1
|
Jin M, Liu G, Liu E, Wang L, Jiang Y, Zheng Z, Lu J, Lu Z, Ma Y, Liu Y, Quan K, Jin H, Jiang X, Fei X, Li T, Cao J, Yuan Z, Du L, Wang H, Wei C. Genomic insights into the population history of fat-tailed sheep and identification of two mutations that contribute to fat tail adipogenesis. J Adv Res 2025:S2090-1232(25)00304-2. [PMID: 40339746 DOI: 10.1016/j.jare.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/13/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
INTRODUCTION Since their domestication, domestic sheep (Ovis aries) have been culturally and economically significant farming animals worldwide. Fat-tailed sheep serve as a unique genetic resource for understanding adipogenesis and adaptive evolution in livestock. OBJECTIVES Several genomic analyses have been conducted on various sheep breeds to elucidate the genome and regulation mechanism of the fat tail trait, prior genomic studies have failed to reconcile conflicting evidence about the genetic basis of tail morphology, particularly regarding the roles of PDGFD and BMP2. METHODS Here, we conducted whole-genome resequencing of 283 sheep, encompassing 66 domestic breeds and 5 wild ovine species, to investigate the domestication history and selection signatures of fat-tailed sheep. Additionally, we performed transcriptome sequencing on adipose tissue to identify differentially expressed genes and cellular assays to validate these results. RESULTS Demographic analysis revealed that domestic sheep descended from Asiatic mouflon and fat-tailed sheep began to diverge from thin-tailed sheep approximately 4.4-7.5 thousand years ago in East Asia. Chinese indigenous sheep were classified into Mongolian, Kazakh, Tibetan, and Yunnan populations. The Yunnan population may have experienced more recent genetic introgression from wild species, rather than an independent domestication event. Moreover, many potential regions associated with the fat-tailed phenotype (DDI1, PDGFD, and BMP2) were identified by selective sweep and genome-wide association analyses. Additionally, a fine-scale analysis of fat-tailed and thin-tailed sheep revealed two novel mutations: a G/A missense variant of PDGFD (Chr15: 3900312) and a C/T missense variant of BMP2 (Chr13: 48462350), both of which were significantly associated with tail adiposity. Functional validation demonstrated that mutant A-PDGFD significantly activated PFGFD expression and reduced fat deposition compared to wildtype. The C-BMP2 mutant activated BMP2 expression and promoted preadipocyte fat deposition. CONCLUSION Our study provides the first evidence that these genes jointly regulate fat tail development through complementary mechanisms: PDGFD promotes adipose expansion, whereas BMP2 modulates energy partitioning. These findings offer new insights into the evolutionary history of fat-tailed sheep and identify potential targets for precision breeding in small ruminants.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gang Liu
- National Center of Preservation & Utilization of Animal Genetic Resources, National Animal Husbandry Service, Beijing 100125, China
| | - Enmin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhong Wang
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhuqing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jian Lu
- National Center of Preservation & Utilization of Animal Genetic Resources, National Animal Husbandry Service, Beijing 100125, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongbin Liu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Hai Jin
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xunping Jiang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Fei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaxue Cao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Yu G, Li J, Zhang H, Zi H, Liu M, An Q, Qiu T, Li P, Song J, Liu P, Quan K, Li S, Liu Y, Zhu W, Du J. Single-cell analysis reveals the implication of vascular endothelial cell-intrinsic ANGPT2 in human intracranial aneurysm. Cardiovasc Res 2025; 121:658-673. [PMID: 39187926 DOI: 10.1093/cvr/cvae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Accepted: 06/13/2024] [Indexed: 08/28/2024] Open
Abstract
AIMS While previous single-cell RNA sequencing (scRNA-seq) studies have attempted to dissect intracranial aneurysm (IA), the primary molecular mechanism for IA pathogenesis remains unknown. Here, we uncovered the alterations of cellular compositions, especially the transcriptome changes of vascular endothelial cells (ECs), in human IA. METHODS AND RESULTS We performed scRNA-seq to compare the cell atlas of sporadic IA and the control artery. The transcriptomes of 43 462 cells were profiled for further analysis. In general, IA had increased immune cells (T/NK cells, B cells, myeloid cells, mast cells, neutrophils) and fewer vascular cells (ECs, vascular smooth muscle cells, and fibroblasts). Based on the obtained high-quantity and high-quality EC data, we found genes associated with angiogenesis in ECs from IA patients. By EC-specific expression of candidate genes in vivo, we observed the involvement of angpt2a in causing cerebral vascular abnormality. Furthermore, an IA zebrafish model mimicking the main features of human IA was generated through targeting pdgfrb gene, and knockdown of angpt2a alleviated the vascular dilation in the IA zebrafish model. CONCLUSION By performing a landscape view of the single-cell transcriptomes of IA and the control artery, we contribute to a deeper understanding of the cellular composition and the molecular changes of ECs in IA. The implication of angiogenic regulator ANGPT2 in IA formation and progression, provides a novel potential therapeutical target for IA interventions.
Collapse
Affiliation(s)
- Guo Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Jia Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongfei Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Huaxing Zi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Mingjian Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Peiliang Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Jianping Song
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Kai Quan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Sichen Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Yingjun Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
3
|
Qi Y, He X, Wang B, Yang C, Da L, Liu B, Zhang W, Fu S, Liu Y. Selection signature analysis reveals genes associated with tail phenotype in sheep. Front Genet 2024; 15:1509177. [PMID: 39722798 PMCID: PMC11668752 DOI: 10.3389/fgene.2024.1509177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Tail type of sheep, which may be affected by many genes with a complex mechanism, is an important economic trait concerned by both raiser and consumers. Here, we employed two sheep breeds with extreme phenotypes - Mongolian sheep (short-fat-tailed) and Bamei Mutton sheep (long-thin-tailed) to analyze the genetic differences at the genomic level and find candidate genes associated with tail phenotype. The results of population structure analysis showed that the LD decay rate of Mongolian sheep was greater than that of Bamai Mutton sheep. When K = 2, the two populations were obviously separated with a certain degree of mixing. From 49 sheep individuals, 20,270,930 and 2,479,474 SNPs and Indels were identified, respectively. Selection signals were detected based on F ST , π-Ratio, and XP-EHH. These three methods identified 85 candidate genes, of which PDGFD, GLIS1, AR, and FGF9 were reported to be associated with tail fat deposition, while VRTN associated with tail length in sheep tail phenotype; the others were novel genes that may play important roles in sheep tail phenotype formation. Gene annotation revealed that these candidate genes mainly participate in pathways associated with fat deposition or lipid metabolism. This study provided insight into sheep tail type development and a guide for molecular breeding.
Collapse
Affiliation(s)
- Yunxia Qi
- College of Animal Sciences, Xichang University, Xichang, China
| | - Xiaolong He
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Chaoyun Yang
- College of Animal Sciences, Xichang University, Xichang, China
| | - Lai Da
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bin Liu
- Inner Mongolia BIONEW Technology Co., LTD., Hohhot, China
| | - Wenguang Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Shaoyin Fu
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yongbin Liu
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
4
|
Zhuang Z, Wu L, Jia W, Li Y, Lu Y, Xu M, Bai H, Bi Y, Wang Z, Chen S, Chang G, Jiang Y. Threonine modulates the STAT3-SCD1 pathway to reduce fatty acid metabolism in duck hepatocytes. Poult Sci 2024; 103:104444. [PMID: 39476611 PMCID: PMC11564961 DOI: 10.1016/j.psj.2024.104444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/05/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
Dietary threonine (Thr) is known to influence fat deposition in poultry, but the precise mechanisms behind its regulatory effects on hepatic lipid metabolism remain elusive. Prior research indicated that including supplemental Thr in the feed may influence STAT3 (Signal Transducer and Activator of Transcription 3) levels in the liver of meat ducks. Numerous studies have recorded the function of STAT3 in regulating fatty acid (FA) metabolism in mammals. The primary objective of this study was to investigate whether Thr influences FA metabolism and triglycerides (TG) deposition in duck liver by regulating STAT3 expression. Primary hepatocytes were isolated from duck embryos and treated for 36 h with different doses of Thr (0, 10, 25, 50, 200 μM) in vitro or with a constructed STAT3 overexpression plasmid to examine the content of FAs and TG. RNA-seq was used to detect changes in gene expression in hepatocytes following STAT3 overexpression. The results demonstrated that both the exogenous addition of Thr and the overexpression of STAT3 significantly suppressed the capacity of hepatocytes for FAs deposition (P < 0.05). The overexpression of STAT3 also inhibited TG accumulation under conditions in response to Thr deficiency (P < 0.01). Transcriptomic analyses indicated that the overexpression of STAT3 inhibits the activity of triglyceride metabolism and unsaturated fatty acid biosynthesis (P < 0.01). Finally, a dual-luciferase reporter test demonstrated that STAT3 may systematically target and inhibit SCD1 transcription (P < 0.01). The present study indicates that supplemental Thr (50 μM) inhibits hepatic FA deposition via the STAT3-SCD1 pathway. This work enhances our comprehension of the functional roles of Thr and STAT3 in modulating lipid metabolism within duck livers. Moreover, it provides a partial theoretical foundation for the nutritional prevention and pharmacological intervention of lipid metabolism disorders in poultry.
Collapse
Affiliation(s)
- Zhong Zhuang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lei Wu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenqian Jia
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongpeng Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yijia Lu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minghong Xu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shihao Chen
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Benvie AM, Berry DC. Reversing Pdgfrβ signaling restores metabolically active beige adipocytes by alleviating ILC2 suppression in aged and obese mice. Mol Metab 2024; 89:102028. [PMID: 39278546 PMCID: PMC11458544 DOI: 10.1016/j.molmet.2024.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline. METHODS We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity. RESULTS Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism. CONCLUSIONS This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
Collapse
Affiliation(s)
- Abigail M Benvie
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Xue S, Benvie AM, Blum JE, Kolba NJ, Cosgrove BD, Thalacker-Mercer A, Berry DC. Suppressing PDGFRβ Signaling Enhances Myocyte Fusion to Promote Skeletal Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618247. [PMID: 39464006 PMCID: PMC11507758 DOI: 10.1101/2024.10.15.618247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Muscle cell fusion is critical for forming and maintaining multinucleated myotubes during skeletal muscle development and regeneration. However, the molecular mechanisms directing cell-cell fusion are not fully understood. Here, we identify platelet-derived growth factor receptor beta (PDGFRβ) signaling as a key modulator of myocyte fusion in adult muscle cells. Our findings demonstrate that genetic deletion of Pdgfrβ enhances muscle regeneration and increases myofiber size, whereas PDGFRβ activation impairs muscle repair. Inhibition of PDGFRβ activity promotes myonuclear accretion in both mouse and human myotubes, whereas PDGFRβ activation stalls myotube development by preventing cell spreading to limit fusion potential. Transcriptomics analysis show that PDGFRβ signaling cooperates with TGFβ signaling to direct myocyte size and fusion. Mechanistically, PDGFRβ signaling requires STAT1 activation, and blocking STAT1 phosphorylation enhances myofiber repair and size during regeneration. Collectively, PDGFRβ signaling acts as a regenerative checkpoint and represents a potential clinical target to rapidly boost skeletal muscle repair.
Collapse
Affiliation(s)
- Siwen Xue
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Abigail M Benvie
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Jamie E Blum
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Current address: Department of Chemical Engineering; Stanford University; Stanford, CA
| | - Nikolai J Kolba
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | | | - Anna Thalacker-Mercer
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel C Berry
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Corresponding author
| |
Collapse
|
7
|
Yu Y, Lyu C, Li X, Yang L, Wang J, Li H, Xin Z, Xu X, Ren C, Yang G. Remodeling of tumor microenvironment by extracellular matrix protein 1a differentially regulates ovarian cancer metastasis. Cancer Lett 2024; 596:217022. [PMID: 38849014 DOI: 10.1016/j.canlet.2024.217022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
We previously reported that extracellular matrix protein 1 isoform a (ECM1a) promotes epithelial ovarian cancer (EOC) through autocrine signaling by binding to cell surface receptors αXβ2. However, the role of ECM1a as a secretory molecule in the tumor microenvironment is rarely reported. In this study, we constructed murine Ecm1-knockout mice and human ECM1a-knockin mice and further generated orthotopic or peritoneal xenograft tumor models to mimic the different metastatic stages of EOC. We show that ECM1a induces oncogenic metastasis of orthotopic xenograft tumors, but inhibits early-metastasis of peritoneal xenograft tumors. ECM1a remodels extracellular matrices (ECM) and promotes remote metastases by recruiting and transforming bone marrow mesenchymal stem cells (BMSCs) into platelet-derived growth factor receptor beta (PDGFRβ+) cancer-associated fibroblasts (CAFs) and facilitating the secretion of angiopoietin-like protein 2 (ANGPTL2). Competing with ECM1a, ANGPTL2 also binds to integrin αX through the P1/P2 peptides, resulting in negative effects on BMSC differentiation. Collectively, this study reveals the dual functions of ECM1a in remodeling of TME during tumor progression, emphasizing the complexity of EOC phenotypic heterogeneity and metastasis.
Collapse
Affiliation(s)
- Yinjue Yu
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China; Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Cuiting Lyu
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Xiaojing Li
- Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Lina Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Jingshu Wang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Hui Li
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Zhaochen Xin
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Xinyi Xu
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China; Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China
| | - Chunxia Ren
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200140, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Benvie AM, Berry DC. Reversing Pdgfrβ Signaling Restores Metabolically Active Beige Adipocytes by Alleviating ILC2 Suppression in Aged and Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599436. [PMID: 38948810 PMCID: PMC11212986 DOI: 10.1101/2024.06.17.599436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objective Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline. Methods We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity. Results Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism. Conclusion This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853 USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853 USA
| |
Collapse
|
9
|
Avolio E, Campagnolo P, Katare R, Madeddu P. The role of cardiac pericytes in health and disease: therapeutic targets for myocardial infarction. Nat Rev Cardiol 2024; 21:106-118. [PMID: 37542118 DOI: 10.1038/s41569-023-00913-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
Millions of cardiomyocytes die immediately after myocardial infarction, regardless of whether the culprit coronary artery undergoes prompt revascularization. Residual ischaemia in the peri-infarct border zone causes further cardiomyocyte damage, resulting in a progressive decline in contractile function. To date, no treatment has succeeded in increasing the vascularization of the infarcted heart. In the past decade, new approaches that can target the heart's highly plastic perivascular niche have been proposed. The perivascular environment is populated by mesenchymal progenitor cells, fibroblasts, myofibroblasts and pericytes, which can together mount a healing response to the ischaemic damage. In the infarcted heart, pericytes have crucial roles in angiogenesis, scar formation and stabilization, and control of the inflammatory response. Persistent ischaemia and accrual of age-related risk factors can lead to pericyte depletion and dysfunction. In this Review, we describe the phenotypic changes that characterize the response of cardiac pericytes to ischaemia and the potential of pericyte-based therapy for restoring the perivascular niche after myocardial infarction. Pericyte-related therapies that can salvage the area at risk of an ischaemic injury include exogenously administered pericytes, pericyte-derived exosomes, pericyte-engineered biomaterials, and pharmacological approaches that can stimulate the differentiation of constitutively resident pericytes towards an arteriogenic phenotype. Promising preclinical results from in vitro and in vivo studies indicate that pericytes have crucial roles in the treatment of coronary artery disease and the prevention of post-ischaemic heart failure.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK.
| | - Paola Campagnolo
- School of Biosciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
10
|
Benvie AM, Lee D, Jiang Y, Berry DC. Platelet-derived growth factor receptor beta is required for embryonic specification and confinement of the adult white adipose lineage. iScience 2024; 27:108682. [PMID: 38235323 PMCID: PMC10792241 DOI: 10.1016/j.isci.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
White adipose tissue (WAT) development and adult homeostasis rely on distinct adipocyte progenitor cells (APCs). While adult APCs are defined early during embryogenesis and generate adipocytes after WAT organogenesis, the mechanisms underlying adult adipose lineage determination and preservation remain undefined. Here, we uncover a critical role for platelet-derived growth factor receptor beta (Pdgfrβ) in identifying the adult APC lineage. Without Pdgfrβ, APCs lose their adipogenic competency to incite fibrotic tissue replacement and inflammation. Through lineage tracing analysis, we reveal that the adult APC lineage is lost and develops into macrophages when Pdgfrβ is deleted embryonically. Moreover, to maintain the APC lineage, Pdgfrβ activation stimulates p38/MAPK phosphorylation to promote APC proliferation and maintains the APC state by phosphorylating peroxisome proliferator activated receptor gamma (Pparγ) at serine 112. Together, our findings identify a role for Pdgfrβ acting as a rheostat for adult adipose lineage confinement to prevent unintended lineage switches.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Picoli CDC, Birbrair A, Li Z. Pericytes as the Orchestrators of Vasculature and Adipogenesis. Genes (Basel) 2024; 15:126. [PMID: 38275607 PMCID: PMC10815550 DOI: 10.3390/genes15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Pericytes (PCs) are located surrounding the walls of small blood vessels, particularly capillaries and microvessels. In addition to their functions in maintaining vascular integrity, participating in angiogenesis, and regulating blood flow, PCs also serve as a reservoir for multi-potent stem/progenitor cells in white, brown, beige, and bone marrow adipose tissues. Due to the complex nature of this cell population, the identification and characterization of PCs has been challenging. A comprehensive understanding of the heterogeneity of PCs may enhance their potential as therapeutic targets for metabolic syndromes or bone-related diseases. This mini-review summarizes multiple PC markers commonly employed in lineage-tracing studies, with an emphasis on their contribution to adipogenesis and functions in different adipose depots under diverse metabolic conditions.
Collapse
Affiliation(s)
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Madison, WI 53706, USA;
| | - Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA;
| |
Collapse
|
12
|
Xuan X, Li Y, Cao G, Zhang R, Hu J, Jin H, Dong H. Fluoroquinolones increase susceptibility to aortic aneurysm and aortic dissection: Molecular mechanism and clinical evidence. Vasc Med 2023; 28:604-613. [PMID: 37756313 DOI: 10.1177/1358863x231198055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Aortic aneurysm (AA) and aortic dissection (AD) are prevalent severe cardiovascular diseases that result in catastrophic complications and unexpected deaths. Owing to the lack of clinically established and effective medications, the only treatment options are open surgical repair or endovascular therapy. Most researchers have focused on the development of innovative medications or therapeutic targets to slow the progression of AA/AD or lower the risk of malignant consequences. Recent studies have shown that the use of fluoroquinolones (FQs) may increase susceptibility to AA/AD to some extent, especially in patients with aortic dilatation and those at a high risk of AD. Therefore, it is crucial for doctors, particularly those in cardiovascular specialties, to recognize the dangers of FQs and adopt alternatives. In the present review, the main clinical observational studies on the correlation between FQs and AA/AD in recent years are summarized, with an emphasis on the relative physiopathological mechanism incorporating destruction of the extracellular matrix (ECM), phenotypic transformation of vascular smooth muscle cells, and local inflammation. Although additional data are required, it is anticipated that the rational use of FQs will become the standard of care for the treatment of aortic diseases.
Collapse
Affiliation(s)
- Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yaling Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Haijiang Jin
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Escudero M, Vaysse L, Eke G, Peyrou M, Villarroya F, Bonnel S, Jeanson Y, Boyer L, Vieu C, Chaput B, Yao X, Deschaseaux F, Parny M, Raymond‐Letron I, Dani C, Carrière A, Malaquin L, Casteilla L. Scalable Generation of Pre-Vascularized and Functional Human Beige Adipose Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301499. [PMID: 37731092 PMCID: PMC10625054 DOI: 10.1002/advs.202301499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Indexed: 09/22/2023]
Abstract
Obesity and type 2 diabetes are becoming a global sociobiomedical burden. Beige adipocytes are emerging as key inducible actors and putative relevant therapeutic targets for improving metabolic health. However, in vitro models of human beige adipose tissue are currently lacking and hinder research into this cell type and biotherapy development. Unlike traditional bottom-up engineering approaches that aim to generate building blocks, here a scalable system is proposed to generate pre-vascularized and functional human beige adipose tissue organoids using the human stromal vascular fraction of white adipose tissue as a source of adipose and endothelial progenitors. This engineered method uses a defined biomechanical and chemical environment using tumor growth factor β (TGFβ) pathway inhibition and specific gelatin methacryloyl (GelMA) embedding parameters to promote the self-organization of spheroids in GelMA hydrogel, facilitating beige adipogenesis and vascularization. The resulting vascularized organoids display key features of native beige adipose tissue including inducible Uncoupling Protein-1 (UCP1) expression, increased uncoupled mitochondrial respiration, and batokines secretion. The controlled assembly of spheroids allows to translate organoid morphogenesis to a macroscopic scale, generating vascularized centimeter-scale beige adipose micro-tissues. This approach represents a significant advancement in developing in vitro human beige adipose tissue models and facilitates broad applications ranging from basic research to biotherapies.
Collapse
Affiliation(s)
- Mélanie Escudero
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Laurence Vaysse
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Gozde Eke
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Marion Peyrou
- CIBER “Fisiopatologia de la Obesidad y Nutrición”, Department of Biochemistry and Molecular BiomedicineUniversity of BarcelonaMadrid28029Spain
| | - Francesc Villarroya
- CIBER “Fisiopatologia de la Obesidad y Nutrición”, Department of Biochemistry and Molecular BiomedicineUniversity of BarcelonaMadrid28029Spain
| | - Sophie Bonnel
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Yannick Jeanson
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Louisa Boyer
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Christophe Vieu
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Benoit Chaput
- Service de Chirurgie plastique, reconstructrice et esthétiqueCentre Hospitalier Universitaire RangueilToulouse31400France
| | - Xi Yao
- Faculté de MédecineUniversité Côte d'AzurINSERM, CNRS, iBVNice06103France
| | - Frédéric Deschaseaux
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Mélissa Parny
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
- LabHPEC, Histology and Pathology DepartmentUniversité de Toulouse, ENVTToulouse31076France
| | - Isabelle Raymond‐Letron
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
- LabHPEC, Histology and Pathology DepartmentUniversité de Toulouse, ENVTToulouse31076France
| | - Christian Dani
- Faculté de MédecineUniversité Côte d'AzurINSERM, CNRS, iBVNice06103France
| | - Audrey Carrière
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | | | - Louis Casteilla
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| |
Collapse
|
14
|
Fu J, Liang H, Yuan P, Wei Z, Zhong P. Brain pericyte biology: from physiopathological mechanisms to potential therapeutic applications in ischemic stroke. Front Cell Neurosci 2023; 17:1267785. [PMID: 37780206 PMCID: PMC10536258 DOI: 10.3389/fncel.2023.1267785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Pericytes play an indispensable role in various organs and biological processes, such as promoting angiogenesis, regulating microvascular blood flow, and participating in immune responses. Therefore, in this review, we will first introduce the discovery and development of pericytes, identification methods and functional characteristics, then focus on brain pericytes, on the one hand, to summarize the functions of brain pericytes under physiological conditions, mainly discussing from the aspects of stem cell characteristics, contractile characteristics and paracrine characteristics; on the other hand, to summarize the role of brain pericytes under pathological conditions, mainly taking ischemic stroke as an example. Finally, we will discuss and analyze the application and development of pericytes as therapeutic targets, providing the research basis and direction for future microvascular diseases, especially ischemic stroke treatment.
Collapse
Affiliation(s)
- Jiaqi Fu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou, Jiangsu, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Wei
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Ping Zhong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| |
Collapse
|
15
|
Ho YC, Geng X, O’Donnell A, Ibarrola J, Fernandez-Celis A, Varshney R, Subramani K, Azartash-Namin ZJ, Kim J, Silasi R, Wylie-Sears J, Alvandi Z, Chen L, Cha B, Chen H, Xia L, Zhou B, Lupu F, Burkhart HM, Aikawa E, Olson LE, Ahamed J, López-Andrés N, Bischoff J, Yutzey KE, Srinivasan RS. PROX1 Inhibits PDGF-B Expression to Prevent Myxomatous Degeneration of Heart Valves. Circ Res 2023; 133:463-480. [PMID: 37555328 PMCID: PMC10487359 DOI: 10.1161/circresaha.123.323027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.
Collapse
Affiliation(s)
- Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Now with Sanegene Bio, Woburn, MA (X.G.)
| | - Anna O’Donnell
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (A.O., K.E.Y.)
| | - Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (J.I.)
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| | - Amaya Fernandez-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| | - Rohan Varshney
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Kumar Subramani
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Zheila J. Azartash-Namin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Jang Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center (J.K.)
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Jill Wylie-Sears
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Zahra Alvandi
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Now with Daegu Gyeongbuk Medical Innovation Foundation, Republic of Korea (B.C.)
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY (B.Z.)
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Harold M. Burkhart
- Oklahoma Children’s Hospital, University of Oklahoma Health Heart Center, Oklahoma City, OK (H.M.B.)
| | - Elena Aikawa
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA (E.A.)
| | - Lorin E. Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (A.O., K.E.Y.)
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| |
Collapse
|
16
|
Jin M, Yuan Z, Li T, Wang H, Wei C. The Effects of DDI1 on Inducing Differentiation in Ovine Preadipocytes via Oar-miR-432. Int J Mol Sci 2023; 24:11567. [PMID: 37511326 PMCID: PMC10380388 DOI: 10.3390/ijms241411567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Reducing fat deposition in sheep (Ovis aries) tails is one of the most important ways to combat rising costs and control consumer preference. Our previous studies have shown that oar-miR-432 is differentially expressed in the tail adipose tissue of Hu (a fat-tailed sheep breed) and Tibetan (a thin-tailed sheep breed) sheep and is a key factor in the negative regulation of fat deposition through BMP2 in ovine preadipocytes. This study investigated the effect of oar-miR-432 and its target genes in ovine preadipocytes. A dual luciferase assay revealed that DDI1 is a direct target gene of oar-miR-432. We transfected an oar-miR-432 mimic and inhibitor into preadipocytes to analyze the expression of target genes. Overexpression of oar-miR-432 inhibits DDI1 expression, whereas inhibition showed the opposite results. Compared with thin-tailed sheep, DDI1 was highly expressed in the fat-tailed sheep at the mRNA and protein levels. Furthermore, we transfected the overexpression and knockdown target genes into preadipocytes to analyze their influence after inducing differentiation. Knockdown of DDI1 induced ovine preadipocyte differentiation into adipocytes but suppressed oar-miR-432 expression. Conversely, the overexpression of DDI1 significantly inhibited differentiation but promoted oar-miR-432 expression. DDI1 overexpression also decreased the content of triglycerides. Additionally, DDI1 is a nested gene in intron 1 of PDGFD. When DDI1 was overexpressed, the PDGFD expression also increased, whereas DDI1 knockdown showed the opposite results. This is the first study to reveal the biological mechanisms by which oar-miR-432 inhibits preadipocytes through DDI1 and provides insight into the molecular regulatory mechanisms of DDI1 in ovine preadipocytes. These results have important applications in animal breeding and obesity-related human diseases.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.); (T.L.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.); (T.L.)
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.); (T.L.)
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.); (T.L.)
| |
Collapse
|
17
|
Shima Y, Sasagawa S, Ota N, Oyama R, Tanaka M, Kubota-Sakashita M, Kawakami H, Kobayashi M, Takubo N, Ozeki AN, Sun X, Kim YJ, Kamatani Y, Matsuda K, Maejima K, Fujita M, Noda K, Kamiyama H, Tanikawa R, Nagane M, Shibahara J, Tanaka T, Rikitake Y, Mataga N, Takahashi S, Kosaki K, Okano H, Furihata T, Nakaki R, Akimitsu N, Wada Y, Ohtsuka T, Kurihara H, Kamiguchi H, Okabe S, Nakafuku M, Kato T, Nakagawa H, Saito N, Nakatomi H. Increased PDGFRB and NF-κB signaling caused by highly prevalent somatic mutations in intracranial aneurysms. Sci Transl Med 2023; 15:eabq7721. [PMID: 37315111 DOI: 10.1126/scitranslmed.abq7721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Intracranial aneurysms (IAs) are a high-risk factor for life-threatening subarachnoid hemorrhage. Their etiology, however, remains mostly unknown at present. We conducted screening for sporadic somatic mutations in 65 IA tissues (54 saccular and 11 fusiform aneurysms) and paired blood samples by whole-exome and targeted deep sequencing. We identified sporadic mutations in multiple signaling genes and examined their impact on downstream signaling pathways and gene expression in vitro and an arterial dilatation model in mice in vivo. We identified 16 genes that were mutated in at least one IA case and found that these mutations were highly prevalent (92%: 60 of 65 IAs) among all IA cases examined. In particular, mutations in six genes (PDGFRB, AHNAK, OBSCN, RBM10, CACNA1E, and OR5P3), many of which are linked to NF-κB signaling, were found in both fusiform and saccular IAs at a high prevalence (43% of all IA cases examined). We found that mutant PDGFRBs constitutively activated ERK and NF-κB signaling, enhanced cell motility, and induced inflammation-related gene expression in vitro. Spatial transcriptomics also detected similar changes in vessels from patients with IA. Furthermore, virus-mediated overexpression of a mutant PDGFRB induced a fusiform-like dilatation of the basilar artery in mice, which was blocked by systemic administration of the tyrosine kinase inhibitor sunitinib. Collectively, this study reveals a high prevalence of somatic mutations in NF-κB signaling pathway-related genes in both fusiform and saccular IAs and opens a new avenue of research for developing pharmacological interventions.
Collapse
Affiliation(s)
- Yasuyuki Shima
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Neurodegenerative Disorders Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Nakao Ota
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Rieko Oyama
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Minoru Tanaka
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Innovative Cancer Therapy and Department of Surgical Neuro-Oncology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Mie Kubota-Sakashita
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hirochika Kawakami
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Mika Kobayashi
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | - Naoko Takubo
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | | | - Xiaoning Sun
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | - Yeon-Jeong Kim
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kosumo Noda
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Hiroyasu Kamiyama
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Rokuya Tanikawa
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Junji Shibahara
- Department of Pathology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Toru Tanaka
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Nobuko Mataga
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0005, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University Faculty of Medicine, Tokyo 160-0016, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-0016, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama 351-0198, Japan
- International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | | | - Youichiro Wada
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiroki Kurihara
- Department of Molecular Cell Biology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo 113-8654, Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo 113-8654, Japan
- Brain Medical Science Collaboration Division, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Masato Nakafuku
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-8654, Japan
| | - Hirofumi Nakatomi
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
18
|
Ye J, Gao C, Liang Y, Hou Z, Shi Y, Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:13. [PMID: 37138165 PMCID: PMC10156890 DOI: 10.1186/s13619-023-00157-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 05/05/2023]
Abstract
Adipose tissues are essential for actively regulating systemic energy balance, glucose homeostasis, immune responses, reproduction, and longevity. Adipocytes maintain dynamic metabolic needs and possess heterogeneity in energy storage and supply. Overexpansion of adipose tissue, especially the visceral type, is a high risk for diabetes and other metabolic diseases. Changes in adipocytes, hypertrophy or hyperplasia, contribute to the remodeling of obese adipose tissues, accompanied by abundant immune cell accumulation, decreased angiogenesis, and aberrant extracellular matrix deposition. The process and mechanism of adipogenesis are well known, however, adipose precursors and their fate decision are only being defined with recent information available to decipher how adipose tissues generate, maintain, and remodel. Here, we discuss the key findings that identify adipose precursors phenotypically, with special emphasis on the intrinsic and extrinsic signals in instructing and regulating the fate of adipose precursors under pathophysiological conditions. We hope that the information in this review lead to novel therapeutic strategies to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yong Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
19
|
Benvie AM, Lee D, Steiner BM, Xue S, Jiang Y, Berry DC. Age-dependent Pdgfrβ signaling drives adipocyte progenitor dysfunction to alter the beige adipogenic niche in male mice. Nat Commun 2023; 14:1806. [PMID: 37002214 PMCID: PMC10066302 DOI: 10.1038/s41467-023-37386-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Perivascular adipocyte progenitor cells (APCs) can generate cold temperature-induced thermogenic beige adipocytes within white adipose tissue (WAT), an effect that could counteract excess fat mass and metabolic pathologies. Yet, the ability to generate beige adipocytes declines with age, creating a key challenge for their therapeutic potential. Here we show that ageing beige APCs overexpress platelet derived growth factor receptor beta (Pdgfrβ) to prevent beige adipogenesis. We show that genetically deleting Pdgfrβ, in adult male mice, restores beige adipocyte generation whereas activating Pdgfrβ in juvenile mice blocks beige fat formation. Mechanistically, we find that Stat1 phosphorylation mediates Pdgfrβ beige APC signaling to suppress IL-33 induction, which dampens immunological genes such as IL-13 and IL-5. Moreover, pharmacologically targeting Pdgfrβ signaling restores beige adipocyte development by rejuvenating the immunological niche. Thus, targeting Pdgfrβ signaling could be a strategy to restore WAT immune cell function to stimulate beige fat in adult mammals.
Collapse
Affiliation(s)
- Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Siwen Xue
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Kim HJ, Cheng P, Travisano S, Weldy C, Monteiro JP, Kundu R, Nguyen T, Sharma D, Shi H, Lin Y, Liu B, Haldar S, Jackson S, Quertermous T. Molecular mechanisms of coronary artery disease risk at the PDGFD locus. Nat Commun 2023; 14:847. [PMID: 36792607 PMCID: PMC9932166 DOI: 10.1038/s41467-023-36518-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Genome wide association studies for coronary artery disease (CAD) have identified a risk locus at 11q22.3. Here, we verify with mechanistic studies that rs2019090 and PDGFD represent the functional variant and gene at this locus. Further, FOXC1/C2 transcription factor binding at rs2019090 is shown to promote PDGFD transcription through the CAD promoting allele. With single cell transcriptomic and histology studies with Pdgfd knockdown in an SMC lineage tracing male atherosclerosis mouse model we find that Pdgfd promotes expansion, migration, and transition of SMC lineage cells to the chondromyocyte phenotype. Pdgfd also increases adventitial fibroblast and pericyte expression of chemokines and leukocyte adhesion molecules, which is linked to plaque macrophage recruitment. Despite these changes there is no effect of Pdgfd deletion on overall plaque burden. These findings suggest that PDGFD mediates CAD risk by promoting deleterious phenotypic changes in SMC, along with an inflammatory response that is primarily focused in the adventitia.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA
| | - Paul Cheng
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA
| | - Stanislao Travisano
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA
| | - Chad Weldy
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA
| | - João P Monteiro
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA
| | - Ramendra Kundu
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA
| | - Trieu Nguyen
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA
| | - Disha Sharma
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA
| | - Huitong Shi
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA
| | - Yi Lin
- Research Center for Intelligent Computing Platforms, Zhejiang Laboratory, Hangzhou, 311121, China
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Boxiang Liu
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Saptarsi Haldar
- Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Simon Jackson
- Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA.
| |
Collapse
|
21
|
Kim HJ, Cheng P, Travisano S, Weldy C, Monteiro JP, Kundu R, Nguyen T, Sharma D, Shi H, Lin Y, Liu B, Haldar S, Jackson S, Quertermous T. Molecular mechanisms of coronary artery disease risk at the PDGFD locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525789. [PMID: 36747745 PMCID: PMC9900883 DOI: 10.1101/2023.01.26.525789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Platelet derived growth factor (PDGF) signaling has been extensively studied in the context of vascular disease, but the genetics of this pathway remain to be established. Genome wide association studies (GWAS) for coronary artery disease (CAD) have identified a risk locus at 11q22.3, and we have verified with fine mapping approaches that the regulatory variant rs2019090 and PDGFD represent the functional variant and putative functional gene. Further, FOXC1/C2 transcription factor (TF) binding at rs2019090 was found to promote PDGFD transcription through the CAD promoting allele. Employing a constitutive Pdgfd knockout allele along with SMC lineage tracing in a male atherosclerosis mouse model we mapped single cell transcriptomic, cell state, and lesion anatomical changes associated with gene loss. These studies revealed that Pdgfd promotes expansion, migration, and transition of SMC lineage cells to the chondromyocyte phenotype and vascular calcification. This is in contrast to protective CAD genes TCF21, ZEB2, and SMAD3 which we have shown to promote the fibroblast-like cell transition or perturb the pattern or extent of transition to the chondromyocyte phenotype. Further, Pdgfd expressing fibroblasts and pericytes exhibited greater expression of chemokines and leukocyte adhesion molecules, consistent with observed increased macrophage recruitment to the plaque. Despite these changes there was no effect of Pdgfd deletion on SMC contribution to the fibrous cap or overall lesion burden. These findings suggest that PDGFD mediates CAD risk through promoting SMC expansion and migration, in conjunction with deleterious phenotypic changes, and through promoting an inflammatory response that is primarily focused in the adventitia where it contributes to leukocyte trafficking to the diseased vessel wall.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA; 94305
| | - Paul Cheng
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA; 94305
| | - Stanislao Travisano
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA; 94305
| | - Chad Weldy
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA; 94305
| | - João P. Monteiro
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA; 94305
| | - Ramendra Kundu
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA; 94305
| | - Trieu Nguyen
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA; 94305
| | - Disha Sharma
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA; 94305
| | - Huitong Shi
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA; 94305
| | - Yi Lin
- Research Center for Intelligent Computing Platforms, Zhejiang Laboratory, China 311121
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Boxiang Liu
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Saptarsi Haldar
- Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080
| | - Simon Jackson
- Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA; 94305
| |
Collapse
|
22
|
Li J, Chen X, Ren L, Chen X, Wu T, Wang Y, Ren X, Cheng B, Xia J. Type H vessel/platelet-derived growth factor receptor β + perivascular cell disintegration is involved in vascular injury and bone loss in radiation-induced bone damage. Cell Prolif 2023:e13406. [PMID: 36694343 DOI: 10.1111/cpr.13406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Collapse of the microvascular system is a prerequisite for radiation-induced bone loss. Since type H vessels, a specific bone vessel subtype surrounded by platelet-derived growth factor receptor β+ (PDGFRβ+ ) perivascular cells (PVCs), has been recently identified to couple angiogenesis and osteogenesis, we hypothesize that type H vessel injury initiates PDGFRβ+ PVC dysfunction, which contributes to the abnormal angiogenesis and osteogenesis after irradiation. In this study, we found that radiation led to the decrease of both type H endothelial cell (EC) and PDGFRβ+ PVC numbers. Remarkably, results from lineage tracing showed that PDGFRβ+ PVCs detached from microvessels and converted the lineage commitment from osteoblasts to adipocytes, leading to vascular injury and bone loss after irradiation. These phenotype transitions above were further verified to be associated with the decrease in hypoxia-inducible factor-1α (HIF-1α)/PDGF-BB/PDGFRβ signalling between type H ECs and PDGFRβ+ PVCs. Pharmacological blockade of HIF-1α/PDGF-BB/PDGFRβ signalling induced a phenotype similar to radiation-induced bone damage, while the rescue of this signalling significantly alleviated radiation-induced bone injury. Our findings show that the decrease in HIF-1α/PDGF-BB/PDGFRβ signalling between type H ECs and PDGFRβ+ PVCs after irradiation affects the homeostasis of EC-PVC coupling and plays a part in vascular damage and bone loss, which has broad implications for effective translational therapies.
Collapse
Affiliation(s)
- Jiayan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lin Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tong Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yun Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Alvino VV, Mohammed KAK, Gu Y, Madeddu P. Approaches for the isolation and long-term expansion of pericytes from human and animal tissues. Front Cardiovasc Med 2023; 9:1095141. [PMID: 36704463 PMCID: PMC9873410 DOI: 10.3389/fcvm.2022.1095141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Pericytes surround capillaries in every organ of the human body. They are also present around the vasa vasorum, the small blood vessels that supply the walls of larger arteries and veins. The clinical interest in pericytes is rapidly growing, with the recognition of their crucial roles in controlling vascular function and possible therapeutic applications in regenerative medicine. Nonetheless, discrepancies in methods used to define, isolate, and expand pericytes are common and may affect reproducibility. Separating pure pericyte preparations from the continuum of perivascular mesenchymal cells is challenging. Moreover, variations in functional behavior and antigenic phenotype in response to environmental stimuli make it difficult to formulate an unequivocal definition of bona fide pericytes. Very few attempts were made to develop pericytes as a clinical-grade product. Therefore, this review is devoted to appraising current methodologies' pros and cons and proposing standardization and harmonization improvements. We highlight the importance of developing upgraded protocols to create therapeutic pericyte products according to the regulatory guidelines for clinical manufacturing. Finally, we describe how integrating RNA-seq techniques with single-cell spatial analysis, and functional assays may help realize the full potential of pericytes in health, disease, and tissue repair.
Collapse
Affiliation(s)
| | - Khaled Abdelsattar Kassem Mohammed
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Yue Gu
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
24
|
Aragón-González A, Shaw PJ, Ferraiuolo L. Blood-Brain Barrier Disruption and Its Involvement in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms232315271. [PMID: 36499600 PMCID: PMC9737531 DOI: 10.3390/ijms232315271] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized and dynamic compartment which regulates the uptake of molecules and solutes from the blood. The relevance of the maintenance of a healthy BBB underpinning disease prevention as well as the main pathomechanisms affecting BBB function will be detailed in this review. Barrier disruption is a common aspect in both neurodegenerative diseases, such as amyotrophic lateral sclerosis, and neurodevelopmental diseases, including autism spectrum disorders. Throughout this review, conditions altering the BBB during the earliest and latest stages of life will be discussed, revealing common factors involved. Due to the barrier's role in protecting the brain from exogenous components and xenobiotics, drug delivery across the BBB is challenging. Potential therapies based on the BBB properties as molecular Trojan horses, among others, will be reviewed, as well as innovative treatments such as stem cell therapies. Additionally, due to the microbiome influence on the normal function of the brain, microflora modulation strategies will be discussed. Finally, future research directions are highlighted to address the current gaps in the literature, emphasizing the idea that common therapies for both neurodevelopmental and neurodegenerative pathologies exist.
Collapse
Affiliation(s)
- Ana Aragón-González
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Correspondence: ; Tel.: +44-(0)114-222-2257; Fax: +44-(0)114-222-2290
| |
Collapse
|
25
|
Diverse roles of tumor-stromal PDGFB-to-PDGFRβ signaling in breast cancer growth and metastasis. Adv Cancer Res 2022; 154:93-140. [PMID: 35459473 DOI: 10.1016/bs.acr.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last couple of decades, it has become increasingly apparent that the tumor microenvironment (TME) mediates every step of cancer progression and solid tumors are only able to metastasize with a permissive TME. This intricate interaction of cancer cells with their surrounding TME, or stroma, is becoming more understood with an ever greater knowledge of tumor-stromal signaling pairs such as platelet-derived growth factors (PDGF) and their cognate receptors. We and others have focused our research efforts on understanding how tumor-derived PDGFB activates platelet-derived growth factor receptor beta (PDGFRβ) signaling specifically in the breast cancer TME. In this chapter, we broadly discuss PDGF and PDGFR expression patterns and signaling in normal physiology and breast cancer. We then detail the expansive roles played by the PDGFB-to-PDGFRβ signaling pathway in modulating breast tumor growth and metastasis with a focus on specific cellular populations within the TME, which are responsive to tumor-derived PDGFB. Given the increasingly appreciated importance of PDGFB-to-PDGFRβ signaling in breast cancer progression, specifically in promoting metastasis, we end by discussing how therapeutic targeting of PDGFB-to-PDGFRβ signaling holds great promise for improving current breast cancer treatment strategies.
Collapse
|
26
|
Characterisation of PDGF-BB:PDGFRβ signalling pathways in human brain pericytes: evidence of disruption in Alzheimer's disease. Commun Biol 2022; 5:235. [PMID: 35301433 PMCID: PMC8931009 DOI: 10.1038/s42003-022-03180-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/17/2022] [Indexed: 01/03/2023] Open
Abstract
Platelet-derived growth factor-BB (PDGF-BB):PDGF receptor-β (PDGFRβ) signalling in brain pericytes is critical to the development, maintenance and function of a healthy blood-brain barrier (BBB). Furthermore, BBB impairment and pericyte loss in Alzheimer’s disease (AD) is well documented. We found that PDGF-BB:PDGFRβ signalling components were altered in human AD brains, with a marked reduction in vascular PDGFB. We hypothesised that reduced PDGF-BB:PDGFRβ signalling in pericytes may impact on the BBB. We therefore tested the effects of PDGF-BB on primary human brain pericytes in vitro to define pathways related to BBB function. Using pharmacological inhibitors, we dissected distinct aspects of the PDGF-BB response that are controlled by extracellular signal-regulated kinase (ERK) and Akt pathways. PDGF-BB promotes the proliferation of pericytes and protection from apoptosis through ERK signalling. In contrast, PDGF-BB:PDGFRβ signalling through Akt augments pericyte-derived inflammatory secretions. It may therefore be possible to supplement PDGF-BB signalling to stabilise the cerebrovasculature in AD. Smyth et al. use tissue microarrays from Alzheimer’s disease (AD) patient brains to show that PDGF-BB:PDGFRβ signalling components are reduced in AD. They then use primary human brain pericytes to elucidate a pathway by which PDGF-BB:PDGFRβ signalling in brain pericytes is disrupted in AD, thus impairing the blood brain barrier.
Collapse
|
27
|
Hu P, Chiarini A, Wu J, Wei Z, Armato U, Dal Prà I. Adult Human Vascular Smooth Muscle Cells on 3D Silk Fibroin Nonwovens Release Exosomes Enriched in Angiogenic and Growth-Promoting Factors. Polymers (Basel) 2022; 14:697. [PMID: 35215609 PMCID: PMC8875541 DOI: 10.3390/polym14040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Our earlier works showed the quick vascularization of mouse skin grafted Bombyx mori 3D silk fibroin nonwoven scaffolds (3D-SFnws) and the release of exosomes enriched in angiogenic/growth factors (AGFs) from in vitro 3D-SFnws-stuck human dermal fibroblasts (HDFs). Here, we explored whether coronary artery adult human smooth muscle cells (AHSMCs) also release AGFs-enriched exosomes when cultured on 3D-SFnws in vitro. METHODS Media with exosome-depleted FBS served for AHSMCs and human endothelial cells (HECs) cultures on 3D-SFnws or polystyrene. Biochemical methods and double-antibody arrays assessed cell growth, metabolism, and intracellular TGF-β and NF-κB signalling pathways activation. AGFs conveyed by CD9+/CD81+ exosomes released from AHSMCs were double-antibody array analysed and their angiogenic power evaluated on HECs in vitro. RESULTS AHSMCs grew and consumed D-glucose more intensely and showed a stronger phosphorylation/activation of TAK-1, SMAD-1/-2/-4/-5, ATF-2, c-JUN, ATM, CREB, and an IκBα phosphorylation/inactivation on SFnws vs. polystyrene, consistent overall with a proliferative/secretory phenotype. SFnws-stuck AHSMCs also released exosomes richer in IL-1α/-2/-4/-6/-8; bFGF; GM-CSF; and GRO-α/-β/-γ, which strongly stimulated HECs' growth, migration, and tubes/nodes assembly in vitro. CONCLUSIONS Altogether, the intensified AGFs exosomal release from 3D-SFnws-attached AHSMCs and HDFs could advance grafts' colonization, vascularization, and take in vivo-noteworthy assets for prospective clinical applications.
Collapse
Affiliation(s)
- Peng Hu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
- Department of Burns & Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
| | - Jun Wu
- Department of Burns and Plastic Surgery, Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China;
| | - Zairong Wei
- Department of Burns & Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
| | - Ubaldo Armato
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
- Department of Burns and Plastic Surgery, Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China;
| | - Ilaria Dal Prà
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
- Department of Burns and Plastic Surgery, Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China;
| |
Collapse
|
28
|
Sun X, Perl AK, Li R, Bell SM, Sajti E, Kalinichenko VV, Kalin TV, Misra RS, Deshmukh H, Clair G, Kyle J, Crotty Alexander LE, Masso-Silva JA, Kitzmiller JA, Wikenheiser-Brokamp KA, Deutsch G, Guo M, Du Y, Morley MP, Valdez MJ, Yu HV, Jin K, Bardes EE, Zepp JA, Neithamer T, Basil MC, Zacharias WJ, Verheyden J, Young R, Bandyopadhyay G, Lin S, Ansong C, Adkins J, Salomonis N, Aronow BJ, Xu Y, Pryhuber G, Whitsett J, Morrisey EE. A census of the lung: CellCards from LungMAP. Dev Cell 2022; 57:112-145.e2. [PMID: 34936882 PMCID: PMC9202574 DOI: 10.1016/j.devcel.2021.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.
Collapse
Affiliation(s)
- Xin Sun
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Anne-Karina Perl
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Rongbo Li
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sheila M Bell
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer Kyle
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laura E Crotty Alexander
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge A Masso-Silva
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Kitzmiller
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gail Deutsch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratories, Seattle Children's Hospital, OC.8.720, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Yina Du
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Valdez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haoze V Yu
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kang Jin
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric E Bardes
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jarod A Zepp
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Terren Neithamer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William J Zacharias
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Jamie Verheyden
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Randee Young
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sara Lin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua Adkins
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bruce J Aronow
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yan Xu
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gloria Pryhuber
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeff Whitsett
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Kwon HR, Kim JH, Woods JP, Olson LE. Skeletal stem cell fate defects caused by Pdgfrb activating mutation. Development 2021; 148:272709. [PMID: 34738614 DOI: 10.1242/dev.199607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022]
Abstract
Autosomal dominant PDGFRβ gain-of-function mutations in mice and humans cause a spectrum of wasting and overgrowth disorders afflicting the skeleton and other connective tissues, but the cellular origin of these disorders remains unknown. We demonstrate that skeletal stem cells (SSCs) isolated from mice with a gain-of-function D849V point mutation in PDGFRβ exhibit colony formation defects that parallel the wasting or overgrowth phenotypes of the mice. Single-cell RNA transcriptomics with SSC-derived polyclonal colonies demonstrates alterations in osteogenic and chondrogenic precursors caused by PDGFRβD849V. Mutant cells undergo poor osteogenesis in vitro with increased expression of Sox9 and other chondrogenic markers. Mice with PDGFRβD849V exhibit osteopenia. Increased STAT5 phosphorylation and overexpression of Igf1 and Socs2 in PDGFRβD849V cells suggests that overgrowth in mice involves PDGFRβD849V activating the STAT5-IGF1 axis locally in the skeleton. Our study establishes that PDGFRβD849V causes osteopenic skeletal phenotypes that are associated with intrinsic changes in SSCs, promoting chondrogenesis over osteogenesis.
Collapse
Affiliation(s)
- Hae Ryong Kwon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jang H Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - John P Woods
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
30
|
Hsu GCY, Cherief M, Sono T, Wang Y, Negri S, Xu J, Peault B, James AW. Divergent effects of distinct perivascular cell subsets for intra-articular cell therapy in posttraumatic osteoarthritis. J Orthop Res 2021; 39:2388-2397. [PMID: 33512030 PMCID: PMC8319216 DOI: 10.1002/jor.24997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/04/2023]
Abstract
Intra-articular injection of mesenchymal stem cells has shown benefit for the treatment of osteoarthritis (OA). However, mesenchymal stem/stromal cells at the origin of these clinical results are heterogenous cell populations with limited cellular characterization. Here, two transgenic reporter mice were used to examine the differential effects of two precisely defined perivascular cell populations (Pdgfrα+ and Pdgfrβ+ cells) from white adipose tissue for alleviation of OA. Perivascular mesenchymal cells were isolated from transgenic Pdgfrα-and Pdgfrβ-CreERT2 reporter animals and delivered as a one-time intra-articular dose to C57BL/6J mice after destabilization of the medial meniscus (DMM). Both Pdgfrα+ and Pdgfrβ+ cell preparations improved metrics of cartilage degradation and reduced markers of chondrocyte hypertrophy. While some similarities in cell distribution were identified within the synovial and perivascular spaces, injected Pdgfrα+ cells remained in the superficial layers of articular cartilage, while Pdgfrβ+ cells were more widely dispersed. Pdgfrβ+ cell therapy prevented subchondral sclerosis induced by DMM, while Pdgfrα+ cell therapy had no effect. In summary, while both cell therapies showed beneficial effects in the DMM model, important differences in cell incorporation, persistence, and subchondral sclerosis were identified.
Collapse
Affiliation(s)
- Ginny Ching-Yun Hsu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States;,Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, 90095;,Center For Cardiovascular Science and Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| |
Collapse
|
31
|
Kalds P, Luo Q, Sun K, Zhou S, Chen Y, Wang X. Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Anim Genet 2021; 52:799-812. [PMID: 34472112 DOI: 10.1111/age.13133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Different sheep breeds have evolved after initial domestication, generating various tail phenotypic patterns. The phenotypic diversity of sheep tail patterns offers ideal materials for comparative analysis of its genetic basis. Evolutionary biologists, animal geneticists, breeders, and producers have been curious to clearly understand the underlying genetics behind phenotypic differences in sheep tails. Understanding the causal gene(s) and mutation(s) underlying these differences will help probe an evolutionary riddle, improve animal production performance, promote animal welfare, and provide lessons that help comprehend human diseases related to fat deposition (i.e., obesity). Historically, fat tails have served as an adaptive response to aridification and climate change. However, the fat tail is currently associated with compromised mating and animal locomotion, fat distribution in the animal body, increased raising costs, reduced consumer preference, and other animal welfare issues such as tail docking. The developing genomic approaches provide unprecedented opportunities to determine causal variants underlying phenotypic differences among populations. In the last decade, researchers have performed several genomic investigations to assess the genomic causality underlying phenotypic variations in sheep tails. Various genes have been suggested with the prominence of several potentially significant causatives, including the BMP2 and PDGFD genes associated with the fat tail phenotype and the TBXT gene linked with the caudal vertebrae number and tail length. Although the potential genes related to sheep tail characteristics have been revealed, the causal variant(s) and mutation(s) of these high-ranking candidate genes are still elusive and need further investigation. The review discusses the potential genes, sheds light on a knowledge gap, and provides possible investigative approaches that could help determine the specific genomic causatives of sheep tail patterns. Besides, characterizing and revealing the genetic determinism of sheep tails will help solve issues compromising sheep breeding and welfare in the future.
Collapse
Affiliation(s)
- P Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Q Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - K Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - S Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Y Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - X Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Abstract
The CNS vasculature tightly regulates the passage of circulating molecules and leukocytes into the CNS. In the neuroinflammatory disease multiple sclerosis (MS), these regulatory mechanisms fail, and autoreactive T cells invade the CNS via blood vessels, leading to neurological deficits depending on where the lesions are located. The region-specific mechanisms directing the development of such lesions are not well understood. In this study, we investigated whether pericytes regulate CNS endothelial cell permissiveness toward leukocyte trafficking into the brain parenchyma. By using a pericyte-deficient mouse model, we show that intrinsic changes in the brain vasculature due to absence of pericytes facilitate the neuroinflammatory cascade and can influence the localization of the neuroinflammatory lesions. Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood–brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfbret/ret), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfbret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti–ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfbret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfbret/ret;2D2tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder.
Collapse
|
33
|
Yuan K, Agarwal S, Chakraborty A, Condon DF, Patel H, Zhang S, Huang F, Mello SA, Kirk OI, Vasquez R, de Jesus Perez VA. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr Physiol 2021; 11:2227-2247. [PMID: 34190345 PMCID: PMC10507675 DOI: 10.1002/cphy.c200027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pericytes are mesenchymal-derived mural cells localized within the basement membrane of pulmonary and systemic capillaries. Besides structural support, pericytes control vascular tone, produce extracellular matrix components, and cytokines responsible for promoting vascular homeostasis and angiogenesis. However, pericytes can also contribute to vascular pathology through the production of pro-inflammatory and pro-fibrotic cytokines, differentiation into myofibroblast-like cells, destruction of the extracellular matrix, and dissociation from the vessel wall. In the lung, pericytes are responsible for maintaining the integrity of the alveolar-capillary membrane and coordinating vascular repair in response to injury. Loss of pericyte communication with alveolar capillaries and a switch to a pro-inflammatory/pro-fibrotic phenotype are common features of lung disorders associated with vascular remodeling, inflammation, and fibrosis. In this article, we will address how to differentiate pericytes from other cells, discuss the molecular mechanisms that regulate the interactions of pericytes and endothelial cells in the pulmonary circulation, and the experimental tools currently used to study pericyte biology both in vivo and in vitro. We will also discuss evidence that links pericytes to the pathogenesis of clinically relevant lung disorders such as pulmonary hypertension, idiopathic lung fibrosis, sepsis, and SARS-COVID. Future studies dissecting the complex interactions of pericytes with other pulmonary cell populations will likely reveal critical insights into the origin of pulmonary diseases and offer opportunities to develop novel therapeutics to treat patients afflicted with these devastating disorders. © 2021 American Physiological Society. Compr Physiol 11:2227-2247, 2021.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Respiratory Diseases Research, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Serena Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Flora Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Salvador A. Mello
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Rocio Vasquez
- University of Central Florida, Orlando, Florida, USA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
34
|
Sun R, Kong X, Qiu X, Huang C, Wong PP. The Emerging Roles of Pericytes in Modulating Tumor Microenvironment. Front Cell Dev Biol 2021; 9:676342. [PMID: 34179005 PMCID: PMC8232225 DOI: 10.3389/fcell.2021.676342] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Pericytes (PCs), known as mural cells, play an important blood vessel (BV) supporting role in regulating vascular stabilization, permeability and blood flow in microcirculation as well as blood brain barrier. In carcinogenesis, defective interaction between PCs and endothelial cells (ECs) contributes to the formation of leaky, chaotic and dysfunctional vasculature in tumors. However, recent works from other laboratories and our own demonstrate that the direct interaction between PCs and other stromal cells/cancer cells can modulate tumor microenvironment (TME) to favor cancer growth and progression, independent of its BV supporting role. Furthermore, accumulating evidence suggests that PCs have an immunomodulatory role. In the current review, we focus on recent advancement in understanding PC's regulatory role in the TME by communicating with ECs, immune cells, and tumor cells, and discuss how we can target PC's functions to re-model TME for an improved cancer treatment strategy.
Collapse
Affiliation(s)
- Ruipu Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Sbierski-Kind J, Mroz N, Molofsky AB. Perivascular stromal cells: Directors of tissue immune niches. Immunol Rev 2021; 302:10-31. [PMID: 34075598 DOI: 10.1111/imr.12984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Perivascular niches are specialized microenvironments where stromal and immune cells interact with vasculature to monitor tissue status. Adventitial perivascular niches surround larger blood vessels and other boundary sites, supporting collections of immune cells, stromal cells, lymphatics, and neurons. Adventitial fibroblasts (AFs), a subtype of mesenchymal stromal cell, are the dominant constituents in adventitial spaces, regulating vascular integrity while organizing the accumulation and activation of a variety of interacting immune cells. In contrast, pericytes are stromal mural cells that support microvascular capillaries and surround organ-specific parenchymal cells. Here, we outline the unique immune and non-immune composition of perivascular tissue immune niches, with an emphasis on the heterogeneity and immunoregulatory functions of AFs and pericytes across diverse organs. We will discuss how perivascular stromal cells contribute to the regulation of innate and adaptive immune responses and integrate immunological signals to impact tissue health and disease.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas Mroz
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
36
|
Blood-brain barrier dysfunction as a potential therapeutic target for neurodegenerative disorders. Arch Pharm Res 2021; 44:487-498. [PMID: 34028650 DOI: 10.1007/s12272-021-01332-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is composed of specific tight junction proteins and transporters expressed on the lining of endothelial cells of the vasculature in the brain. The structural and functional integrity of the BBB is one of the most critical factors for maintaining brain homeostasis and is mainly regulated by complex interactions between various cell types, such as endothelial cells, pericytes, and astrocytes, which are shaped by their differential responses to changes in microenvironments. Alterations in these cellular components have been implicated in neurodegenerative disorders. Although it has long been considered that BBB dysfunction is a mere ramification of pathological phenomena, emerging evidence supports its critical role in the pathogenesis of various disorders. In epilepsy, heightened BBB permeability has been found to be associated with increased occurrence of spontaneous seizures. Additionally, exaggerated inflammatory responses significantly correlate with increased BBB permeability during healthy aging. Furthermore, it has been previously reported that BBB disruption can be an early marker for predicting cognitive impairment in the progression of Alzheimer's disease. We herein review a potential role of the major cellular components of the BBB, with a focus on the contribution of BBB disruption, in neurodegenerative disease progression.
Collapse
|
37
|
Guérit E, Arts F, Dachy G, Boulouadnine B, Demoulin JB. PDGF receptor mutations in human diseases. Cell Mol Life Sci 2021; 78:3867-3881. [PMID: 33449152 PMCID: PMC11072557 DOI: 10.1007/s00018-020-03753-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
PDGFRA and PDGFRB are classical proto-oncogenes that encode receptor tyrosine kinases responding to platelet-derived growth factor (PDGF). PDGFRA mutations are found in gastrointestinal stromal tumors (GISTs), inflammatory fibroid polyps and gliomas, and PDGFRB mutations drive myofibroma development. In addition, chromosomal rearrangement of either gene causes myeloid neoplasms associated with hypereosinophilia. Recently, mutations in PDGFRB were linked to several noncancerous diseases. Germline heterozygous variants that reduce receptor activity have been identified in primary familial brain calcification, whereas gain-of-function mutants are present in patients with fusiform aneurysms, Kosaki overgrowth syndrome or Penttinen premature aging syndrome. Functional analysis of these variants has led to the preclinical validation of tyrosine kinase inhibitors targeting PDGF receptors, such as imatinib, as a treatment for some of these conditions. This review summarizes the rapidly expanding knowledge in this field.
Collapse
Affiliation(s)
- Emilie Guérit
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Florence Arts
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Guillaume Dachy
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Boutaina Boulouadnine
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium.
| |
Collapse
|
38
|
Donadon M, Santoro MM. The origin and mechanisms of smooth muscle cell development in vertebrates. Development 2021; 148:148/7/dev197384. [PMID: 33789914 DOI: 10.1242/dev.197384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smooth muscle cells (SMCs) represent a major structural and functional component of many organs during embryonic development and adulthood. These cells are a crucial component of vertebrate structure and physiology, and an updated overview of the developmental and functional process of smooth muscle during organogenesis is desirable. Here, we describe the developmental origin of SMCs within different tissues by comparing their specification and differentiation with other organs, including the cardiovascular, respiratory and intestinal systems. We then discuss the instructive roles of smooth muscle in the development of such organs through signaling and mechanical feedback mechanisms. By understanding SMC development, we hope to advance therapeutic approaches related to tissue regeneration and other smooth muscle-related diseases.
Collapse
Affiliation(s)
- Michael Donadon
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| |
Collapse
|
39
|
Chenbhanich J, Hu Y, Hetts S, Cooke D, Dowd C, Devine P, Russell B, Kang SHL, Chang VY, Abla AA, Cornett P, Yeh I, Lee H, Martinez-Agosto JA, Frieden IJ, Shieh JT. Segmental overgrowth and aneurysms due to mosaic PDGFRB p.(Tyr562Cys). Am J Med Genet A 2021; 185:1430-1436. [PMID: 33683022 DOI: 10.1002/ajmg.a.62126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/18/2020] [Accepted: 01/14/2021] [Indexed: 01/19/2023]
Abstract
Activating variants in the platelet-derived growth factor receptor β gene (PDGFRB) have been associated with Kosaki overgrowth syndrome, infantile myofibromatosis, and Penttinen premature aging syndrome. A recently described phenotype with fusiform aneurysm has been associated with mosaic PDGFRB c.1685A > G p.(Tyr562Cys) variant. Few reports however have examined the vascular phenotypes and mosaic effects of PDGFRB variants. We describe clinical characteristics of two patients with a recurrent mosaic PDGFRB p.(Tyr562Cys) variant identified via next-generation sequencing-based genetic testing. We observed intracranial fusiform aneurysm in one patient and found an additional eight patients with aneurysms and phenotypes associated with PDGFRB-activating variants through literature search. The conditions caused by PDGFRB-activating variants share overlapping features including overgrowth, premature aged skin, and vascular malformations including aneurysms. Aneurysms are progressive and can result in morbidities and mortalities in the absence of successful intervention. Germline and/or somatic testing for PDGFRB gene should be obtained when PDGFRB activating variant-related phenotypes are present. Whole-body imaging of the arterial tree and echocardiography are recommended after diagnosis. Repeating the imaging study within a 6- to 12-month period after detection is reasonable. Finally, further evaluation for the effectiveness and safety profile of kinase inhibitors in this patient population is warranted.
Collapse
Affiliation(s)
- Jirat Chenbhanich
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, California, USA
| | - Yan Hu
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Steven Hetts
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Daniel Cooke
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Christopher Dowd
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Patrick Devine
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, California, USA.,Institute of Human Genetics, University of California, San Francisco, California, USA
| | | | - Bianca Russell
- Department of Pediatrics, Division of Medical Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Sung Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Vivian Y Chang
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of California Los Angeles, Los Angeles, California, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Patricia Cornett
- Department of Hematology and Oncology, University of California, San Francisco, California, USA
| | - Iwei Yeh
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, California, USA.,Department of Dermatology, University of California, San Francisco, California, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA.,Department of Human Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Julian A Martinez-Agosto
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,Department of Human Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Ilona J Frieden
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Joseph T Shieh
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, California, USA.,Institute of Human Genetics, University of California, San Francisco, California, USA
| |
Collapse
|
40
|
Segura-Collar B, Garranzo-Asensio M, Herranz B, Hernández-SanMiguel E, Cejalvo T, Casas BS, Matheu A, Pérez-Núñez Á, Sepúlveda-Sánchez JM, Hernández-Laín A, Palma V, Gargini R, Sánchez-Gómez P. Tumor-Derived Pericytes Driven by EGFR Mutations Govern the Vascular and Immune Microenvironment of Gliomas. Cancer Res 2021; 81:2142-2156. [PMID: 33593822 DOI: 10.1158/0008-5472.can-20-3558] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/28/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
The extraordinary plasticity of glioma cells allows them to contribute to different cellular compartments in tumor vessels, reinforcing the vascular architecture. It was recently revealed that targeting glioma-derived pericytes, which represent a big percentage of the mural cell population in aggressive tumors, increases the permeability of the vessels and improves the efficiency of chemotherapy. However, the molecular determinants of this transdifferentiation process have not been elucidated. Here we show that mutations in EGFR stimulate the capacity of glioma cells to function as pericytes in a BMX- (bone marrow and X-linked) and SOX9-dependent manner. Subsequent activation of platelet-derived growth factor receptor beta in the vessel walls of EGFR-mutant gliomas stabilized the vasculature and facilitated the recruitment of immune cells. These changes in the tumor microenvironment conferred a growth advantage to the tumors but also rendered them sensitive to pericyte-targeting molecules such as ibrutinib or sunitinib. In the absence of EGFR mutations, high-grade gliomas were enriched in blood vessels, but showed a highly disrupted blood-brain barrier due to the decreased BMX/SOX9 activation and pericyte coverage, which led to poor oxygenation, necrosis, and hypoxia. Overall, these findings identify EGFR mutations as key regulators of the glioma-to-pericyte transdifferentiation, highlighting the intricate relationship between the tumor cells and their vascular and immune milieu. Our results lay the foundations for a vascular-dependent stratification of gliomas and suggest different therapeutic vulnerabilities determined by the genetic status of EGFR. SIGNIFICANCE: This study identifies the EGFR-related mechanisms that govern the capacity of glioma cells to transdifferentiate into pericytes, regulating the vascular and immune phenotypes of the tumors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2142/F1.large.jpg.
Collapse
Affiliation(s)
- Berta Segura-Collar
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Garranzo-Asensio
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Herranz
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain
| | - Esther Hernández-SanMiguel
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Teresa Cejalvo
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Bárbara S Casas
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- CIBERFES, Instituto de Salud Carlos III, Madrid, Spain
| | - Ángel Pérez-Núñez
- Dto. Neurocirugía, Hospital 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ricardo Gargini
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
41
|
Liu N, Xue Y, Tang J, Zhang M, Ren X, Fu J. The dynamic change of phenotypic markers of smooth muscle cells in an animal model of cerebral small vessel disease. Microvasc Res 2021; 133:104061. [PMID: 32827495 DOI: 10.1016/j.mvr.2020.104061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND The pathological character of cerebral small vessel disease (CSVD) is the dysfunction of cerebral small arteries caused by risk factors. A switch from the contractile phenotype to the synthetic phenotype of vascular smooth muscle cells (SMCs) can decrease the contractility of arteries. The alteration of the vascular wall extracellular matrix (ECM) is found to regulate the process. We speculated that SMCs phenotype changes may also occur in CSVD induced by hypertension and the alteration of ECM especially fibronectin and laminin may regulate the process. METHOD Male spontaneously hypertensive rats (SHR) were used as a CSVD animal model. SMCs phenotypic markers and the ECM expression of the cerebral small arteries of SHR at different ages were evaluated by immunofluorescence. The phenotype changes of primary brain microvascular SMCs cultured on laminin-coating dish or fibronectin-coating dish were evaluated by western blot. RESULT A switch from the contractile phenotype to synthetic phenotype in SHR at 10 and 22 weeks of age was observed. Meanwhile, increased expression of fibronectin and a temporary decline of laminin was found in small arteries of SHR at 22 weeks. In vitro experiments also convinced that SMCs cultured on a fibronectin-coating dish failed to maintain contractile phenotype. While at 50 weeks, significant drops of both synthetic and contractile phenotypic markers were witnessed in SHR, with high expressions of four kinds of ECM. CONCLUSION SMCs in cerebral small arteries exhibited a switch from the contractile phenotype to synthetic phenotype during the chronic process of hypertension and aging. Moreover, the change of fibronectin and laminin may regulate the process.
Collapse
MESH Headings
- Age Factors
- Animals
- Biomarkers/metabolism
- Cells, Cultured
- Cerebral Arteries/metabolism
- Cerebral Arteries/pathology
- Cerebral Arteries/physiopathology
- Cerebral Small Vessel Diseases/etiology
- Cerebral Small Vessel Diseases/metabolism
- Cerebral Small Vessel Diseases/pathology
- Cerebral Small Vessel Diseases/physiopathology
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Fibronectins/metabolism
- Hypertension/complications
- Hypertension/metabolism
- Hypertension/physiopathology
- Laminin/metabolism
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Rats, Inbred SHR
- Rats, Inbred WKY
- Vascular Remodeling
- Vasoconstriction
- Rats
Collapse
Affiliation(s)
- Na Liu
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Yang Xue
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Jie Tang
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Miaoyi Zhang
- Department of Neurology, North Huashan hospital, Fudan University, No.108 Lu Xiang Road, Shanghai 201900, China
| | - Xue Ren
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, China; Department of Neurology, North Huashan hospital, Fudan University, No.108 Lu Xiang Road, Shanghai 201900, China.
| |
Collapse
|
42
|
Bulut GB, Alencar GF, Owsiany KM, Nguyen AT, Karnewar S, Haskins RM, Waller LK, Cherepanova OA, Deaton RA, Shankman LS, Keller SR, Owens GK. KLF4 (Kruppel-Like Factor 4)-Dependent Perivascular Plasticity Contributes to Adipose Tissue inflammation. Arterioscler Thromb Vasc Biol 2021; 41:284-301. [PMID: 33054397 PMCID: PMC7769966 DOI: 10.1161/atvbaha.120.314703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Smooth muscle cells and pericytes display remarkable plasticity during injury and disease progression. Here, we tested the hypothesis that perivascular cells give rise to Klf4-dependent macrophage-like cells that augment adipose tissue (AT) inflammation and metabolic dysfunction associated with diet-induced obesity (DIO). Approach and Results: Using Myh11-CreERT2 eYFP (enhanced yellow fluorescent protein) mice and flow cytometry of the stromovascular fraction of epididymal AT, we observed a large fraction of smooth muscle cells and pericytes lineage traced eYFP+ cells expressing macrophage markers. Subsequent single-cell RNA sequencing, however, showed that the majority of these cells had no detectable eYFP transcript. Further exploration revealed that intraperitoneal injection of tamoxifen in peanut oil, used for generating conditional knockout or reporter mice in thousands of previous studies, resulted in large increase in the autofluorescence and false identification of macrophages within epididymal AT as being eYFP+; and unintended proinflammatory consequences. Using newly generated Myh11-DreERT2tdTomato mice given oral tamoxifen, we virtually eliminated the problem with autofluorescence and identified 8 perivascular cell dominated clusters, half of which were altered upon DIO. Given that perivascular cell KLF4 (kruppel-like factor 4) can have beneficial or detrimental effects, we tested its role in obesity-associated AT inflammation. While smooth muscle cells and pericytes-specific Klf4 knockout (smooth muscle cells and pericytes Klf4Δ/Δ) mice were not protected from DIO, they displayed improved glucose tolerance upon DIO, and showed marked decreases in proinflammatory macrophages and increases in LYVE1+ lymphatic endothelial cells in the epididymal AT. CONCLUSIONS Perivascular cells within the AT microvasculature dynamically respond to DIO and modulate tissue inflammation and metabolism in a KLF4-dependent manner.
Collapse
Affiliation(s)
- Gamze B. Bulut
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Gabriel F. Alencar
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | | | - Anh T. Nguyen
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Santosh Karnewar
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Ryan M. Haskins
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Lillian K. Waller
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Olga A. Cherepanova
- Cardiovascular and Metabolic Sciences Lerner Research Institute, Cleveland Clinic
| | - Rebecca A. Deaton
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Laura S. Shankman
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Susanna R. Keller
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia
| | - Gary K. Owens
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| |
Collapse
|
43
|
Takenouchi T, Kodo K, Yamazaki F, Nakatomi H, Kosaki K. Progressive cerebral and coronary aneurysms in the original two patients with Kosaki overgrowth syndrome. Am J Med Genet A 2020; 185:999-1003. [PMID: 33382209 DOI: 10.1002/ajmg.a.62027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 11/06/2022]
Abstract
Skeletal overgrowth accompanied by de novo heterozygous activating mutations in PDGFRB (platelet-derived growth factor receptor beta), that is, p.Pro584Arg and p.Trp566Arg, defines Kosaki overgrowth syndrome (OMIM #616592). Emerging evidence suggests a role of PDGFRB in the genesis of cerebral aneurysms. The delineation of the range and progression of the vascular phenotype of Kosaki overgrowth syndrome is urgently needed. Herein, we conducted subsequent analyses of serial neurovascular imaging studies of two original patients with a de novo heterozygous mutation in PDGFRB, that is, p.Pro584Arg. The analysis showed the progressive dilation of basilar and vertebral arteries and coronary arteries commencing during the teenage years and early 20s. The radiographic appearance of the basilar vertebral aneurysms showed signs of arterial wall dilation, compatible with the known vascular pathology of vascular-type Ehlers-Danlos syndrome and Loeys-Dietz syndrome. The dolichoectasia in cerebrovascular arteries can lead to fatal complications, even with neurosurgical interventions. To prevent the progression of artery dilation, preventative and therapeutic medical measures using tyrosine kinase inhibitors may be necessary in addition to optimal control of the systemic blood pressure. Kosaki overgrowth syndrome is a clinically recognizable syndrome that can exhibit progressive dilatory and tortuous vascular changes in basilar/vertebral and coronary arteries as early as in the teenage years. We recommend careful counseling regarding the risk of future vascular complications, optimal blood pressure control, and regular systemic vascular screening during follow-up examinations.
Collapse
Affiliation(s)
- Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Kodo
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Fumito Yamazaki
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Krithika S, Sumi S. Neurovascular inflammation in the pathogenesis of brain arteriovenous malformations. J Cell Physiol 2020; 236:4841-4856. [PMID: 33345330 DOI: 10.1002/jcp.30226] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Brain arteriovenous malformations (bAVM) arise as congenital or sporadic focal lesions with a significant risk for intracerebral hemorrhage (ICH). A wide range of interindividual differences is present in the onset, progression, and severity of bAVM. A growing body of gene expression and polymorphism-based research studies support the involvement of localized inflammation in bAVM disease progression and rupture. In this review article, we analyze the altered responses of neural, vascular, and immune cell types that contribute to the inflammatory process, which exacerbates the pathophysiological progression of vascular dysmorphogenesis in bAVM lesions. The cumulative effect of inflammation in bAVM development is orchestrated by various genetic moderators and inflammatory mediators. We also discuss the potential therapies for the treatment of brain AVM by targeting the inflammatory processes and mediators. Elucidating the precise role of inflammation in the bAVM growth and hemorrhage would open novel avenues for noninvasive and effectual causal therapy that may complement the current therapeutic strategies.
Collapse
Affiliation(s)
- S Krithika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
45
|
Mazzeo A, Gai C, Trento M, Porta M, Beltramo E. Effects of thiamine and fenofibrate on high glucose and hypoxia-induced damage in cell models of the inner blood-retinal barrier. Acta Diabetol 2020; 57:1423-1433. [PMID: 32656709 DOI: 10.1007/s00592-020-01565-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
AIMS Although diabetic retinopathy has long been considered a microvascular complication, retinal neurodegeneration and inflammation may precede its clinical manifestations. Despite all research efforts, the primary treatment options remain laser photocoagulation and anti-vascular endothelial growth factor (VEGF) intravitreal injections, both aggressive and targeting the late stages of the disease. Medical treatments addressing the early phases of diabetic retinopathy are therefore needed. We aimed at verifying if thiamine and fenofibrate protect the cells of the inner blood-retinal barrier from the metabolic stress induced by diabetic-like conditions. METHODS Human microvascular endothelial cells (HMECs), retinal pericytes (HRPs) and Müller cells (MIO-M1) were cultured in intermittent high glucose (intHG) and/or hypoxia, with addition of fenofibrate or thiamine. Modulation of adhesion molecules and angiogenic factors was addressed. RESULTS Integrins β1/αVβ3 and ICAM1 were upregulated in HMECs/HRPs cultured in diabetic-like conditions, as well as metalloproteases MMP2/9 in HRP, with a reduction in their inhibitor TIMP1; MMP2 increased also in HMEC, and TIMP1 decreased in MIO-M1. VEGF and HIF-1α were strongly increased in HMEC in intHG + hypoxia, and VEGF also in HRP. Ang-1/2 augmented in HMEC/MIO-M1, and MCP-1 in HRP/MIO-M1 in intHG + hypoxia. Thiamine was able to normalize all such abnormal modulations, while fenofibrate had effects in few cases only. CONCLUSIONS We suggest that endothelial cells and pericytes are more affected than Müller cells by diabetic-like conditions. Fenofibrate shows a controversial behavior, potentially positive on Müller cells and pericytes, but possibly detrimental to endothelium, while thiamine confirms once more to be an effective agent in reducing diabetes-induced retinal damage.
Collapse
Affiliation(s)
- Aurora Mazzeo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Chiara Gai
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Marina Trento
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Massimo Porta
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| |
Collapse
|
46
|
Rajan AM, Ma RC, Kocha KM, Zhang DJ, Huang P. Dual function of perivascular fibroblasts in vascular stabilization in zebrafish. PLoS Genet 2020; 16:e1008800. [PMID: 33104690 PMCID: PMC7644104 DOI: 10.1371/journal.pgen.1008800] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Blood vessels are vital to sustain life in all vertebrates. While it is known that mural cells (pericytes and smooth muscle cells) regulate vascular integrity, the contribution of other cell types to vascular stabilization has been largely unexplored. Using zebrafish, we identified sclerotome-derived perivascular fibroblasts as a novel population of blood vessel associated cells. In contrast to pericytes, perivascular fibroblasts emerge early during development, express the extracellular matrix (ECM) genes col1a2 and col5a1, and display distinct morphology and distribution. Time-lapse imaging reveals that perivascular fibroblasts serve as pericyte precursors. Genetic ablation of perivascular fibroblasts markedly reduces collagen deposition around endothelial cells, resulting in dysmorphic blood vessels with variable diameters. Strikingly, col5a1 mutants show spontaneous hemorrhage, and the penetrance of the phenotype is strongly enhanced by the additional loss of col1a2. Together, our work reveals dual roles of perivascular fibroblasts in vascular stabilization where they establish the ECM around nascent vessels and function as pericyte progenitors. Blood vessels are essential to sustain life in humans. Defects in blood vessels can lead to serious diseases, such as hemorrhage, tissue ischemia, and stroke. However, how blood vessel stability is maintained by surrounding support cells is still poorly understood. Using the zebrafish model, we identify a new population of blood vessel associated cells termed perivascular fibroblasts, which originate from the sclerotome, an embryonic structure that is previously known to generate the skeleton of the animal. Perivascular fibroblasts are distinct from pericytes, a known population of blood vessel support cells. They become associated with blood vessels much earlier than pericytes and express several collagen genes, encoding main components of the extracellular matrix. Loss of perivascular fibroblasts or mutations in collagen genes result in fragile blood vessels prone to damage. Using cell tracing in live animals, we find that a subset of perivascular fibroblasts can differentiate into pericytes. Together, our work shows that perivascular fibroblasts play two important roles in maintaining blood vessel integrity. Perivascular fibroblasts secrete collagens to stabilize newly formed blood vessels and a sub-population of these cells also functions as precursors to generate pericytes to provide additional vascular support.
Collapse
Affiliation(s)
- Arsheen M. Rajan
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roger C. Ma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Katrinka M. Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dan J. Zhang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
47
|
Liu W, Li D, Cao H, Li H, Wang Y. Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biol Chem 2020; 402:123-132. [PMID: 33544474 DOI: 10.1515/hsz-2019-0451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Adipose tissue is an important organ in our body, participating not only in energy metabolism but also immune regulation. It is broadly classified as white (WAT) and brown (BAT) adipose tissues. WAT is highly heterogeneous, composed of adipocytes, various immune, progenitor and stem cells, as well as the stromal vascular populations. The expansion and inflammation of WAT are hallmarks of obesity and play a causal role in the development of metabolic and cardiovascular diseases. The primary event triggering the inflammatory expansion of WAT remains unclear. The present review focuses on the role of adipocyte progenitors (APS), which give rise to specialized adipocytes, in obesity-associated WAT expansion, inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenjing Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Handi Cao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
48
|
Yue Z, Chen J, Lian H, Pei J, Li Y, Chen X, Song S, Xia J, Zhou B, Feng J, Zhang X, Hu S, Nie Y. PDGFR-β Signaling Regulates Cardiomyocyte Proliferation and Myocardial Regeneration. Cell Rep 2020; 28:966-978.e4. [PMID: 31340157 DOI: 10.1016/j.celrep.2019.06.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 01/21/2023] Open
Abstract
Platelet-derived growth factor receptor (PDGFR) signaling is involved in proliferation and survival in a wide array of cell types. The role of PDGFR signaling in heart regeneration is still unknown. We find that PDGFR-β signaling decreases in myocardium with age and that conditional activation PDGFR-β in cardiomyocytes promotes heart regeneration. Employing RNA sequencing, we show that the enhancer of zeste homolog 2 (Ezh2) can be upregulated by PDGFR-β signaling in primary cardiomyocytes. Conditional knockout of Ezh2 blocks cardiomyocyte proliferation and H3K27me3 modification during neonatal heart regeneration with Ink4a/Arf upregulation, even in mice with myocyte-specific conditional activation of PDGFR-β. We also show that PDGFR-β controls EZH2 expression via the phosphatidylinositol 3-kinase (PI3K)/p-Akt pathway in cardiomyocytes. Gene therapy with adeno-associated virus serotype 9 (AAV9) encoding activated PDGFR-β enhances adult heart regeneration and systolic function. Our data demonstrate that the PDGFR-β/EZH2 pathway is critical for promoting cardiomyocyte proliferation and heart regeneration, providing a potential target for cardiac repair.
Collapse
Affiliation(s)
- Zhang Yue
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jiuling Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yandong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xianda Chen
- Children's Heart Center, the Second Affiliated Hospital & Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xinyue Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shengshou Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| |
Collapse
|
49
|
Li X, Yang J, Shen M, Xie XL, Liu GJ, Xu YX, Lv FH, Yang H, Yang YL, Liu CB, Zhou P, Wan PC, Zhang YS, Gao L, Yang JQ, Pi WH, Ren YL, Shen ZQ, Wang F, Deng J, Xu SS, Salehian-Dehkordi H, Hehua E, Esmailizadeh A, Dehghani-Qanatqestani M, Štěpánek O, Weimann C, Erhardt G, Amane A, Mwacharo JM, Han JL, Hanotte O, Lenstra JA, Kantanen J, Coltman DW, Kijas JW, Bruford MW, Periasamy K, Wang XH, Li MH. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat Commun 2020; 11:2815. [PMID: 32499537 PMCID: PMC7272655 DOI: 10.1038/s41467-020-16485-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/04/2020] [Indexed: 01/15/2023] Open
Abstract
Understanding the genetic changes underlying phenotypic variation in sheep (Ovis aries) may facilitate our efforts towards further improvement. Here, we report the deep resequencing of 248 sheep including the wild ancestor (O. orientalis), landraces, and improved breeds. We explored the sheep variome and selection signatures. We detected genomic regions harboring genes associated with distinct morphological and agronomic traits, which may be past and potential future targets of domestication, breeding, and selection. Furthermore, we found non-synonymous mutations in a set of plausible candidate genes and significant differences in their allele frequency distributions across breeds. We identified PDGFD as a likely causal gene for fat deposition in the tails of sheep through transcriptome, RT-PCR, qPCR, and Western blot analyses. Our results provide insights into the demographic history of sheep and a valuable genomic resource for future genetic studies and improved genome-assisted breeding of sheep and other domestic animals.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ji Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Min Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Guang-Jian Liu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Ya-Xi Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hua Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Yong-Lin Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Chang-Bin Liu
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Peng-Cheng Wan
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Yun-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Lei Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Jing-Quan Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Wen-Hui Pi
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, 256600, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, 256600, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Deng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Song-Song Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Eer Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Ondřej Štěpánek
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Christina Weimann
- Institute of Animal Breeding and Genetics, Justus Liebig University, Giessen, Germany
| | - Georg Erhardt
- Institute of Animal Breeding and Genetics, Justus Liebig University, Giessen, Germany
| | - Agraw Amane
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- LiveGene Program, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Olivier Hanotte
- LiveGene Program, International Livestock Research Institute, Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Center for Tropical Livestock Genetics and Health (CTLGH), the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - James W Kijas
- CSIRO Livestock Industries, St Lucia, Brisbane, QLD, Australia
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Cathays Park, Cardiff, CF10 3AX, Wales, UK
- Sustainable Places Research Institute, Cardiff University, CF10 3BA, Cardiff, Wales, UK
| | - Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Xin-Hua Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
50
|
Kato T, Sekine Y, Nozaki H, Uemura M, Ando S, Hirokawa S, Onodera O. Excessive Production of Transforming Growth Factor β1 Causes Mural Cell Depletion From Cerebral Small Vessels. Front Aging Neurosci 2020; 12:151. [PMID: 32581764 PMCID: PMC7283554 DOI: 10.3389/fnagi.2020.00151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
It is increasingly becoming apparent that cerebrovascular dysfunction contributes to the pathogenic processes involved in vascular dementia, Alzheimer’s disease, and other neurodegenerative disorders. Under these pathologic conditions, the degeneration of cerebral blood vessels is frequently accompanied by a loss of mural cells from the vascular walls. Vascular mural cells play pivotal roles in cerebrovascular functions, such as regulation of cerebral blood flow and maintenance of the blood-brain barrier (BBB). Therefore, cerebrovascular mural cell impairment is involved in the pathophysiology of vascular-related encephalopathies, and protecting these cells is essential for maintaining brain health. However, our understanding of the molecular mechanism underlying mural cell abnormalities is incomplete. Several reports have indicated that dysregulated transforming growth factor β (TGFβ) signaling is involved in the development of cerebral arteriopathies. These studies have specifically suggested the involvement of TGFβ overproduction. Although cerebrovascular toxicity via vascular fibrosis by extracellular matrix accumulation or amyloid deposition is known to occur with enhanced TGFβ production, whether increased TGFβ results in the degeneration of vascular mural cells in vivo remains unknown. Here, we demonstrated that chronic TGFβ1 overproduction causes a dropout of mural cells and reduces their coverage on cerebral vessels in both smooth muscle cells and pericytes. Mural cell degeneration was also accompanied by vascular luminal dilation. TGFβ1 overproduction in astrocytes significantly increased TGFβ1 content in the cerebrospinal fluid (CSF) and increased TGFβ signaling-regulated gene expression in both pial arteries and brain capillaries. These results indicate that TGFβ is an important effector that mediates mural cell abnormalities under pathological conditions related to cerebral arteriopathies.
Collapse
Affiliation(s)
- Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Science Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yumi Sekine
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Nozaki
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Uemura
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shoichiro Ando
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Sachiko Hirokawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|