1
|
Fancello I, Willett S, Castiglioni C, Amer S, Santoleri S, Bragg L, Galli F, Cossu G. TNAP expressing adventitial pericytes contribute to myogenesis during foetal development. Vascul Pharmacol 2025; 159:107489. [PMID: 40097085 DOI: 10.1016/j.vph.2025.107489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE During growth and differentiation of skeletal muscle, cell types other than canonical myoblasts can be recruited to a myogenic fate. Among these, TNAP+ pericytes can differentiate into skeletal or smooth muscle cells during postnatal growth and contribute to muscle regeneration. However, their role in muscle development has not been investigated. This study aims to characterise pericyte fate choices during embryonic and foetal myogenesis, occurring in the second half of gestation. APPROACH AND RESULTS Using Cre-loxP lineage tracing with multiple reporters including the multifluorescent Confetti, we labelled TNAP+ precursors in vivo and assessed the smooth or skeletal muscle differentiation in their lineage at a perinatal stage. We found that TNAP+ cells contribute in vivo to skeletal and smooth muscle cells, as well as other pericytes, also during pre-natal muscle development. The resulting clones showed that such fate choices are likely to depend on distinct unipotent progenitors rather than multipotent progenitors. In addition, we isolated and differentiated in vitro foetal cells derived from TNAP+ precursors, which showed that they are not spontaneously myogenic unless co-cultured with other skeletal muscle cells. CONCLUSIONS This work extends our understanding of the differentiative potency of these non- canonical skeletal muscle progenitors during prenatal life, with a view to a future application of this knowledge to optimise cell therapies for muscle wasting disorders.
Collapse
Affiliation(s)
- I Fancello
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - S Willett
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - C Castiglioni
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - S Amer
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - S Santoleri
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - L Bragg
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - F Galli
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - G Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK; Institute of Experimental Neurology, Division of Neurosciences, Ospedale San Raffaele, Milan, Italy; Experimental and Clinical Research Center, Charité Medical Faculty, Max Delbrück Center Berlin, Germany.
| |
Collapse
|
2
|
Stevens BT, Hatley ME. Developmental Heterogeneity of Rhabdomyosarcoma. Cold Spring Harb Perspect Med 2025; 15:a041583. [PMID: 38772705 PMCID: PMC11694754 DOI: 10.1101/cshperspect.a041583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Rhabdomyosarcoma (RMS) is a pediatric embryonal solid tumor and the most common pediatric soft tissue sarcoma. The histology and transcriptome of RMS resemble skeletal muscle progenitor cells that have failed to terminally differentiate. Thus, RMS is typically thought to arise from corrupted skeletal muscle progenitor cells during development. However, RMS can occur in body regions devoid of skeletal muscle, suggesting the potential for nonmyogenic cells of origin. Here, we discuss the interplay between RMS driver mutations and cell(s) of origin with an emphasis on driving location specificity. Additionally, we discuss the mechanisms governing RMS transformation events and tumor heterogeneity through the lens of transcriptional networks and epigenetic control. Finally, we reimagine Waddington's developmental landscape to include a plane of transformation connecting distinct lineage landscapes to more accurately reflect the phenomena observed in pediatric cancers.
Collapse
Affiliation(s)
- Bradley T Stevens
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, Tennessee 38105, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
3
|
Zoglio V, de Lima JE, Relaix F. [Role of the transcription factor PAX3 during myogenesis: from the embryo to the adult stage]. Med Sci (Paris) 2024; 40 Hors série n° 1:56-59. [PMID: 39555880 DOI: 10.1051/medsci/2024139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
PAX3 plays a crucial role in embryonic myogenesis, controlling the specification, migration, proliferation, and differentiation of muscle progenitor cells to ensure normal skeletal muscle development in the embryo. However, PAX3 potential role in a context of muscle homeostasis and regeneration remains poorly investigated. The adult muscle stem cells, known as satellite cells (SCs) exhibit heterogeneity in Pax3 expression in various muscles throughout the body and display a bimodal response to environmental stress exposure. To explore the role of PAX3 in the context of tissue damage, we performed regeneration studies, which unveiled a functional heterogeneity of the SCs populations depending on Pax3 expression. Together, this project aims to decipher cell-type specific dysregulations linked to tissue damage and identify PAX3 downstream gene regulatory networks that can lead to specific SC behavior, thus potentially providing novel strategies for muscle disease preventive therapies.
Collapse
Affiliation(s)
- Virginia Zoglio
- Université Paris Est Créteil, Inserm, EnvA, EFS, AP-HP, IMRB, Créteil, France
| | | | - Frédéric Relaix
- Université Paris Est Créteil, Inserm, EnvA, EFS, AP-HP, IMRB, Créteil, France
| |
Collapse
|
4
|
Sashittal P, Zhang RY, Law BK, Strzalkowski A, Schmidt H, Bolondi A, Chan MM, Raphael BJ. Inferring cell differentiation maps from lineage tracing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611835. [PMID: 39314473 PMCID: PMC11419031 DOI: 10.1101/2024.09.09.611835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During development, mulitpotent cells differentiate through a hierarchy of increasingly restricted progenitor cell types until they realize specialized cell types. A cell differentiation map describes this hierarchy, and inferring these maps is an active area of research spanning traditional single marker lineage studies to data-driven trajectory inference methods on single-cell RNA-seq data. Recent high-throughput lineage tracing technologies profile lineages and cell types at scale, but current methods to infer cell differentiation maps from these data rely on simple models with restrictive assumptions about the developmental process. We introduce a mathematical framework for cell differentiation maps based on the concept of potency, and develop an algorithm, Carta, that infers an optimal cell differentiation map from single-cell lineage tracing data. The key insight in Carta is to balance the trade-off between the complexity of the cell differentiation map and the number of unobserved cell type transitions on the lineage tree. We show that Carta more accurately infers cell differentiation maps on both simulated and real data compared to existing methods. In models of mammalian trunk development and mouse hematopoiesis, Carta identifies important features of development that are not revealed by other methods including convergent differentiation of specialized cell types, progenitor differentiation dynamics, and the refinement of routes of differentiation via new intermediate progenitors.
Collapse
Affiliation(s)
- Palash Sashittal
- Dept. of Computer Science, Princeton University, Princeton; 08544 NJ, USA
| | - Richard Y. Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
| | - Benjamin K. Law
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
- Dept. of Molecular Biology, Princeton University, Princeton; 08544 NJ, USA
| | | | - Henri Schmidt
- Dept. of Computer Science, Princeton University, Princeton; 08544 NJ, USA
| | - Adriano Bolondi
- Dept. of Genome Regulation, Max Planck Institute for Molecular Genetics; 14195 Berlin, Germany
| | - Michelle M. Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
- Dept. of Molecular Biology, Princeton University, Princeton; 08544 NJ, USA
| | | |
Collapse
|
5
|
Valencia JE, Peter IS. Combinatorial regulatory states define cell fate diversity during embryogenesis. Nat Commun 2024; 15:6841. [PMID: 39122679 PMCID: PMC11315938 DOI: 10.1038/s41467-024-50822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cell fate specification occurs along invariant species-specific trajectories that define the animal body plan. This process is controlled by gene regulatory networks that regulate the expression of the limited set of transcription factors encoded in animal genomes. Here we globally assess the spatial expression of ~90% of expressed transcription factors during sea urchin development from embryo to larva to determine the activity of gene regulatory networks and their regulatory states during cell fate specification. We show that >200 embryonically expressed transcription factors together define >70 cell fates that recapitulate the morphological and functional organization of this organism. Most cell fate-specific regulatory states consist of ~15-40 transcription factors with similarity particularly among functionally related cell types regardless of developmental origin. Temporally, regulatory states change continuously during development, indicating that progressive changes in regulatory circuit activity determine cell fate specification. We conclude that the combinatorial expression of transcription factors provides molecular definitions that suffice for the unique specification of cell states in time and space during embryogenesis.
Collapse
Affiliation(s)
- Jonathan E Valencia
- Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Isabelle S Peter
- Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
6
|
Bolondi A, Law BK, Kretzmer H, Gassaloglu SI, Buschow R, Riemenschneider C, Yang D, Walther M, Veenvliet JV, Meissner A, Smith ZD, Chan MM. Reconstructing axial progenitor field dynamics in mouse stem cell-derived embryoids. Dev Cell 2024; 59:1489-1505.e14. [PMID: 38579718 PMCID: PMC11187653 DOI: 10.1016/j.devcel.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/13/2023] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.
Collapse
Affiliation(s)
- Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Benjamin K Law
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Seher Ipek Gassaloglu
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - René Buschow
- Microscopy Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Dian Yang
- Department of Molecular Pharmacology and Therapeutics & Systems Biology, Columbia University, New York, NY 10032, USA
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA.
| | - Michelle M Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
Verma M, Asakura Y, Wang X, Zhou K, Ünverdi M, Kann AP, Krauss RS, Asakura A. Endothelial cell signature in muscle stem cells validated by VEGFA-FLT1-AKT1 axis promoting survival of muscle stem cell. eLife 2024; 13:e73592. [PMID: 38842166 PMCID: PMC11216748 DOI: 10.7554/elife.73592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.
Collapse
Affiliation(s)
- Mayank Verma
- Department of Pediatrics & Neurology, Division of Pediatric Neurology, The University of Texas Southwestern Medical CenterDallasUnited States
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Xuerui Wang
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Kasey Zhou
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Mahmut Ünverdi
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical Sciencesf, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical Sciencesf, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| |
Collapse
|
8
|
Girolamo DD, Benavente-Diaz M, Murolo M, Grimaldi A, Lopes PT, Evano B, Kuriki M, Gioftsidi S, Laville V, Tinevez JY, Letort G, Mella S, Tajbakhsh S, Comai G. Extraocular muscle stem cells exhibit distinct cellular properties associated with non-muscle molecular signatures. Development 2024; 151:dev202144. [PMID: 38240380 DOI: 10.1242/dev.202144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Maria Benavente-Diaz
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Melania Murolo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Alexandre Grimaldi
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Priscilla Thomas Lopes
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Brendan Evano
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Mao Kuriki
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Stamatia Gioftsidi
- Université Paris-Est, 77420 Champs-sur- Marne, France
- Freie Universität Berlin, 14195 Berlin, Germany
- Inserm, IMRB U955-E10, 94000 Créteil, France
| | - Vincent Laville
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sebastian Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Glenda Comai
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Searcy MB, Larsen RK, Stevens BT, Zhang Y, Jin H, Drummond CJ, Langdon CG, Gadek KE, Vuong K, Reed KB, Garcia MR, Xu B, Kimbrough DW, Adkins GE, Djekidel N, Porter SN, Schreiner PA, Pruett-Miller SM, Abraham BJ, Rehg JE, Hatley ME. PAX3-FOXO1 dictates myogenic reprogramming and rhabdomyosarcoma identity in endothelial progenitors. Nat Commun 2023; 14:7291. [PMID: 37968277 PMCID: PMC10651858 DOI: 10.1038/s41467-023-43044-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.
Collapse
Affiliation(s)
- Madeline B Searcy
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Randolph K Larsen
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Bradley T Stevens
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Yang Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Catherine J Drummond
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Casey G Langdon
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine E Gadek
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kyna Vuong
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kristin B Reed
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew R Garcia
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Darden W Kimbrough
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Rhodes College, Memphis, TN, 38112, USA
| | - Grace E Adkins
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shaina N Porter
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Patrick A Schreiner
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
10
|
Pepe GJ, Albrecht ED. Microvascular Skeletal-Muscle Crosstalk in Health and Disease. Int J Mol Sci 2023; 24:10425. [PMID: 37445602 DOI: 10.3390/ijms241310425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
As an organ system, skeletal muscle is essential for the generation of energy that underpins muscle contraction, plays a critical role in controlling energy balance and insulin-dependent glucose homeostasis, as well as vascular well-being, and regenerates following injury. To achieve homeostasis, there is requirement for "cross-talk" between the myogenic and vascular components and their regulatory factors that comprise skeletal muscle. Accordingly, this review will describe the following: [a] the embryonic cell-signaling events important in establishing vascular and myogenic cell-lineage, the cross-talk between endothelial cells (EC) and myogenic precursors underpinning the development of muscle, its vasculature and the satellite-stem-cell (SC) pool, and the EC-SC cross-talk that maintains SC quiescence and localizes ECs to SCs and angio-myogenesis postnatally; [b] the vascular-myocyte cross-talk and the actions of insulin on vasodilation and capillary surface area important for the uptake of glucose/insulin by myofibers and vascular homeostasis, the microvascular-myocyte dysfunction that characterizes the development of insulin resistance, diabetes and hypertension, and the actions of estrogen on muscle vasodilation and growth in adults; [c] the role of estrogen in utero on the development of fetal skeletal-muscle microvascularization and myofiber hypertrophy required for metabolic/vascular homeostasis after birth; [d] the EC-SC interactions that underpin myofiber vascular regeneration post-injury; and [e] the role of the skeletal-muscle vasculature in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Fujita R, Mizuno S, Sadahiro T, Hayashi T, Sugasawa T, Sugiyama F, Ono Y, Takahashi S, Ieda M. Generation of a MyoD knock-in reporter mouse line to study muscle stem cell dynamics and heterogeneity. iScience 2023; 26:106592. [PMID: 37250337 PMCID: PMC10214404 DOI: 10.1016/j.isci.2023.106592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/19/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Myoblast determination protein 1 (MyoD) dynamics define the activation status of muscle stem cells (MuSCs), aiding in muscle tissue regeneration after injury. However, the lack of experimental platforms to monitor MyoD dynamics in vitro and in vivo has hampered the investigation of fate determination and heterogeneity of MuSCs. Herein, we report a MyoD knock-in (MyoD-KI) reporter mouse expressing tdTomato at the endogenous MyoD locus. Expression of tdTomato in MyoD-KI mice recapitulated the endogenous MyoD expression dynamics in vitro and during the early phase of regeneration in vivo. Additionally, we showed that tdTomato fluorescence intensity defines MuSC activation status without immunostaining. Based on these features, we developed a high-throughput screening system to assess the effects of drugs on the behavior of MuSCs in vitro. Thus, MyoD-KI mice are an invaluable resource for studying the dynamics of MuSCs, including their fate decisions and heterogeneity, and for drug screening in stem cell therapy.
Collapse
Affiliation(s)
- Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takuto Hayashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takehito Sugasawa
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
12
|
Bernasek SM, Hur SSJ, Peláez-Restrepo N, Boisclair Lachance JF, Bakker R, Navarro HT, Sanchez-Luege N, Amaral LAN, Bagheri N, Rebay I, Carthew RW. Ratiometric sensing of Pnt and Yan transcription factor levels confers ultrasensitivity to photoreceptor fate transitions in Drosophila. Development 2023; 150:dev201467. [PMID: 36942737 PMCID: PMC10163347 DOI: 10.1242/dev.201467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Cell state transitions are often triggered by large changes in the concentrations of transcription factors and therefore large differences in their stoichiometric ratios. Whether cells can elicit transitions using modest changes in the ratios of co-expressed factors is unclear. Here, we investigate how cells in the Drosophila eye resolve state transitions by quantifying the expression dynamics of the ETS transcription factors Pnt and Yan. Eye progenitor cells maintain a relatively constant ratio of Pnt/Yan protein, despite expressing both proteins with pulsatile dynamics. A rapid and sustained twofold increase in the Pnt/Yan ratio accompanies transitions to photoreceptor fates. Genetic perturbations that modestly disrupt the Pnt/Yan ratio produce fate transition defects consistent with the hypothesis that transitions are normally driven by a twofold shift in the ratio. A biophysical model based on cooperative Yan-DNA binding coupled with non-cooperative Pnt-DNA binding illustrates how twofold ratio changes could generate ultrasensitive changes in target gene transcription to drive fate transitions. Thus, coupling cell state transitions to the Pnt/Yan ratio sensitizes the system to modest fold-changes, conferring robustness and ultrasensitivity to the developmental program.
Collapse
Affiliation(s)
- Sebastian M. Bernasek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Suzy S. J. Hur
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Nicolás Peláez-Restrepo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute (HHMI), Hanna H. Gray Fellows Program
| | | | - Rachael Bakker
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | - Nicelio Sanchez-Luege
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Luís A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes, Northwestern University, Evanston, IL 60208, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, IL 60611, USA
| |
Collapse
|
13
|
Fasolo F, Paloschi V, Maegdefessel L. Long non-coding RNAs at the crossroad of vascular smooth muscle cell phenotypic modulation in atherosclerosis and neointimal formation. Atherosclerosis 2022:S0021-9150(22)01542-8. [PMID: 36513554 DOI: 10.1016/j.atherosclerosis.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Despite extraordinary advances in the comprehension of the pathophysiology of atherosclerosis and the employment of very effective treatments, cardiovascular diseases are still a major cause of mortality and represent a large share of health expenditure worldwide. Atherosclerosis is a disease affecting the medium and large arteries, which consists of a progressive accumulation of fatty substances, cellular waste products and fibrous elements, which culminates in the buildup of a plaque obstructing the blood flow. Endothelial dysfunction represents an early pathological event, favoring immune cells recruitment and triggering local inflammation. The release of inflammatory cytokines and other signaling molecules stimulates phenotypic modifications in the underlying vascular smooth muscle cells, which, in physiological conditions, are responsible for the maintenance of vessels architecture while regulating vascular tone. Vascular smooth muscle cells are highly plastic and may respond to disease stimuli by de-differentiating and losing their contractility, while increasing their synthetic, proliferative, and migratory capacity. This phenotypic switching is considered a pathological hallmark of atherogenesis and is ruled by the activation of selective gene programs. The advent of genomics and the improvement of sequencing technologies deepened our knowledge of the complex gene expression regulatory networks mediated by non-coding RNAs, and favored the rise of innovative therapeutic approaches targeting the non-coding transcriptome. In the context of atherosclerosis, long non-coding RNAs have received increasing attention as potential translational targets, due to their contribution to the molecular dynamics modulating the expression of vascular smooth muscle cells contractile/synthetic gene programs. In this review, we will focus on the most well-characterized long non-coding RNAs contributing to atherosclerosis by controlling expression of the contractile apparatus and genes activated in perturbed vascular smooth muscle cells.
Collapse
Affiliation(s)
- Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany.
| | - Valentina Paloschi
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany; Molecular Vascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Grimaldi A, Comai G, Mella S, Tajbakhsh S. Identification of bipotent progenitors that give rise to myogenic and connective tissues in mouse. eLife 2022; 11:70235. [PMID: 35225230 PMCID: PMC9020825 DOI: 10.7554/elife.70235] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
How distinct cell fates are manifested by direct lineage ancestry from bipotent progenitors, or by specification of individual cell types is a key question for understanding the emergence of tissues. The interplay between skeletal muscle progenitors and associated connective tissue cells provides a model for examining how muscle functional units are established. Most craniofacial structures originate from the vertebrate-specific neural crest cells except in the dorsal portion of the head, where they arise from cranial mesoderm. Here, using multiple lineage-tracing strategies combined with single cell RNAseq and in situ analyses, we identify bipotent progenitors expressing Myf5 (an upstream regulator of myogenic fate) that give rise to both muscle and juxtaposed connective tissue. Following this bifurcation, muscle and connective tissue cells retain complementary signalling features and maintain spatial proximity. Disrupting myogenic identity shifts muscle progenitors to a connective tissue fate. The emergence of Myf5-derived connective tissue is associated with the activity of several transcription factors, including Foxp2. Interestingly, this unexpected bifurcation in cell fate was not observed in craniofacial regions that are colonised by neural crest cells. Therefore, we propose that an ancestral bi-fated program gives rise to muscle and connective tissue cells in skeletal muscles that are deprived of neural crest cells.
Collapse
Affiliation(s)
| | - Glenda Comai
- UMR 3738, Department of Developmental and Stem Cell Biology, CNRS, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers UTechS, Institut Pasteur, Paris, France
| | | |
Collapse
|
15
|
Guo D, Daman K, Chen JJC, Shi MJ, Yan J, Matijasevic Z, Rickard AM, Bennett MH, Kiselyov A, Zhou H, Bang AG, Wagner KR, Maehr R, King OD, Hayward LJ, Emerson CP. iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease modeling. eLife 2022; 11:e70341. [PMID: 35076017 PMCID: PMC8789283 DOI: 10.7554/elife.70341] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle myoblasts (iMyoblasts) were generated from human induced pluripotent stem cells (iPSCs) using an efficient and reliable transgene-free induction and stem cell selection protocol. Immunofluorescence, flow cytometry, qPCR, digital RNA expression profiling, and scRNA-Seq studies identify iMyoblasts as a PAX3+/MYOD1+ skeletal myogenic lineage with a fetal-like transcriptome signature, distinct from adult muscle biopsy myoblasts (bMyoblasts) and iPSC-induced muscle progenitors. iMyoblasts can be stably propagated for >12 passages or 30 population doublings while retaining their dual commitment for myotube differentiation and regeneration of reserve cells. iMyoblasts also efficiently xenoengrafted into irradiated and injured mouse muscle where they undergo differentiation and fetal-adult MYH isoform switching, demonstrating their regulatory plasticity for adult muscle maturation in response to signals in the host muscle. Xenograft muscle retains PAX3+ muscle progenitors and can regenerate human muscle in response to secondary injury. As models of disease, iMyoblasts from individuals with Facioscapulohumeral Muscular Dystrophy revealed a previously unknown epigenetic regulatory mechanism controlling developmental expression of the pathological DUX4 gene. iMyoblasts from Limb-Girdle Muscular Dystrophy R7 and R9 and Walker Warburg Syndrome patients modeled their molecular disease pathologies and were responsive to small molecule and gene editing therapeutics. These findings establish the utility of iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease pathogenesis and for the development of muscle stem cell therapeutics.
Collapse
Affiliation(s)
- Dongsheng Guo
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jennifer JC Chen
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Meng-Jiao Shi
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jing Yan
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Zdenka Matijasevic
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Transgenic Animal Modeling Core, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | | | | | | | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger InstituteBaltimoreUnited States
| | - René Maehr
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Oliver D King
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Lawrence J Hayward
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
16
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
17
|
Ferdous A, Singh S, Luo Y, Abedin MJ, Jiang N, Perry CE, Evers BM, Gillette TG, Kyba M, Trojanowska M, Hill JA. Fli1 Promotes Vascular Morphogenesis by Regulating Endothelial Potential of Multipotent Myogenic Progenitors. Circ Res 2021; 129:949-964. [PMID: 34544261 DOI: 10.1161/circresaha.121.318986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anwarul Ferdous
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Sarvjeet Singh
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Yuxuan Luo
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Md J Abedin
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Nan Jiang
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Cameron E Perry
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Bret M Evers
- Pathology (B.M.E.), University of Texas Southwestern Medical Center, Dallas
| | - Thomas G Gillette
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Michael Kyba
- Department of Pediatrics (M.K.), University of Minnesota, Minneapolis.,Lillehei Heart Institute (M.K.), University of Minnesota, Minneapolis
| | - Maria Trojanowska
- Section of Rheumatology, School of Medicine, Boston University, MA (M.T.)
| | - Joseph A Hill
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas.,Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
18
|
Rodriguez-Outeiriño L, Hernandez-Torres F, Ramírez-de Acuña F, Matías-Valiente L, Sanchez-Fernandez C, Franco D, Aranega AE. Muscle Satellite Cell Heterogeneity: Does Embryonic Origin Matter? Front Cell Dev Biol 2021; 9:750534. [PMID: 34722534 PMCID: PMC8554119 DOI: 10.3389/fcell.2021.750534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Muscle regeneration is an important homeostatic process of adult skeletal muscle that recapitulates many aspects of embryonic myogenesis. Satellite cells (SCs) are the main muscle stem cells responsible for skeletal muscle regeneration. SCs reside between the myofiber basal lamina and the sarcolemma of the muscle fiber in a quiescent state. However, in response to physiological stimuli or muscle trauma, activated SCs transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent evidence has stated that SCs display functional heterogeneity linked to regenerative capability with an undifferentiated subgroup that is more prone to self-renewal, as well as committed progenitor cells ready for myogenic differentiation. Several lineage tracing studies suggest that such SC heterogeneity could be associated with different embryonic origins. Although it has been established that SCs are derived from the central dermomyotome, how a small subpopulation of the SCs progeny maintain their stem cell identity while most progress through the myogenic program to construct myofibers is not well understood. In this review, we synthesize the works supporting the different developmental origins of SCs as the genesis of their functional heterogeneity.
Collapse
Affiliation(s)
- Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Francisco Hernandez-Torres
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - F. Ramírez-de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Lidia Matías-Valiente
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Cristina Sanchez-Fernandez
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Amelia Eva Aranega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| |
Collapse
|
19
|
Han S, Okawa S, Wilkinson GA, Ghazale H, Adnani L, Dixit R, Tavares L, Faisal I, Brooks MJ, Cortay V, Zinyk D, Sivitilli A, Li S, Malik F, Ilnytskyy Y, Angarica VE, Gao J, Chinchalongporn V, Oproescu AM, Vasan L, Touahri Y, David LA, Raharjo E, Kim JW, Wu W, Rahmani W, Chan JAW, Kovalchuk I, Attisano L, Kurrasch D, Dehay C, Swaroop A, Castro DS, Biernaskie J, Del Sol A, Schuurmans C. Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding. Neuron 2021; 109:2847-2863.e11. [PMID: 34407390 PMCID: PMC12080610 DOI: 10.1016/j.neuron.2021.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and human cerebral organoids, we found that Neurog2 and Ascl1 expression defines a continuum of four lineage-biased neural progenitor cell (NPC) pools. Double+ NPCs, at the hierarchical apex, are least lineage restricted due to Neurog2-Ascl1 cross-repression and display unique features of multipotency (more open chromatin, complex gene regulatory network, G2 pausing). Strikingly, selectively eliminating double+ NPCs by crossing Neurog2-Ascl1 split-Cre mice with diphtheria toxin-dependent "deleter" strains locally disrupts Notch signaling, perturbs neurogenic symmetry, and triggers cortical folding. In support of our discovery that double+ NPCs are Notch-ligand-expressing "niche" cells that control neurogenic periodicity and cortical folding, NEUROG2, ASCL1, and HES1 transcript distribution is modular (adjacent high/low zones) in gyrencephalic macaque cortices, prefiguring future folds.
Collapse
Affiliation(s)
- Sisu Han
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Integrated BioBank of Luxembourg, 3555, 3531 Dudelange, Luxembourg
| | - Grey Atteridge Wilkinson
- Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hussein Ghazale
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lata Adnani
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ligia Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Imrul Faisal
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1204, USA
| | - Veronique Cortay
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Dawn Zinyk
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Adam Sivitilli
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Saiqun Li
- Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Faizan Malik
- Department of Medical Genetics, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Vladimir Espinosa Angarica
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Jinghua Gao
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Vorapin Chinchalongporn
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ana-Maria Oproescu
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lakshmy Vasan
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yacine Touahri
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eko Raharjo
- Department of Comparative Biology and Experimental Medicine, HBI, ACHRI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1204, USA
| | - Wei Wu
- Department of Pathology and Laboratory Medicine, Charbonneau Cancer Institute, HBI, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, HBI, ACHRI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jennifer Ai-Wen Chan
- Department of Pathology and Laboratory Medicine, Charbonneau Cancer Institute, HBI, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Colette Dehay
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1204, USA
| | - Diogo S Castro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, HBI, ACHRI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
20
|
Veenvliet JV, Bolondi A, Kretzmer H, Haut L, Scholze-Wittler M, Schifferl D, Koch F, Guignard L, Kumar AS, Pustet M, Heimann S, Buschow R, Wittler L, Timmermann B, Meissner A, Herrmann BG. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 2021; 370:370/6522/eaba4937. [PMID: 33303587 DOI: 10.1126/science.aba4937] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.
Collapse
Affiliation(s)
- Jesse V Veenvliet
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Leah Haut
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dennis Schifferl
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Frederic Koch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Léo Guignard
- Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, 10115 Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Milena Pustet
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Simon Heimann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. .,Institute for Medical Genetics, Charité-University Medicine Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| |
Collapse
|
21
|
Lim YH, Ryu J, Kook H, Kim YK. Identification of Long Noncoding RNAs Involved in Differentiation and Survival of Vascular Smooth Muscle Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:209-221. [PMID: 33230428 PMCID: PMC7515970 DOI: 10.1016/j.omtn.2020.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently been implicated in many pathophysiological cardiovascular processes, including vascular remodeling and atherosclerosis. However, the functional role of lncRNAs in the differentiation, proliferation, and apoptosis of vascular smooth muscle cells (VSMCs) is largely unknown. In this study, differentially expressed lncRNAs in synthetic and contractile human VSMCs were screened using RNA sequencing. Among the seven selected lncRNAs, the expression of MSC-AS1, MBNL1-AS1, and GAS6-AS2 was upregulated, whereas the expression of NR2F1-AS1, FUT8-AS1, FOXC2-AS1, and CTD-2207P18.2 was reduced upon VSMC differentiation. We focused on the NR2F1-AS1 and FOXC2-AS1 lncRNAs and showed that their knockdown significantly reduced the expression of smooth muscle contractile marker genes (ACTA2, CNN1, and TAGLN). Furthermore, FOXC2-AS1 was found to regulate cell proliferation and apoptosis through Akt/mTOR signaling, and affect Notch signaling, which is a key regulator of the contractile phenotype of VSMCs. Taken together, we identified novel lncRNAs involved in VSMC proliferation and differentiation and FOXC2-AS1 as a multifunctional regulator for vascular homeostasis and associated diseases.
Collapse
Affiliation(s)
- Yeong-Hwan Lim
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
| | - Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
| |
Collapse
|
22
|
Peter IS. The function of architecture and logic in developmental gene regulatory networks. Curr Top Dev Biol 2020; 139:267-295. [PMID: 32450963 DOI: 10.1016/bs.ctdb.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An important contribution of systems biology is the insight that biological systems depend on the function of molecular interactions and not just on individual molecules. System level mechanisms are particularly important in the development of animals and plants which depends not just on transcription factors and signaling molecules, but also on regulatory circuits and gene regulatory networks (GRNs). However, since GRNs consist of transcription factors, it can be challenging to assess the function of regulatory circuits independently of the function of regulatory factors. The comparison of different GRNs offers a way to do so and leads to several observations. First, similar regulatory circuits operate in various developmental contexts and in different species, and frequently, these circuits are associated with similar developmental functions. Second, given regulatory circuits are often used at particular positions within the GRN hierarchy. Third, in some GRNs, regulatory circuits are organized in a particular order in respect to each other. And fourth, the evolution of GRNs occurs not just by co-option of regulatory genes but also by rewiring of regulatory linkages between conserved regulatory genes, indicating that the organization of interactions is important. Thus, even though in most instances the function of regulatory circuits remains to be discovered, it becomes evident that the architecture and logic of GRNs are functionally important for the control of genome activity and for the specification of the body plan.
Collapse
Affiliation(s)
- Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
23
|
Maire P, Dos Santos M, Madani R, Sakakibara I, Viaut C, Wurmser M. Myogenesis control by SIX transcriptional complexes. Semin Cell Dev Biol 2020; 104:51-64. [PMID: 32247726 DOI: 10.1016/j.semcdb.2020.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
SIX homeoproteins were first described in Drosophila, where they participate in the Pax-Six-Eya-Dach (PSED) network with eyeless, eyes absent and dachsund to drive synergistically eye development through genetic and biochemical interactions. The role of the PSED network and SIX proteins in muscle formation in vertebrates was subsequently identified. Evolutionary conserved interactions with EYA and DACH proteins underlie the activity of SIX transcriptional complexes (STC) both during embryogenesis and in adult myofibers. Six genes are expressed throughout muscle development, in embryonic and adult proliferating myogenic stem cells and in fetal and adult post-mitotic myofibers, where SIX proteins regulate the expression of various categories of genes. In vivo, SIX proteins control many steps of muscle development, acting through feedforward mechanisms: in the embryo for myogenic fate acquisition through the direct control of Myogenic Regulatory Factors; in adult myofibers for their contraction/relaxation and fatigability properties through the control of genes involved in metabolism, sarcomeric organization and calcium homeostasis. Furthermore, during development and in the adult, SIX homeoproteins participate in the genesis and the maintenance of myofibers diversity.
Collapse
Affiliation(s)
- Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | | | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Iori Sakakibara
- Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Camille Viaut
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maud Wurmser
- Department of Integrative Medical Biology (IMB), Umeå universitet, Sweden
| |
Collapse
|
24
|
The Basal Level of Gene Expression Associated with Chromatin Loosening Shapes Waddington Landscapes and Controls Cell Differentiation. J Mol Biol 2020; 432:2253-2270. [PMID: 32105732 DOI: 10.1016/j.jmb.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023]
Abstract
The baseline level of transcription, which is variable and difficult to quantify, seriously complicates the normalization of comparative transcriptomic data, but its biological importance remains unappreciated. We show that this currently neglected ingredient is essential for controlling gene network multistability and therefore cellular differentiation. Basal expression is correlated to the degree of chromatin loosening measured by DNA accessibility and systematically leads to cellular dedifferentiation as assessed by transcriptomic signatures, irrespective of the molecular and cellular tools used. Modeling gene network motifs formally involved in developmental bifurcations reveals that the epigenetic landscapes of Waddington are restructured by the level of nonspecific expression, such that the attractors of progenitor and differentiated cells can be mutually exclusive. This mechanism is universal and holds beyond the particular nature of the genes involved, provided the multistable circuits are correctly described with autonomous basal expression. These results explain the relationships long established between gene expression noise, chromatin decondensation and cellular dedifferentiation, and highlight how heterochromatin maintenance is essential for preventing pathological cellular reprogramming, age-related diseases, and cancer.
Collapse
|
25
|
Gerli MFM, Moyle LA, Benedetti S, Ferrari G, Ucuncu E, Ragazzi M, Constantinou C, Louca I, Sakai H, Ala P, De Coppi P, Tajbakhsh S, Cossu G, Tedesco FS. Combined Notch and PDGF Signaling Enhances Migration and Expression of Stem Cell Markers while Inducing Perivascular Cell Features in Muscle Satellite Cells. Stem Cell Reports 2019; 12:461-473. [PMID: 30745033 PMCID: PMC6409426 DOI: 10.1016/j.stemcr.2019.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Satellite cells are responsible for skeletal muscle regeneration. Upon activation, they proliferate as transient amplifying myoblasts, most of which fuse into regenerating myofibers. Despite their remarkable differentiation potential, these cells have limited migration capacity, which curtails clinical use for widespread forms of muscular dystrophy. Conversely, skeletal muscle perivascular cells have less myogenic potential but better migration capacity than satellite cells. Here we show that modulation of Notch and PDGF pathways, involved in developmental specification of pericytes, induces perivascular cell features in adult mouse and human satellite cell-derived myoblasts. DLL4 and PDGF-BB-treated cells express markers of perivascular cells and associate with endothelial networks while also upregulating markers of satellite cell self-renewal. Moreover, treated cells acquire trans-endothelial migration ability while remaining capable of engrafting skeletal muscle upon intramuscular transplantation. These results extend our understanding of muscle stem cell fate plasticity and provide a druggable pathway with clinical relevance for muscle cell therapy.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK; Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Louise Anne Moyle
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Sara Benedetti
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK; Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, WC1N 1EH London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Ekin Ucuncu
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Chrystalla Constantinou
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Irene Louca
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Hiroshi Sakai
- Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, M13 9PL Manchester, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK; The Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK.
| |
Collapse
|
26
|
Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle. Proc Natl Acad Sci U S A 2018; 114:5830-5837. [PMID: 28584083 DOI: 10.1073/pnas.1610605114] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle in vertebrates is formed by two major routes, as illustrated by the mouse embryo. Somites give rise to myogenic progenitors that form all of the muscles of the trunk and limbs. The behavior of these cells and their entry into the myogenic program is controlled by gene regulatory networks, where paired box gene 3 (Pax3) plays a predominant role. Head and some neck muscles do not derive from somites, but mainly form from mesoderm in the pharyngeal region. Entry into the myogenic program also depends on the myogenic determination factor (MyoD) family of genes, but Pax3 is not expressed in these myogenic progenitors, where different gene regulatory networks function, with T-box factor 1 (Tbx1) and paired-like homeodomain factor 2 (Pitx2) as key upstream genes. The regulatory genes that underlie the formation of these muscles are also important players in cardiogenesis, expressed in the second heart field, which is a major source of myocardium and of the pharyngeal arch mesoderm that gives rise to skeletal muscles. The demonstration that both types of striated muscle derive from common progenitors comes from clonal analyses that have established a lineage tree for parts of the myocardium and different head and neck muscles. Evolutionary conservation of the two routes to skeletal muscle in vertebrates extends to chordates, to trunk muscles in the cephlochordate Amphioxus and to muscles derived from cardiopharyngeal mesoderm in the urochordate Ciona, where a related gene regulatory network determines cardiac or skeletal muscle cell fates. In conclusion, Eric Davidson's visionary contribution to our understanding of gene regulatory networks and their evolution is acknowledged.
Collapse
|
27
|
Singh AJ, Chang CN, Ma HY, Ramsey SA, Filtz TM, Kioussi C. FACS-Seq analysis of Pax3-derived cells identifies non-myogenic lineages in the embryonic forelimb. Sci Rep 2018; 8:7670. [PMID: 29769607 PMCID: PMC5956100 DOI: 10.1038/s41598-018-25998-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle in the forelimb develops during embryonic and fetal development and perinatally. While much is known regarding the molecules involved in forelimb myogenesis, little is known about the specific mechanisms and interactions. Migrating skeletal muscle precursor cells express Pax3 as they migrate into the forelimb from the dermomyotome. To compare gene expression profiles of the same cell population over time, we isolated lineage-traced Pax3+ cells (Pax3EGFP) from forelimbs at different embryonic days. We performed whole transcriptome profiling via RNA-Seq of Pax3+ cells to construct gene networks involved in different stages of embryonic and fetal development. With this, we identified genes involved in the skeletal, muscular, vascular, nervous and immune systems. Expression of genes related to the immune, skeletal and vascular systems showed prominent increases over time, suggesting a non-skeletal myogenic context of Pax3-derived cells. Using co-expression analysis, we observed an immune-related gene subnetwork active during fetal myogenesis, further implying that Pax3-derived cells are not a strictly myogenic lineage, and are involved in patterning and three-dimensional formation of the forelimb through multiple systems.
Collapse
Affiliation(s)
- Arun J Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA.,Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Hsiao-Yen Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, 97331, USA.,School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA.
| |
Collapse
|
28
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
29
|
Drummond CJ, Hanna JA, Garcia MR, Devine DJ, Heyrana AJ, Finkelstein D, Rehg JE, Hatley ME. Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors. Cancer Cell 2018; 33:108-124.e5. [PMID: 29316425 PMCID: PMC5790179 DOI: 10.1016/j.ccell.2017.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022]
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that histologically resembles embryonic skeletal muscle. RMS occurs throughout the body and an exclusively myogenic origin does not account for RMS occurring in sites devoid of skeletal muscle. We previously described an RMS model activating a conditional constitutively active Smoothened mutant (SmoM2) with aP2-Cre. Using genetic fate mapping, we show SmoM2 expression in Cre-expressing endothelial progenitors results in myogenic transdifferentiation and RMS. We show that endothelium and skeletal muscle within the head and neck arise from Kdr-expressing progenitors, and that hedgehog pathway activation results in aberrant expression of myogenic specification factors as a potential mechanism driving RMS genesis. These findings suggest that RMS can originate from aberrant development of non-myogenic cells.
Collapse
Affiliation(s)
- Catherine J Drummond
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason A Hanna
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Matthew R Garcia
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Daniel J Devine
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alana J Heyrana
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark E Hatley
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
30
|
Finding MyoD and lessons learned along the way. Semin Cell Dev Biol 2017; 72:3-9. [PMID: 29097153 DOI: 10.1016/j.semcdb.2017.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/27/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
Abstract
In 1987, Robert Davis, Hal Weintraub and I reported the identification of MyoD, a transcription factor that could reprogram fibroblasts into skeletal muscle cells. In this recollection, I both summarize the prior work of Helen Blau, Woody Wright, Peter Jones and Charlie Emerson that inspired my entry into this field, and the subsequent events that led to finding MyoD. Lastly, I highlight some of the principles in developmental biology that have emerged during the past 30 years, which are particularly relevant to skeletal muscle biology.
Collapse
|
31
|
Translational Control of the Myogenic Program in Developing, Regenerating, and Diseased Skeletal Muscle. Curr Top Dev Biol 2017; 126:67-98. [PMID: 29305004 DOI: 10.1016/bs.ctdb.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Translational control of genes that code for protein allows a cell to rapidly respond to changes in its environment, in part because translational control of gene expression does not depend on upstream events required to produce an mRNA molecule. The importance of translational control has been highlighted by studies concerning muscle development, regeneration, and disease. Translational control of specific mRNAs is achieved by microRNAs and RNA-binding proteins, which are particularly relevant to developmental myogenesis, where they ensure the stepwise differentiation of multipotent progenitors to committed myogenic progenitors that ultimately fuse into slow- or fast-type myofibers that make up skeletal muscle. The importance of translational control is also illustrated in muscle disease, where deregulated microRNA expression accelerates or delays progression of disease. Skeletal muscle is also unique for its remarkable capacity to regenerate after injury, which requires the activity of quiescent muscle stem cells, named satellite cells for their position underneath the basal lamina of the myofiber. Mitotically quiescent satellite cells are primed to activate the cell cycle and myogenic program, a unique feature that requires specific regulation of mRNA translation converging with pathways that regulate global protein synthesis. Emerging concepts in translational control of gene expression have shed light on multiple layers of control over the myogenic program. In parallel, the development and regeneration of skeletal muscle represents a unique, relevant, and highly defined context within which new concepts in translational control of gene expression should emerge.
Collapse
|
32
|
McQueen C, Pownall ME. An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos. Mech Dev 2017; 146:1-9. [DOI: 10.1016/j.mod.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
|
33
|
Vicente-García C, Villarejo-Balcells B, Irastorza-Azcárate I, Naranjo S, Acemel RD, Tena JJ, Rigby PWJ, Devos DP, Gómez-Skarmeta JL, Carvajal JJ. Regulatory landscape fusion in rhabdomyosarcoma through interactions between the PAX3 promoter and FOXO1 regulatory elements. Genome Biol 2017; 18:106. [PMID: 28615069 PMCID: PMC5470208 DOI: 10.1186/s13059-017-1225-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
Background The organisation of vertebrate genomes into topologically associating domains (TADs) is believed to facilitate the regulation of the genes located within them. A remaining question is whether TAD organisation is achieved through the interactions of the regulatory elements within them or if these interactions are favoured by the pre-existence of TADs. If the latter is true, the fusion of two independent TADs should result in the rewiring of the transcriptional landscape and the generation of ectopic contacts. Results We show that interactions within the PAX3 and FOXO1 domains are restricted to their respective TADs in normal conditions, while in a patient-derived alveolar rhabdomyosarcoma cell line, harbouring the diagnostic t(2;13)(q35;q14) translocation that brings together the PAX3 and FOXO1 genes, the PAX3 promoter interacts ectopically with FOXO1 sequences. Using a combination of 4C-seq datasets, we have modelled the three-dimensional organisation of the fused landscape in alveolar rhabdomyosarcoma. Conclusions The chromosomal translocation that leads to alveolar rhabdomyosarcoma development generates a novel TAD that is likely to favour ectopic PAX3:FOXO1 oncogene activation in non-PAX3 territories. Rhabdomyosarcomas may therefore arise from cells which do not normally express PAX3. The borders of this novel TAD correspond to the original 5'- and 3'- borders of the PAX3 and FOXO1 TADs, respectively, suggesting that TAD organisation precedes the formation of regulatory long-range interactions. Our results demonstrate that, upon translocation, novel regulatory landscapes are formed allowing new intra-TAD interactions between the original loci involved. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1225-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Barbara Villarejo-Balcells
- Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Ibai Irastorza-Azcárate
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Peter W J Rigby
- Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Jose L Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain.
| |
Collapse
|
34
|
Latroche C, Gitiaux C, Chrétien F, Desguerre I, Mounier R, Chazaud B. Skeletal Muscle Microvasculature: A Highly Dynamic Lifeline. Physiology (Bethesda) 2016; 30:417-27. [PMID: 26525341 DOI: 10.1152/physiol.00026.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is highly irrigated by blood vessels. Beyond oxygen and nutrient supply, new vessel functions have been identified. This review presents vessel microanatomy and functions at tissue, cellular, and molecular levels. Mechanisms of vessel plasticity are described during skeletal muscle development and acute regeneration, and in physiological and pathological contexts.
Collapse
Affiliation(s)
- Claire Latroche
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; Institut Pasteur, Paris, France
| | - Cyril Gitiaux
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; Institut Pasteur, Paris, France
| | | | - Isabelle Desguerre
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France
| | - Rémi Mounier
- CGPhyMC, CNRS UMR5534, Villeurbanne, France; and Université Claude Bernard Lyon1, Villeurbanne, France
| | - Bénédicte Chazaud
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; CGPhyMC, CNRS UMR5534, Villeurbanne, France; and Université Claude Bernard Lyon1, Villeurbanne, France
| |
Collapse
|
35
|
Murray IR, Baily JE, Chen WCW, Dar A, Gonzalez ZN, Jensen AR, Petrigliano FA, Deb A, Henderson NC. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential. Pharmacol Ther 2016; 171:65-74. [PMID: 27595928 DOI: 10.1016/j.pharmthera.2016.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease.
Collapse
Affiliation(s)
- Iain R Murray
- BHF Center for Vascular Regeneration and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, UK
| | - James E Baily
- BHF Center for Vascular Regeneration and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - William C W Chen
- Reseach Laboratory of Electronics and Department of Biological Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Ayelet Dar
- Orthopedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Zaniah N Gonzalez
- BHF Center for Vascular Regeneration and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew R Jensen
- Orthopedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Frank A Petrigliano
- Orthopedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine & Molecular Cell and Developmental Biology, and Eli and Edythe Broad Institute of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, CA, USA.
| | - Neil C Henderson
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
36
|
Mayeuf-Louchart A, Montarras D, Bodin C, Kume T, Vincent SD, Buckingham M. Endothelial cell specification in the somite is compromised in Pax3-positive progenitors of Foxc1/2 conditional mutants, with loss of forelimb myogenesis. Development 2016; 143:872-9. [PMID: 26839363 DOI: 10.1242/dev.128017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/23/2016] [Indexed: 11/20/2022]
Abstract
Pax3 and Foxc2 have been shown genetically to mutually repress each other in the mouse somite. Perturbation of this balance in multipotent cells of the dermomyotome influences cell fate; upregulation of Foxc2 favours a vascular fate, whereas higher levels of Pax3 lead to myogenesis. Foxc1 has overlapping functions with Foxc2. In Foxc1/2 double-mutant embryos, somitogenesis is severely affected, precluding analysis of somite derivatives. We have adopted a conditional approach whereby mutations in Foxc1 and Foxc2 genes were targeted to Pax3-expressing cells. Inclusion of a conditional reporter allele in the crosses made it possible to follow cells that had expressed Pax3. At the forelimb level, endothelial and myogenic cells migrate from adjacent somites into the limb bud. This population of endothelial cells is compromised in the double mutant, whereas excessive production of myogenic cells is observed in the trunk. However, strikingly, myogenic progenitors fail to enter the limbs, leading to the absence of skeletal muscle. Pax3-positive migratory myogenic progenitors, marked by expression of Lbx1, are specified in the somite at forelimb level, but endothelial progenitors are absent. The myogenic progenitors do not die, but differentiate prematurely adjacent to the somite. We conclude that the small proportion of somite-derived endothelial cells in the limb is required for the migration of myogenic limb progenitors.
Collapse
Affiliation(s)
- Alicia Mayeuf-Louchart
- CNRS UMR 3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, 28 Rue du Dr Roux, Paris 75015, France
| | - Didier Montarras
- CNRS UMR 3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, 28 Rue du Dr Roux, Paris 75015, France
| | - Catherine Bodin
- CNRS UMR 3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, 28 Rue du Dr Roux, Paris 75015, France
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL 60611, USA
| | - Stéphane D Vincent
- CNRS UMR 3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, 28 Rue du Dr Roux, Paris 75015, France
| | - Margaret Buckingham
- CNRS UMR 3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, 28 Rue du Dr Roux, Paris 75015, France
| |
Collapse
|
37
|
|
38
|
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. [PMID: 26453493 DOI: 10.1016/j.bone.2015.02.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
Abstract
Both skeletal muscle and bone are of mesodermal origin and derived from somites during embryonic development. Somites differentiate into the dorsal dermomyotome and the ventral sclerotome, which give rise to skeletal muscle and bone, respectively. Extracellular signaling molecules, such as Wnt and Shh, secreted from the surrounding environment, determine the developmental fate of skeletal muscle. Dermomyotome cells are specified as trunk muscle progenitor cells by transcription factor networks involving Pax3. These progenitor cells delaminate and migrate to form the myotome, where they are determined as myoblasts that differentiate into myotubes or myofibers. The MyoD family of transcription factors plays pivotal roles in myogenic determination and differentiation. Adult skeletal muscle regenerates upon exercise, muscle injury, or degeneration. Satellite cells are muscle-resident stem cells and play essential roles in muscle growth and regeneration. Muscle regeneration recapitulates the process of muscle development in many aspects. In certain muscle diseases, ectopic calcification or heterotopic ossification, as well as fibrosis and adipogenesis, occurs in skeletal muscle. Muscle-resident mesenchymal progenitor cells, which may be derived from vascular endothelial cells, are responsible for the ectopic osteogenesis, fibrogenesis, and adipogenesis. The small GTPase M-Ras is likely to participate in the ectopic calcification and ossification, as well as in osteogenesis during development. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
39
|
Young K, Krebs LT, Tweedie E, Conley B, Mancini M, Arthur HM, Liaw L, Gridley T, Vary C. Endoglin is required in Pax3-derived cells for embryonic blood vessel formation. Dev Biol 2015; 409:95-105. [PMID: 26481065 DOI: 10.1016/j.ydbio.2015.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/02/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Mutations in endoglin, a TGFβ/BMP coreceptor, are causal for hereditary hemorrhagic telangiectasia (HHT). Endoglin-null (Eng-/-) mouse embryos die at embryonic day (E)10.5-11.5 due to defects in angiogenesis. In part, this is due to an absence of vascular smooth muscle cell differentiation and vessel investment. Prior studies from our lab and others have shown the importance of endoglin expression in embryonic development in both endothelial cells and neural crest stem cells. These studies support the hypothesis that endoglin may play cell-autonomous roles in endothelial and vascular smooth muscle cell precursors. However, the requirement for endoglin in vascular cell precursors remains poorly defined. Our objective was to specifically delete endoglin in neural crest- and somite-derived Pax3-positive vascular precursors to understand the impact on somite progenitor cell contribution to embryonic vascular development. Pax3Cre mice were crossed with Eng+/- mice to obtain compound mutant Pax3(Cre/+);Eng+/- mice. These mice were then crossed with homozygous endoglin LoxP-mutated (Eng(LoxP/LoxP)) mice to conditionally delete the endoglin gene in specific lineages that contribute to endothelial and smooth muscle constituents of developing embryonic vessels. Pax3(Cre/+);Eng(LoxP/)(-) mice showed a variety of vascular defects at E10.5, and none of these mice survived past E12.5. Embryos analyzed at E10.5 showed malformations suggestive of misdirection of the intersomitic vessels. The dorsal aorta showed significant dilation with associated vascular smooth muscle cells exhibiting disorganization and enhanced expression of smooth muscle differentiation proteins, including smooth muscle actin. These results demonstrate a requirement for endoglin in descendants of Pax3-expressing vascular cell precursors, and thus provides new insight into the cellular basis underlying adult vascular diseases such as HHT.
Collapse
Affiliation(s)
- K Young
- Maine Medical Center Research Institute, Scarborough, ME, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States; The Jackson Laboratory, Bar Harbor, ME, United States
| | - L T Krebs
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - E Tweedie
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - B Conley
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - M Mancini
- Maine Medical Center Research Institute, Scarborough, ME, United States; Champions Oncology, Baltimore, MD, United States
| | - H M Arthur
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - L Liaw
- Maine Medical Center Research Institute, Scarborough, ME, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - T Gridley
- Maine Medical Center Research Institute, Scarborough, ME, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Cph Vary
- Maine Medical Center Research Institute, Scarborough, ME, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States.
| |
Collapse
|
40
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
41
|
Abstract
Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function later to repress haematopoietic fate. Tissue-specific, temporally controlled, genetic loss of arterial genes (Sox17 and Notch1) during EHT results in increased production of haematopoietic cells due to loss of Sox17-mediated repression of haematopoietic transcription factors (Runx1 and Gata2). However, the increase in EHT can be abrogated by increased Notch signalling. These findings demonstrate that the endothelial haematopoietic fate switch is actively repressed in a population of endothelial cells, and that derepression of these programs augments haematopoietic output. The first haematopoietic stem and progenitor cells arise from the hemogenic endothelium of arterial vascular beds. Here the authors describe the mechanism that regulates the endothelial-to-haematopoietic transition and show that Sox17 and Notch1, genes critical to arterial endothelium identity, are also crucial repressors of haematopoietic fate.
Collapse
|
42
|
Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration. PLoS One 2015; 10:e0130436. [PMID: 26098312 PMCID: PMC4476715 DOI: 10.1371/journal.pone.0130436] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.
Collapse
|
43
|
Abstract
Blood and lymphatic vessels deliver oxygen and nutrients, remove waste and CO2, and regulate interstitial pressure in tissues and organs. These vessels begin life early in embryogenesis using transcription factors and signaling pathways that regulate differentiation, morphogenesis, and proliferation. Here we describe how these vessels develop in the mouse embryo, and the signals that are important to their development.
Collapse
Affiliation(s)
- Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kathleen M Caron
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
44
|
Applebaum M, Kalcheim C. Mechanisms of myogenic specification and patterning. Results Probl Cell Differ 2015; 56:77-98. [PMID: 25344667 DOI: 10.1007/978-3-662-44608-9_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesodermal somites are initially composed of columnar cells arranged as a pseudostratified epithelium that undergoes sequential and spatially restricted changes to generate the sclerotome and dermomyotome, intermediate structures that develop into vertebrae, striated muscles of the body and limbs, dermis, smooth muscle, and endothelial cells. Regional cues were elucidated that impart differential traits upon the originally multipotent progenitors. How do somite cells and their intermediate progenitors interpret these extrinsic cues and translate them into various levels and/or modalities of intracellular signaling that lead to differential gene expression profiles remains a significant challenge. So is the understanding of how differential fate specification relates to complex cellular migrations prefiguring the formation of body muscles and vertebrae. Research in the past years has largely transited from a descriptive phase in which the lineages of distinct somite-derived progenitors and their cellular movements were traced to a more mechanistic understanding of the local function of genes and regulatory networks underlying lineage segregation and tissue organization. In this chapter, we focus on some major advances addressing the segregation of lineages from the dermomyotome, while discussing both cellular as well as molecular mechanisms, where possible.
Collapse
Affiliation(s)
- Mordechai Applebaum
- Department of Medical Neurobiology, IMRIC and ELSC-Hebrew University-Hadassah Medical School, Jerusalem, 9101201, 12272, Israel,
| | | |
Collapse
|
45
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
46
|
Sargent C, Bauer J, Khalil M, Filmore P, Bernas M, Witte M, Pearson MP, Erickson RP. A five generation family with a novel mutation in FOXC2 and lymphedema worsening to hydrops in the youngest generation. Am J Med Genet A 2014; 164A:2802-7. [PMID: 25252123 DOI: 10.1002/ajmg.a.36736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/27/2014] [Indexed: 12/29/2022]
Abstract
We describe a five generation family with dominantly inherited lymphedema, but no distichiasis, in which 3/3 affected offspring in the fifth generation have died of fetal hydrops and related birth defects. Mutational analysis disclosed a novel mutation in FOXC2 (R121C) in affected members. We searched for possible genetic influences on the greater severity of lymphedema (hydrops) in the fifth generation. Karyotypes disclosed an extra band in Xp in one affected fetus, but this was also found in the mother. Copy number variation (CNV) studies on four members of the pedigree (mother of the three severely affected fetuses/infants; one severely affected; a full, and a half, unaffected sibs) did not detect the source of the Xp band or a possible influence on the severe phenotype. However, use of SNP arrays did allow identification of the portion of the maternal proximal Xp shared by a hydrops-affected daughter and son which was not shared by an unaffected daughter from the same sibship.
Collapse
Affiliation(s)
- Carole Sargent
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The cell of origin remains debated for the aggressive childhood cancer alveolar rhabdomyosarcoma (aRMS). Abraham et al. used conditional mouse models of aRMS to activate the Pax3:Foxo1 fusion oncogene and inactivate p53 in several lineages of early development. The results reveal that the tumor cell of origin significantly influences tumor sensitivity to targeted therapies. Furthermore, the transcriptional regulation of the Pax3:Foxo1a locus varies by lineage of origin. These discoveries led to the identification of the histone deacetylase inhibitor entinostat as a potential agent for pharmacological intervention. Lineage or cell of origin of cancers is often unknown and thus is not a consideration in therapeutic approaches. Alveolar rhabdomyosarcoma (aRMS) is an aggressive childhood cancer for which the cell of origin remains debated. We used conditional genetic mouse models of aRMS to activate the pathognomonic Pax3:Foxo1 fusion oncogene and inactivate p53 in several stages of prenatal and postnatal muscle development. We reveal that lineage of origin significantly influences tumor histomorphology and sensitivity to targeted therapeutics. Furthermore, we uncovered differential transcriptional regulation of the Pax3:Foxo1 locus by tumor lineage of origin, which led us to identify the histone deacetylase inhibitor entinostat as a pharmacological agent for the potential conversion of Pax3:Foxo1-positive aRMS to a state akin to fusion-negative RMS through direct transcriptional suppression of Pax3:Foxo1.
Collapse
|
48
|
O'Neill KE, Thowfeequ S, Li WC, Eberhard D, Dutton JR, Tosh D, Slack JMW. Hepatocyte-ductal transdifferentiation is mediated by reciprocal repression of SOX9 and C/EBPα. Cell Reprogram 2014; 16:314-23. [PMID: 25153359 DOI: 10.1089/cell.2014.0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary hepatocytes rapidly dedifferentiate when cultured in vitro. We have studied the mechanism of hepatocyte dedifferentiation by using two culture media: one that maintains hepatocytes in a differentiated state and another that allows dedifferentiation. We show that dedifferentiation involves partial transformation of hepatocytes into cells that resemble biliary epithelial cells. Lineage labeling and time-lapse filming confirm that the dedifferentiated cells are derived from hepatocytes and not from contaminating ductal or fibroblastic cells in the original culture. Furthermore, we establish that the conversion of hepatocytes to biliary-like cells is regulated by mutual antagonism of CCAAT/enhancer binding protein alpha (C/EBPα) and SOX9, which have opposing effects on the expression of hepatocyte and ductal genes. Thus, hepatocyte dedifferentiation induces the biliary gene expression program by alleviating C/EBPα-mediated repression of Sox9. We propose that reciprocal antagonism of C/EBPα and SOX9 also operates in the formation of hepatocytes and biliary ducts from hepatoblasts during normal embryonic development. These data demonstrate that reprogramming of differentiated cells can be used to model the acquisition and maintenance of cell fate in vivo.
Collapse
Affiliation(s)
- Kathy E O'Neill
- 1 Centre for Regenerative Medicine, Department of Biology & Biochemistry University of Bath , Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Ciglar L, Girardot C, Wilczyński B, Braun M, Furlong EEM. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis. Development 2014; 141:2633-43. [PMID: 24961800 PMCID: PMC4146391 DOI: 10.1242/dev.101956] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular models of cell fate specification typically focus on the activation of specific lineage programs. However, the concurrent repression of unwanted transcriptional networks is also essential to stabilize certain cellular identities, as shown in a number of diverse systems and phyla. Here, we demonstrate that this dual requirement also holds true in the context of Drosophila myogenesis. By integrating genetics and genomics, we identified a new role for the pleiotropic transcriptional repressor Tramtrack69 in myoblast specification. Drosophila muscles are formed through the fusion of two discrete cell types: founder cells (FCs) and fusion-competent myoblasts (FCMs). When tramtrack69 is removed, FCMs appear to adopt an alternative muscle FC-like fate. Conversely, ectopic expression of this repressor phenocopies muscle defects seen in loss-of-function lame duck mutants, a transcription factor specific to FCMs. This occurs through Tramtrack69-mediated repression in FCMs, whereas Lame duck activates a largely distinct transcriptional program in the same cells. Lineage-specific factors are therefore not sufficient to maintain FCM identity. Instead, their identity appears more plastic, requiring the combination of instructive repressive and activating programs to stabilize cell fate.
Collapse
Affiliation(s)
- Lucia Ciglar
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Bartek Wilczyński
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Martina Braun
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| |
Collapse
|
50
|
Applebaum M, Ben-Yair R, Kalcheim C. Segregation of striated and smooth muscle lineages by a Notch-dependent regulatory network. BMC Biol 2014; 12:53. [PMID: 25015411 PMCID: PMC4260679 DOI: 10.1186/s12915-014-0053-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Indexed: 12/31/2022] Open
Abstract
Background Lineage segregation from multipotent epithelia is a central theme in development and in adult stem cell plasticity. Previously, we demonstrated that striated and smooth muscle cells share a common progenitor within their epithelium of origin, the lateral domain of the somite-derived dermomyotome. However, what controls the segregation of these muscle subtypes remains unknown. We use this in vivo bifurcation of fates as an experimental model to uncover the underlying mechanisms of lineage diversification from bipotent progenitors. Results Using the strength of spatio-temporally controlled gene missexpression in avian embryos, we report that Notch harbors distinct pro-smooth muscle activities depending on the duration of the signal; short periods prevent striated muscle development and extended periods, through Snail1, promote cell emigration from the dermomyotome towards a smooth muscle fate. Furthermore, we define a Muscle Regulatory Network, consisting of Id2, Id3, FoxC2 and Snail1, which acts in concert to promote smooth muscle by antagonizing the pro-myogenic activities of Myf5 and Pax7, which induce striated muscle fate. Notch and BMP closely regulate the network and reciprocally reinforce each other’s signal. In turn, components of the network strengthen Notch signaling, while Pax7 silences this signaling. These feedbacks augment the robustness and flexibility of the network regulating muscle subtype segregation. Conclusions Our results demarcate the details of the Muscle Regulatory Network, underlying the segregation of muscle sublineages from the lateral dermomyotome, and exhibit how factors within the network promote the smooth muscle at the expense of the striated muscle fate. This network acts as an exemplar demonstrating how lineage segregation occurs within epithelial primordia by integrating inputs from competing factors.
Collapse
|