins by SUMOylation occurs in response to stressful stimuli in a variety of organ systems. Small ubiquitin‐like modifier (SUMO) isoforms 1–4 have recently been identified in the human placenta, and are upregulated in the major obstetrical complication of pre‐eclampsia. This is the first study to characterize the spatiotemporal distribution of SUMO isoforms and their targets during placental development across gestation and in response to stress induced by pre‐eclampsia and chorioamnionitis. Keratins were identified as major targets of placental SUMOylation. The interaction with SUMOs and cytoskeletal filaments provides evidence for SUMOylation possibly contributing to underlying dysfunctional trophoblast turnover, which is a hallmark feature of pre‐eclampsia. Further understanding the role of individual SUMO isoforms and SUMOylation underlying placental dysfunction may provide a target for a novel therapeutic candidate as an approach for treating pre‐eclampsia complicated with placental pathology.
Collapse
Affiliation(s)
- Dora Baczyk
- Program in Development and Fetal Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5T3H7, Canada
| | - Melanie C Audette
- Program in Development and Fetal Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5T3H7, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G1L7, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G1L7, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G1L7, Canada
| | - John C Kingdom
- Program in Development and Fetal Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5T3H7, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| |
Collapse
|
31
|
Reichman R, Shi Z, Malone R, Smolikove S. Mitotic and Meiotic Functions for the SUMOylation Pathway in the Caenorhabditis elegans Germline. Genetics 2018; 208:1421-1441. [PMID: 29472245 PMCID: PMC5887140 DOI: 10.1534/genetics.118.300787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Meiosis is a highly regulated process, partly due to the need to break and then repair DNA as part of the meiotic program. Post-translational modifications are widely used during meiotic events to regulate steps such as protein complex formation, checkpoint activation, and protein attenuation. In this paper, we investigate how proteins that are obligatory components of the SUMO (small ubiquitin-like modifier) pathway, one such post-translational modification, affect the Caenorhabditis elegans germline. We show that UBC-9, the E2 conjugation enzyme, and the C. elegans homolog of SUMO, SMO-1, localize to germline nuclei throughout prophase I. Mutant analysis of smo-1 and ubc-9 revealed increased recombination intermediates throughout the germline, originating during the mitotic divisions. SUMOylation mutants also showed late meiotic defects including defects in the restructuring of oocyte bivalents and endomitotic oocytes. Increased rates of noninterfering crossovers were observed in ubc-9 heterozygotes, even though interfering crossovers were unaffected. We have also identified a physical interaction between UBC-9 and DNA repair protein MRE-11 ubc-9 and mre-11 null mutants exhibited similar phenotypes at germline mitotic nuclei and were synthetically sick. These phenotypes and genetic interactions were specific to MRE-11 null mutants as opposed to RAD-50 or resection-defective MRE-11 We propose that the SUMOylation pathway acts redundantly with MRE-11, and in this process MRE-11 likely plays a structural role.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Zhuoyue Shi
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Robert Malone
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
32
|
Tarbet HJ, Dolat L, Smith TJ, Condon BM, O'Brien ET, Valdivia RH, Boyce M. Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. eLife 2018. [PMID: 29513221 PMCID: PMC5841932 DOI: 10.7554/elife.31807] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intermediate filaments (IF) are a major component of the metazoan cytoskeleton and are essential for normal cell morphology, motility, and signal transduction. Dysregulation of IFs causes a wide range of human diseases, including skin disorders, cardiomyopathies, lipodystrophy, and neuropathy. Despite this pathophysiological significance, how cells regulate IF structure, dynamics, and function remains poorly understood. Here, we show that site-specific modification of the prototypical IF protein vimentin with O-linked β-N-acetylglucosamine (O-GlcNAc) mediates its homotypic protein-protein interactions and is required in human cells for IF morphology and cell migration. In addition, we show that the intracellular pathogen Chlamydia trachomatis, which remodels the host IF cytoskeleton during infection, requires specific vimentin glycosylation sites and O-GlcNAc transferase activity to maintain its replicative niche. Our results provide new insight into the biochemical and cell biological functions of vimentin O-GlcNAcylation, and may have broad implications for our understanding of the regulation of IF proteins in general. Like the body's skeleton, the cytoskeleton gives shape and structure to the inside of a cell. Yet, unlike a skeleton, the cytoskeleton is ever changing. The cytoskeleton consists of many fibers each made from chains of protein molecules. One of these proteins is called vimentin and it forms intermediate filaments in the cytoskeleton. Many different types of cells contain vimentin and a lot of it is found in cancer cells that have spread beyond their original location to other sites in the body. Cells use chemical modifications to regulate cytoskeleton proteins. For example, through a process called glycosylation, cells can reversibly attach a sugar modification called O-GlcNAc to vimentin. O-GlcNAc can be attached to several different parts of vimentin and each location may have a different effect. It is not currently clear how cells control their vimentin filaments or what role O-GlcNAc plays in this process. Using genetic engineering, Tarbet et al. produced human cells in the laboratory with modified vimentin proteins. These altered proteins lacked some of the sites for O-GlcNAc attachment. The goal was to see whether the loss of O-GlcNAc at a specific location would affect fiber formation and cell behavior. The results showed one site where vimentin needs O-GlcNAc to form fibers. Without O-GlcNAc at this site, cells could not migrate towards chemical signals. In addition, in normal human cells, Chlamydia bacteria hijack vimentin and rearrange the filaments to form a cage around themselves for protection. However, the cells lacking O-GlcNAc on vimentin were resistant to infection by Chlamydia bacteria. These findings highlight the importance of O-GlcNAc on vimentin in healthy cells and during infection. Vimentin’s contribution to cell migration may also help to explain its role in the spread of cancer. The importance of O-GlcNAc suggests it could be a new target for therapies. Yet, it also highlights the need for caution due to the delicate balance between the activity of vimentin in healthy and diseased cells. In addition, human cells produce about 70 other vimentin-like proteins and further work will examine if they are also affected by O-GlcNAc.
Collapse
Affiliation(s)
- Heather J Tarbet
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - E Timothy O'Brien
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Department of Physics and Astronomy, University of North Carolina, Chapel Hill, United States
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| |
Collapse
|
33
|
Comprehensive list of SUMO targets in Caenorhabditis elegans and its implication for evolutionary conservation of SUMO signaling. Sci Rep 2018; 8:1139. [PMID: 29348603 PMCID: PMC5773548 DOI: 10.1038/s41598-018-19424-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Post-translational modification by small ubiquitin-related modifier (SUMO) is a key regulator of cell physiology, modulating protein-protein and protein-DNA interactions. Recently, SUMO modifications were postulated to be involved in response to various stress stimuli. We aimed to identify the near complete set of proteins modified by SUMO and the dynamics of the modification in stress conditions in the higher eukaryote, Caenorhabditis elegans. We identified 874 proteins modified by SUMO in the worm. We have analyzed the SUMO modification in stress conditions including heat shock, DNA damage, arsenite induced cellular stress, ER and osmotic stress. In all these conditions the global levels of SUMOylation was significantly increased. These results show the evolutionary conservation of SUMO modifications in reaction to stress. Our analysis showed that SUMO targets are highly conserved throughout species. By comparing the SUMO targets among species, we approximated the total number of proteins modified in a given proteome to be at least 15–20%. We developed a web server designed for convenient prediction of potential SUMO modification based on experimental evidences in other species.
Collapse
|
34
|
Antila CJM, Rraklli V, Blomster HA, Dahlström KM, Salminen TA, Holmberg J, Sistonen L, Sahlgren C. Sumoylation of Notch1 represses its target gene expression during cell stress. Cell Death Differ 2018; 25:600-615. [PMID: 29305585 PMCID: PMC5864205 DOI: 10.1038/s41418-017-0002-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway is a key regulator of stem cells during development, and its deregulated activity is linked to developmental defects and cancer. Transcriptional activation of Notch target genes requires cleavage of the Notch receptor in response to ligand binding, production of the Notch intracellular domain (NICD1), NICD1 migration into the nucleus, and assembly of a transcriptional complex. Post-translational modifications of Notch regulate its trafficking, turnover, and transcriptional activity. Here, we show that NICD1 is modified by small ubiquitin-like modifier (SUMO) in a stress-inducible manner. Sumoylation occurs in the nucleus where NICD1 is sumoylated in the RBPJ-associated molecule (RAM) domain. Although stress and sumoylation enhance nuclear localization of NICD1, its transcriptional activity is attenuated. Molecular modeling indicates that sumoylation can occur within the DNA-bound ternary transcriptional complex, consisting of NICD1, the transcription factor Suppressor of Hairless (CSL), and the co-activator Mastermind-like (MAML) without its disruption. Mechanistically, sumoylation of NICD1 facilitates the recruitment of histone deacetylase 4 (HDAC4) to the Notch transcriptional complex to suppress Notch target gene expression. Stress-induced sumoylation decreases the NICD1-mediated induction of Notch target genes, which was abrogated by expressing a sumoylation-defected mutant in cells and in the developing central nervous system of the chick in vivo. Our findings of the stress-inducible sumoylation of NICD1 reveal a novel context-dependent regulatory mechanism of Notch target gene expression.
Collapse
Affiliation(s)
- Christian J M Antila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Vilma Rraklli
- Department of Cell and Molecular Biology, Karolinska Institutet, 285 SE-171 77, Stockholm, Sweden
| | - Henri A Blomster
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Käthe M Dahlström
- Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Tiina A Salminen
- Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Johan Holmberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 285 SE-171 77, Stockholm, Sweden
| | - Lea Sistonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland. .,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland. .,Department of Biomedical Engineering, Technical University of Eindhoven, 5613 DR, Eindhoven, The Netherlands.
| |
Collapse
|
35
|
Surana P, Gowda CM, Tripathi V, Broday L, Das R. Structural and functional analysis of SMO-1, the SUMO homolog in Caenorhabditis elegans. PLoS One 2017; 12:e0186622. [PMID: 29045470 PMCID: PMC5646861 DOI: 10.1371/journal.pone.0186622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
SUMO proteins are important post-translational modifiers involved in multiple cellular pathways in eukaryotes, especially during the different developmental stages in multicellular organisms. The nematode C. elegans is a well known model system for studying metazoan development and has a single SUMO homolog, SMO-1. Interestingly, SMO-1 modification is linked to embryogenesis and development in the nematode. However, high-resolution information about SMO-1 and the mechanism of its conjugation is lacking. In this work, we report the high-resolution three dimensional structure of SMO-1 solved by NMR spectroscopy. SMO-1 has flexible N-terminal and C-terminal tails on either side of a rigid beta-grasp folded core. While the sequence of SMO-1 is more similar to SUMO1, the electrostatic surface features of SMO-1 resemble more with SUMO2/3. SMO-1 can bind to typical SUMO Interacting Motifs (SIMs). SMO-1 can also conjugate to a typical SUMOylation consensus site as well as to its natural substrate HMR-1. Poly-SMO-1 chains were observed in-vitro even though SMO-1 lacks any consensus SUMOylation site. Typical deSUMOylation enzymes like Senp2 can cleave the poly-SMO-1 chains. Despite being a single gene, the SMO-1 structure allows it to function in a large repertoire of signaling pathways involving SUMO in C. elegans. Structural and functional features of SMO-1 studies described here will be useful to understand its role in development.
Collapse
Affiliation(s)
- Parag Surana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Chandrakala M. Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Vasvi Tripathi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
- * E-mail:
| |
Collapse
|
36
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
37
|
Yang J, Liu Y, Wang B, Lan H, Liu Y, Chen F, Zhang J, Luo J. Sumoylation in p27kip1 via RanBP2 promotes cancer cell growth in cholangiocarcinoma cell line QBC939. BMC Mol Biol 2017; 18:23. [PMID: 28882106 PMCID: PMC5590128 DOI: 10.1186/s12867-017-0100-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma is one of the deadly disease with poor 5-year survival and poor response to conventional therapies. Previously, we found that p27kip1 nuclear-cytoplasmic translocation confers proliferation potential to cholangiocarcinoma cell line QBC939 and this process is mediated by crm-1. However, no other post-transcriptional regulation was found in this process including sumoylation in cholangiocarcinoma. RESULTS In this study, we explored the role of sumoylation in the nuclear-cytoplasmic translocation of p27kip1 and its involvement of QBC939 cells' proliferation. First, we identified K73 as the sumoylation site in p27kip1. By utilizing plasmid flag-p27kip1, HA-RanBP2, GST-RanBP2 and His-p27kip1 and immunoprecipitation assay, we validated that p27kip1 can serve as the sumoylation target of RanBP2 in QBC939. Furthermore, we confirmed crm-1's role in promoting nuclear-cytoplasmic translocation of p27kip1 and found that RanBP2's function relies on crm-1. However, K73R mutated p27kip1 can't be identified by crm-1 or RanBP2 in p27kip1 translocation process, suggesting sumoylation of p27kip1 via K73 site is necessary in this process by RanBP2 and crm-1. Phenotypically, the overexpression of either RanBP2 or crm-1 can partially rescue the anti-proliferative effect brought by p27kip1 overexpression in both the MTS and EdU assay. For the first time, we identified and validated the K73 sumoylation site in p27kip1, which is critical to RanBP2 and crm-1 in p27kip1 nuclear-cytoplasmic translocation process. CONCLUSION Taken together, targeted inhibition of sumoylation of p27kip1 may serve as a potentially potent therapeutic target in the eradication of cholangiocarcinoma development and relapses.
Collapse
Affiliation(s)
- Jun Yang
- Department of Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yan Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People’s Republic of China
| | - Bing Wang
- Department of Bile Duct and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hongzhen Lan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People’s Republic of China
| | - Ying Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People’s Republic of China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Collaborative Innovation Center for Genetics and Development, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jian Luo
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People’s Republic of China
| |
Collapse
|
38
|
Leube RE, Moch M, Windoffer R. Intracellular Motility of Intermediate Filaments. Cold Spring Harb Perspect Biol 2017; 9:9/6/a021980. [PMID: 28572456 DOI: 10.1101/cshperspect.a021980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARYThe establishment and continuous cell type-specific adaptation of cytoplasmic intermediate filament (IF) networks are linked to various types of IF motility. Motor protein-driven active transport, linkage to other cellular structures, diffusion of small soluble subunits, and intrinsic network elasticity all contribute to the motile behavior of IFs. These processes are subject to regulation by multiple signaling pathways. IF motility is thereby connected to and involved in many basic cellular processes guarding the maintenance of cell and tissue integrity. Disturbances of IF motility are linked to diseases that are characterized by cytoplasmic aggregates containing IF proteins together with other cellular components.
Collapse
Affiliation(s)
- Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
39
|
Namuduri AV, Heras G, Mi J, Cacciani N, Hörnaeus K, Konzer A, Lind SB, Larsson L, Gastaldello S. A Proteomic Approach to Identify Alterations in the Small Ubiquitin-like Modifier (SUMO) Network during Controlled Mechanical Ventilation in Rat Diaphragm Muscle. Mol Cell Proteomics 2017; 16:1081-1097. [PMID: 28373296 DOI: 10.1074/mcp.m116.066159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) is as a regulator of many cellular functions by reversible conjugation to a broad number of substrates. Under endogenous or exogenous perturbations, the SUMO network becomes a fine sensor of stress conditions by alterations in the expression level of SUMO enzymes and consequently changing the status of SUMOylated proteins. The diaphragm is the major inspiratory muscle, which is continuously active under physiological conditions, but its structure and function is severely affected when passively displaced for long extents during mechanical ventilation (MV). An iatrogenic condition called Ventilator-Induced Diaphragm Dysfunction (VIDD) is a major cause of failure to wean patients from ventilator support but the molecular mechanisms underlying this dysfunction are not fully understood. Using a unique experimental Intensive Care Unit (ICU) rat model allowing long-term MV, diaphragm muscles were collected in rats control and exposed to controlled MV (CMV) for durations varying between 1 and 10 days. Endogenous SUMOylated diaphragm proteins were identified by mass spectrometry and validated with in vitro SUMOylation systems. Contractile, calcium regulator and mitochondrial proteins were of specific interest due to their putative involvement in VIDD. Differences were observed in the abundance of SUMOylated proteins between glycolytic and oxidative muscle fibers in control animals and high levels of SUMOylated proteins were present in all fibers during CMV. Finally, previously reported VIDD biomarkers and therapeutic targets were also identified in our datasets which may play an important role in response to muscle weakness seen in ICU patients. Data are available via ProteomeXchange with identifier PXD006085. Username: reviewer26663@ebi.ac.uk, Password: rwcP5W0o.
Collapse
Affiliation(s)
- Arvind Venkat Namuduri
- From the ‡Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Gabriel Heras
- From the ‡Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Jia Mi
- §Department of Chemistry-BMC, Analytical Chemistry and Science for Lab Laboratory, Uppsala University, Box 599, Uppsala, SE-75124, Sweden.,¶Medicine and Pharmacy Research Center, Binzhou Medical University, Laishan District, No. 346, Guanhai Road, Yantai, Shandong Province, 264003 China
| | - Nicola Cacciani
- From the ‡Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Katarina Hörnaeus
- §Department of Chemistry-BMC, Analytical Chemistry and Science for Lab Laboratory, Uppsala University, Box 599, Uppsala, SE-75124, Sweden
| | - Anne Konzer
- §Department of Chemistry-BMC, Analytical Chemistry and Science for Lab Laboratory, Uppsala University, Box 599, Uppsala, SE-75124, Sweden
| | - Sara Bergström Lind
- §Department of Chemistry-BMC, Analytical Chemistry and Science for Lab Laboratory, Uppsala University, Box 599, Uppsala, SE-75124, Sweden
| | - Lars Larsson
- From the ‡Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, SE-17177, Sweden.,‖Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania 16801; and.,**Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Stefano Gastaldello
- From the ‡Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, SE-17177, Sweden;
| |
Collapse
|
40
|
Richard P, Vethantham V, Manley JL. Roles of Sumoylation in mRNA Processing and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:15-33. [PMID: 28197904 DOI: 10.1007/978-3-319-50044-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMO has gained prominence as a regulator in a number of cellular processes. The roles of sumoylation in RNA metabolism, however, while considerable, remain less well understood. In this chapter we have assembled data from proteomic analyses, localization studies and key functional studies to extend SUMO's role to the area of mRNA processing and metabolism. Proteomic analyses have identified multiple putative sumoylation targets in complexes functioning in almost all aspects of mRNA metabolism, including capping, splicing and polyadenylation of mRNA precursors. Possible regulatory roles for SUMO have emerged in pre-mRNA 3' processing, where SUMO influences the functions of polyadenylation factors and activity of the entire complex. SUMO is also involved in regulating RNA editing and RNA binding by hnRNP proteins, and recent reports have suggested the involvement of the SUMO pathway in mRNA export. Together, these reports suggest that SUMO is involved in regulation of many aspects of mRNA metabolism and hold the promise for exciting future studies.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | | | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
41
|
Truchan HK, Cockburn CL, May LJ, VieBrock L, Carlyon JA. Anaplasma phagocytophilum-Occupied Vacuole Interactions with the Host Cell Cytoskeleton. Vet Sci 2016; 3:vetsci3030025. [PMID: 29056733 PMCID: PMC5606578 DOI: 10.3390/vetsci3030025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterial pathogen of humans and animals. The A. phagocytophium-occupied vacuole (ApV) is a critical host-pathogen interface. Here, we report that the intermediate filaments, keratin and vimentin, assemble on the ApV early and remain associated with the ApV throughout infection. Microtubules localize to the ApV to a lesser extent. Vimentin, keratin-8, and keratin-18 but not tubulin expression is upregulated in A. phagocytophilum infected cells. SUMO-2/3 but not SUMO-1 colocalizes with vimentin filaments that surround ApVs. PolySUMOylation of vimentin by SUMO-2/3 but not SUMO-1 decreases vimentin solubility. Consistent with this, more vimentin exists in an insoluble state in A. phagocytophilum infected cells than in uninfected cells. Knocking down the SUMO-conjugating enzyme, Ubc9, abrogates vimentin assembly at the ApV but has no effect on the bacterial load. Bacterial protein synthesis is dispensable for maintaining vimentin and SUMO-2/3 at the ApV. Withaferin A, which inhibits soluble vimentin, reduces vimentin recruitment to the ApV, optimal ApV formation, and the bacterial load when administered prior to infection but is ineffective once vimentin has assembled on the ApV. Thus, A. phagocytophilum modulates cytoskeletal component expression and co-opts polySUMOylated vimentin to aid construction of its vacuolar niche and promote optimal survival.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Levi J May
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Lauren VieBrock
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| |
Collapse
|
42
|
Adhesion with a Sumo. Dev Cell 2016; 35:8-9. [PMID: 26460942 DOI: 10.1016/j.devcel.2015.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adherens junctions (AJs) play a crucial role in epithelial tissue development and tumorigenesis, and the mechanisms controlling their assembly and disassembly have therefore attracted considerable attention. A paper from Tsur et al. (2015) in this issue of Developmental Cell now shows how sumoylation and desumoylation of E-cadherin promotes its recruitment to AJs.
Collapse
|
43
|
Abstract
The cell biology of sumoylation has mostly been studied using transformed cultured cells and yeast. In recent years, genetic analysis has demonstrated important roles for sumoylation in the biology of C. elegans. Here, we expand the existing set of tools making it possible to address the role of sumoylation in the nematode C. elegans using a combination of genetics, imaging, and biochemistry. Most importantly, the dynamics of SUMO conjugation and deconjugation can be followed very precisely both in space and time within living worms. Additionally, the biochemistry of SUMO conjugation and deconjugation can be addressed using recombinant purified components of the C. elegans sumoylation machinery, including E3 ligases and SUMO proteases. These tools and reagents will be useful to gain insights into the biological role of SUMO in the context of a multicellular organism.
Collapse
Affiliation(s)
- Federico Pelisch
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, UK.
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
44
|
Functional and Genetic Analysis of VAB-10 Spectraplakin in Caenorhabditis elegans. Methods Enzymol 2016; 569:407-30. [DOI: 10.1016/bs.mie.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Abstract
More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses.
Collapse
Affiliation(s)
- Noam Zuela
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yosef Gruenbaum
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
46
|
Abstract
Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens.
Collapse
|
47
|
Sakin V, Richter SM, Hsiao HH, Urlaub H, Melchior F. Sumoylation of the GTPase Ran by the RanBP2 SUMO E3 Ligase Complex. J Biol Chem 2015; 290:23589-602. [PMID: 26251516 DOI: 10.1074/jbc.m115.660118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/20/2022] Open
Abstract
The SUMO E3 ligase complex RanBP2/RanGAP1*SUMO1/Ubc9 localizes at cytoplasmic nuclear pore complex (NPC) filaments and is a docking site in nucleocytoplasmic transport. RanBP2 has four Ran binding domains (RBDs), two of which flank RanBP2's E3 ligase region. We thus wondered whether the small GTPase Ran is a target for RanBP2-dependent sumoylation. Indeed, Ran is sumoylated both by a reconstituted and the endogenous RanBP2 complex in semi-permeabilized cells. Generic inhibition of SUMO isopeptidases or depletion of the SUMO isopeptidase SENP1 enhances sumoylation of Ran in semi-permeabilized cells. As Ran is typically associated with transport receptors, we tested the influence of Crm1, Imp β, Transportin, and NTF2 on Ran sumoylation. Surprisingly, all inhibited Ran sumoylation. Mapping Ran sumoylation sites revealed that transport receptors may simply block access of the E2-conjugating enzyme Ubc9, however the acceptor lysines are perfectly accessible in Ran/NTF2 complexes. Isothermal titration calorimetry revealed that NTF2 prevents sumoylation by reducing RanGDP's affinity to RanBP2's RBDs to undetectable levels. Taken together, our findings indicate that RanGDP and not RanGTP is the physiological target for the RanBP2 SUMO E3 ligase complex. Recognition requires interaction of Ran with RanBP2's RBDs, which is prevented by the transport factor NTF2.
Collapse
Affiliation(s)
- Volkan Sakin
- From the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ, ZMBH Alliance, Heidelberg, Germany
| | - Sebastian M Richter
- From the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ, ZMBH Alliance, Heidelberg, Germany
| | - He-Hsuan Hsiao
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and Department of Clinical Chemistry, University Medical Center, 37075 Göttingen, Germany
| | - Frauke Melchior
- From the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ, ZMBH Alliance, Heidelberg, Germany,
| |
Collapse
|
48
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
49
|
New Insights into the Post-Translational Regulation of DNA Damage Response and Double-Strand Break Repair in Caenorhabditis elegans. Genetics 2015; 200:495-504. [PMID: 25819793 DOI: 10.1534/genetics.115.175661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/24/2015] [Indexed: 11/18/2022] Open
Abstract
Although a growing number of studies have reported the importance of SUMOylation in genome maintenance and DNA double-strand break repair (DSBR), relevant target proteins and how this modification regulates their functions are yet to be clarified. Here, we analyzed SUMOylation of ZTF-8, the homolog of mammalian RHINO, to test the functional significance of this protein modification in the DSBR and DNA damage response (DDR) pathways in the Caenorhabditis elegans germline. We found that ZTF-8 is a direct target for SUMOylation in vivo and that its modification is required for DNA damage checkpoint induced apoptosis and DSBR. Non-SUMOylatable mutants of ZTF-8 mimic the phenotypes observed in ztf-8 null mutants, including reduced fertility, impaired DNA damage repair, and defective DNA damage checkpoint activation. However, while mutants for components acting in the SUMOylation pathway fail to properly localize ZTF-8, its localization is not altered in the ZTF-8 non-SUMOylatable mutants. Taken together, these data show that direct SUMOylation of ZTF-8 is required for its function in DSBR as well as DDR but not its localization. ZTF-8's human ortholog is enriched in the germline, but its meiotic role as well as its post-translational modification has never been explored. Therefore, our discovery may assist in understanding the regulatory mechanism of this protein in DSBR and DDR in the germline.
Collapse
|
50
|
The tail domain is essential but the head domain dispensable for C. elegans intermediate filament IFA-2 function. PLoS One 2015; 10:e0119282. [PMID: 25742641 PMCID: PMC4351089 DOI: 10.1371/journal.pone.0119282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/19/2015] [Indexed: 01/12/2023] Open
Abstract
The intermediate filament protein IFA-2 is essential for the structural integrity of the Caenorhabditis elegans epidermis. It is one of the major components of the fibrous organelle, an epidermal structure comprised of apical and basal hemidesmosomes linked by cytoplasmic intermediate filaments that serve to transmit force from the muscle to the cuticle. Mutations of IFA-2 result in epidermal fragility and separation of the apical and basal epidermal surfaces during postembryonic growth. An IFA-2 lacking the head domain fully rescues the IFA-2 null mutant, whereas an IFA-2 lacking the tail domain cannot. Conversely, an isolated IFA-2 head was able to localize to fibrous organelles whereas the tail was not. Taken together these results suggest that the head domain contains redundant signals for IF localization, whereas non-redundant essential functions map to the IFA-2, tail, although the tail is unlikely to be directly involved in fibrous organelle localization.
Collapse
|