1
|
Lin W, Zhang X, Liu Z, Huo H, Chang Y, Zhao J, Gong S, Zhao G, Huo J. Isoform-resolution single-cell RNA sequencing reveals the transcriptional panorama of adult Baoshan pig testis cells. BMC Genomics 2025; 26:459. [PMID: 40340725 PMCID: PMC12063418 DOI: 10.1186/s12864-025-11636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND As the primary organ of the male reproductive system, the testis facilitates spermatogenesis and androgen secretion. Due to the complexity of spermatogenesis, elucidating cellular heterogeneity and gene expression dynamics within the porcine testis is critical for advancing reproductive biology. Nevertheless, the cellular composition and regulatory mechanisms of porcine testes remain insufficiently characterized. In this study, we applied integrated long-read (Nanopore) and short-read (Illumina) scRNA-seq to Baoshan pig testes, establishing a comprehensive transcriptional profile to delineate cellular heterogeneity and molecular regulation. RESULTS Through systematic analysis of testicular architecture and the temporal progression of spermatogenesis, we characterized 11,520 single cells and 23,402 genes, delineating germ cell developmental stages: proliferative-phase spermatogonia (SPG), early-stage spermatocytes (Early SPC) and late-stage spermatocytes (Late SPC) during meiosis, and spermiogenic-phase round spermatids (RS) followed by elongating/elongated spermatids (ES), culminating in mature spermatozoa (Sperm). We further identified nine distinct testicular cell types, with germ cells spanning all developmental stages and somatic components comprising Sertoli cells, macrophages, and peritubular myoid cells as microenvironmental constituents, revealing the cellular heterogeneity of testicular tissue and dynamic characteristics of spermatogenesis. We obtained the dynamic expression changes of 16 vital marker genes during spermatogenesis and performed immunofluorescence validation on 7 marker genes. Gene ontology analysis revealed that germ cells at various stages were involved in specific biological processes, while cell communication networks highlighted eight pivotal signaling pathways, including MIF, NRG, WNT, VEGF, BMP, CCL, PARs, and ENHO pathways. Long-read sequencing further captured the full integrity and diversity of RNA transcripts, identifying 60% of the novel annotated isoforms and revealing that FSM isoforms exhibited longer transcript lengths, longer coding sequences, longer open reading frames, and a great number of exons, suggesting the complexity of isoforms within the testicular microenvironment. CONCLUSIONS Our results provide insight into the cellular heterogeneity, intercellular communication, and gene expression/transcript diversity in porcine testes, and offer a valuable resource for understanding the molecular mechanisms of porcine spermatogenesis.
Collapse
Affiliation(s)
- Wan Lin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xia Zhang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, 033001, Shanxi, China
| | - Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hailong Huo
- Yunnan Open University, Kunming, 650500, Yunnan, China
| | - Yongcheng Chang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiading Zhao
- Baoshan Pig Research Institute, Baoshan, 678200, Yunnan, China
| | - Shaorong Gong
- Baoshan Pig Research Institute, Baoshan, 678200, Yunnan, China
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Lazar-Contes I, Arzate-Mejia RG, Tanwar DK, Steg LC, Uzel K, Feudjio OU, Crespo M, Germain PL, Mansuy IM. Dynamics of transcriptional programs and chromatin accessibility in mouse spermatogonial cells from early postnatal to adult life. eLife 2025; 12:RP91528. [PMID: 40231607 PMCID: PMC11999699 DOI: 10.7554/elife.91528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
In mammals, spermatogonial cells (SPGs) are undifferentiated male germ cells in testis that are quiescent until birth and then self-renew and differentiate to produce spermatogenic cells and functional sperm from early postnatal life throughout adulthood. The transcriptome of SPGs is highly dynamic and timely regulated during postnatal development. We examined if such dynamics involves changes in chromatin organization by profiling the transcriptome and chromatin accessibility of SPGs from early postnatal stages to adulthood in mice using deep RNA-seq, ATAC-seq and computational deconvolution analyses. By integrating transcriptomic and epigenomic features, we show that SPGs undergo massive chromatin remodeling during postnatal development that partially correlates with distinct gene expression profiles and transcription factors (TF) motif enrichment. We identify genomic regions with significantly different chromatin accessibility in adult SPGs that are marked by histone modifications associated with enhancers and promoters. Some of the regions with increased accessibility correspond to transposable element subtypes enriched in multiple TFs motifs and close to differentially expressed genes. Our results underscore the dynamics of chromatin organization in developing germ cells and complement existing datasets on SPGs by providing maps of the regulatory genome at high resolution from the same cell populations at early postnatal, late postnatal and adult stages collected from single individuals.
Collapse
Affiliation(s)
- Irina Lazar-Contes
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Rodrigo G Arzate-Mejia
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Deepak K Tanwar
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Leonard C Steg
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Kerem Uzel
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | | | - Marion Crespo
- ADLIN Science, Pépinière «Genopole Entreprises»EvryFrance
| | - Pierre-Luc Germain
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| |
Collapse
|
3
|
Sorkin J, Tilton K, Lawlor MA, Sarathy SN, Liang S, Albanese A, Rabbani M, Hammoud SS, Ellison CE, Pratto F, Jain D. Intercellular bridges are essential for transposon repression and meiosis in the male germline. Nat Commun 2025; 16:1488. [PMID: 39929837 PMCID: PMC11811169 DOI: 10.1038/s41467-025-56742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Germ cell connectivity via intercellular bridges is a widely conserved feature across metazoans. However, its functional significance is poorly understood. Intercellular bridges are essential for fertility in male mice as genetic ablation of a critical bridge component, TEX14, causes spermatogenic failure, but the underlying reasons are unknown. Here we utilized a Tex14 hypomorph with reduced intercellular bridges along with Tex14-null mice that completely lack bridges to examine the roles of germ cell connectivity during spermatogenesis. We report that in males deficient for TEX14 and intercellular bridges, germ cells fail to complete meiotic DNA replication, synapsis and meiotic double-strand break repair. They also derepress retrotransposons and accumulate retrotransposon-encoded proteins during meiosis. Single-cell RNA-sequencing confirms sharing of transcripts between wild-type spermatids and demonstrates its partial attenuation in Tex14 hypomorphs, indicating that intercellular bridges enable cytoplasmic exchange between connected germ cells in testes. Our findings suggest that regulation of meiosis is non-cell-intrinsic and inform a model in which intercellular bridges influence critical meiotic events and protect germline genome integrity during spermatogenesis.
Collapse
Affiliation(s)
- Julia Sorkin
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Kevin Tilton
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Matthew A Lawlor
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Shreya N Sarathy
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Shun Liang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Angelina Albanese
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Christopher E Ellison
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | | | - Devanshi Jain
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
4
|
Zhao J, Tang K, Jiang G, Yang X, Cui M, Wan C, Ouyang Z, Zheng Y, Liu Z, Wang M, Zhao X, Chang G. Dynamic transcriptomic and regulatory networks underpinning the transition from fetal primordial germ cells to spermatogonia in mice. Cell Prolif 2025; 58:e13755. [PMID: 39329203 PMCID: PMC11839193 DOI: 10.1111/cpr.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
The transition from fetal primordial germ cells (PGCs) to spermatogonia (SPG) is critical for male germ cell development; however, the detailed transcriptomic dynamics and regulation underlying this transition remain poorly understood. Here by interrogating the comprehensive transcriptome atlas dataset of mouse male germ cells and gonadal cells development, we elucidated the regulatory networks underlying this transition. Our single-cell transcriptome analysis revealed that the transition from PGCs to SPG was characterized by global hypertranscription. A total of 315 highly active regulators were identified to be potentially involved in this transition, among which a non-transcription factor (TF) regulator TAGLN2 was validated to be essential for spermatogonial stem cells (SSCs) maintenance and differentiation. Metabolism profiling analysis also revealed dynamic changes in metabolism-related gene expression during PGC to SPG transition. Furthermore, we uncovered that intricate cell-cell communication exerted potential functions in the regulation of hypertranscription in germ cells by collaborating with stage-specific active regulators. Collectively, our work extends the understanding of molecular mechanisms underlying male germ cell development, offering insights into the recapitulation of germ cell generation in vitro.
Collapse
Affiliation(s)
- Jiexiang Zhao
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongPR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Kang Tang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Gurong Jiang
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
- Maoming People's HospitalMaomingGuangdongPR China
| | - Zhaoxiang Ouyang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Zhaoting Liu
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Mei Wang
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongPR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Xiao‐Yang Zhao
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongPR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical UniversityGuangzhouGuangdongPR China
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong Joint Laboratory for Psychiatric Disorders
- Department of Gynecology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Gang Chang
- Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenGuangdongPR China
| |
Collapse
|
5
|
Han TT, Wang LY, Zhou QX, Wei W, Ma YJ, Chen YH, Li W, Ju ZY, Liu C. Both 20S and 19S proteasome components are essential for meiosis in male mice. Zool Res 2025; 46:27-40. [PMID: 39757018 DOI: 10.24272/j.issn.2095-8137.2024.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
The proteasome, an evolutionarily conserved proteolytic complex comprising the 20S core particle and 19S regulatory particles, performs both shared and distinct functions across various tissues and organs. Spermatogenesis, a highly complex developmental process, relies on proteasome activity at multiple stages to regulate protein turnover. In this study, we selected the 20S subunit PSMA1 and 19S regulatory subunit PSMD2 to investigate the potential functions of the proteasome in spermatogenesis. Using Psma1-EGFP and Psmd2-mCherry knock-in mouse models, we confirmed the expression of both subunits in all spermatogenic cell types, with pronounced presence in early germ cell development. To further clarify their functional significance, we specifically knocked out Psma1 and Psmd2 in germ cells. Deletion of either PSMA1 or PSMD2 led to disrupted spermatogenesis, characterized by the complete absence of sperm in the epididymis. Subsequent analysis indicated that loss of these proteasome components impaired meiotic initiation. Psma1 and Psmd2 knockout germ cells showed accumulation of DMRT1, a key regulator of mitosis-to-meiosis transition, leading to a reduction in STRA8 levels and consequent disruption of meiosis initiation. This study sheds light on the molecular mechanisms that govern meiotic initiation and identifies potential genes associated with male infertility.
Collapse
Affiliation(s)
- Ting-Ting Han
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Li-Ying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Qiu-Xing Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Wei Wei
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yan-Jie Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Ying-Hong Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China. E-mail:
| | - Zhen-Yu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China. E-mail:
| |
Collapse
|
6
|
Chen J, Hu M, Li M, Wang C, Wang L, Tian Y, Yan H, Liu Q, Liang X, Wang X. Comparative transcriptome analysis identified genes involved in testicular development in Takifugu rubripes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:2. [PMID: 39757246 DOI: 10.1007/s10695-024-01439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
To identify candidate genes and pathways involved in testicular development in Takifugu rubripes, a comparative transcription analysis was conducted across the various developmental stages of the testis (stages II to V). A total of 9520 differentially expressed genes (DEGs) were identified among the different stages, and they were significantly clustered into six clusters (P < 0.05). One thousand four hundred eleven DEGs such as gndf, wnt1, and cyp17b1 were found to be decreased from stage II to V. In contrast, 994 DEGs such as fn1, ift81, and cdc25a were found to be increased from stage II to V. Six thousand three hundred eighteen DEGs (e.g., dmrt1, sdk2, and chrna1) were identified as being expressed at similar levels at stages II and III. However, they were subsequently found to be decreased from stage III to IV. Four hundred one DEGs exhibited a significant upregulation trend from stage II to III. These genes were expressed at similar levels in stages III, IV, and V, including chrnd, wnt4a, and cyp7a1. The highest expression levels of 200 DEGs (e.g., ccnb2, cdk1, and sycp2) were observed in stage IV, while 196 DEGs (e.g., chmp1b, hsd17b3, and zp3) exhibited the highest expression level in stage III. Those DEGs were mainly enriched in the pathways (e.g., neuroactive ligand-receptor interaction, cell adhesion molecules, and calcium signaling pathways) associated with testicular development. Quantitative polymerase chain reaction of eight randomly selected genes validated the RNA sequencing results. This study may provide new insights into the molecular regulatory mechanisms governing testicular development and spermatogenesis in T. rubripes.
Collapse
Affiliation(s)
- Jinfeng Chen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Mingtao Hu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Meiyuan Li
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Chenqi Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Liu Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Yushun Tian
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China.
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China.
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China.
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, China.
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China.
| | - Xinyan Liang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| |
Collapse
|
7
|
Jia H, Wan H, Zhang C, Guo S, Zhang W, Mu S, Kang X. Genome-wide identification and expressional profile of the Dmrt gene family in the swimming crab (Portunus trituberculatus). Gene 2024; 927:148682. [PMID: 38876404 DOI: 10.1016/j.gene.2024.148682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The swimming crab, Portunus trituberculatus is one of crucial aquaculture crabs with significant differences in growth and economic performance between male and female swimming crabs. Consequently, the culture of female populations presents higher economic value. The doublesex and mab-3 related transcription factor (Dmrt) gene family are known to play crucial role in gonad differentiation and development. However, there is limited information about this gene family in Portunus trituberculatus. In this study, we identified seven members of the Dmrt gene family in P. trituberculatus based on the published transcriptome and genome data and designated as Ptdmrt-1, Ptdoublesex (Ptdsx), Ptidmrt-1, Ptdmrt-11E, Ptidmrt-2, Ptdmrt-99B, and Ptdmrt-3 based on the homology analysis results, respectively. These Ptdmrt genes distributed across 6 chromosomes and were predicted to encode 283 aa, 288 aa, 529 aa, 436 aa, 523 aa, 224 aa, and 435 aa protein precursors, respectively. The expression patterns of these dmrt genes were characterized by qRT-PCR and gonad transcriptome data. The results showed that five members (Ptdmrt-99B, Ptdsx, Ptdmrt-1, Ptdmrt-3, and Ptdmrt-11E) were differentially expressed between the testis and ovary. In addition, their expression patterns from zoea 2 to juvenile 1 were characterized by published transcriptome data and the results showed that they were lowly expressed and did not exhibit notable difference except for Ptdsx during early development. Overall, majority of Ptdmrt genes were involved in gonad differentiation in the swimming crab. Current findings provide a solid foundation for further exploration of the roles of these genes in gonad development and differentiation in P. trituberculatus.
Collapse
Affiliation(s)
- Huizhuo Jia
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Haifu Wan
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China
| | - Chen Zhang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Weiwei Zhang
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| |
Collapse
|
8
|
Chen T, Zhang B, He G, Shen C, Wang N, Zong J, Chen X, Chen L, Li C, Zhou X. Exosomes-mediated retinoic acid disruption: A link between gut microbiota depletion and impaired spermatogenesis. Toxicology 2024; 508:153907. [PMID: 39121937 DOI: 10.1016/j.tox.2024.153907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Gut microbiota symbiosis faces enormous challenge with increasing exposure to drugs such as environmental poisons and antibiotics. The gut microbiota is an important component of the host microbiota and has been proven to be involved in regulating spermatogenesis, but the molecular mechanism is still unclear. A male mouse model with gut microbiota depletion/dysbiosis was constructed by adding combined antibiotics to free drinking water, and reproductive parameters such as epididymal sperm count, testicular weight and paraffin sections were measured. Testicular transcriptomic and serum metabolomic analyses were performed to reveal the molecular mechanism of reproductive dysfunction induced by gut microbiota dysbiosis in male mice.This study confirms that antibiotic induced depletion of gut microbiota reduces sperm count in the epididymis and reduces germ cells in the seminiferous tubules in male mice. Further study showed that exosomes isolated from microbiota-depleted mice led to abnormally high levels of retinoic acid and decrease in the number of germ cells in the seminiferous tubules and sperm in the epididymis. Finally, abnormally high levels of retinoic acid was confirmed to disrupted meiotic processes, resulting in spermatogenesis disorders. This study proposed the concept of the gut microbiota-exosome-retinoic acid-testicular axis and demonstrated that depletion of the gut microbiota caused changes in the function of exosomes, which led to abnormal retinoic acid metabolism in the testis, thereby impairing meiosis and spermatogenesis processes.
Collapse
Affiliation(s)
- Tong Chen
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Guitian He
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Caomeihui Shen
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Jinxin Zong
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Xue Chen
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China.
| |
Collapse
|
9
|
Li Y, Wang Y, Tan YQ, Yue Q, Guo Y, Yan R, Meng L, Zhai H, Tong L, Yuan Z, Li W, Wang C, Han S, Ren S, Yan Y, Wang W, Gao L, Tan C, Hu T, Zhang H, Liu L, Yang P, Jiang W, Ye Y, Tan H, Wang Y, Lu C, Li X, Xie J, Yuan G, Cui Y, Shen B, Wang C, Guan Y, Li W, Shi Q, Lin G, Ni T, Sun Z, Ye L, Vourekas A, Guo X, Lin M, Zheng K. The landscape of RNA binding proteins in mammalian spermatogenesis. Science 2024; 386:eadj8172. [PMID: 39208083 DOI: 10.1126/science.adj8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Despite continuous expansion of the RNA binding protein (RBP) world, there is a lack of systematic understanding of RBPs in the mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-cross-linked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University, Nanjing 210008, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Weixu Wang
- Institute of Computational Biology, Helmholtz Center Munich, Munich 85764, Germany
| | - Lei Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanyin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, Fuzhou 350014, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
10
|
Ma Y, Chen Y, Li L, Wu Z, Cao H, Zhu C, Liu Q, Wang Y, Chen S, Liu Y, Dong W. 2-Bromopalmitate-Induced Intestinal Flora Changes and Testicular Dysfunction in Mice. Int J Mol Sci 2024; 25:11415. [PMID: 39518967 PMCID: PMC11547043 DOI: 10.3390/ijms252111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
2-Bromopalmitate (2-BP) is a palmitoylation inhibitor that can prevent the binding of palmitic acid to proteins, thereby exhibiting significant effects in promoting inflammation and regulating the immune system. However, limited research has been conducted regarding the direct effects of 2-BP on the animal organism. Therefore, we probed mice injected with 2-BP for altered expression of inflammatory genes, with a focus on demonstrating changes in the intestinal flora as well as damage to the reproductive system. Our findings indicate that 2-BP can induce substantial inflammatory responses in visceral organs and cause testicular dysfunction. The key changes in the gut microbiota were characterized by an abundance of Firmicutes, Clostridiales, Rikenellaceae_RC9_gut_group, Desulfovibrio, Muribaculaceae, and Alistipes, and their metabolism has been intricately linked to visceral inflammation. Overall, the findings of this study provide a sound scientific basis for understanding the impact of high doses of 2-BP in mammals, while also offering crucial support for the development of preclinical models to suppress palmitoylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (Y.M.); (Y.C.); (L.L.); (Z.W.); (H.C.); (C.Z.); (Q.L.); (Y.W.); (S.C.); (Y.L.)
| |
Collapse
|
11
|
Pfaltzgraff NG, Liu B, de Rooij DG, Page DC, Mikedis MM. Destabilization of mRNAs enhances competence to initiate meiosis in mouse spermatogenic cells. Development 2024; 151:dev202740. [PMID: 38884383 PMCID: PMC11273298 DOI: 10.1242/dev.202740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and to promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis. Here, we have used the enhanced resolution of scRNA-seq and bulk RNA-seq of developmentally synchronized spermatogenesis to define how MEIOC molecularly supports early meiosis in spermatogenic cells. We demonstrate that MEIOC mediates transcriptomic changes before meiotic initiation, earlier than previously appreciated. MEIOC, acting with YTHDC2 and RBM46, destabilizes its mRNA targets, including the transcriptional repressors E2f6 and Mga, in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate the transcriptional regulator STRA8-MEIOSIN, which is required for the meiotic G1/S phase transition and for meiotic gene expression. We conclude that, in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of spermatogenic cells to initiate meiosis.
Collapse
Affiliation(s)
- Natalie G. Pfaltzgraff
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bingrun Liu
- Whitehead Institute, Cambridge, MA 02142, USA
| | | | - David C. Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria M. Mikedis
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Zhao Y, Deng S, Li C, Cao J, Wu A, Chen M, Ma X, Wu S, Lian Z. The Role of Retinoic Acid in Spermatogenesis and Its Application in Male Reproduction. Cells 2024; 13:1092. [PMID: 38994945 PMCID: PMC11240464 DOI: 10.3390/cells13131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogenesis in mammalian testes is essential for male fertility, ensuring a continuous supply of mature sperm. The testicular microenvironment finely tunes this process, with retinoic acid, an active metabolite of vitamin A, serving a pivotal role. Retinoic acid is critical for various stages, including the differentiation of spermatogonia, meiosis in spermatogenic cells, and the production of mature spermatozoa. Vitamin A deficiency halts spermatogenesis, leading to the degeneration of numerous germ cells, a condition reversible with retinoic acid supplementation. Although retinoic acid can restore fertility in some males with reproductive disorders, it does not work universally. Furthermore, high doses may adversely affect reproduction. The inconsistent outcomes of retinoid treatments in addressing infertility are linked to the incomplete understanding of the molecular mechanisms through which retinoid signaling governs spermatogenesis. In addition to the treatment of male reproductive disorders, the role of retinoic acid in spermatogenesis also provides new ideas for the development of male non-hormone contraceptives. This paper will explore three facets: the synthesis and breakdown of retinoic acid in the testes, its role in spermatogenesis, and its application in male reproduction. Our discussion aims to provide a comprehensive reference for studying the regulatory effects of retinoic acid signaling on spermatogenesis and offer insights into its use in treating male reproductive issues.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China;
| | - Jingchao Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Aowu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Xuehai Ma
- Xinjiang Key Laboratory of Mental Development and Learning Science, College of Psychology, Xinjiang Normal University, Urumqi 830017, China
| | - Sen Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| |
Collapse
|
13
|
Ishiguro KI. Mechanisms of meiosis initiation and meiotic prophase progression during spermatogenesis. Mol Aspects Med 2024; 97:101282. [PMID: 38797021 DOI: 10.1016/j.mam.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Meiosis is a critical step for spermatogenesis and oogenesis. Meiosis commences with pre-meiotic S phase that is subsequently followed by meiotic prophase. The meiotic prophase is characterized by the meiosis-specific chromosomal events such as chromosome recombination and homolog synapsis. Meiosis initiator (MEIOSIN) and stimulated by retinoic acid gene 8 (STRA8) initiate meiosis by activating the meiotic genes by installing the meiotic prophase program at pre-meiotic S phase. This review highlights the mechanisms of meiotic initiation and meiotic prophase progression from the point of the gene expression program and its relevance to infertility. Furthermore, upstream pathways that regulate meiotic initiation will be discussed in the context of spermatogenic development, indicating the sexual differences in the mode of meiotic entry.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
14
|
Noor Z, Zhao Z, Guo S, Wei Z, Cai B, Qin Y, Ma H, Yu Z, Li J, Zhang Y. A Testis-Specific DMRT1 (Double Sex and Mab-3-Related Transcription Factor 1) Plays a Role in Spermatogenesis and Gonadal Development in the Hermaphrodite Boring Giant Clam Tridacna crocea. Int J Mol Sci 2024; 25:5574. [PMID: 38891762 PMCID: PMC11172331 DOI: 10.3390/ijms25115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The testis-specific double sex and mab-3-related transcription factor 1 (DMRT1) has long been recognized as a crucial player in sex determination across vertebrates, and its essential role in gonadal development and the regulation of spermatogenesis is well established. Here, we report the cloning of the key spermatogenesis-related DMRT1 cDNA, named Tc-DMRT1, from the gonads of Tridacna crocea (T. crocea), with a molecular weight of 41.93 kDa and an isoelectric point of 7.83 (pI). Our hypothesis is that DMRT1 machinery governs spermatogenesis and regulates gonadogenesis. RNAi-mediated Tc-DMRT1 knockdown revealed its critical role in hindering spermatogenesis and reducing expression levels in boring giant clams. A histological analysis showed structural changes, with normal sperm cell counts in the control group (ds-EGFP) but significantly lower concentrations of sperm cells in the experimental group (ds-DMRT1). DMRT1 transcripts during embryogenesis exhibited a significantly high expression pattern (p < 0.05) during the early zygote stage, and whole-embryo in-situ hybridization confirmed its expression pattern throughout embryogenesis. A qRT-PCR analysis of various reproductive stages revealed an abundant expression of Tc-DMRT1 in the gonads during the male reproductive stage. In-situ hybridization showed tissue-specific expression of DMRT1, with a positive signal detected in male-stage gonadal tissues comprising sperm cells, while no signal was detected in other stages. Our study findings provide an initial understanding of the DMRT1 molecular machinery controlling spermatogenesis and its specificity in male-stage gonads of the key bivalve species, Tridacna crocea, and suggest that DMRT1 predominantly functions as a key regulator of spermatogenesis in giant clams.
Collapse
Affiliation(s)
- Zohaib Noor
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Zhen Zhao
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
- Animal Science and Technology College, Guangxi University, Nanning 530004, China
| | - Shuming Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Zonglu Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
- Animal Science and Technology College, Guangxi University, Nanning 530004, China
| | - Borui Cai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Yanping Qin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| |
Collapse
|
15
|
Pfaltzgraff NG, Liu B, de Rooij DG, Page DC, Mikedis MM. Destabilization of mRNAs enhances competence to initiate meiosis in mouse spermatogenic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.20.557439. [PMID: 37781613 PMCID: PMC10541148 DOI: 10.1101/2023.09.20.557439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis. Here, we used the enhanced resolution of scRNA-seq, and bulk RNA-seq of developmentally synchronized spermatogenesis, to define how MEIOC molecularly supports early meiosis in spermatogenic cells. We demonstrate that MEIOC mediates transcriptomic changes before meiotic initiation, earlier than previously appreciated. MEIOC, acting with YTHDC2 and RBM46, destabilizes its mRNA targets, including transcriptional repressors E2f6 and Mga , in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate transcriptional regulator STRA8-MEIOSIN, required for the meiotic G1/S phase transition and meiotic gene expression. We conclude that in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of spermatogenic cells to initiate meiosis. SUMMARY STATEMENT RNA-binding complex MEIOC-YTHDC2-RBM46 destabilizes its mRNA targets, including transcriptional repressors. This activity facilitates the retinoic acid-dependent activation of Meiosin gene expression and transition into meiosis.
Collapse
|
16
|
Dai P, Ma C, Chen C, Liang M, Dong S, Chen H, Zhang X. Unlocking Genetic Mysteries during the Epic Sperm Journey toward Fertilization: Further Expanding Cre Mouse Lines. Biomolecules 2024; 14:529. [PMID: 38785936 PMCID: PMC11117649 DOI: 10.3390/biom14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The spatiotemporal expression patterns of genes are crucial for maintaining normal physiological functions in animals. Conditional gene knockout using the cyclization recombination enzyme (Cre)/locus of crossover of P1 (Cre/LoxP) strategy has been extensively employed for functional assays at specific tissue or developmental stages. This approach aids in uncovering the associations between phenotypes and gene regulation while minimizing interference among distinct tissues. Various Cre-engineered mouse models have been utilized in the male reproductive system, including Dppa3-MERCre for primordial germ cells, Ddx4-Cre and Stra8-Cre for spermatogonia, Prm1-Cre and Acrv1-iCre for haploid spermatids, Cyp17a1-iCre for the Leydig cell, Sox9-Cre for the Sertoli cell, and Lcn5/8/9-Cre for differentiated segments of the epididymis. Notably, the specificity and functioning stage of Cre recombinases vary, and the efficiency of recombination driven by Cre depends on endogenous promoters with different sequences as well as the constructed Cre vectors, even when controlled by an identical promoter. Cre mouse models generated via traditional recombination or CRISPR/Cas9 also exhibit distinct knockout properties. This review focuses on Cre-engineered mouse models applied to the male reproductive system, including Cre-targeting strategies, mouse model screening, and practical challenges encountered, particularly with novel mouse strains over the past decade. It aims to provide valuable references for studies conducted on the male reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, China; (P.D.); (C.M.); (C.C.); (M.L.); (S.D.); (H.C.)
| |
Collapse
|
17
|
Wen Y, Zhou S, Gui Y, Li Z, Yin L, Xu W, Feng S, Ma X, Gan S, Xiong M, Dong J, Cheng K, Wang X, Yuan S. hnRNPU is required for spermatogonial stem cell pool establishment in mice. Cell Rep 2024; 43:114113. [PMID: 38625792 DOI: 10.1016/j.celrep.2024.114113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/28/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
The continuous regeneration of spermatogonial stem cells (SSCs) underpins spermatogenesis and lifelong male fertility, but the developmental origins of the SSC pool remain unclear. Here, we document that hnRNPU is essential for establishing the SSC pool. In male mice, conditional loss of hnRNPU in prospermatogonia (ProSG) arrests spermatogenesis and results in sterility. hnRNPU-deficient ProSG fails to differentiate and migrate to the basement membrane to establish SSC pool in infancy. Moreover, hnRNPU deletion leads to the accumulation of ProSG and disrupts the process of T1-ProSG to T2-ProSG transition. Single-cell transcriptional analyses reveal that germ cells are in a mitotically quiescent state and lose their unique identity upon hnRNPU depletion. We further show that hnRNPU could bind to Vrk1, Slx4, and Dazl transcripts that have been identified to suffer aberrant alternative splicing in hnRNPU-deficient testes. These observations offer important insights into SSC pool establishment and may have translational implications for male fertility.
Collapse
Affiliation(s)
- Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zeqing Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenchao Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keren Cheng
- Center for Reproductive Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China.
| |
Collapse
|
18
|
Gao Y, Wang Z, Long Y, Yang L, Jiang Y, Ding D, Teng B, Chen M, Yuan J, Gao F. Unveiling the roles of Sertoli cells lineage differentiation in reproductive development and disorders: a review. Front Endocrinol (Lausanne) 2024; 15:1357594. [PMID: 38699384 PMCID: PMC11063913 DOI: 10.3389/fendo.2024.1357594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 05/05/2024] Open
Abstract
In mammals, gonadal somatic cell lineage differentiation determines the development of the bipotential gonad into either the ovary or testis. Sertoli cells, the only somatic cells in the spermatogenic tubules, support spermatogenesis during gonadal development. During embryonic Sertoli cell lineage differentiation, relevant genes, including WT1, GATA4, SRY, SOX9, AMH, PTGDS, SF1, and DMRT1, are expressed at specific times and in specific locations to ensure the correct differentiation of the embryo toward the male phenotype. The dysregulated development of Sertoli cells leads to gonadal malformations and male fertility disorders. Nevertheless, the molecular pathways underlying the embryonic origin of Sertoli cells remain elusive. By reviewing recent advances in research on embryonic Sertoli cell genesis and its key regulators, this review provides novel insights into sex determination in male mammals as well as the molecular mechanisms underlying the genealogical differentiation of Sertoli cells in the male reproductive ridge.
Collapse
Affiliation(s)
- Yang Gao
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Zican Wang
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Yue Long
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Lici Yang
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Yongjian Jiang
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Dongyu Ding
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Baojian Teng
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
19
|
Cheng G, Pratto F, Brick K, Li X, Alleva B, Huang M, Lam G, Camerini-Otero RD. High resolution maps of chromatin reorganization through mouse meiosis reveal novel features of the 3D meiotic structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586627. [PMID: 38903112 PMCID: PMC11188084 DOI: 10.1101/2024.03.25.586627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
When germ cells transition from the mitotic cycle into meiotic prophase I (MPI), chromosomes condense into an array of chromatin loops that are required to promote homolog pairing and genetic recombination. To identify the changes in chromosomal conformation, we isolated nuclei on a trajectory from spermatogonia to the end of MPI. At each stage along this trajectory, we built genomic interaction maps with the highest temporal and spatial resolution to date. The changes in chromatin folding coincided with a concurrent decline in mitotic cohesion and a rise in meiotic cohesin complexes. We found that the stereotypical large-scale A and B compartmentalization was lost during meiotic prophase I alongside the loss of topological associating domains (TADs). Still, local subcompartments were detected and maintained throughout meiosis. The enhanced Micro-C resolution revealed that, despite the loss of TADs, higher frequency contact sites between two loci were detectable during meiotic prophase I coinciding with CTCF bound sites. The pattern of interactions around these CTCF sites with their neighboring loci showed that CTCF sites were often anchoring the meiotic loops. Additionally, the localization of CTCF to the meiotic axes indicated that these anchors were at the base of loops. Strikingly, even in the face of the dramatic reconfiguration of interphase chromatin into a condensed loop-array, the interactions between regulatory elements remained well preserved. This establishes a potential mechanism for how the meiotic chromatin maintains active transcription within a highly structured genome. In summary, the high temporal and spatial resolution of these data revealed previously unappreciated aspects of mammalian meiotic chromatin organization.
Collapse
Affiliation(s)
- Gang Cheng
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Florencia Pratto
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Brick
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Xin Li
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Alleva
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Mini Huang
- Present address: Sun Yat-Sen University, School of Medicine, Shen Zhen, China
| | - Gabriel Lam
- Present address: RNA Regulation Section, NIA, National Institutes of Health, Baltimore, MD, USA
| | | |
Collapse
|
20
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
21
|
Gupta S, Sholl LM, Yang Y, Osunkoya AO, Gordetsky JB, Cornejo KM, Michalova K, Maclean F, Dvindenko E, Snuderl M, Hirsch MS, Anderson WJ, Rowsey RA, Jimenez RE, Cheville JC, Sadow PM, Colecchia M, Ricci C, Ulbright TM, Berney DM, Acosta AM. Genomic analysis of spermatocytic tumors demonstrates recurrent molecular alterations in cases with malignant clinical behavior. J Pathol 2024; 262:50-60. [PMID: 37792634 DOI: 10.1002/path.6210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023]
Abstract
Spermatocytic tumor (ST) is a rare type of germ cell tumor that occurs exclusively in the postpubertal testis and typically affects elderly men. Most STs are benign, but rare cases exhibit aggressive clinical behavior, often in association with transition to sarcomatoid histology. Limited molecular analyses have been performed on STs; therefore, their genomic and epigenomic features remain incompletely described. Twenty-seven samples from 25 individual patients were analyzed with a combination of DNA sequencing panels, genomic methylation profiling, SNP array, isochromosome (12p) [i(12p)] FISH, and immunohistochemistry. The series included five metastasizing tumors (three with sarcomatoid transformation, one anaplastic, and one conventional) and 20 non-metastasizing tumors (14 anaplastic and six conventional). Anaplastic tumors comprised a monomorphic population of intermediate-sized neoplastic cells, as previously described. Multiomic analyses demonstrated that there were two genomic subgroups of STs: one with diploid genomes and hotspot RAS/RAF variants and the other with global ploidy shift and absence of recurrent mutations. Relative gain of chromosome 9 was a consistent finding in both subgroups. A comparison of metastasizing and non-metastasizing cases demonstrated that aggressive behavior was associated with the acquisition of pathogenic TP53 mutations and/or relative gains of 12p/i(12p). In cases with sarcomatoid transformation, TP53 mutations seem to underlie the transition to sarcomatoid histology. Genomic methylation analysis demonstrated that aggressive cases with gains of 12p cluster closer to pure seminomas than to STs without gains of 12p. In conclusion, STs include two genomic subgroups, characterized by global ploidy shifts without recurrent mutations and diploid genomes with RAS/RAF hotspot mutations, respectively. Biologic progression was associated with relative gains of 12p and TP53 mutations. The findings in STs with relative gains of 12p suggest that they may exhibit biologic characteristics akin to those seen in germ cell neoplasia in situ-related germ cell tumors rather than non-germ cell neoplasia in situ-derived STs. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yiying Yang
- Department of Pathology, New York University, New York, NY, USA
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Kristine M Cornejo
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Fiona Maclean
- Department of Pathology, Douglass Hanly Moir Pathology, Macquarie University, Sydney, NSW, Australia
| | - Eugénia Dvindenko
- Department of Pathology, Instituto Português de Oncologia, Lisbon, Portugal
| | - Matija Snuderl
- Department of Pathology, New York University, New York, NY, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William J Anderson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ross A Rowsey
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurizio Colecchia
- Department of Pathology, Universita Vita Salute San Raffaele, Milan, Italy
| | - Costantino Ricci
- Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Daniel M Berney
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Andres Martin Acosta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
22
|
Li M, Sun L, Zhou L, Wang D. Tilapia, a good model for studying reproductive endocrinology. Gen Comp Endocrinol 2024; 345:114395. [PMID: 37879418 DOI: 10.1016/j.ygcen.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The Nile tilapia (Oreochromis niloticus), with a system of XX/XY sex determination, is a worldwide farmed fish with a shorter sexual maturation time than that of most cultured fish. Tilapia show a spawning cycle of approximately 14 days and can be artificially propagated in the laboratory all year round to obtain genetically all female (XX) and all male (XY) fry. Its genome sequence has been opened, and a perfect gene editing platform has been established. With a moderate body size, it is convenient for taking enough blood to measure hormone level. In recent years, using tilapia as animal model, we have confirmed that estrogen is crucial for female development because 1) mutation of star2, cyp17a1 or cyp19a1a (encoding aromatase, the key enzyme for estrogen synthesis) results in sex reversal (SR) due to estrogen deficiency in XX tilapia, while mutation of star1, cyp11a1, cyp17a2, cyp19a1b or cyp11c1 affects fertility due to abnormal androgen, cortisol and DHP levels in XY tilapia; 2) when the estrogen receptors (esr2a/esr2b) are mutated, the sex is reversed from female to male, while when the androgen receptors are mutated, the sex cannot be reversed; 3) the differentiated ovary can be transdifferentiated into functional testis by inhibition of estrogen synthesis, and the differentiated testis can be transdifferentiated into ovary by simultaneous addition of exogenous estrogen and androgen synthase inhibitor; 4) loss of male pathway genes amhy, dmrt1, gsdf causes SR with upregulation of cyp19a1a in XY tilapia. Disruption of estrogen synthesis rescues the male to female SR of amhy and gsdf but not dmrt1 mutants; 5) mutation of female pathway genes foxl2 and sf-1 causes SR with downregulation of cyp19a1a in XX tilapia; 6) the germ cell SR of foxl3 mutants fails to be rescued by estrogen treatment, indicating that estrogen determines female germ cell fate through foxl3. This review also summarized the effects of deficiency of other steroid hormones, such as androgen, DHP and cortisol, on fish reproduction. Overall, these studies demonstrate that tilapia is an excellent animal model for studying reproductive endocrinology of fish.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
23
|
Wilson CA, Batzel P, Postlethwait JH. Direct Male Development in Chromosomally ZZ Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573483. [PMID: 38234788 PMCID: PMC10793451 DOI: 10.1101/2023.12.27.573483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
24
|
Dong M, Tang M, Li W, Li S, Yi M, Liu W. Morphological and transcriptional analysis of sexual differentiation and gonadal development in a burrowing fish, the four-eyed sleeper (Bostrychus sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101148. [PMID: 37865042 DOI: 10.1016/j.cbd.2023.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Four-eyed sleeper (Bostrychus sinensis) is a commercially important sea water fish, and the male individuals exhibit significant advantages in somatic growth and stress resistance, so developing sex control strategy to create all-male progeny will produce higher economic value. However, little is known about the genetic background associated with sex differentiation in this species. In this study, we investigated gonadal development and uncovered critical window stages of sexual differentiation (about 2 mph), transition from proliferation to differentiation in female germ stem cells (GSCs) (2-3 mph) and male GSCs (3-4 mph). De novo transcriptome analysis revealed candidate genes and signaling pathways associated with sexual differentiation and gonadal development in four-eyed sleeper. The results showed that sox9 and zglp1 were the earliest sex-biased transcription factors during sex differentiation. Down-regulation of chemokine, cytokines-cytokine receptors and up-regulation of cellular senescence pathway might be involved in GSC differentiation. Weighted gene correlation network analysis showed that metabolic pathway and occludin were the hub signaling and gene in ovarian development, meanwhile the MAPK signaling pathways, cellular senescence pathway and ash1l (histone H3-lysine4 N-trimethyltransferase) were the hub pathways and gene in testicular development. The present work elucidated the developmental processes of sexual differentiation and gonadal development and revealed their associated revealed genes and signaling pathways in four-eyed sleeper, providing theoretical basis for developing sex-control techniques.
Collapse
Affiliation(s)
- Mengdan Dong
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Mingyue Tang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China.
| |
Collapse
|
25
|
Zhu T, Kong M, Yu Y, Schartl M, Power DM, Li C, Ma W, Sun Y, Li S, Yue B, Li W, Shao C. Exosome delivery to the testes for dmrt1 suppression: A powerful tool for sex-determining gene studies. J Control Release 2023; 363:275-289. [PMID: 37726035 DOI: 10.1016/j.jconrel.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Exosomes are endosome-derived extracellular vesicles about 100 nm in diameter. They are emerging as promising delivery platforms due to their advantages in biocompatibility and engineerability. However, research into and applications for engineered exosomes are still limited to a few areas of medicine in mammals. Here, we expanded the scope of their applications to sex-determining gene studies in early vertebrates. An integrated strategy for constructing the exosome-based delivery system was developed for efficient regulation of dmrt1, which is one of the most widely used sex-determining genes in metazoans. By combining classical methods in molecular biology and the latest technology in bioinformatics, isomiR-124a was identified as a dmrt1 inhibitor and was loaded into exosomes and a testis-targeting peptide was used to modify exosomal surface for efficient delivery. Results showed that isomiR-124a was efficiently delivered to the testes by engineered exosomes and revealed that dmrt1 played important roles in maintaining the regular structure and function of testis in juvenile fish. This is the first de novo development of an exosome-based delivery system applied in the study of sex-determining gene, which indicates an attractive prospect for the future applications of engineered exosomes in exploring more extensive biological conundrums.
Collapse
Affiliation(s)
- Tengfei Zhu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266003, China
| | - Yingying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Guangyun Road 33, Foshan 528225, China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Sanderring 2, Würzburg 97074, Germany; The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Deborah Mary Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Algarve, Faro 8005-139, Portugal
| | - Chen Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266072, China
| | - Wenxiu Ma
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Yanxu Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Shuo Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Bowen Yue
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Weijing Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China.
| |
Collapse
|
26
|
Dujardin E, André M, Dewaele A, Mandon-Pépin B, Poulat F, Frambourg A, Thépot D, Jouneau L, Jolivet G, Pailhoux E, Pannetier M. DMRT1 is a testis-determining gene in rabbits and is also essential for female fertility. eLife 2023; 12:RP89284. [PMID: 37847154 PMCID: PMC10581690 DOI: 10.7554/elife.89284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
DMRT1 is the testis-determining factor in several species of vertebrates, but its involvement in mammalian testes differentiation, where SRY is the testis-determining gene, remains ambiguous. So far, DMRT1 loss-of-function has been described in two mammalian species and induces different phenotypes: Disorders of Sex Development (46, XY DSD) in men and male infertility in mice. We thus abolished DMRT1 expression by CRISPR/Cas9 in a third species of mammal, the rabbit. First, we observed that gonads from XY DMRT1-/- rabbit fetuses differentiated like ovaries, highlighting that DMRT1 is involved in testis determination. In addition to SRY, DMRT1 is required in the supporting cells to increase the expression of the SOX9 gene, which heads the testicular genetic cascade. Second, we highlighted another function of DMRT1 in the germline since XX and XY DMRT1-/- ovaries did not undergo meiosis and folliculogenesis. XX DMRT1-/- adult females were sterile, showing that DMRT1 is also crucial for female fertility. To conclude, these phenotypes indicate an evolutionary continuum between non-mammalian vertebrates such as birds and non-rodent mammals. Furthermore, our data support the potential involvement of DMRT1 mutations in different human pathologies, such as 46, XY DSD as well as male and female infertility.
Collapse
Affiliation(s)
- Emilie Dujardin
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Marjolaine André
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Aurélie Dewaele
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Béatrice Mandon-Pépin
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier; 34396MontpellierFrance
| | - Anne Frambourg
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Dominique Thépot
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Geneviève Jolivet
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Eric Pailhoux
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Maëlle Pannetier
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| |
Collapse
|
27
|
Huang Y, Li L, An G, Yang X, Cui M, Song X, Lin J, Zhang X, Yao Z, Wan C, Zhou C, Zhao J, Song K, Ren S, Xia X, Fu X, Lan Y, Hu X, Wang W, Wang M, Zheng Y, Miao K, Bai X, Hutchins AP, Chang G, Gao S, Zhao XY. Single-cell multi-omics sequencing of human spermatogenesis reveals a DNA demethylation event associated with male meiotic recombination. Nat Cell Biol 2023; 25:1520-1534. [PMID: 37723297 DOI: 10.1038/s41556-023-01232-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/15/2023] [Indexed: 09/20/2023]
Abstract
Human spermatogenesis is a highly ordered process; however, the roles of DNA methylation and chromatin accessibility in this process remain largely unknown. Here by simultaneously investigating the chromatin accessibility, DNA methylome and transcriptome landscapes using the modified single-cell chromatin overall omic-scale landscape sequencing approach, we revealed that the transcriptional changes throughout human spermatogenesis were correlated with chromatin accessibility changes. In particular, we identified a set of transcription factors and cis elements with potential functions. A round of DNA demethylation was uncovered upon meiosis initiation in human spermatogenesis, which was associated with male meiotic recombination and conserved between human and mouse. Aberrant DNA hypermethylation could be detected in leptotene spermatocytes of certain nonobstructive azoospermia patients. Functionally, the intervention of DNA demethylation affected male meiotic recombination and fertility. Our work provides multi-omics landscapes of human spermatogenesis at single-cell resolution and offers insights into the association between DNA demethylation and male meiotic recombination.
Collapse
Affiliation(s)
- Yaping Huang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Geng An
- Department of Reproductive Medicine Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xiuling Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Jing Lin
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xiaoling Zhang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Zhaokai Yao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Cai Zhou
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Jiexiang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Ke Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xinyu Xia
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xin Fu
- Department of Reproductive Medicine Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Yu Lan
- Department of Reproductive Medicine Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xuesong Hu
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Wen Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Kai Miao
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, P. R. China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, P. R. China.
| | - Shuai Gao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China.
- Guangdong Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, P. R. China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, P. R. China.
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China.
- National Clinical Research Center for Kidney Disease, Guangzhou, P. R. China.
| |
Collapse
|
28
|
Tan K, Wilkinson MF. Developmental regulators moonlighting as transposons defense factors. Andrology 2023; 11:891-903. [PMID: 36895139 PMCID: PMC11162177 DOI: 10.1111/andr.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The germline perpetuates genetic information across generations. To maintain the integrity of the germline, transposable elements in the genome must be silenced, as these mobile elements would otherwise engender widespread mutations passed on to subsequent generations. There are several well-established mechanisms that are dedicated to providing defense against transposable elements, including DNA methylation, RNA interference, and the PIWI-interacting RNA pathway. OBJECTIVES Recently, several studies have provided evidence that transposon defense is not only provided by factors dedicated to this purpose but also factors with other roles, including in germline development. Many of these are transcription factors. Our objective is to summarize what is known about these "bi-functional" transcriptional regulators. MATERIALS AND METHODS Literature search. RESULTS AND CONCLUSION We summarize the evidence that six transcriptional regulators-GLIS3, MYBL1, RB1, RHOX10, SETDB1, and ZBTB16-are both developmental regulators and transposable element-defense factors. These factors act at different stages of germ cell development, including in pro-spermatogonia, spermatogonial stem cells, and spermatocytes. Collectively, the data suggest a model in which specific key transcriptional regulators have acquired multiple functions over evolutionary time to influence developmental decisions and safeguard transgenerational genetic information. It remains to be determined whether their developmental roles were primordial and their transposon defense roles were co-opted, or vice versa.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
29
|
Zhang MF, Wan SC, Chen WB, Yang DH, Liu WQ, Li BL, Aierken A, Du XM, Li YX, Wu WP, Yang XC, Wei YD, Li N, Peng S, Li XL, Li GP, Hua JL. Transcription factor Dmrt1 triggers the SPRY1-NF-κB pathway to maintain testicular immune homeostasis and male fertility. Zool Res 2023; 44:505-521. [PMID: 37070575 PMCID: PMC10236308 DOI: 10.24272/j.issn.2095-8137.2022.440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.
Collapse
Affiliation(s)
- Meng-Fei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shi-Cheng Wan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Bo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong-Hui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Qing Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Center of Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam 1105AZ, Amsterdam, Netherlands
| | - Ba-Lun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aili Aierken
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Min Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yun-Xiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ping Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin-Chun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu-Dong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue-Ling Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Guang-Peng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
30
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
31
|
Suen HC, Rao S, Luk ACS, Zhang R, Yang L, Qi H, So HC, Hobbs RM, Lee TL, Liao J. The single-cell chromatin accessibility landscape in mouse perinatal testis development. eLife 2023; 12:e75624. [PMID: 37096870 PMCID: PMC10174692 DOI: 10.7554/elife.75624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Spermatogenesis depends on an orchestrated series of developing events in germ cells and full maturation of the somatic microenvironment. To date, the majority of efforts to study cellular heterogeneity in testis has been focused on single-cell gene expression rather than the chromatin landscape shaping gene expression. To advance our understanding of the regulatory programs underlying testicular cell types, we analyzed single-cell chromatin accessibility profiles in more than 25,000 cells from mouse developing testis. We showed that single-cell sequencing assay for transposase-accessible chromatin (scATAC-Seq) allowed us to deconvolve distinct cell populations and identify cis-regulatory elements (CREs) underlying cell-type specification. We identified sets of transcription factors associated with cell type-specific accessibility, revealing novel regulators of cell fate specification and maintenance. Pseudotime reconstruction revealed detailed regulatory dynamics coordinating the sequential developmental progressions of germ cells and somatic cells. This high-resolution dataset also unveiled previously unreported subpopulations within both the Sertoli and Leydig cell groups. Further, we defined candidate target cell types and genes of several genome-wide association study (GWAS) signals, including those associated with testosterone levels and coronary artery disease. Collectively, our data provide a blueprint of the 'regulon' of the mouse male germline and supporting somatic cells.
Collapse
Affiliation(s)
- Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Shitao Rao
- School of Medical Technology and Engineering, Fujian Medical UniversityFujianChina
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Alfred Chun Shui Luk
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Ruoyu Zhang
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Lele Yang
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and HealthGuangzhouChina
| | - Huayu Qi
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and HealthGuangzhouChina
| | - Hon Cheong So
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Robin M Hobbs
- Germline Stem Cell Biology Laboratory, Centre for Reproductive Health, Hudson Institute of Medical ResearchMelbourneAustralia
| | - Tin-lap Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Jinyue Liao
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New TerritoriesHong KongChina
| |
Collapse
|
32
|
Lai F, Wang H, Zhao X, Yang K, Cai L, Hu M, Lin L, Xia X, Li W, Cheng H, Zhou R. RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells. Cell Biosci 2023; 13:71. [PMID: 37024990 PMCID: PMC10080854 DOI: 10.1186/s13578-023-01018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Spermatogenesis depends on the supporting of the Sertoli cells and their communications with germ cells. However, the regulation of crosstalk between the Sertoli cells and germ cells remains unclear. RESULTS In this report, we used conditional knockout technology to generate the Sertoli cells-specific knockout of Rnf20 in mice. The Amh-Rnf20-/- male mice were infertile owing to spermatogenic failure that mimic the Sertoli cell-only syndrome (SCOS) in humans. Knockout of Rnf20 resulted in the H2BK120ub loss in the Sertoli cells and impaired the transcription elongation of the Cldn11, a gene encoding a component of tight junction. Notably, RNF20 deficiency disrupted the cell adhesion, caused disorganization of the seminiferous tubules, and led to the apoptotic cell death of both spermatogonia and spermatocytes in the seminiferous tubules. CONCLUSIONS This study describes a Rnf20 knockout mouse model that recapitulates the Sertoli cell-only syndrome in humans and demonstrates that RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells.
Collapse
Affiliation(s)
- Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Haoyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xinyue Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Kangning Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Le Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Mengxin Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Lan Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xizhong Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
33
|
Feng Y, Zhong Z, Wan H, Zhang Z, Zou P, Lin P, Jiang Y, Wang Y. dmrtb1 is involved in the testicular development in Larimichthys crocea. Reproduction 2023; 165:159-170. [PMID: 36342669 DOI: 10.1530/rep-22-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
In brief dmrtb1 performs critical functions in sex determination/differentiation and gonadal development in many organisms, but its role in teleost is rarely studied. Through gene cloning, in situ hybridization, and RNA interference technology, the function of dmrtb1 in testicular development of large yellow croaker (Larimichthys crocea) was studied; our study will be helpful in understanding further the molecular regulation mechanism of Lcdmrtb1/Lcdmrt6 in testicular development in L. crocea, and our results enrich the theory of fish dmrts involved in reproductive regulation and provide a new idea for sex control breeding of L. crocea by manipulating reproductive pathway. Abstract Doublesex- and mab-3-related transcription factor B1 (dmrtb1/dmrt6) belongs to one of the members of DMRT family, which performs critical functions in sex determination and differentiation, gonadal development, and functional maintenance. However, knowledge of its exact mechanism remains unclear in teleost. Very little is known about the role of dmrtb1 in the gonad development of Larimichthys crocea. In this study, a dmrtb1 homolog in L. crocea named as Lcdmrtb1 with the full-length cDNA was isolated and characterized. Except for the conserved DM domain, the other regions had low homology. Of the tissues sampled, Lcdmrtb1 was only found to be highly expressed in the testis. In situ hybridization of testis revealed Lcdmrtb1 in both spermatogonia and spermatocytes. After Lcdmrtb1 interference in the testis cells (LYCT) of L. crocea, the expression levels of Lcdmrtb1 and Lcdmrt1 were significantly decreased; subsequently, testicular cell morphology changed from fibrous to round and their growth rate slowed. Similarly, the expression levels of Lcdmrtb1, Lcdmrt1, sox9a/b, and amh were significantly decreased after RNAi in the testis. Furthermore, it was discovered that the spermatogonia had disappeared, and the Sertoli cells had been reduced. The results of immunohistochemistry showed that the expression of Sox9 protein in the testis was not detected after dmrtb1 was knocked down. These results indicated that the absence of Lcdmrtb1 not only greatly inhibited cell growth and destroyed the morphology of testis cells but also down-regulated Lcdmrt1 expression in the testis. This study will be helpful in understanding further the molecular regulation mechanism of Lcdmrtb1/Lcdmrt6 in testicular development in L. crocea.
Collapse
Affiliation(s)
- Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Ziping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.,College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Peng Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| |
Collapse
|
34
|
Functional assessment of DMRT1 variants and their pathogenicity for isolated male infertility. Fertil Steril 2023; 119:219-228. [PMID: 36572623 DOI: 10.1016/j.fertnstert.2022.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To study the impact of Doublesex and mab-3-related transcription factor 1 (DMRT1) gene variants on the encoded protein's function and the variants' pathogenic relevance for isolated male infertility caused by azoospermia. DESIGN This study established a novel luciferase assay for DMRT1 missense variants using 2 different target promotors and validated the assay by analyzing previously published variants associated with differences in sex development. SETTING University genetics research institute and tertiary referral center for couples' infertility. PATIENT(S) Eleven infertile men with severely impaired spermatogenesis resulting in crypto- or azoospermia and carrying rare heterozygous missense variants in DMRT1 were identified within the Male Reproductive Genomics study. MAIN OUTCOME MEASURE(S) Luciferase assays with human DMRT1 variants to test functional effects on the CYP19A1 and Stra8 target promoters. RESULT(S) We first developed and refined luciferase assays to reliably test the functional impact of DMRT1 missense variants. Next, the assay was validated by analyzing 2 DMRT1 variants associated with differences in sex development, of which c.240G>C p.(Arg80Ser) displayed highly significant effects on both target promoters compared with the wild-type protein (-40% and +100%, respectively) and c.331A>G p.(Arg111Gly) had a significant effect on the Stra8 promoter (-76%). We then systematically characterized 11 DMRT1 variants identified in infertile men. The de novo variant c.344T>A p.(Met115Lys) showed a pronounced loss of function in both DMRT1 target promoters (-100% and -86%, respectively). Variants c.308A>G p.(Lys103Arg) and c.991G>C p.(Asp331His) showed a significant gain of function exclusively for the CYP19A1 promoter (+15% and +19%, respectively). Based on these results, 3 variants were reclassified according to clinical guidelines. CONCLUSION(S) The present study highlights the importance of functionally characterizing DMRT1 variants of uncertain clinical significance. Using luciferase assays for diagnostic purposes enables an improved causal diagnosis for isolated male infertility.
Collapse
|
35
|
Vacarizas J, Taguchi T, Mezaki T, Manalili SE, Kawakami R, Kubota S. Cytogenetic evidence and dmrt linkage indicate male heterogamety in a non-bilaterian animal. PLoS One 2023; 18:e0285851. [PMID: 37200254 DOI: 10.1371/journal.pone.0285851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
The diversity of sex determination systems in animals suggests that sex chromosomes evolve independently across different lineages. However, the present data on these systems is largely limited and represented mainly by bilaterian animals. Sex chromosomes and sex determination system based on cytogenetic evidence remain a mystery among non-bilaterians, the most basal animals. Here, we investigated the sex determination system of a non-bilaterian (Goniopora djiboutiensis) based on karyotypic analysis and identification of locus of dmrt1, a known master sex-determining gene in many animals. Results showed that among the three isolated dmrt genes, GddmrtC was sperm-linked. Fluorescence in situ hybridization revealed that 47% of the observed metaphase cells contained the GddmrtC locus on the shorter chromosome of the heteromorphic pair, whereas the other 53% contained no GddmrtC locus and pairing of the longer chromosome of the heteromorphic pair was observed. These findings provided the cytogenetic evidence for the existence of the Y sex chromosome in a non-bilaterian animal and supports male heterogamety as previously reported in other non-bilaterian species using RAD sequencing. The Y chromosome-specific GddmrtC sequence was most homologous to the vertebrate dmrt1, which is known for its role in male sex determination and differentiation. Our result on identification of putative sex chromosomes for G. djiboutiensis may contribute into understanding of the possible genetic sex determination systems in non-bilaterian animals.
Collapse
Affiliation(s)
- Joshua Vacarizas
- Kuroshio Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Kochi, Japan
| | - Takahiro Taguchi
- Department of Nutrition, Faculty of Health Science, Kochi Gakuen University, Asahitenjin-Cho, Kochi, Japan
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, Otsuki, Hata County, Kochi, Japan
| | - Sam Edward Manalili
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Kochi, Japan
| | - Rei Kawakami
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Kochi, Japan
| | - Satoshi Kubota
- Kuroshio Science Unit, Multidisciplinary Science Cluster, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
36
|
Ito T, Ohta M, Osada A, Nishiyama A, Ishiguro KI, Tamura T, Sekita Y, Kimura T. Switching defective/sucrose non-fermenting chromatin remodeling complex coordinates meiotic gene activation via promoter remodeling and Meiosin activation in female germline. Genes Cells 2023; 28:15-28. [PMID: 36371617 DOI: 10.1111/gtc.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
In mammals, primordial germ cells (PGCs) enter meiosis and differentiate into primary oocytes in embryonic ovaries. Previously, we demonstrated that meiotic gene induction and meiotic initiation were impaired in female germline cells of conditional knockout (CKO) mice lacking the Smarcb1 (Snf5) gene, which encodes a core subunit of the switching defective/sucrose non-fermenting (SWI/SNF) complex. In this study, we classified meiotic genes expressed at lower levels in Snf5 CKO females into two groups based on promoter accessibility. The promoters of 74% of these genes showed lower accessibility in mutant mice, whereas those of the remaining genes were opened without the SWI/SNF complex. Notably, the former genes included Meiosin, which encodes a transcriptional regulator essential for meiotic gene activation. The promoters of the former and the latter genes were mainly modified with H3K27me3/bivalent and H3K4me3 histone marks, respectively. A subset of the former genes was precociously activated in female PGCs deficient in polycomb repressive complexes (PRCs). Our results point to a mechanism through which the SWI/SNF complex coordinates meiotic gene activation via the remodeling of PRC-repressed genes, including Meiosin, in female germline cells.
Collapse
Affiliation(s)
- Toshiaki Ito
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
- Chitose Laboratory Corp., Biotechnology Research Center, Kawasaki, Kanagawa, Japan
| | - Masami Ohta
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Atsuki Osada
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yoichi Sekita
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
37
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
38
|
Qin J, Huang T, Wang Z, Zhang X, Wang J, Dang Q, Cui D, Wang X, Zhai Y, Zhao L, Lu G, Shao C, Li S, Liu H, Liu Z. Bud31-mediated alternative splicing is required for spermatogonial stem cell self-renewal and differentiation. Cell Death Differ 2023; 30:184-194. [PMID: 36114296 PMCID: PMC9883385 DOI: 10.1038/s41418-022-01057-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing (AS) is tightly regulated during cell differentiation and development. AS events are prevalent in the testis, but the splicing regulation in spermatogenesis remains unclear. Here we report that the spliceosome component Bud31 plays a crucial role during spermatogenesis in mice. Germ cell-specific knockout of Bud31 led to loss of spermatogonia and to male infertility. We further demonstrate that Bud31 is required for both spermatogonial stem cell pool maintenance and the initiation of spermatogenesis. SMART-seq revealed that deletion of Bud31 in germ cells causes widespread exon-skipping and intron retention. Particularly, we identified Cdk2 as one of the direct splicing targets of Bud31, knockout of Bud31 resulted in retention of the first intron of Cdk2, which led to a decrease in Cdk2 expression. Our findings suggest that Bud31-mediated AS within spermatogonial stem cells regulates the self-renewal and differentiation of male germ cells in mammals.
Collapse
Affiliation(s)
- Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianli Dang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Donghai Cui
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyu Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Zhao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Shiyang Li
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
39
|
Huang L, Zhang J, Zhang P, Huang X, Yang W, Liu R, Sun Q, Lu Y, Zhang M, Fu Q. Single-cell RNA sequencing uncovers dynamic roadmap and cell-cell communication during buffalo spermatogenesis. iScience 2022; 26:105733. [PMID: 36582818 PMCID: PMC9793287 DOI: 10.1016/j.isci.2022.105733] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis carries the task of precise intergenerational transmission of genetic information from the paternal genome and involves complex developmental processes regulated by the testicular microenvironment. Studies performed mainly in mouse models have established the theoretical basis for spermatogenesis, yet the wide interspecies differences preclude direct translation of the findings, and farm animal studies are progressing slowly. More than 32,000 cells from prepubertal (3-month-old) and pubertal (24-month-old) buffalo testes were analyzed by using single-cell RNA sequencing (scRNA-seq), and dynamic gene expression roadmaps of germ and somatic cell development were generated. In addition to identifying the dynamic processes of sequential cell fate transitions, the global cell-cell communication essential to maintain regular spermatogenesis in the buffalo testicular microenvironment was uncovered. The findings provide the theoretical basis for establishing buffalo germline stem cells in vitro or culturing organoids and facilitating the expansion of superior livestock breeding.
Collapse
Affiliation(s)
- Liangfeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Junjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Pengfei Zhang
- Institute of Medical and Health, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xingchen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Weihan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Runfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qinqiang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China,Corresponding author
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China,Corresponding author
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China,Corresponding author
| |
Collapse
|
40
|
Pasquariello R, Anipchenko P, Pennarossa G, Crociati M, Zerani M, Brevini TA, Gandolfi F, Maranesi M. Carotenoids in female and male reproduction. PHYTOCHEMISTRY 2022; 204:113459. [PMID: 36183866 DOI: 10.1016/j.phytochem.2022.113459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are among the best-known pigments in nature, confer color to plants and animals, and are mainly derived from photosynthetic bacteria, fungi, algae, plants. Mammals cannot synthesize carotenoids. Carotenoids' source is only alimentary and after their assumption, they are mainly converted in retinal, retinol and retinoic acid, collectively known also as pro-vitamins and vitamin A, which play an essential role in tissue growth and regulate different aspects of the reproductive functions. However, their mechanisms of action and potential therapeutic effects are still unclear. This review aims to clarify the role of carotenoids in the male and female reproductive functions in species of veterinary interest. In female, carotenoids and their derivatives regulate not only folliculogenesis and oogenesis but also steroidogenesis. Moreover, they improve fertility by decreasing the risk of embryonic mortality. In male, retinol and retinoic acids activate molecular pathways related to spermatogenesis. Deficiencies of these vitamins have been correlated with degeneration of testis parenchyma with consequent absence of the mature sperm. Carotenoids have also been considered anti-antioxidants as they ameliorate the effect of free radicals. The mechanisms of action seem to be exerted by activating Kit and Stra8 pathways in both female and male. In conclusion, carotenoids have potentially beneficial effects for ameliorating ovarian and testes function.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università Degli Studi di Milano, 20133, Milan, Italy
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy.
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy; Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129, Perugia, Italy
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| | - Tiziana Al Brevini
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università Degli Studi di Milano, 20133, Milan, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| |
Collapse
|
41
|
Kirsanov O, Johnson T, Malachowski T, Niedenberger BA, Gilbert EA, Bhowmick D, Ozdinler PH, Gray DA, Fisher-Wellman K, Hermann BP, Geyer CB. Modeling mammalian spermatogonial differentiation and meiotic initiation in vitro. Development 2022; 149:282465. [PMID: 36250451 PMCID: PMC9845750 DOI: 10.1242/dev.200713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
In mammalian testes, premeiotic spermatogonia respond to retinoic acid by completing an essential lengthy differentiation program before initiating meiosis. The molecular and cellular changes directing these developmental processes remain largely undefined. This wide gap in knowledge is due to two unresolved technical challenges: (1) lack of robust and reliable in vitro models to study differentiation and meiotic initiation; and (2) lack of methods to isolate large and pure populations of male germ cells at each stage of differentiation and at meiotic initiation. Here, we report a facile in vitro differentiation and meiotic initiation system that can be readily manipulated, including the use of chemical agents that cannot be safely administered to live animals. In addition, we present a transgenic mouse model enabling fluorescence-activated cell sorting-based isolation of millions of spermatogonia at specific developmental stages as well as meiotic spermatocytes.
Collapse
Affiliation(s)
- Oleksandr Kirsanov
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Taylor Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Taylor Malachowski
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Bryan A. Niedenberger
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Emma A. Gilbert
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Debajit Bhowmick
- Flow Cytometry Facility, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - P. Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611, USA
| | - Douglas A. Gray
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, K1H 8M5, Canada,Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
| | - Kelsey Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA,Author for correspondence ()
| |
Collapse
|
42
|
Zhang X, Wu W, Zhou J, Li L, Jiang H, Chen J. MiR-34b/c play a role in early sex differentiation of Amur sturgeon, Acipenser schrenckii. Front Zool 2022; 19:23. [PMID: 36163040 PMCID: PMC9511750 DOI: 10.1186/s12983-022-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Background Sex differentiation can be viewed as a controlled regulatory balance between sex differentiation-related mRNAs and post-transcriptional mechanisms mediated by non-coding RNAs. In mammals, increasing evidence has been reported regarding the importance of gonad-specific microRNAs (miRNAs) in sex differentiation. Although many fishes express a large number of gonadal miRNAs, the effects of these sex-biased miRNAs on sex differentiation in teleost fish remain unknown. Previous studies have shown the exclusive and sexually dimorphic expression of miR-34b/c in the gonads of the Amur sturgeon (Acipenser schrenckii), suggesting its potential role in the sex differentiation process. Results Using quantitative real-time PCR (qPCR), we observed that miR-34b/c showed consistent spatiotemporal expression patterns; the expression levels significantly increased during early sex differentiation. Using in situ hybridization, miR-34c was found to be located in the germ cells. In primary germ cells in vitro, the group subjected to overexpression and inhibition of miR-34c showed significantly higher proliferation ability and lower apoptosis, respectively, compared to the corresponding control group. Luciferase reporter assays using the ar-3′UTR-psiCHECK-2 luciferase vector suggested a targeted regulatory interaction between miR-34b/c and the 3′UTR of the androgen receptor (ar) mRNA. Furthermore, miR-34b/c and ar showed negative expression patterns during early sex differentiation. Additionally, a negative feedback regulation pattern was observed between foxl2 expression in the ovaries and amh and sox9 expression in the testes during early sex differentiation. Conclusions This study sheds new light on the roles of miR-34b/c in gonad development of Amur sturgeon, and provides the first comprehensive evidence that the gonad-predominant microRNAs may have a major role in sex differentiation in teleost fish. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-022-00469-6.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wenhua Wu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
43
|
Li P, Tang J, Yu Z, Jin C, Wang Z, Li M, Zou D, Mang X, Liu J, Lu Y, Miao S, Wang L, Li K, Song W. CHD4 acts as a critical regulator in the survival of spermatogonial stem cells in mice. Biol Reprod 2022; 107:1331-1344. [PMID: 35980806 DOI: 10.1093/biolre/ioac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/18/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis is sustained by homeostatic balance between the self-renewal and differentiation of spermatogonial stem cells (SSCs), which is dependent on the strict regulation of transcription factor and chromatin modulator gene expression. Chromodomain helicase DNA-binding protein 4 (CHD4) is highly expressed in SSCs but roles in mouse spermatogenesis are not fully understood. Here, we report that the germ-cell-specific deletion of Chd4 resulted in complete infertility in male mice, with rapid loss of SSCs and excessive germ cell apoptosis. Chd4-knockdown in cultured SSCs also promoted the expression of apoptosis-related genes and thereby activated the tumor necrosis factor signaling pathway. Mechanistically, CHD4 occupies the genomic regulatory region of key apoptosis-related genes including Jun and Nfkb1. Together, our findings reveal the determinant role of CHD4 in SSCs survival in vivo, which will offer insight into the pathogenesis of male sterility and potential novel therapeutic targets.
Collapse
Affiliation(s)
- Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Zhixin Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Cheng Jin
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Zhipeng Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| |
Collapse
|
44
|
Zhang X, Li G, Zhou J, Lv M, Li L, Chen J. Full-length gonad transcriptome analysis of Amur sturgeon Dmrt family genes: identification, characterization, and expression patterns during gonadal differentiation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:839-852. [PMID: 35650309 DOI: 10.1007/s10695-022-01087-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The regulatory mechanisms that govern sex differentiation in sturgeon are still poorly understood. The doublesex and Mab-3-related transcription factor (Dmrt) gene family is known for its extensive roles in sex determination and differentiation across vertebrates. This study aimed to identify new members of sturgeon Dmrt family genes and core actors in the gonadal differentiation of Amur sturgeon. A full-length gonad transcriptome database was exploited to identify Dmrt gene orthologs. Analyses of phylogenetic relationships and selection pressure were performed, and tissue expression profiles and spatiotemporal expression patterns in gonads were then analyzed using real-time PCR. In total, five Dmrt family genes were identified from the full-length gonad transcriptome, including Dmrt2, DmrtA1, DmrtA2, DmrtB1a, and DmrtB1b. Phylogenetic analysis showed that these genes were clustered into clades corresponding to the doublesex/Mav-3 (DM) genes of vertebrates. Furthermore, the analysis of evolutionary selective pressure indicated that DmrtB1a and DmrtB1b were subject to positive selection, suggesting the existence of adaptive evolution in sturgeon. The extensive tissue expression profiling of each Dmrt family gene revealed typical characteristics. Remarkably, according to a spatiotemporal expression pattern analysis, in later stages, DmrtB1b expression increased in testes and was significantly higher in testes than in ovaries at 24 months after hatching (M) and 36 M. This study provides a genetic resource of full-length Dmrt family genes and increases the understanding of Dmrt functions in sex differentiation in sturgeon.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Guanyu Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Mei Lv
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
45
|
Casado-Navarro R, Serrano-Saiz E. DMRT Transcription Factors in the Control of Nervous System Sexual Differentiation. Front Neuroanat 2022; 16:937596. [PMID: 35958734 PMCID: PMC9361473 DOI: 10.3389/fnana.2022.937596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual phenotypic differences in the nervous system are one of the most prevalent features across the animal kingdom. The molecular mechanisms responsible for sexual dimorphism throughout metazoan nervous systems are extremely diverse, ranging from intrinsic cell autonomous mechanisms to gonad-dependent endocrine control of sexual traits, or even extrinsic environmental cues. In recent years, the DMRT ancient family of transcription factors has emerged as being central in the development of sex-specific differentiation in all animals in which they have been studied. In this review, we provide an overview of the function of Dmrt genes in nervous system sexual regulation from an evolutionary perspective.
Collapse
|
46
|
TCFL5 deficiency impairs the pachytene to diplotene transition during spermatogenesis in the mouse. Sci Rep 2022; 12:10956. [PMID: 35768632 PMCID: PMC9242989 DOI: 10.1038/s41598-022-15167-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Spermatogenesis is a complex, multistep process during which spermatogonia give rise to spermatozoa. Transcription Factor Like 5 (TCFL5) is a transcription factor that has been described expressed during spermatogenesis. In order to decipher the role of TCFL5 during in vivo spermatogenesis, we generated two mouse models. Ubiquitous removal of TCFL5 generated by breeding TCFL5fl/fl with SOX2-Cre mice resulted in sterile males being unable to produce spermatozoa due to a dramatic alteration of the testis architecture presenting meiosis arrest and lack of spermatids. SYCP3, SYCP1 and H1T expression analysis showed that TCFL5 deficiency causes alterations during pachytene/diplotene transition resulting in a meiotic arrest in a diplotene-like stage. Even more, TCFL5 deficient pachytene showed alterations in the number of MLH1 foci and the condensation of the sexual body. In addition, tamoxifen-inducible TCFL5 knockout mice showed, besides meiosis phenotype, alterations in the spermatids elongation process resulting in aberrant spermatids. Furthermore, TCFL5 deficiency increased spermatogonia maintenance genes (Dalz, Sox2, and Dmrt1) but also increased meiosis genes (Syce1, Stag3, and Morc2a) suggesting that the synaptonemal complex forms well, but cannot separate and meiosis does not proceed. TCFL5 is able to bind to the promoter of Syce1, Stag3, Dmrt1, and Syce1 suggesting a direct control of their expression. In conclusion, TCFL5 plays an essential role in spermatogenesis progression being indispensable for meiosis resolution and spermatids maturation.
Collapse
|
47
|
Hayashi S, Suda K, Fujimura F, Fujikawa M, Tamura K, Tsukamoto D, Evans BJ, Takamatsu N, Ito M. Neofunctionalization of a non-coding portion of a DNA transposon in the coding region of the chimerical sex-determining gene dm-W in Xenopus frogs. Mol Biol Evol 2022; 39:6613159. [PMID: 35763822 PMCID: PMC9250109 DOI: 10.1093/molbev/msac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most vertebrate sex-determining genes (SDGs) emerge as neofunctionalized genes through duplication and/or mutation of ancestral genes that are involved with sexual differentiation. We previously demonstrated dm-W to be the SDG in the African clawed frog Xenopus laevis and found that a portion of this gene emerged from the masculinization gene dmrt1 after allotetraploidization by interspecific hybridization between two ancestral species around 17–18 Ma. dm-W has four exons consisting of a noncoding exon 1, dmrt1-derived exons 2 and 3, and an orphan exon 4 (Ex4) of unknown origin that includes coding sequence (CDS). In this study, we searched for the origin of Ex4 and investigated the function of the CDS of this exon. We found that the Ex4-CDS is derived from a noncoding portion of the hAT-10 family of DNA transposon. Evolutionary analysis of transposons and determination of the Ex4 sequences from three other species indicated that Ex4 was generated before the diversification of most or all extant allotetraploid species in subgenus Xenopus, during which time we hypothesize that transposase activity of this hAT superfamily was active. Using DNA–protein binding and transfection assays, we further demonstrate that the Ex4-encoded amino acid sequence increases the DNA-binding ability and transrepression activity of DM-W. These findings suggest that the conversion of the noncoding transposon sequence to the CDS of dm-W contributed to neofunctionalization of a new chimeric SDG in the ancestor of the allotetraploid Xenopus species, offering new insights into de novo origin and functional evolution of chimerical genes.
Collapse
Affiliation(s)
- Shun Hayashi
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Kosuke Suda
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Fuga Fujimura
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Makoto Fujikawa
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Kei Tamura
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Daisuke Tsukamoto
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Ben J Evans
- Department of Biology, Life Sciences Room 328, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Nobuhiko Takamatsu
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Michihiko Ito
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
48
|
Abstract
Meiosis is critical for germ cell development in multicellular organisms. Initiation of meiosis coincides with pre-meiotic S phase, which is followed by meiotic prophase, a prolonged G2 phase that ensures numerous meiosis-specific chromosome events. Meiotic prophase is accompanied by robust alterations of gene expression. In mouse germ cells, MEIOSIN and STRA8 direct cell cycle switch from mitosis to meiosis. MEIOSIN and STRA8 coordinate meiotic initiation with cell cycle, by activating the meiotic genes to have meiotic prophase program installed at S phase. This review mainly focuses on the mechanism of meiotic initiation in mouse germ cells from the viewpoint of the transcription of meiotic genes. Furthermore, signaling pathways that regulate meiotic initiation will be discussed in the context of germ cell development, pointing out the sexual differences in the mode of meiotic initiation.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
49
|
Lundgaard Riis M, Jørgensen A. Deciphering Sex-Specific Differentiation of Human Fetal Gonads: Insight From Experimental Models. Front Cell Dev Biol 2022; 10:902082. [PMID: 35721511 PMCID: PMC9201387 DOI: 10.3389/fcell.2022.902082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-specific gonadal differentiation is initiated by the expression of SRY in male foetuses. This promotes a signalling pathway directing testicular development, while in female foetuses the absence of SRY and expression of pro-ovarian factors promote ovarian development. Importantly, in addition to the initiation of a sex-specific signalling cascade the opposite pathway is simultaneously inhibited. The somatic cell populations within the gonads dictates this differentiation as well as the development of secondary sex characteristics via secretion of endocrine factors and steroid hormones. Opposing pathways SOX9/FGF9 (testis) and WNT4/RSPO1 (ovary) controls the development and differentiation of the bipotential mouse gonad and even though sex-specific gonadal differentiation is largely considered to be conserved between mice and humans, recent studies have identified several differences. Hence, the signalling pathways promoting early mouse gonad differentiation cannot be directly transferred to human development thus highlighting the importance of also examining this signalling in human fetal gonads. This review focus on the current understanding of regulatory mechanisms governing human gonadal sex differentiation by combining knowledge of these processes from studies in mice, information from patients with differences of sex development and insight from manipulation of selected signalling pathways in ex vivo culture models of human fetal gonads.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
50
|
Ma L, Xie D, Luo M, Lin X, Nie H, Chen J, Gao C, Duo S, Han C. Identification and characterization of BEND2 as a key regulator of meiosis during mouse spermatogenesis. SCIENCE ADVANCES 2022; 8:eabn1606. [PMID: 35613276 PMCID: PMC9132480 DOI: 10.1126/sciadv.abn1606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/08/2022] [Indexed: 05/07/2023]
Abstract
The chromatin state, which undergoes global changes during spermatogenesis, is critical to meiotic initiation and progression. However, the key regulators involved and the underlying molecular mechanisms remain to be uncovered. Here, we report that mouse BEND2 is specifically expressed in spermatogenic cells around meiotic initiation and that it plays an essential role in meiotic progression. Bend2 gene knockout in male mice arrested meiosis at the transition from zygonema to pachynema, disrupted synapsis and DNA double-strand break repair, and induced nonhomologous chromosomal pairing. BEND2 interacted with chromatin-associated proteins that are components of certain transcription-repressor complexes. BEND2-binding sites were identified in diverse chromatin states and enriched in simple sequence repeats. BEND2 inhibited the expression of genes involved in meiotic initiation and regulated chromatin accessibility and the modification of H3K4me3. Therefore, our study identified BEND2 as a previously unknown key regulator of meiosis, gene expression, and chromatin state during mouse spermatogenesis.
Collapse
Affiliation(s)
- Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hengyu Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxu Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Duo
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|