1
|
Adhikary K, Kapoor S, Kotak S. A cortical pool of LIN-5 (NuMA) controls cytokinetic furrow formation and cytokinesis completion. J Cell Biol 2025; 224:e202406059. [PMID: 40304693 PMCID: PMC12042773 DOI: 10.1083/jcb.202406059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 02/26/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
In animal cells, cleavage furrow formation is controlled by localized activation of the GTPase RhoA at the equatorial membrane using cues transmitted from the spindle. Here, we explore the function of LIN-5, a well-studied protein known for its role in aster separation and spindle positioning in cleavage furrow formation. We show that the cortical pool of LIN-5, recruited by GPR-1/2 and important for cortical force generation, regulates cleavage furrow formation independently of its roles in aster separation and spindle positioning. Instead, our data suggest that enrichment of LIN-5/GPR-1/2 at the polar cortical region is essential to ensure the timely accumulation of contractile ring components-myosin II and Anillin at the equatorial cortex. We additionally define a late cytokinesis role of cortical LIN-5/GPR-1/2 in midbody stabilization and abscission. These results indicate that the cortical LIN-5/GPR-1/2 complex contributes to multiple aspects of cytokinesis independently of its roles in spindle positioning and elongation.
Collapse
Affiliation(s)
- Kuheli Adhikary
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| | - Sukriti Kapoor
- Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
2
|
Pascual-Vargas P, Arias-Garcia M, Roumeliotis TI, Choudhary JS, Bakal C. Integration of focal adhesion morphogenesis and polarity by DOCK5 promotes YAP/TAZ-driven drug resistance in TNBC. Mol Omics 2025. [PMID: 40353692 PMCID: PMC12068046 DOI: 10.1039/d4mo00154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/04/2025] [Indexed: 05/14/2025]
Abstract
YAP and TAZ are transcriptional co-activators that are inhibited by sequestration in the cytoplasm. Cellular signalling pathways integrate soluble, mechanical (cytoskeleton, adhesion), and geometric (cell size, morphology) cues to regulate the translocation of YAP/TAZ to the nucleus. In triple-negative breast cancer (TNBC) cells, both signalling and morphogenesis are frequently rewired, leading to increased YAP/TAZ translocation, which drives proliferation, invasion, and drug resistance. However, whether this increased YAP/TAZ translocation is due to alterations in upstream signalling events or changes in cell morphology remains unclear. To gain insight into YAP/TAZ regulation in TNBC cells, we performed multiplexed quantitative genetic screens for YAP/TAZ localisation and cell shape, enabling us to determine whether changes in YAP/TAZ localisation following gene knockdown could be explained by alterations in cell morphology. These screens revealed that the focal adhesion (FA)-associated RhoGEF DOCK5 is essential for YAP/TAZ nuclear localisation in TNBC cells. DOCK5-defective cells exhibit defects in FA morphogenesis and fail to generate a stable, polarised leading edge, which we propose contributes to impaired YAP/TAZ translocation. Mechanistically, we implicate DOCK5's ability to act as a RacGEF and as a scaffold for NCK/AKT as key to its role in FA morphogenesis. Importantly, DOCK5 is essential for promoting the resistance of LM2 cells to the clinically used MEK inhibitor Binimetinib. Taken together, our findings suggest that DOCK5's role in TNBC cell shape determination drives YAP/TAZ upregulation and drug resistance.
Collapse
Affiliation(s)
- Patricia Pascual-Vargas
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Mar Arias-Garcia
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Theodoros I Roumeliotis
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Jyoti S Choudhary
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
3
|
Chrupcala ML, Moseley JB. PP2A-B56 regulates Mid1 protein levels for proper cytokinesis in fission yeast. Mol Biol Cell 2025; 36:ar52. [PMID: 40042941 PMCID: PMC12005099 DOI: 10.1091/mbc.e24-08-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/12/2025] Open
Abstract
Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In fission yeast cells, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1∆ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide toward cell tips. These par1∆ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1∆ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.
Collapse
Affiliation(s)
- Madeline L. Chrupcala
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
4
|
Prifti DK, Lauzier A, Garand C, Calvo E, Devillers R, Roy S, Dos Santos A, Descombes L, Trudel B, Laplante M, Bordeleau F, Elowe S. ARHGEF17/TEM4 regulates the cell cycle through control of G1 progression. J Cell Biol 2025; 224:e202311194. [PMID: 39903211 PMCID: PMC11792891 DOI: 10.1083/jcb.202311194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
The Ras homolog (Rho) small GTPases coordinate diverse cellular functions including cell morphology, adhesion and motility, cell cycle progression, survival, and apoptosis via their role in regulating the actin cytoskeleton. The upstream regulators for many of these functions are unknown. ARHGEF17 (also known as TEM4) is a Rho family guanine nucleotide exchange factor (GEF) implicated in cell migration, cell-cell junction formation, and the mitotic checkpoint. In this study, we characterize the regulation of the cell cycle by TEM4. We demonstrate that TEM4-depleted cells exhibit multiple defects in mitotic entry and duration, spindle morphology, and spindle orientation. In addition, TEM4 insufficiency leads to excessive cortical actin polymerization and cell rounding defects. Mechanistically, we demonstrate that TEM4-depleted cells delay in G1 as a consequence of decreased expression of the proproliferative transcriptional co-activator YAP. TEM4-depleted cells that progress through to mitosis do so with decreased levels of cyclin B as a result of attenuated expression of CCNB1. Importantly, cyclin B overexpression in TEM4-depleted cells largely rescues mitotic progression and chromosome segregation defects in anaphase. Our study thus illustrates the consequences of Rho signaling imbalance on cell cycle progression and identifies TEM4 as the first GEF governing Rho GTPase-mediated regulation of G1/S.
Collapse
Affiliation(s)
- Diogjena Katerina Prifti
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Annie Lauzier
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Eva Calvo
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Romain Devillers
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - Suparba Roy
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Laurence Descombes
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Benjamin Trudel
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - François Bordeleau
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec City, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Sabine Elowe
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Département de Pédiatrie, Faculté de Médicine, Université Laval, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| |
Collapse
|
5
|
Chrupcala ML, Moseley JB. PP2A-B56 regulates Mid1 protein levels for proper cytokinesis in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.28.601230. [PMID: 38979265 PMCID: PMC11230426 DOI: 10.1101/2024.06.28.601230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In fission yeast cells, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1Δ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide towards cell tips. These par1Δ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1Δ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.
Collapse
Affiliation(s)
- Madeline L. Chrupcala
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| |
Collapse
|
6
|
Riparbelli MG, Migliorini M, Callaini G. Astral Microtubules Are Dispensable for Pavarotti Localization During Drosophila Spermatogonial Mitoses. Cytoskeleton (Hoboken) 2025. [PMID: 39754387 DOI: 10.1002/cm.21986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes. This unusual distribution restricts and enhances during anaphase where antiparallel cortical microtubules overlap. Additional Pav staining is also found in the inner central spindle where the microtubules overlap between the segregating chromosomes. At late telophase, Pav accumulates to the midbody and on a weak ring that surround the cytoplasmic bridges. Pav localizes in an equatorial discontinuous ring of Sas4 spermatogonia where the non-centrosomal microtubules overlap, but the motor protein is absent in the interior central spindle where the inner microtubules are lacking. However, the anastral spindles properly support cell division, suggesting that astral microtubules are dispensable for Pav localization in the Sas4 spermatogonial cell cortex. This function is presumably replaced by the antiparallel cortical microtubules extending from the acentriolar polar regions. In contrast, the majority of the meiotic spindles in Sas4 mutant testes do not progress beyond late anaphase, and only a small fraction of the primary spermatocytes experienced an abnormal division with the assembly of aberrant telophase spindles. Pav accumulates around the chromatin clusters or enhanced at the plus ends of the antiparallel non-centrosomal cortical bundles of microtubules. However, these bundles are not arranged properly in the equatorial region of the cell and cytokinesis is abnormal or fails. Therefore, the observations in Sas4 mutant testes suggest that the spermatogonial mitoses correctly occur in the absence of astral microtubules, whereas meiotic divisions fail.
Collapse
|
7
|
Cebrián-Lacasa D, Leda M, Goryachev AB, Gelens L. Wave-driven phase wave patterns in a ring of FitzHugh-Nagumo oscillators. Phys Rev E 2024; 110:054208. [PMID: 39690647 DOI: 10.1103/physreve.110.054208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/24/2024] [Indexed: 12/19/2024]
Abstract
We explore a biomimetic model that simulates a cell, with the internal cytoplasm represented by a two-dimensional circular domain and the external cortex by a surrounding ring, both modeled using FitzHugh-Nagumo systems. The external ring is dynamically influenced by a pacemaker-driven wave originating from the internal domain, leading to the emergence of three distinct dynamical states based on the varying strengths of coupling. The range of dynamics observed includes phase patterning, the propagation of phase waves, and interactions between traveling and phase waves. A simplified linear model effectively explains the mechanisms behind the variety of phase patterns observed, providing insights into the complex interplay between a cell's internal and external environments.
Collapse
Affiliation(s)
| | | | | | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Yang J, Zhu X, Wang F, Chen Z, Zhang Y, Chen J, Ni H, Zhang C, Zhuge Q. SOXC Enhances NGN2-Mediated Reprogramming of Glioblastoma Cells Into Neuron-Like Cells by Modulating RhoA and RAC1/CDC42 Pathway Activity. CNS Neurosci Ther 2024; 30:e70075. [PMID: 39390804 PMCID: PMC11467166 DOI: 10.1111/cns.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Glioblastoma represents the most frequently diagnosed malignant neoplasm within the central nervous system. Human glioblastoma cells can be phenotypically reprogrammed into neuron-like cells through the forced expression of NEUROG2 and SOXC factors. NEUROG2 serves as a pioneer factor, establishing an initial framework for this transformation. However, the specific role of SOXC factors has not been fully elucidated. METHODS In this study, we used ChIP-seq to determine the potential target gene of NGN2. RNA-seq has been used to evaluate the transcriptional change during NGN2-SOX11-mediated neuron reprogramming. Immunofluorescence was used to determine the neuron reprogramming efficacy and cell proliferation ability. ChIP-qPCR, Co-IP, and Western Blot were performed to investigate the mechanism. RESULTS Our findings reveal that SOXC factors, in contrast to their previously identified function as transcriptional activators, act as transcriptional repressors. They achieve this by recruiting TRIM28 to suppress the expression of ECT2, a RhoGEF. This suppression results in the differential regulation of RhoA, RAC1, and CDC42 activities throughout the reprogramming process. We further establish that small molecules targeting RhoA and its effectors can substitute for SOXC factors in facilitating the neuronal reprogramming of glioblastoma cells. CONCLUSION These results underscore the pivotal role of SOXC factors' transcriptional repression and illuminate one of their specific downstream targets.
Collapse
Affiliation(s)
- Jianjing Yang
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Xiaohong Zhu
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Fan Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhen Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ying Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiawei Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Haoqi Ni
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Chun‐Li Zhang
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qichuan Zhuge
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
9
|
Day CA, Langfald A, Lukes T, Middlebrook H, Vaughan KT, Daniels D, Hinchcliffe EH. Commitment to cytokinetic furrowing requires the coordinate activity of microtubules and Plk1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612913. [PMID: 39345392 PMCID: PMC11429772 DOI: 10.1101/2024.09.16.612913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
At anaphase, spindle microtubules (MTs) position the cleavage furrow and trigger actomyosin assembly by localizing the small GTPase RhoA and the scaffolding protein anillin to a narrow band along the equatorial cortex [1-6]. Using vertebrate somatic cells we examined the temporal control of furrow assembly. Although its positioning commences at anaphase onset, furrow maturation is not complete until ∼10-11 min later. The maintenance of the RhoA/anillin scaffold initially requires continuous signaling from the spindle; loss of either MTs or polo-like kinase 1 (Plk1) activity prevents proper RhoA/anillin localization to the equator, thereby disrupting furrowing. However, we find that at ∼6 min post-anaphase, the cortex becomes "committed to furrowing"; loss of either MTs or Plk1 after this stage does not prevent eventual furrowing, even though at this point the contractile apparatus has not fully matured. Also at this stage, the RhoA/anillin scaffold at the equator becomes permanent. Surprisingly, concurrent loss of both MTs and Plk1 activity following the "commitment to furrowing" stage results in persistent, asymmetric "half-furrows", with only one cortical hemisphere retaining RhoA/anillin, and undergoing ingression. This phenotype is reminiscent of asymmetric furrows caused by a physical block between spindle and cortex [7-9], or by acentric spindle positioning [10-12]. The formation of these persistent "half-furrows" suggests a potential feedback mechanism between the spindle and the cortex that maintains cortical competency along the presumptive equatorial region prior to the "commitment to furrowing" stage of cytokinesis, thereby ensuring the eventual ingression of a symmetric cleavage furrow.
Collapse
|
10
|
Ravala SK, Tesmer JJG. New Mechanisms Underlying Oncogenesis in Dbl Family Rho Guanine Nucleotide Exchange Factors. Mol Pharmacol 2024; 106:117-128. [PMID: 38902036 PMCID: PMC11331503 DOI: 10.1124/molpharm.124.000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.
Collapse
Affiliation(s)
- Sandeep K Ravala
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
11
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
12
|
Dent LG, Curry N, Sparks H, Bousgouni V, Maioli V, Kumar S, Munro I, Butera F, Jones I, Arias-Garcia M, Rowe-Brown L, Dunsby C, Bakal C. Environmentally dependent and independent control of 3D cell shape. Cell Rep 2024; 43:114016. [PMID: 38636520 DOI: 10.1016/j.celrep.2024.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
How cancer cells determine their shape in response to three-dimensional (3D) geometric and mechanical cues is unclear. We develop an approach to quantify the 3D cell shape of over 60,000 melanoma cells in collagen hydrogels using high-throughput stage-scanning oblique plane microscopy (ssOPM). We identify stereotypic and environmentally dependent changes in shape and protrusivity depending on whether a cell is proximal to a flat and rigid surface or is embedded in a soft environment. Environmental sensitivity metrics calculated for small molecules and gene knockdowns identify interactions between the environment and cellular factors that are important for morphogenesis. We show that the Rho guanine nucleotide exchange factor (RhoGEF) TIAM2 contributes to shape determination in environmentally independent ways but that non-muscle myosin II, microtubules, and the RhoGEF FARP1 regulate shape in ways dependent on the microenvironment. Thus, changes in cancer cell shape in response to 3D geometric and mechanical cues are modulated in both an environmentally dependent and independent fashion.
Collapse
Affiliation(s)
- Lucas G Dent
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Nathan Curry
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Hugh Sparks
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Vicky Bousgouni
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Vincent Maioli
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Ian Munro
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Francesca Butera
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Ian Jones
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Mar Arias-Garcia
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Leo Rowe-Brown
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK.
| | - Chris Bakal
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
13
|
Husser MC, Pham NP, Law C, Araujo FRB, Martin VJJ, Piekny A. Endogenous tagging using split mNeonGreen in human iPSCs for live imaging studies. eLife 2024; 12:RP92819. [PMID: 38652106 PMCID: PMC11037917 DOI: 10.7554/elife.92819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.
Collapse
Affiliation(s)
| | - Nhat P Pham
- Biology Department, Concordia University, Montreal, Canada
| | - Chris Law
- Biology Department, Concordia University, Montreal, Canada
- Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Canada
| | - Flavia R B Araujo
- Center for Applied Synthetic Biology, Concordia University, Montreal, Canada
| | - Vincent J J Martin
- Biology Department, Concordia University, Montreal, Canada
- Center for Applied Synthetic Biology, Concordia University, Montreal, Canada
| | - Alisa Piekny
- Biology Department, Concordia University, Montreal, Canada
- Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Canada
- Center for Applied Synthetic Biology, Concordia University, Montreal, Canada
| |
Collapse
|
14
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
15
|
Okada A, Yumura S. Cleavage furrow positioning in dividing Dictyostelium cells. Cytoskeleton (Hoboken) 2023; 80:448-460. [PMID: 37650534 DOI: 10.1002/cm.21784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
Accurate placement of the cleavage furrow is crucial for successful cell division. Recent advancements have revealed that diverse mechanisms have evolved across different branches of the phylogenetic tree. Here, we employed Dictyostelium cells to validate previous models. We observed that during metaphase and early anaphase, mitotic spindles exhibited random rotary movements which ceased when the spindle elongated by approximately 7 μm. At this point, astral microtubules reached the polar cell cortex and fixed the spindle axis, causing cells to elongate by extending polar pseudopods and divide along the spindle axis. Therefore, the position of the furrow is determined when the spindle orientation is fixed. The distal ends of astral microtubules stimulate the extension of pseudopods at the polar cortex. One signal for pseudopod extension may be phosphatidylinositol trisphosphate in the cell membrane, but there appears to be another unknown signal. At the onset of polar pseudopod extension, cortical flow began from both poles toward the equator. We suggest that polar stimulation by astral microtubules determines the furrow position, induces polar pseudopod extension and cortical flow, and accumulates the elements necessary for the construction of the contractile ring.
Collapse
Affiliation(s)
- Akiko Okada
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
16
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
17
|
Mota MBS, Woods NT, Carvalho MA, Monteiro ANA, Mesquita RD. Evolution of the triplet BRCT domain. DNA Repair (Amst) 2023; 129:103532. [PMID: 37453244 DOI: 10.1016/j.dnarep.2023.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Organisms have evolved a complex system, called the DNA damage response (DDR), which maintains genome integrity. The DDR is responsible for identifying and repairing a variety of lesions and alterations in DNA. DDR proteins coordinate DNA damage detection, cell cycle arrest, and repair, with many of these events regulated by protein phosphorylation. In the human proteome, 23 proteins contain the BRCT (BRCA1 C-Terminus domain) domain, a modular signaling domain that can bind phosphopeptides and mediate protein-protein interactions. BRCTs can be found as functional single units, tandem (tBRCT), triplet (tpBRCT), and quartet. Here we examine the evolution of the tpBRCT architecture present in TOPBP1 (DNA topoisomerase II binding protein 1) and ECT2 (epithelial cell transforming 2), and their respective interaction partners RAD9 (Cell cycle checkpoint control protein RAD9) and CYK-4 (Rac GTPase-activating protein 1), with a focus on the conservation of the phosphopeptide-binding residues. The pair TOPBP1-RAD9 arose with the Eukaryotes and ECT2-CYK-4 with the Eumetazoans. Triplet structural and functional characteristics were conserved in almost all organisms. The first unit of the triplet (BRCT0) is different from the other two BRCTs but conserved between orthologs for both TOPBP1 and ECT2. BRCT domain evolution simulations suggest a trend to retain the singlet or towards two or three BRCT copies per protein consistent with functional tBRCT and tpBRCT architectures. Our results shed light on the emergence of the function and architecture of multiple BRCT domain organizations and provide information about the evolution of the BRCT triplet. Knowledge of BRCT domain evolution can improve the understanding of DNA damage response mechanisms and signal transduction in DDR.
Collapse
Affiliation(s)
- M B S Mota
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - N T Woods
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - M A Carvalho
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - A N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - R D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
18
|
Tong CS, Xǔ XJ, Wu M. Periodicity, mixed-mode oscillations, and multiple timescales in a phosphoinositide-Rho GTPase network. Cell Rep 2023; 42:112857. [PMID: 37494180 DOI: 10.1016/j.celrep.2023.112857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
While rhythmic contractile behavior is commonly observed at the cellular cortex, the primary focus has been on excitable or periodic events described by simple activator-delayed inhibitor mechanisms. We show that Rho GTPase activation in nocodazole-treated mitotic cells exhibits both simple oscillations and complex mixed-mode oscillations. Rho oscillations with a 20- to 30-s period are regulated by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) via an activator-delayed inhibitor mechanism, while a slow reaction with period of minutes is regulated by phosphatidylinositol 4-kinase via an activator-substrate depletion mechanism. Conversion from simple to complex oscillations can be induced by modulating PIP3 metabolism or altering membrane contact site protein E-Syt1. PTEN depletion results in a period-doubling intermediate, which, like mixed-mode oscillations, is an intermediate state toward chaos. In sum, this system operates at the edge of chaos. Small changes in phosphoinositide metabolism can confer cells with the flexibility to rapidly enter ordered states with different periodicities.
Collapse
Affiliation(s)
- Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Warecki B, Tao L. Centralspindlin-mediated transport of RhoGEF positions the cleavage plane for cytokinesis. Sci Signal 2023; 16:eadh0601. [PMID: 37402224 PMCID: PMC10501416 DOI: 10.1126/scisignal.adh0601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
During cytokinesis, the cell membrane furrows inward along a cleavage plane. The positioning of the cleavage plane is critical to faithful cell division and is determined by the Rho guanine nucleotide exchange factor (RhoGEF)-mediated activation of the small guanosine triphosphatase RhoA and the conserved motor protein complex centralspindlin. Here, we explored whether and how centralspindlin mediates the positioning of RhoGEF. In dividing neuroblasts from Drosophila melanogaster, we observed that immediately before cleavage, first centralspindlin and then RhoGEF localized to the sites where cleavage subsequently initiated. Using in vitro assays with purified Drosophila proteins and stabilized microtubules, we found that centralspindlin directly transported RhoGEF as cargo along single microtubules and sequestered it at microtubule plus-ends for prolonged periods of time. In addition, the binding of RhoGEF to centralspindlin appeared to stimulate centralspindlin motor activity. Thus, the motor activity and microtubule association of centralspindlin can translocate RhoGEF to areas where microtubule plus-ends are abundant, such as at overlapping astral microtubules, to locally activate RhoA and accurately position the cleavage plane during cell division.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Biology, University of Hawai’i at Hilo, HI 96720, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz; Santa Cruz, CA 95064, USA
| | - Li Tao
- Department of Biology, University of Hawai’i at Hilo, HI 96720, USA
| |
Collapse
|
20
|
Li D, Yang Y, Lv C, Wang Y, Chao X, Huang J, Singh SP, Yuan Y, Zhang C, Lou J, Gao P, Huang S, Li B, Cai H. GxcM-Fbp17/RacC-WASP signaling regulates polarized cortex assembly in migrating cells via Arp2/3. J Cell Biol 2023; 222:e202208151. [PMID: 37010470 PMCID: PMC10072221 DOI: 10.1083/jcb.202208151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
The actin-rich cortex plays a fundamental role in many cellular processes. Its architecture and molecular composition vary across cell types and physiological states. The full complement of actin assembly factors driving cortex formation and how their activities are spatiotemporally regulated remain to be fully elucidated. Using Dictyostelium as a model for polarized and rapidly migrating cells, we show that GxcM, a RhoGEF localized specifically in the rear of migrating cells, functions together with F-BAR protein Fbp17, a small GTPase RacC, and the actin nucleation-promoting factor WASP to coordinately promote Arp2/3 complex-mediated cortical actin assembly. Overactivation of this signaling cascade leads to excessive actin polymerization in the rear cortex, whereas its disruption causes defects in cortical integrity and function. Therefore, apart from its well-defined role in the formation of the protrusions at the cell front, the Arp2/3 complex-based actin carries out a previously unappreciated function in building the rear cortical subcompartment in rapidly migrating cells.
Collapse
Affiliation(s)
- Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chenglin Lv
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiafeng Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Ye Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengyu Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bo Li
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
di Pietro F, Osswald M, De Las Heras JM, Cristo I, López-Gay J, Wang Z, Pelletier S, Gaugué I, Leroy A, Martin C, Morais-de-Sá E, Bellaïche Y. Systematic analysis of RhoGEF/GAP localizations uncovers regulators of mechanosensing and junction formation during epithelial cell division. Curr Biol 2023; 33:858-874.e7. [PMID: 36917931 PMCID: PMC10017266 DOI: 10.1016/j.cub.2023.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José M De Las Heras
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Inês Cristo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Zhimin Wang
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Adrien Leroy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Charlotte Martin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
22
|
Crellin HA, Buckley CE. Using Optogenetics to Investigate the Shared Mechanisms of Apical-Basal Polarity and Mitosis. Cells Tissues Organs 2023; 213:161-180. [PMID: 36599311 DOI: 10.1159/000528796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.
Collapse
Affiliation(s)
- Helena A Crellin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Clare E Buckley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Kunduri G, Acharya U, Acharya JK. Lipid Polarization during Cytokinesis. Cells 2022; 11:3977. [PMID: 36552741 PMCID: PMC9776629 DOI: 10.3390/cells11243977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The plasma membrane of eukaryotic cells is composed of a large number of lipid species that are laterally segregated into functional domains as well as asymmetrically distributed between the outer and inner leaflets. Additionally, the spatial distribution and organization of these lipids dramatically change in response to various cellular states, such as cell division, differentiation, and apoptosis. Division of one cell into two daughter cells is one of the most fundamental requirements for the sustenance of growth in all living organisms. The successful completion of cytokinesis, the final stage of cell division, is critically dependent on the spatial distribution and organization of specific lipids. In this review, we discuss the properties of various lipid species associated with cytokinesis and the mechanisms involved in their polarization, including forward trafficking, endocytic recycling, local synthesis, and cortical flow models. The differences in lipid species requirements and distribution in mitotic vs. male meiotic cells will be discussed. We will concentrate on sphingolipids and phosphatidylinositols because their transbilayer organization and movement may be linked via the cytoskeleton and thus critically regulate various steps of cytokinesis.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
24
|
Ozugergin I, Piekny A. Diversity is the spice of life: An overview of how cytokinesis regulation varies with cell type. Front Cell Dev Biol 2022; 10:1007614. [PMID: 36420142 PMCID: PMC9676254 DOI: 10.3389/fcell.2022.1007614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Cytokinesis is required to physically cleave a cell into two daughters at the end of mitosis. Decades of research have led to a comprehensive understanding of the core cytokinesis machinery and how it is regulated in animal cells, however this knowledge was generated using single cells cultured in vitro, or in early embryos before tissues develop. This raises the question of how cytokinesis is regulated in diverse animal cell types and developmental contexts. Recent studies of distinct cell types in the same organism or in similar cell types from different organisms have revealed striking differences in how cytokinesis is regulated, which includes different threshold requirements for the structural components and the mechanisms that regulate them. In this review, we highlight these differences with an emphasis on pathways that are independent of the mitotic spindle, and operate through signals associated with the cortex, kinetochores, or chromatin.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
25
|
Husser MC, Ozugergin I, Resta T, Martin VJJ, Piekny AJ. Cytokinetic diversity in mammalian cells is revealed by the characterization of endogenous anillin, Ect2 and RhoA. Open Biol 2022; 12:220247. [PMID: 36416720 PMCID: PMC9683116 DOI: 10.1098/rsob.220247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokinesis is required to physically separate the daughter cells at the end of mitosis. This crucial process requires the assembly and ingression of an actomyosin ring, which must occur with high fidelity to avoid aneuploidy and cell fate changes. Most of our knowledge of mammalian cytokinesis was generated using over-expressed transgenes in HeLa cells. Over-expression can introduce artefacts, while HeLa are cancerous human cells that have lost their epithelial identity, and the mechanisms controlling cytokinesis in these cells could be vastly different from other cell types. Here, we tagged endogenous anillin, Ect2 and RhoA with mNeonGreen and characterized their localization during cytokinesis for the first time in live human cells. Comparing anillin localization in multiple cell types revealed cytokinetic diversity with differences in the duration and symmetry of ring closure, and the timing of cortical recruitment. Our findings show that the breadth of anillin correlates with the rate of ring closure, and support models where cell size or ploidy affects the cortical organization, and intrinsic mechanisms control the symmetry of ring closure. This work highlights the need to study cytokinesis in more diverse cell types, which will be facilitated by the reagents generated for this study.
Collapse
Affiliation(s)
| | - Imge Ozugergin
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Tiziana Resta
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada
| | - Alisa J. Piekny
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada,Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Sana S, Rajeevan A, Kotak S. Membrane compartmentalization of Ect2/Cyk4/Mklp1 and NuMA/dynein regulates cleavage furrow formation. J Biophys Biochem Cytol 2022; 221:213522. [PMID: 36197340 PMCID: PMC9539458 DOI: 10.1083/jcb.202203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/09/2022] [Accepted: 09/02/2022] [Indexed: 12/13/2022] Open
Abstract
In animal cells, spindle elongation during anaphase is temporally coupled with cleavage furrow formation. Spindle elongation during anaphase is regulated by NuMA/dynein/dynactin complexes that occupy the polar region of the cell membrane and are excluded from the equatorial membrane. How NuMA/dynein/dynactin are excluded from the equatorial membrane and the biological significance of this exclusion remains unknown. Here, we show that the centralspindlin (Cyk4/Mklp1) and its interacting partner RhoGEF Ect2 are required for NuMA/dynein/dynactin exclusion from the equatorial cell membrane. The Ect2-based (Ect2/Cyk4/Mklp1) and NuMA-based (NuMA/dynein/dynactin) complexes occupy mutually exclusive membrane surfaces during anaphase. The equatorial membrane enrichment of Ect2-based complexes is essential for NuMA/dynein/dynactin exclusion and proper spindle elongation. Conversely, NuMA-based complexes at the polar region of the cell membrane ensure spatially confined localization of Ect2-based complexes and thus RhoA. Overall, our work establishes that membrane compartmentalization of NuMA-based and Ect2-based complexes at the two distinct cell surfaces restricts dynein/dynactin and RhoA for coordinating spindle elongation with cleavage furrow formation.
Collapse
Affiliation(s)
- Shrividya Sana
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| | - Ashwathi Rajeevan
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India,Correspondence to Sachin Kotak:
| |
Collapse
|
27
|
Chen J, Li Z, Jia X, Song W, Wu H, Zhu H, Xuan Z, Du Y, Zhu X, Song G, Dong H, Bian S, Wang S, Zhao Y, Xie H, Zheng S, Song P. Targeting anillin inhibits tumorigenesis and tumor growth in hepatocellular carcinoma via impairing cytokinesis fidelity. Oncogene 2022; 41:3118-3130. [PMID: 35477750 DOI: 10.1038/s41388-022-02274-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Targeting cytokinesis can suppress tumor growth by blocking cell division and promoting apoptosis. We aimed to characterize key cytokinesis regulator in hepatocellular carcinoma (HCC) progression, providing insights into identifying promising HCC therapeutic targets. The unbiased bioinformatic screening identified Anillin actin binding protein (ANLN) as a critical cytokinesis regulator involved in HCC development. Functional assay demonstrated that knockdown of ANLN inhibited HCC growth by inducing cytokinesis failure and DNA damage, leading to multinucleation and mitotic catastrophe. Mechanistically, ANLN acts as a scaffold to strengthen interaction between RACGAP1 and PLK1. ANLN promotes PLK1-mediated RACGAP1 phosphorylation and RhoA activation to ensure cytokinesis fidelity. To explore the function of ANLN in HCC tumorigenesis, we hydrodynamically transfected c-Myc and NRAS plasmids into Anln+/+, Anln+/-, and Anln-/- mice through tail vein injection. Hepatic Anln ablation significantly impaired c-Myc/NRAS-driven hepatocarcinogenesis. Moreover, enhanced hepatic polyploidization was observed in Anln ablation mice, manifesting as increasing proportion of cellular and nuclear polyploidy. Clinically, ANLN is upregulated in human HCC tissues and high level of ANLN is correlated with poor patients' prognosis. Additionally, the proportion of cellular polyploidy decreases during HCC progression and ANLN level is significantly correlated with cellular polyploidy proportion in human HCC samples. In conclusion, ANLN is identified as a key cytokinesis regulator contributing to HCC initiation and progression. Our findings revealed a novel mechanism of ANLN in the regulation of cytokinesis to promote HCC tumorigenesis and growth, suggesting targeting ANLN to inhibit cytokinesis may be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jian Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Zequn Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Xing Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Wenfeng Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Hai Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Zefeng Xuan
- Division of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yehui Du
- Division of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingxin Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Guangyuan Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Haijiang Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Suchen Bian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Shuo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China. .,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China. .,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China.
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China. .,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China. .,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
28
|
Chatterjee M, Sain A. Dynamic surface patterns on cells. J Chem Phys 2022; 156:084117. [DOI: 10.1063/5.0077311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dynamic pattern formations are commonly observed in multicellular systems, such as cardiac tissue and slime molds, and modeled using reaction–diffusion systems. Recent experiments have revealed dynamic patterns in the concentration profile of various cortical proteins at a much smaller scale, namely, embryos at their single-cell stage. Spiral waves of Rho and F-actin proteins have been reported in Xenopus frog and starfish oocytes [Bement et al., Nat. Cell Biol. 17, 1471 (2015)], while a pulsatile pattern of Rho and myosin proteins has been found in C. elegans embryo [Nishikawa et al., eLife 6, e30537 (2017)]. Here, we propose that these two seemingly distinct dynamic patterns are signatures of a single reaction–diffusion network involving active-Rho, inactive-Rho, actin, and myosin. We show that a small variation in the concentration of other ancillary proteins can give rise to different dynamical states from the same chemical network.
Collapse
Affiliation(s)
- Mainak Chatterjee
- Physics Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anirban Sain
- Physics Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
29
|
Koh SP, Pham NP, Piekny A. Seeing is believing: tools to study the role of Rho GTPases during cytokinesis. Small GTPases 2022; 13:211-224. [PMID: 34405757 PMCID: PMC9707540 DOI: 10.1080/21541248.2021.1957384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytokinesis is required to cleave the daughter cells at the end of mitosis and relies on the spatiotemporal control of RhoA GTPase. Cytokinesis failure can lead to changes in cell fate or aneuploidy, which can be detrimental during development and/or can lead to cancer. However, our knowledge of the pathways that regulate RhoA during cytokinesis is limited, and the role of other Rho family GTPases is not clear. This is largely because the study of Rho GTPases presents unique challenges using traditional cell biological and biochemical methods, and they have pleiotropic functions making genetic studies difficult to interpret. The recent generation of optogenetic tools and biosensors that control and detect active Rho has overcome some of these challenges and is helping to elucidate the role of RhoA in cytokinesis. However, improvements are needed to reveal the role of other Rho GTPases in cytokinesis, and to identify the molecular mechanisms that control Rho activity. This review examines some of the outstanding questions in cytokinesis, and explores tools for the imaging and control of Rho GTPases.
Collapse
Affiliation(s)
- Su Pin Koh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Nhat Phi Pham
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada,CONTACT Alisa Piekny Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| |
Collapse
|
30
|
Cook DR, Kang M, Martin TD, Galanko JA, Loeza GH, Trembath DG, Justilien V, Pickering KA, Vincent DF, Jarosch A, Jurmeister P, Waters AM, Hibshman PS, Campbell AD, Ford CA, Keku TO, Yeh JJ, Lee MS, Cox AD, Fields AP, Sandler RS, Sansom OJ, Sers C, Schaefer A, Der CJ. Aberrant Expression and Subcellular Localization of ECT2 Drives Colorectal Cancer Progression and Growth. Cancer Res 2022; 82:90-104. [PMID: 34737214 PMCID: PMC9056178 DOI: 10.1158/0008-5472.can-20-4218] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
ECT2 is an activator of RHO GTPases that is essential for cytokinesis. In addition, ECT2 was identified as an oncoprotein when expressed ectopically in NIH/3T3 fibroblasts. However, oncogenic activation of ECT2 resulted from N-terminal truncation, and such truncated ECT2 proteins have not been found in patients with cancer. In this study, we observed elevated expression of full-length ECT2 protein in preneoplastic colon adenomas, driven by increased ECT2 mRNA abundance and associated with APC tumor-suppressor loss. Elevated ECT2 levels were detected in the cytoplasm and nucleus of colorectal cancer tissue, suggesting cytoplasmic mislocalization as one mechanism of early oncogenic ECT2 activation. Importantly, elevated nuclear ECT2 correlated with poorly differentiated tumors, and a low cytoplasmic:nuclear ratio of ECT2 protein correlated with poor patient survival, suggesting that nuclear and cytoplasmic ECT2 play distinct roles in colorectal cancer. Depletion of ECT2 reduced anchorage-independent cancer cell growth and invasion independent of its function in cytokinesis, and loss of Ect2 extended survival in a Kras G12D Apc-null colon cancer mouse model. Expression of ECT2 variants with impaired nuclear localization or guanine nucleotide exchange catalytic activity failed to restore cancer cell growth or invasion, indicating that active, nuclear ECT2 is required to support tumor progression. Nuclear ECT2 promoted ribosomal DNA transcription and ribosome biogenesis in colorectal cancer. These results support a driver role for both cytoplasmic and nuclear ECT2 overexpression in colorectal cancer and emphasize the critical role of precise subcellular localization in dictating ECT2 function in neoplastic cells. SIGNIFICANCE: ECT2 overexpression and mislocalization support its role as a driver in colon cancer that is independent from its function in normal cell cytokinesis.
Collapse
Affiliation(s)
- Danielle R Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Melissa Kang
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Timothy D Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph A Galanko
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gabriela H Loeza
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dimitri G Trembath
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | | | - David F Vincent
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Armin Jarosch
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Philipp Jurmeister
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Priya S Hibshman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Catriona A Ford
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael S Lee
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adrienne D Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Robert S Sandler
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christine Sers
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| |
Collapse
|
31
|
Longhini KM, Glotzer M. Aurora A and cortical flows promote polarization and cytokinesis by inducing asymmetric ECT-2 accumulation. eLife 2022; 11:83992. [PMID: 36533896 PMCID: PMC9799973 DOI: 10.7554/elife.83992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In the early Caenorhabditis elegans embryo, cell polarization and cytokinesis are interrelated yet distinct processes. Here, we sought to understand a poorly understood aspect of cleavage furrow positioning. Early C. elegans embryos deficient in the cytokinetic regulator centralspindlin form furrows, due to an inhibitory activity that depends on aster positioning relative to the polar cortices. Here, we show polar relaxation is associated with depletion of cortical ECT-2, a RhoGEF, specifically at the posterior cortex. Asymmetric ECT-2 accumulation requires intact centrosomes, Aurora A (AIR-1), and myosin-dependent cortical flows. Within a localization competent ECT-2 fragment, we identified three putative phospho-acceptor sites in the PH domain of ECT-2 that render ECT-2 responsive to inhibition by AIR-1. During both polarization and cytokinesis, our results suggest that centrosomal AIR-1 breaks symmetry via ECT-2 phosphorylation; this local inhibition of ECT-2 is amplified by myosin-driven flows that generate regional ECT-2 asymmetry. Together, these mechanisms cooperate to induce polarized assembly of cortical myosin, contributing to both embryo polarization and cytokinesis.
Collapse
Affiliation(s)
- Katrina M Longhini
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
32
|
From primordial germ cells to spermatids in Caenorhabditis elegans. Semin Cell Dev Biol 2021; 127:110-120. [PMID: 34930663 DOI: 10.1016/j.semcdb.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
Development of a syncytial germline for gamete formation requires complex regulation of cytokinesis and cytoplasmic remodeling. Recently, several uncovered cellular events have been investigated in the Caenorhabditis elegans (C. elegans) germline. In these cellular processes, the factors involved in contractility are highly conserved with those of mitosis and meiosis. However, the underlying regulatory mechanisms are far more complicated than previously thought, likely due to the single syncytial germline structure. In this review, we highlight how the proteins involved in contractility ensure faithful cell division in different cellular contexts and how they contribute to maintaining intercellular bridge stability. In addition, we discuss the current understanding of the cellular events of cytokinesis and cytoplasmic remodeling during the development of the C. elegans germline, including progenitor germ cells, germ cells, and spermatocytes. Comparisons are made with relevant systems in Drosophila melanogaster (D. melanogaster) and other animal models.
Collapse
|
33
|
Yu JE, Kim S, Hwang J, Hong JT, Hwang J, Soung N, Cha‐Molstad H, Kwon YT, Kim BY, Lee KH. Phosphorylation of β-catenin Ser60 by polo-like kinase 1 drives the completion of cytokinesis. EMBO Rep 2021; 22:e51503. [PMID: 34585824 PMCID: PMC8647012 DOI: 10.15252/embr.202051503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
β-Catenin is a multifunctional protein and participates in numerous processes required for embryonic development, cell proliferation, and homeostasis through various molecular interactions and signaling pathways. To date, however, there is no direct evidence that β-catenin contributes to cytokinesis. Here, we identify a novel p-S60 epitope on β-catenin generated by Plk1 kinase activity, which can be found at the actomyosin contractile ring of early telophase cells and at the midbody of late telophase cells. Depletion of β-catenin leads to cytokinesis-defective phenotypes, which eventually result in apoptotic cell death. In addition, phosphorylation of β-catenin Ser60 by Plk1 is essential for the recruitment of Ect2 to the midbody, activation of RhoA, and interaction between β-catenin, Plk1, and Ect2. Time-lapse image analysis confirmed the importance of β-catenin phospho-Ser60 in furrow ingression and the completion of cytokinesis. Taken together, we propose that phosphorylation of β-catenin Ser60 by Plk1 in cooperation with Ect2 is essential for the completion of cytokinesis. These findings may provide fundamental knowledge for the research of cytokinesis failure-derived human diseases.
Collapse
Affiliation(s)
- Ji Eun Yu
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
- Department of Drug Discovery and DevelopmentCollege of PharmacyChungbuk National UniversityCheongjuKorea
| | - Sun‐Ok Kim
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Jeong‐Ah Hwang
- Department of PhysiologyResearch Institute of Medical SciencesCollege of MedicineChungnam National UniversityDaejeonKorea
| | - Jin Tae Hong
- Department of Drug Discovery and DevelopmentCollege of PharmacyChungbuk National UniversityCheongjuKorea
| | - Joonsung Hwang
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Nak‐Kyun Soung
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Hyunjoo Cha‐Molstad
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulKorea
| | - Bo Yeon Kim
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
- Department of Biomolecular ScienceUniversity of Science and TechnologyDaejeonKorea
| | - Kyung Ho Lee
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| |
Collapse
|
34
|
Chen J, Li G, Lian J, Ma N, Huang Z, Li J, Wen Z, Zhang W, Zhang Y. Slc20a1b is essential for hematopoietic stem/progenitor cell expansion in zebrafish. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2186-2201. [PMID: 33751369 DOI: 10.1007/s11427-020-1878-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 10/21/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are able to self-renew and can give rise to all blood lineages throughout their lifetime, yet the mechanisms regulating HSPC development have yet to be discovered. In this study, we characterized a hematopoiesis defective zebrafish mutant line named smu07, which was obtained from our previous forward genetic screening, and found the HSPC expansion deficiency in the mutant. Positional cloning identified that slc20a1b, which encodes a sodium phosphate cotransporter, contributed to the smu07 blood phenotype. Further analysis demonstrated that mutation of slc20a1b affects HSPC expansion through cell cycle arrest at G2/M phases in a cell-autonomous manner. Our study shows that slc20a1b is a vital regulator for HSPC proliferation in zebrafish early hematopoiesis and provides valuable insights into HSPC development.
Collapse
Affiliation(s)
- Jiakui Chen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gaofei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Junwei Lian
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ning Ma
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Yiyue Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
35
|
Jeyasimman D, Ercan B, Dharmawan D, Naito T, Sun J, Saheki Y. PDZD-8 and TEX-2 regulate endosomal PI(4,5)P 2 homeostasis via lipid transport to promote embryogenesis in C. elegans. Nat Commun 2021; 12:6065. [PMID: 34663803 PMCID: PMC8523718 DOI: 10.1038/s41467-021-26177-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
Different types of cellular membranes have unique lipid compositions that are important for their functional identity. PI(4,5)P2 is enriched in the plasma membrane where it contributes to local activation of key cellular events, including actomyosin contraction and cytokinesis. However, how cells prevent PI(4,5)P2 from accumulating in intracellular membrane compartments, despite constant intermixing and exchange of lipid membranes, is poorly understood. Using the C. elegans early embryo as our model system, we show that the evolutionarily conserved lipid transfer proteins, PDZD-8 and TEX-2, act together with the PI(4,5)P2 phosphatases, OCRL-1 and UNC-26/synaptojanin, to prevent the build-up of PI(4,5)P2 on endosomal membranes. In the absence of these four proteins, large amounts of PI(4,5)P2 accumulate on endosomes, leading to embryonic lethality due to ectopic recruitment of proteins involved in actomyosin contractility. PDZD-8 localizes to the endoplasmic reticulum and regulates endosomal PI(4,5)P2 levels via its lipid harboring SMP domain. Accumulation of PI(4,5)P2 on endosomes is accompanied by impairment of their degradative capacity. Thus, cells use multiple redundant systems to maintain endosomal PI(4,5)P2 homeostasis.
Collapse
Affiliation(s)
- Darshini Jeyasimman
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Bilge Ercan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dennis Dharmawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jingbo Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
36
|
Ramkumar N, Patel JV, Anstatt J, Baum B. Aurora B-dependent polarization of the cortical actomyosin network during mitotic exit. EMBO Rep 2021; 22:e52387. [PMID: 34431205 PMCID: PMC8490981 DOI: 10.15252/embr.202152387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 01/16/2023] Open
Abstract
The isotropic metaphase actin cortex progressively polarizes as the anaphase spindle elongates during mitotic exit. This involves the loss of actomyosin cortex from opposing cell poles and the accumulation of an actomyosin belt at the cell centre. Although these spatially distinct cortical remodelling events are coordinated in time, here we show that they are independent of each other. Thus, actomyosin is lost from opposing poles in anaphase cells that lack an actomyosin ring owing to centralspindlin depletion. In examining potential regulators of this process, we identify a role for Aurora B kinase in actin clearance at cell poles. Upon combining Aurora B inhibition with centralspindlin depletion, cells exiting mitosis fail to change shape and remain completely spherical. Additionally, we demonstrate a requirement for Aurora B in the clearance of cortical actin close to anaphase chromatin in cells exiting mitosis with a bipolar spindle and in monopolar cells forced to divide while flat. Altogether, these data suggest a novel role for Aurora B activity in facilitating DNA-mediated polar relaxation at anaphase, polarization of the actomyosin cortex, and cell division.
Collapse
Affiliation(s)
- Nitya Ramkumar
- MRC LMCBUCLLondonUK
- Present address:
Duke UniversityDurhamNCUSA
| | | | | | - Buzz Baum
- MRC LMCBUCLLondonUK
- Present address:
MRC‐LMBCambridgeUK
| |
Collapse
|
37
|
Dehapiot B, Clément R, Bourdais A, Carrière V, Huet S, Halet G. RhoA- and Cdc42-induced antagonistic forces underlie symmetry breaking and spindle rotation in mouse oocytes. PLoS Biol 2021; 19:e3001376. [PMID: 34491981 PMCID: PMC8448345 DOI: 10.1371/journal.pbio.3001376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 09/17/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocyte meiotic divisions are highly asymmetric and produce a large haploid gamete and 2 small polar bodies. This relies on the ability of the cell to break symmetry and position its spindle close to the cortex before anaphase occurs. In metaphase II–arrested mouse oocytes, the spindle is actively maintained close and parallel to the cortex, until fertilization triggers sister chromatid segregation and the rotation of the spindle. The latter must indeed reorient perpendicular to the cortex to enable cytokinesis ring closure at the base of the polar body. However, the mechanisms underlying symmetry breaking and spindle rotation have remained elusive. In this study, we show that spindle rotation results from 2 antagonistic forces. First, an inward contraction of the cytokinesis furrow dependent on RhoA signaling, and second, an outward attraction exerted on both sets of chromatids by a Ran/Cdc42-dependent polarization of the actomyosin cortex. By combining live segmentation and tracking with numerical modeling, we demonstrate that this configuration becomes unstable as the ingression progresses. This leads to spontaneous symmetry breaking, which implies that neither the rotation direction nor the set of chromatids that eventually gets discarded are biologically predetermined. Mammalian oocyte meiotic divisions are highly asymmetric and produce a large haploid gamete and two small polar bodies, but the mechanisms underlying the required symmetry breaking and spindle rotation have remained elusive. This study shows that spindle rotation in activated mouse oocytes relies on spontaneous symmetry breaking resulting from an unstable configuration generated by cleavage furrow ingression and cortical chromosome attraction.
Collapse
Affiliation(s)
- Benoit Dehapiot
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France
- Univ Rennes, CNRS, IGDR—UMR 6290, Rennes, France
- * E-mail: (BD); (GH)
| | - Raphaël Clément
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France
| | | | | | | | - Guillaume Halet
- Univ Rennes, CNRS, IGDR—UMR 6290, Rennes, France
- * E-mail: (BD); (GH)
| |
Collapse
|
38
|
Garrido-Casado M, Asensio-Juárez G, Vicente-Manzanares M. Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annu Rev Cell Dev Biol 2021; 37:285-310. [PMID: 34314591 DOI: 10.1146/annurev-cellbio-042721-105528] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
39
|
Abstract
During anaphase, a microtubule-containing structure called the midzone forms between the segregating chromosomes. The midzone is composed of an antiparallel array of microtubules and numerous microtubule-associated proteins that contribute to midzone formation and function. In many cells, the midzone is an important source of signals that specify the location of contractile ring assembly and constriction. The midzone also contributes to the events of anaphase by generating forces that impact chromosome segregation and spindle elongation; some midzone components contribute to both processes. The results of recent experiments have increased our understanding of the importance of the midzone, a microtubule array that has often been overlooked. This Journal of Cell Science at a Glance article will review, and illustrate on the accompanying poster, the organization, formation and dynamics of the midzone, and discuss open questions for future research.
Collapse
Affiliation(s)
- Patricia Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, 611 N. Pleasant Street, Amherst 01003, USA
| |
Collapse
|
40
|
Schneid S, Wolff F, Buchner K, Bertram N, Baygün S, Barbosa P, Mangal S, Zanin E. The BRCT domains of ECT2 have distinct functions during cytokinesis. Cell Rep 2021; 34:108805. [PMID: 33657383 DOI: 10.1016/j.celrep.2021.108805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
During cell division, the guanine nucleotide exchange factor (GEF) ECT2 activates RhoA in a narrow zone at the cell equator in anaphase. ECT2 consists of three BRCT domains (BRCT0, 1, and 2), a catalytic GEF, and a pleckstrin homology (PH) domain. How the conserved BRCT domains spatially and temporally control ECT2 activity remains unclear. We reveal that each BRCT domain makes distinct contributions to the ECT2 function. We find that BRCT0 contributes to, and BRCT1 is essential for, ECT2 activation in anaphase. BRCT2 integrates two functions: GEF inhibition and RACGAP1 binding, which together limit ECT2 activity to a narrow zone at the cell equator. BRCT2-dependent control of active RhoA zone dimension functions in addition to the inhibitory signal of the astral microtubules. Our analysis provides detailed mechanistic insights into how ECT2 activity is regulated and how that regulation ensures, together with other signaling pathways, successful cell division.
Collapse
Affiliation(s)
- Sandra Schneid
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Friederike Wolff
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Kristina Buchner
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Nils Bertram
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Seren Baygün
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Pedro Barbosa
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Sriyash Mangal
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Esther Zanin
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany.
| |
Collapse
|
41
|
Wang X, Zhang D, Zheng C, Wu S, Glotzer M, Tse YC. Cortical recruitment of centralspindlin and RhoA effectors during meiosis I of Caenorhabditis elegans primary spermatocytes. J Cell Sci 2021; 134:jcs.238543. [PMID: 33468621 DOI: 10.1242/jcs.238543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/24/2020] [Indexed: 11/20/2022] Open
Abstract
Haploid male gametes are produced through meiosis during gametogenesis. Whereas the cell biology of mitosis and meiosis is well studied in the nematode Caenorhabditis elegans, comparatively little is known regarding the physical division of primary spermatocytes during meiosis I. Here, we investigated this process using high-resolution time-lapse confocal microscopy and examined the spatiotemporal regulation of contractile ring assembly in C. elegans primary spermatocytes. We found that centralspindlin and RhoA effectors were recruited to the equatorial cortex of dividing primary spermatocytes for contractile ring assembly before segregation of homologous chromosomes. We also observed that perturbations shown to promote centralspindlin oligomerization regulated the cortical recruitment of NMY-2 and impacted the order in which primary spermatocytes along the proximal-distal axis of the gonad enter meiosis I. These results expand our understanding of the cellular division of primary spermatocytes into secondary spermatocytes during meiosis I.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiangchuan Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cunni Zheng
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yu Chung Tse
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.,Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
42
|
Liu H, Zhang CH, Ammanamanchi N, Suresh S, Lewarchik C, Rao K, Uys GM, Han L, Abrial M, Yimlamai D, Ganapathy B, Guillermier C, Chen N, Khaladkar M, Spaethling J, Eberwine JH, Kim J, Walsh S, Choudhury S, Little K, Francis K, Sharma M, Viegas M, Bais A, Kostka D, Ding J, Bar-Joseph Z, Wu Y, Yechoor V, Moulik M, Johnson J, Weinberg J, Reyes-Múgica M, Steinhauser ML, Kühn B. Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci Transl Med 2020; 11:11/513/eaaw6419. [PMID: 31597755 PMCID: PMC8132604 DOI: 10.1126/scitranslmed.aaw6419] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/10/2019] [Accepted: 08/30/2019] [Indexed: 12/28/2022]
Abstract
One million patients with congenital heart disease (CHD) live in the United States. They have a lifelong risk of developing heart failure. Current concepts do not sufficiently address mechanisms of heart failure development specifically for these patients. Here, analysis of heart tissue from an infant with tetralogy of Fallot with pulmonary stenosis (ToF/PS) labeled with isotope-tagged thymidine demonstrated that cardiomyocyte cytokinesis failure is increased in this common form of CHD. We used single-cell transcriptional profiling to discover that the underlying mechanism of cytokinesis failure is repression of the cytokinesis gene ECT2, downstream of β-adrenergic receptors (β-ARs). Inactivation of the β-AR genes and administration of the β-blocker propranolol increased cardiomyocyte division in neonatal mice, which increased the number of cardiomyocytes (endowment) and conferred benefit after myocardial infarction in adults. Propranolol enabled the division of ToF/PS cardiomyocytes in vitro. These results suggest that β-blockers could be evaluated for increasing cardiomyocyte division in patients with ToF/PS and other types of CHD.
Collapse
Affiliation(s)
- Honghai Liu
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Cheng-Hai Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Niyatie Ammanamanchi
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Sangita Suresh
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Lewarchik
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Krithika Rao
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Gerrida M Uys
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lu Han
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Maryline Abrial
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Dean Yimlamai
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Balakrishnan Ganapathy
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Christelle Guillermier
- Division of Genetics and Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nathalie Chen
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Mugdha Khaladkar
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, 301A/B Lynch Laboratory, 433 S University Avenue, Philadelphia, PA 19104, USA
| | - Jennifer Spaethling
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James H Eberwine
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, 301A/B Lynch Laboratory, 433 S University Avenue, Philadelphia, PA 19104, USA
| | - Stuart Walsh
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sangita Choudhury
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Little
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kimberly Francis
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Mahesh Sharma
- Division of Cardiothoracic Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melita Viegas
- Pediatric Cardiothoracic Surgery, UPMC Children's Hospital of Pittsburgh and Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Abha Bais
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA.,Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Ding
- Computational Biology Department and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ziv Bar-Joseph
- Computational Biology Department and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA.,Rangos Research Center Animal Imaging Core, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Vijay Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15238, USA
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jennifer Johnson
- Division of Cardiology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.,Neonatal-Perinatal Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA 15213, USA
| | - Jacqueline Weinberg
- Division of Cardiology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Miguel Reyes-Múgica
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Matthew L Steinhauser
- Division of Genetics and Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bernhard Kühn
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA. .,McGowan Institute of Regenerative Medicine, Pittsburgh, PA 15219, USA.,Pediatric Institute for Heart Regeneration and Therapeutics, Pittsburgh, PA 15224, USA
| |
Collapse
|
43
|
Gómez-Cavazos JS, Lee KY, Lara-González P, Li Y, Desai A, Shiau AK, Oegema K. A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis. Curr Biol 2020; 30:3101-3115.e11. [PMID: 32619481 PMCID: PMC7438317 DOI: 10.1016/j.cub.2020.05.090] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the RhoA guanine nucleotide exchange factor ECT2. However, ECT2 targeting to the central spindle is dispensable for cytokinesis, indicating that how PLK1 controls RhoA activation remains unresolved. To address this question, we employed an unbiased approach targeting ∼100 predicted PLK1 sites in two RhoA regulators: ECT2 and the centralspindlin complex, composed of CYK4 and kinesin-6. This comprehensive approach suggested that the only functionally critical PLK1 target sites are in a single cluster in the CYK4 N terminus. Phosphorylation of this cluster promoted direct interaction of CYK4 with the BRCT repeat module of ECT2. However, mutational analysis in vitro and in vivo led to the surprising finding that the interaction was independent of the conserved "canonical" residues in ECT2's BRCT repeat module that, based on structurally characterized BRCT-phosphopeptide interactions, were presumed critical for binding. Instead, we show that the ECT2 BRCT module binds phosphorylated CYK4 via a distinct conserved basic surface. Basic surface mutations mimic the effects on cytokinesis of loss of CYK4 cluster phosphorylation or inhibition of PLK1 activity. Together with evidence for ECT2 autoinhibition limiting interaction with CYK4 in the cytoplasm, these results suggest that a spatial gradient of phosphorylated CYK4 around the central spindle patterns RhoA activation by interacting with ECT2 on the adjacent plasma membrane.
Collapse
Affiliation(s)
- J Sebastián Gómez-Cavazos
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Kian-Yong Lee
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | | | - Yanchi Li
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew K Shiau
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Petronczki M, Tedeschi A. Cell Division: Switching On ECT2 in a Non-Canonical Fashion. Curr Biol 2020; 30:R947-R949. [PMID: 32810457 DOI: 10.1016/j.cub.2020.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Determining the site of cell cleavage is crucial for cytokinesis and involves precise activation of the RhoGEF ECT2. A new study demonstrates how a non-canonical interaction of ECT2 with centralspindlin underlies cytokinesis in animal cells, solving a mechanistic conundrum.
Collapse
Affiliation(s)
- Mark Petronczki
- Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria
| | - Antonio Tedeschi
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
45
|
Taubenberger AV, Baum B, Matthews HK. The Mechanics of Mitotic Cell Rounding. Front Cell Dev Biol 2020; 8:687. [PMID: 32850812 PMCID: PMC7423972 DOI: 10.3389/fcell.2020.00687] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
When animal cells enter mitosis, they round up to become spherical. This shape change is accompanied by changes in mechanical properties. Multiple studies using different measurement methods have revealed that cell surface tension, intracellular pressure and cortical stiffness increase upon entry into mitosis. These cell-scale, biophysical changes are driven by alterations in the composition and architecture of the contractile acto-myosin cortex together with osmotic swelling and enable a mitotic cell to exert force against the environment. When the ability of cells to round is limited, for example by physical confinement, cells suffer severe defects in spindle assembly and cell division. The requirement to push against the environment to create space for spindle formation is especially important for cells dividing in tissues. Here we summarize the evidence and the tools used to show that cells exert rounding forces in mitosis in vitro and in vivo, review the molecular basis for this force generation and discuss its function for ensuring successful cell division in single cells and for cells dividing in normal or diseased tissues.
Collapse
Affiliation(s)
- Anna V. Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Helen K. Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
46
|
Kapoor S, Kotak S. Centrosome Aurora A gradient ensures single polarity axis in C. elegans embryos. Biochem Soc Trans 2020; 48:1243-1253. [PMID: 32597472 PMCID: PMC7616972 DOI: 10.1042/bst20200298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023]
Abstract
Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior-posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), 560012 Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), 560012 Bangalore, India
| |
Collapse
|
47
|
Profiling cytotoxic microRNAs in pediatric and adult glioblastoma cells by high-content screening, identification, and validation of miR-1300. Oncogene 2020; 39:5292-5306. [PMID: 32555332 PMCID: PMC7378045 DOI: 10.1038/s41388-020-1360-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
MicroRNAs play an important role in the regulation of mRNA translation and have therapeutic potential in cancer and other diseases. To profile the landscape of microRNAs with significant cytotoxicity in the context of glioblastoma (GBM), we performed a high-throughput screen in adult and pediatric GBM cells using a synthetic oligonucleotide library representing all known human microRNAs. Bioinformatics analysis was used to refine this list and the top seven microRNAs were validated in a larger panel of GBM cells using state-of-the-art in vitro assays. The cytotoxic effect of our most relevant candidate was assessed in a preclinical model. Our screen identified ~100 significantly cytotoxic microRNAs with 70% concordance between cell lines. MicroRNA-1300 (miR-1300) was the most potent and robust candidate. We observed a striking binucleated phenotype in miR-1300 transfected cells due to cytokinesis failure followed by apoptosis. This was also observed in two stem-like patient-derived cultures. We identified the physiological role of miR-1300 as a regulator of endomitosis in megakaryocyte differentiation where blockade of cytokinesis is an essential step. In GBM cells, where miR-1300 is normally not expressed, the oncogene Epithelial Cell Transforming 2 (ECT2) was validated as a direct key target. ECT2 siRNA phenocopied the effects of miR-1300, and ECT2 overexpression led to rescue of miR-1300 induced binucleation. We showed that ectopic expression of miR-1300 led to decreased tumor growth in an orthotopic GBM model. Our screen provides a resource for the neuro-oncology community and identified miR-1300 as a novel regulator of endomitosis with translatable potential for therapeutic application.
Collapse
|
48
|
Stojic L, Lun ATL, Mascalchi P, Ernst C, Redmond AM, Mangei J, Barr AR, Bousgouni V, Bakal C, Marioni JC, Odom DT, Gergely F. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nat Commun 2020; 11:1851. [PMID: 32296040 PMCID: PMC7160116 DOI: 10.1038/s41467-020-14978-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/09/2020] [Indexed: 01/21/2023] Open
Abstract
Genome stability relies on proper coordination of mitosis and cytokinesis, where dynamic microtubules capture and faithfully segregate chromosomes into daughter cells. With a high-content RNAi imaging screen targeting more than 2,000 human lncRNAs, we identify numerous lncRNAs involved in key steps of cell division such as chromosome segregation, mitotic duration and cytokinesis. Here, we provide evidence that the chromatin-associated lncRNA, linc00899, leads to robust mitotic delay upon its depletion in multiple cell types. We perform transcriptome analysis of linc00899-depleted cells and identify the neuronal microtubule-binding protein, TPPP/p25, as a target of linc00899. We further show that linc00899 binds TPPP/p25 and suppresses its transcription. In cells depleted of linc00899, upregulation of TPPP/p25 alters microtubule dynamics and delays mitosis. Overall, our comprehensive screen uncovers several lncRNAs involved in genome stability and reveals a lncRNA that controls microtubule behaviour with functional implications beyond cell division.
Collapse
Affiliation(s)
- Lovorka Stojic
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Genentech, Inc., South San Francisco, CA, USA
| | - Patrice Mascalchi
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- DRVision Technologies, Bordeaux, France
| | - Christina Ernst
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Aisling M Redmond
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Jasmin Mangei
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Molecular Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alexis R Barr
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
- MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vicky Bousgouni
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Chris Bakal
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Division of Regulatory Genomics and Cancer Evolution, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
49
|
Aguilar‐Aragon M, Bonello TT, Bell GP, Fletcher GC, Thompson BJ. Adherens junction remodelling during mitotic rounding of pseudostratified epithelial cells. EMBO Rep 2020; 21:e49700. [PMID: 32030856 PMCID: PMC7132200 DOI: 10.15252/embr.201949700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Epithelial cells undergo cortical rounding at the onset of mitosis to enable spindle orientation in the plane of the epithelium. In cuboidal epithelia in culture, the adherens junction protein E-cadherin recruits Pins/LGN/GPSM2 and Mud/NuMA to orient the mitotic spindle. In the pseudostratified columnar epithelial cells of Drosophila, septate junctions recruit Mud/NuMA to orient the spindle, while Pins/LGN/GPSM2 is surprisingly dispensable. We show that these pseudostratified epithelial cells downregulate E-cadherin as they round up for mitosis. Preventing cortical rounding by inhibiting Rho-kinase-mediated actomyosin contractility blocks downregulation of E-cadherin during mitosis. Mitotic activation of Rho-kinase depends on the RhoGEF ECT2/Pebble and its binding partners RacGAP1/MgcRacGAP/CYK4/Tum and MKLP1/KIF23/ZEN4/Pav. Cell cycle control of these Rho activators is mediated by the Aurora A and B kinases, which act redundantly during mitotic rounding. Thus, in Drosophila pseudostratified epithelia, disruption of adherens junctions during mitosis necessitates planar spindle orientation by septate junctions to maintain epithelial integrity.
Collapse
Affiliation(s)
| | - Teresa T Bonello
- EMBL AustraliaThe John Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| | - Graham P Bell
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
| | | | - Barry J Thompson
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
- EMBL AustraliaThe John Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| |
Collapse
|
50
|
Zhou K, Mai H, Zheng S, Cai W, Yang X, Chen Z, Zhan B. OTUB1-mediated deubiquitination of FOXM1 up-regulates ECT-2 to promote tumor progression in renal cell carcinoma. Cell Biosci 2020; 10:50. [PMID: 32257108 PMCID: PMC7106863 DOI: 10.1186/s13578-020-00408-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background OTUB1 (ovarian tumor domain protease domain-containing ubiquitin aldehyde-binding proteins)-mediated deubiquitination of FOXM1 (Forkhead box M1) participates in carcinogenesis of various tumors. We aim to investigate the effect and mechanism of OTUB1/FOXM1 on RCC (renal cell carcinoma) progression. Expression levels of OTUB1 in RCC tissues and cell lines were examined by qRT-PCR (quantitative real-time polymerase chain reaction) and immunohistochemistry. Cell proliferation was measured with CCK8 (Cell Counting Kit-8) and colony formation assays. Wound healing and transwell assays were used to determine cell migration and invasion, respectively. The effect of OTUB1 on FOXM1 ubiquitination was examined by Immunoprecipitation. Western blot was used to uncover the underlying mechanism. In vivo subcutaneous xenotransplanted tumor model combined with immunohistochemistry and western blot were used to examine the tumorigenic function of OTUB1. Results OTUB1 was up-regulated in RCC tissues and cell lines, and was associated with poor prognosis of RCC patients. Knockdown of OTUB1 inhibited cell viability and proliferation, as well as migration and invasion of RCC cells. Mechanistically, knockdown of OTUB1 down-regulated FOXM1 expression by promoting its ubiquitination. Down-regulation of FOXM1 inhibited ECT2 (epithelial cell transforming 2)-mediated Rho signaling. Moreover, the inhibition of RCC progression caused by OTUB1 knockdown was reversed by FOXM1 over-expression. In vivo subcutaneous xenotransplanted tumor model also revealed that knockdown of OTUB1 could suppress in vivo RCC growth via down-regulation of FOXM1-mediated ECT2 expression. Conclusions OTUB1-mediated deubiquitination of FOXM1 up-regulates ECT-2 to promote tumor progression in RCC, providing a new potential therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Kai Zhou
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Haixing Mai
- 2Department of Urology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Song Zheng
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Weizhong Cai
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Xu Yang
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Zhenlin Chen
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Bin Zhan
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| |
Collapse
|