1
|
Fei K, Andress BD, Kelly AM, Chasse DAD, McNulty AL. Meniscus gene expression profiling of inner and outer zone meniscus tissue compared to cartilage and passaged monolayer meniscus cells. Sci Rep 2024; 14:27423. [PMID: 39521910 PMCID: PMC11550462 DOI: 10.1038/s41598-024-78580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Meniscus injuries are common and while surgical strategies have improved, there is a need for alternative therapeutics to improve long-term outcomes and prevent post-traumatic osteoarthritis. Current research efforts in regenerative therapies and tissue engineering are hindered by a lack of understanding of meniscus cell biology and a poorly defined meniscus cell phenotype. This study utilized bulk RNA-sequencing to identify unique and overlapping transcriptomic profiles in cartilage, inner and outer zone meniscus tissue, and passaged inner and outer zone meniscus cells. The greatest transcriptomic differences were identified when comparing meniscus tissue to passaged monolayer cells (> 4,600 differentially expressed genes (DEGs)) and meniscus tissue to cartilage (> 3,100 DEGs). While zonal differences exist within the meniscus tissue (205 DEGs between inner and outer zone meniscus tissue), meniscus resident cells are more similar to each other than to either cartilage or passaged monolayer meniscus cells. Additionally, we identified and validated LUM, PRRX1, and SNTB1 as potential markers for meniscus tissue and ACTA2, TAGLN, SFRP2, and FSTL1 as novel markers for meniscus cell dedifferentiation. Our data contribute significantly to the current characterization of meniscus cells and provide an important foundation for future work in meniscus cell biology, regenerative medicine, and tissue engineering.
Collapse
Affiliation(s)
- Kaileen Fei
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Benjamin D Andress
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - A'nna M Kelly
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
- Department of Biomedical Engineering, Duke University, DUMC Box 3093, Durham, NC, 27710, USA
| | - Dawn A D Chasse
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA.
- Department of Biomedical Engineering, Duke University, DUMC Box 3093, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Dinesh NEH, Baratang N, Rosseau J, Mohapatra R, Li L, Mahalingam R, Tiedemann K, Campeau PM, Reinhardt DP. Fibronectin isoforms promote postnatal skeletal development. Matrix Biol 2024; 133:86-102. [PMID: 39159790 DOI: 10.1016/j.matbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix glycoprotein essential for the development of various tissues. Mutations in FN cause a unique form of spondylometaphyseal dysplasia, emphasizing its importance in cartilage and bone development. However, the relevance and functional role of FN during skeletal development has remained elusive. To address these aspects, we have generated conditional knockout mouse models targeting the cellular FN isoform in cartilage (cFNKO), the plasma FN isoform in hepatocytes (pFNKO), and both isoforms together in a double knockout (FNdKO). We used these mice to determine the relevance of the two principal FN isoforms in skeletal development from postnatal day one to the adult stage at two months. We identified a distinct topological FN deposition pattern in the mouse limb during different gestational and postnatal skeletal development phases, with prominent levels at the resting and hypertrophic chondrocyte zones and in the trabecular bone. Cartilage-specific cFN emerged as the predominant isoform in the growth plate, whereas circulating pFN remained excluded from the growth plate and confined to the primary and secondary ossification centers. Deleting either isoform independently (cFNKO or pFNKO) yielded only relatively subtle changes in the analyzed skeletal parameters. However, the double knockout of cFN in the growth plate and pFN in the circulation of the FNdKO mice significantly reduced postnatal body weight, body length, and bone length. Micro-CT analysis of the adult bone microarchitecture in FNdKO mice exposed substantial reductions in trabecular bone parameters and bone mineral density. The mice also showed elevated bone marrow adiposity. Analysis of chondrogenesis in FNdKO mice demonstrated changes in the resting, proliferating and hypertrophic growth plate zones, consistent alterations in chondrogenic markers such as collagen type II and X, decreased apoptosis of hypertrophic chondrocytes, and downregulation of bone formation markers. Transforming growth factor-β1 and downstream phospho-AKT levels were significantly lower in the FNdKO than in the control mice, revealing a crucial FN-mediated regulatory pathway in chondrogenesis and bone formation. In conclusion, the data demonstrate that FN is essential for chondrogenesis and bone development. Even though cFN and pFN act in different regions of the bone, both FN isoforms are required for the regulation of chondrogenesis, cartilage maturation, trabecular bone formation, and overall skeletal growth.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | | | - Ronit Mohapatra
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ling Li
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ramshaa Mahalingam
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Dinesh NEH, Rousseau J, Mosher DF, Strauss M, Mui J, Campeau PM, Reinhardt DP. Mutations in fibronectin dysregulate chondrogenesis in skeletal dysplasia. Cell Mol Life Sci 2024; 81:419. [PMID: 39367925 PMCID: PMC11456097 DOI: 10.1007/s00018-024-05444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive. Here, we have generated patient-derived induced pluripotent stem cells as a cell culture model for SMDCF to investigate the consequences of FN mutations on mesenchymal stem cells (MSCs) and their differentiation into cartilage-producing chondrocytes. In line with our previous data, FN mutations disrupted protein secretion from MSCs, causing a notable increase in intracellular FN and a significant decrease in extracellular FN levels. Analyses of plasma samples from SMDCF patients also showed reduced FN in circulation. FN and endoplasmic reticulum (ER) protein folding chaperones (BIP, HSP47) accumulated in MSCs within ribosome-covered cytosolic vesicles that emerged from the ER. Massive amounts of these vesicles were not cleared from the cytosol, and a smaller subset showed the presence of lysosomal markers. The accumulation of intracellular FN and ER proteins elevated cellular stress markers and altered mitochondrial structure. Bulk RNA sequencing revealed a specific transcriptomic dysregulation of the patient-derived cells relative to controls. Analysis of MSC differentiation into chondrocytes showed impaired mesenchymal condensation, reduced chondrogenic markers, and compromised cell proliferation in mutant cells. Moreover, FN mutant cells exhibited significantly lower transforming growth factor beta-1 (TGFβ1) expression, crucial for mesenchymal condensation. Exogenous FN or TGFβ1 supplementation effectively improved the MSC condensation and promoted chondrogenesis in FN mutant cells. These findings demonstrate the cellular consequences of FN mutations in SMDCF and explain the molecular pathways involved in the associated altered chondrogenesis.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada
| | - Justine Rousseau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA
| | - Mike Strauss
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada
| | - Jeannie Mui
- Facility for Electron Microscopy Research of McGill University, Montreal, QC, Canada
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Zhang B, Berilla J, Cho S, Somoza RA, Welter JF, Alexander PE, Baskaran H. Synergistic effects of biological stimuli and flexion induce microcavities promote hypertrophy and inhibit chondrogenesis during in vitro culture of human mesenchymal stem cell aggregates. Biotechnol J 2024; 19:e2400060. [PMID: 39295570 PMCID: PMC11870314 DOI: 10.1002/biot.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024]
Abstract
Interzone/cavitation are key steps in early stage joint formation that have not been successfully developed in vitro. Further, current models of endochondral ossification, an important step in early bone formation, lack key morphology morphological structures such as microcavities found during development in vivo. This is possibly due to the lack of appropriate strategies for incorporating chemical and mechanical stimuli that are thought to be involved in joint development. We designed a bioreactor system and investigated the synergic effect of chemical stimuli (chondrogenesis-inducing [CIM] and hypertrophy-inducing medium [HIM]) and mechanical stimuli (flexion) on the growth of human mesenchymal stem cells (hMSCs) based linear aggregates under different conditions over 4 weeks of perfusion culture. Computational studies were used to evaluate tissue stress qualitatively. After harvesting, both Safranin-O and hematoxylin & eosin (H&E) staining histology demonstrated microcavity structures and void structures in the region of higher stresses for tissue aggregates cultured only in HIM under flexion. In comparison to either HIM treatment or flexion only, increased glycosaminoglycan (GAG) content in the extracellular matrix (ECM) at this region indicates the morphological change resembles the early stage of joint cavitation; while decreased type II collagen (Col II), and increased type X collagen (Col X) and vascular endothelial growth factor (VEGF) with a clear boundary in the staining section indicates it resembles the early stage of ossification. Further, cell alignment analysis indicated that cells were mostly oriented toward the direction of flexion in high-stress region only in HIM under flexion, resembling cell morphology in both joint cavitation and hypertrophic cartilage in growth plate. Collectively, our results suggest that flexion and HIM inhibit chondrogenesis and promote hypertrophy and development of microcavities that resemble the early stage of joint cavitation and endochondral ossification. We believe the tissue model described in this work can be used to develop in vitro models of joint tissue for applications such as pathophysiology and drug discovery.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jim Berilla
- Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sungwoo Cho
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rodrigo A Somoza
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jean F Welter
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peter E Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
6
|
McGrath C, Little-Letsinger SE, Pagnotti GM, Sen B, Xie Z, Uzer G, Uzer GB, Zong X, Styner MA, Rubin J, Styner M. Diet-Stimulated Marrow Adiposity Fails to Worsen Early, Age-Related Bone Loss. Obes Facts 2024; 17:145-157. [PMID: 38224679 PMCID: PMC10987189 DOI: 10.1159/000536159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
INTRODUCTION Longitudinal effect of diet-induced obesity on bone is uncertain. Prior work showed both no effect and a decrement in bone density or quality when obesity begins prior to skeletal maturity. We aimed to quantify long-term effects of obesity on bone and bone marrow adipose tissue (BMAT) in adulthood. METHODS Skeletally mature, female C57BL/6 mice (n = 70) aged 12 weeks were randomly allocated to low-fat diet (LFD; 10% kcal fat; n = 30) or high-fat diet (HFD; 60% kcal fat; n = 30), with analyses at 12, 15, 18, and 24 weeks (n = 10/group). Tibial microarchitecture was analyzed by µCT, and volumetric BMAT was quantified via 9.4T MRI/advanced image analysis. Histomorphometry of adipocytes and osteoclasts, and qPCR were performed. RESULTS Body weight and visceral white adipose tissue accumulated in response to HFD started in adulthood. Trabecular bone parameters declined with advancing experimental age. BV/TV declined 22% in LFD (p = 0.0001) and 17% in HFD (p = 0.0022) by 24 weeks. HFD failed to appreciably alter BV/TV and had negligible impact on other microarchitecture parameters. Both dietary intervention and age accounted for variance in BMAT, with regional differences: distal femoral BMAT was more responsive to diet, while proximal femoral BMAT was more attenuated by age. BMAT increased 60% in the distal metaphysis in HFD at 18 and 24 weeks (p = 0.0011). BMAT in the proximal femoral diaphysis, unchanged by diet, decreased 45% due to age (p = 0.0002). Marrow adipocyte size via histomorphometry supported MRI quantification. Osteoclast number did not differ between groups. Tibial qPCR showed attenuation of some adipose, metabolism, and bone genes. A regulator of fatty acid β-oxidation, cytochrome C (CYCS), was 500% more abundant in HFD bone (p < 0.0001; diet effect). CYCS also increased due to age, but to a lesser extent. HFD mildly increased OCN, TRAP, and SOST. CONCLUSIONS Long-term high fat feeding after skeletal maturity, despite upregulation of visceral adiposity, body weight, and BMAT, failed to attenuate bone microarchitecture. In adulthood, we found aging to be a more potent regulator of microarchitecture than diet-induced obesity.
Collapse
Affiliation(s)
- Cody McGrath
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah E. Little-Letsinger
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriel M. Pagnotti
- Department of Endocrine, Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, Houston, TX, USA
| | - Buer Sen
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhihui Xie
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gunes Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guniz B. Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaopeng Zong
- Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martin A. Styner
- Departments of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Santibanez JF, Echeverria C, Millan C, Simon F. Transforming growth factor-beta superfamily regulates mesenchymal stem cell osteogenic differentiation: A microRNA linking. Acta Histochem 2023; 125:152096. [PMID: 37813068 DOI: 10.1016/j.acthis.2023.152096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
The ability to differentiate into cells of different lineages, such as bone cells, is the principal value of adult mesenchymal stem cells (MSCs), which can be used with the final aim of regenerating damaged tissue. Due to its potential use and importance in regenerative medicine and tissue engineering, several questions have been raised regarding the molecular mechanisms of MSC differentiation. As one of the crucial mediators in organism development, the transforming growth factor-beta (TGF-β) superfamily directs MSCs' commitment to selecting differentiation pathways. This review aims to give an overview of the current knowledge on the mechanisms of the TGF-β superfamily in MSCs bone differentiation, with additional insight into the mutual regulation of microRNAs and TGF-β in osteogenesis.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, General Gana 1780, Santiago 8370854, Chile.
| | - Cesar Echeverria
- Laboratory of Molecular Biology, Nanomedicine, and Genomic, Faculty of Medicine, University of Atacama, Copiapó 1532502, Chile
| | - Carola Millan
- Department of Sciences, Faculty of Liberal Arts, Adolfo Ibáñez University, Viña del Mar, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Toejing P, Sakunrangsit N, Pho-On P, Phetkong C, Leelahavanichkul A, Sridurongrit S, Greenblatt MB, Lotinun S. Accelerated Bone Loss in Transgenic Mice Expressing Constitutively Active TGF-β Receptor Type I. Int J Mol Sci 2023; 24:10797. [PMID: 37445982 DOI: 10.3390/ijms241310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Transforming growth factor beta (TGF-β) is a key factor mediating the intercellular crosstalk between the hematopoietic stem cells and their microenvironment. Here, we investigated the skeletal phenotype of transgenic mice expressing constitutively active TGF-β receptor type I under the control of Mx1-Cre (Mx1;TβRICA mice). μCT analysis showed decreased cortical thickness, and cancellous bone volume in both femurs and mandibles. Histomorphometric analysis confirmed a decrease in cancellous bone volume due to increased osteoclast number and decreased osteoblast number. Primary osteoblasts showed decreased ALP and mineralization. Constitutive TβRI activation increased osteoclast differentiation. qPCR analysis showed that Tnfsf11/Tnfrsf11b ratio, Ctsk, Sufu, and Csf1 were increased whereas Runx2, Ptch1, and Ptch2 were decreased in Mx1;TβRICA femurs. Interestingly, Gli1, Wnt3a, Sp7, Alpl, Ptch1, Ptch2, and Shh mRNA expression were reduced whereas Tnfsf11/Tnfrsf11b ratio was increased in Mx1;TβRICA mandibles. Similarly, osteoclast-related genes were increased in Mx1;TβRICA osteoclasts whereas osteoblast-related genes were reduced in Mx1;TβRICA osteoblasts. Western blot analysis indicated that SMAD2 and SMAD3 phosphorylation was increased in Mx1;TβRICA osteoblasts, and SMAD3 phosphorylation was increased in Mx1;TβRICA osteoclasts. CTSK was increased while RUNX2 and PTCH1 was decreased in Mx1;TβRICA mice. Microindentation analysis indicated decreased hardness in Mx1;TβRICA mice. Our study indicated that Mx1;TβRICA mice were osteopenic by increasing osteoclast number and decreasing osteoblast number, possibly by suppressing Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Parichart Toejing
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nithidol Sakunrangsit
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pinyada Pho-On
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chinnatam Phetkong
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somyoth Sridurongrit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10330, Thailand
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and Research Division, Hospital for Special Surgery, New York, NY 10065, USA
| | - Sutada Lotinun
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Ma C, Gao J, Liang J, Wang F, Xu L, Bu J, He B, Liu G, Niu R, Liu G. CCL12 induces trabecular bone loss by stimulating RANKL production in BMSCs during acute lung injury. Exp Mol Med 2023; 55:818-830. [PMID: 37009797 PMCID: PMC10167364 DOI: 10.1038/s12276-023-00970-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 04/04/2023] Open
Abstract
In the last three years, the capacity of health care systems and the public health policies of governments worldwide were challenged by the spread of SARS-CoV-2. Mortality due to SARS-CoV-2 mainly resulted from the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Moreover, millions of people who survived ALI/ARDS in SARS-CoV-2 infection suffer from multiple lung inflammation-induced complications that lead to disability and even death. The lung-bone axis refers to the relationship between lung inflammatory diseases (COPD, asthma, and cystic fibrosis) and bone diseases, including osteopenia/osteoporosis. Compared to chronic lung diseases, the influence of ALI on the skeleton has not been investigated until now. Therefore, we investigated the effect of ALI on bone phenotypes in mice to elucidate the underlying mechanisms. In vivo bone resorption enhancement and trabecular bone loss were observed in LPS-induced ALI mice. Moreover, chemokine (C-C motif) ligand 12 (CCL12) accumulated in the serum and bone marrow. In vivo global ablation of CCL12 or conditional ablation of CCR2 in bone marrow stromal cells (BMSCs) inhibited bone resorption and abrogated trabecular bone loss in ALI mice. Furthermore, we provided evidence that CCL12 promoted bone resorption by stimulating RANKL production in BMSCs, and the CCR2/Jak2/STAT4 axis played an essential role in this process. Our study provides information regarding the pathogenesis of ALI and lays the groundwork for future research to identify new targets to treat lung inflammation-induced bone loss.
Collapse
Affiliation(s)
- Chao Ma
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Juan Gao
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Feizhen Wang
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Long Xu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Jinhui Bu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Bo He
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Guangpu Liu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Ru Niu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Guangwang Liu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China.
| |
Collapse
|
10
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
11
|
Willcockson H, Ozkan H, Arbeeva L, Mucahit E, Musawwir L, Longobardi L. Early ablation of Ccr2 in aggrecan-expressing cells following knee injury ameliorates joint damage and pain during post-traumatic osteoarthritis. Osteoarthritis Cartilage 2022; 30:1616-1630. [PMID: 36075514 PMCID: PMC9671864 DOI: 10.1016/j.joca.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate whether Ccr2 inactivation in aggrecan-expressing cells induced before post-traumatic OA (PTOA) onset or during progression, improves joint structures, synovial thickness and pain. DESIGN We induced a Ccr2 deletion in aggrecan-expressing cells (CCR2-AggKO) in skeletally mature mice using a tamoxifen-inducible Ccr2 inactivation. We stimulated PTOA changes (destabilization of medial meniscus, DMM) in CCR2-AggKO and CCR2+/+ mice, inducing recombination before DMM or 4 wks after DMM (early-vs late-inactivation). Joint damage was evaluated 2, 4, 8, 12 wks post-DMM using multiple scores: articular-cartilage structure (ACS), Safranin-O, histomorphometry, osteophyte size/maturity, subchondral bone thickness and synovial hyperplasia. Spontaneous (incapacitance meter) and evoked pain (von-Frey filaments) were assessed up to 20 wks. RESULTS Early aggrecan-Ccr2 inactivation in CCR2-AggKO mice (N=8) resulted in improved ACS score (8-12wk, P=0.002), AC area (4-12wk, P<0.05) and Saf-O score (2wks P=0.004, 4wks P=0.02, 8-12wks P=0.002) compared to CCR2+/+. Increased subchondral bone thickness was delayed only at 2 wks and exclusively following early recombination. Osteophyte size was not affected, but osteophyte maturation (cartilage-to-bone) was delayed (4wks P=0.04; 8 wks P=0.03). Although late aggrecan-Ccr2 deletion led to some cartilage improvement, most data did not reach statistical significance; osteophyte maturity was delayed at 12wks. Early aggrecan-Ccr2 deletion led to improved pain measures of weight bearing compared to CCR2+/+ mice (N = 9, 12wks diff 0.13 [0.01, 0.26], 16wks diff 0.15 [0.05, 0.26], 20wks diff 0.23 [0.14, 0.31]). Improved mechanosensitivity in evoked pain, although less noticeable, was detected. CONCLUSIONS We demonstrated that deletion of Ccr2 in aggrecan expressing cells reduces the initiation but not progression of OA.
Collapse
Affiliation(s)
- H Willcockson
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - H Ozkan
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - L Arbeeva
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - E Mucahit
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - L Musawwir
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - L Longobardi
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Egawa S, Griffin CT, Bishop PJ, Pintore R, Tsai HP, Botelho JF, Smith-Paredes D, Kuratani S, Norell MA, Nesbitt SJ, Hutchinson JR, Bhullar BAS. The dinosaurian femoral head experienced a morphogenetic shift from torsion to growth along the avian stem. Proc Biol Sci 2022; 289:20220740. [PMID: 36196539 PMCID: PMC9532989 DOI: 10.1098/rspb.2022.0740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Significant evolutionary shifts in locomotor behaviour often involve comparatively subtle anatomical transitions. For dinosaurian and avian evolution, medial overhang of the proximal femur has been central to discussions. However, there is an apparent conflict with regard to the evolutionary origin of the dinosaurian femoral head, with neontological and palaeontological data suggesting seemingly incongruent hypotheses. To reconcile this, we reconstructed the evolutionary history of morphogenesis of the proximal end of the femur from early archosaurs to crown birds. Embryological comparison of living archosaurs (crocodylians and birds) suggests the acquisition of the greater overhang of the femoral head in dinosaurs results from additional growth of the proximal end in the medial-ward direction. On the other hand, the fossil record suggests that this overhang was acquired by torsion of the proximal end, which projected in a more rostral direction ancestrally. We reconcile this apparent conflict by inferring that the medial overhang of the dinosaur femoral head was initially acquired by torsion, which was then superseded by mediad growth. Details of anatomical shifts in fossil forms support this hypothesis, and their biomechanical implications are congruent with the general consensus regarding broader morpho-functional evolution on the avian stem.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Christopher T Griffin
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Peter J Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Geosciences Program, Queensland Museum, Brisbane, Australia
| | - Romain Pintore
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK.,Mécanismes adaptatifs et évolution (MECADEV)/UMR 7179, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Henry P Tsai
- Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA
| | - João F Botelho
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA.,Department of Biology, Southern Connecticut State University, New Haven, CT 06515, USA.,Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Smith-Paredes
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mark A Norell
- Division of Vertebrate Paleontology, American Museum of Natural History, New York, NY, USA
| | | | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Bhart-Anjan S Bhullar
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Pentosan polysulfate sodium prevents functional decline in chikungunya infected mice by modulating growth factor signalling and lymphocyte activation. PLoS One 2021; 16:e0255125. [PMID: 34492036 PMCID: PMC8423248 DOI: 10.1371/journal.pone.0255125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that causes large outbreaks world-wide leaving millions of people with severe and debilitating arthritis. Interestingly, clinical presentation of CHIKV arthritides have many overlapping features with rheumatoid arthritis including cellular and cytokine pathways that lead to disease development and progression. Currently, there are no specific treatments or vaccines available to treat CHIKV infections therefore advocating the need for the development of novel therapeutic strategies to treat CHIKV rheumatic disease. Herein, we provide an in-depth analysis of an efficacious new treatment for CHIKV arthritis with a semi-synthetic sulphated polysaccharide, Pentosan Polysulfate Sodium (PPS). Mice treated with PPS showed significant functional improvement as measured by grip strength and a reduction in hind limb foot swelling. Histological analysis of the affected joint showed local inflammation was reduced as seen by a decreased number of infiltrating immune cells. Additionally, joint cartilage was protected as demonstrated by increased proteoglycan staining. Using a multiplex-immunoassay system, we also showed that at peak disease, PPS treatment led to a systemic reduction of the chemokines CXCL1, CCL2 (MCP-1), CCL7 (MCP-3) and CCL12 (MCP-5) which may be associated with the reduction in cellular infiltrates. Further characterisation of the local effect of PPS in its action to reduce joint and muscle inflammation was performed using NanoString™ technology. Results showed that PPS altered the local expression of key functional genes characterised for their involvement in growth factor signalling and lymphocyte activation. Overall, this study shows that PPS is a promising treatment for alphaviral arthritis by reducing inflammation and protecting joint integrity.
Collapse
|
14
|
Iwan A, Moskalewski S, Hyc A. Growth factor profile in calcified cartilage from the metaphysis of a calf costochondral junction, the site of initial bone formation. Biomed Rep 2021; 14:54. [PMID: 33884197 PMCID: PMC8056382 DOI: 10.3892/br.2021.1430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Endochondral bone formation is orchestrated by growth factors produced by chondrocytes and deposited in the cartilage matrix. Whilst some of these factors have been identified, the complete list and their relationship remains unknown. In the present study, the growth factors were isolated from non-calcified and calcified cartilage of costochondral junctions. Cartilage dissected from the ribs of 6-20-week-old calves was purchased from a local butcher within 24 h of the death of the animal. The isolation involved hyaluronidase digestion, guanidinium hydrochloride (GuHCl) extraction, HCl decalcification and GuHCl extraction of the decalcified matrix. Growth factors were purified by heparin chromatography and their quantities were estimated using ELISA. Decalcified cartilage was also used for protein sequence analysis (data are available via ProteomeXchange; ID, PXD021781). Bone morphogenetic protein-7 (BMP-7), growth/differentiation factor-5 (GDF-5) and NEL-like protein-1 (NELL-1), all known growth factors that stimulate bone formation, quantitatively accounted for the majority of the material obtained in all steps of isolation. Thus, cartilage serves as a store for growth factors. During initial bone formation septoclasts release osteoclastogenesis-stimulating factors deposited in non-calcified cartilage. Osteoclasts dissolve calcified cartilage and transport the released factors required for the stimulation of osteoprogenitor cells to deposit osteoid. High concentrations of BMP-7, GDF-5 and NELL-1 at the site of initial bone formation may suggest that their synergistic action favours osteogenesis.
Collapse
Affiliation(s)
- Anna Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw PL02004, Poland
| | - Stanisław Moskalewski
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw PL02004, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw PL02004, Poland
| |
Collapse
|
15
|
McGrath C, Little-Letsinger SE, Sankaran JS, Sen B, Xie Z, Styner MA, Zong X, Chen W, Rubin J, Klett EL, Coleman RA, Styner M. Exercise Increases Bone in SEIPIN Deficient Lipodystrophy, Despite Low Marrow Adiposity. Front Endocrinol (Lausanne) 2021; 12:782194. [PMID: 35145475 PMCID: PMC8822583 DOI: 10.3389/fendo.2021.782194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
Exercise, typically beneficial for skeletal health, has not yet been studied in lipodystrophy, a condition characterized by paucity of white adipose tissue, with eventual diabetes, and steatosis. We applied a mouse model of global deficiency of Bscl2 (SEIPIN), required for lipid droplet formation. Male twelve-week-old B6 knockouts (KO) and wild type (WT) littermates were assigned six-weeks of voluntary, running exercise (E) versus non-exercise (N=5-8). KO weighed 14% less than WT (p=0.01) and exhibited an absence of epididymal adipose tissue; KO liver Plin1 via qPCR was 9-fold that of WT (p=0.04), consistent with steatosis. Bone marrow adipose tissue (BMAT), unlike white adipose, was measurable, although 40.5% lower in KO vs WT (p=0.0003) via 9.4T MRI/advanced image analysis. SEIPIN ablation's most notable effect marrow adiposity was in the proximal femoral diaphysis (-56% KO vs WT, p=0.005), with relative preservation in KO-distal-femur. Bone via μCT was preserved in SEIPIN KO, though some quality parameters were attenuated. Running distance, speed, and time were comparable in KO and WT. Exercise reduced weight (-24% WT-E vs WT p<0.001) but not in KO. Notably, exercise increased trabecular BV/TV in both (+31%, KO-E vs KO, p=0.004; +14%, WT-E vs WT, p=0.006). The presence and distribution of BMAT in SEIPIN KO, though lower than WT, is unexpected and points to a uniqueness of this depot. That trabecular bone increases were achievable in both KO and WT, despite a difference in BMAT quantity/distribution, points to potential metabolic flexibility during exercise-induced skeletal anabolism.
Collapse
Affiliation(s)
- Cody McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah E. Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeyantt Srinivas Sankaran
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Buer Sen
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zhihui Xie
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Martin A. Styner
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaopeng Zong
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- North Carolina Diabetes Research Center (NCDRC), Chapel Hill, NC, United States
| | - Eric L. Klett
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- North Carolina Diabetes Research Center (NCDRC), Chapel Hill, NC, United States
- Department of Nutrition, Gillings School of Global Public Health, UNC, Chapel Hill, NC, United States
| | - Rosalind A. Coleman
- Department of Nutrition, Gillings School of Global Public Health, UNC, Chapel Hill, NC, United States
| | - Maya Styner
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- North Carolina Diabetes Research Center (NCDRC), Chapel Hill, NC, United States
- *Correspondence: Maya Styner,
| |
Collapse
|
16
|
Zhang J, Hu X, Dong X, Chen W, Zhang L, Chang Y, Wu Y, Wei W. Regulation of T Cell Activities in Rheumatoid Arthritis by the Novel Fusion Protein IgD-Fc-Ig. Front Immunol 2020; 11:755. [PMID: 32499775 PMCID: PMC7243948 DOI: 10.3389/fimmu.2020.00755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and T cell hyper-activation. Emerging evidence has shown that the stimulation of immunoglobulin D (IgD) induces T cell activation and may contribute to disease pathogenesis. In this study, the sIgD concentrations were positively associated with disease activity score in 28 joints (DAS28) and anti-cyclic citrullinated peptide (anti-CCP) in RA. We demonstrated that IgD-Fc-Ig (composed of human IgD Fc domain and IgG1 Fc domain, obtained through prokaryotic protein expression and chromatography purification) effectively inhibited the activation and proliferation of T cells in healthy controls and PBMCs in RA patients stimulated by IgD, recovered the Th17/Treg cell subset balance, and downregulated p-Lck and p-ZAP70 expression. Moreover, in vivo, IgD-Fc-Ig decreased the swollen joint counts and arthritis indices in mice with collagen-induced arthritis (CIA), and ameliorated histopathological changes in joint and spleen tissue. It also downregulated thymocyte proliferation and reduced the percentage of helper T cells (Th) and CD154+ T cells, reversed the imbalance of Th1/Th2 and Th17/Treg cell subsets, reduced cytokine and chemokine levels, and inhibited p-Lck and p-ZAP70 expression. Our data suggest that IgD-Fc-Ig fusion protein regulates T cell activity in RA. These findings have potential implications for IgD-targeted strategies to treat IgD-associated RA.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiaoxi Hu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiaojie Dong
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wensheng Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yan Chang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yujing Wu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
McGrath C, Sankaran JS, Misaghian‐Xanthos N, Sen B, Xie Z, Styner MA, Zong X, Rubin J, Styner M. Exercise Degrades Bone in Caloric Restriction, Despite Suppression of Marrow Adipose Tissue (MAT). J Bone Miner Res 2020; 35:106-115. [PMID: 31509274 PMCID: PMC6980282 DOI: 10.1002/jbmr.3872] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/13/2019] [Accepted: 08/30/2019] [Indexed: 01/06/2023]
Abstract
Marrow adipose tissue (MAT) and its relevance to skeletal health during caloric restriction (CR) is unknown: It remains unclear whether exercise, which is anabolic to bone in a calorie-replete state, alters bone or MAT in CR. We hypothesized that response of bone and MAT to exercise in CR differs from the calorie-replete state. Ten-week-old female B6 mice fed a regular diet (RD) or 30% CR diet were allocated to sedentary (RD, CR, n = 10/group) or running exercise (RD-E, CR-E, n = 7/group). After 6 weeks, CR mice weighed 20% less than RD, p < 0.001; exercise did not affect weight. Femoral bone volume (BV) via 3D MRI was 20% lower in CR versus RD (p < 0.0001). CR was associated with decreased bone by μCT: Tb.Th was 16% less in CR versus RD, p < 0.003, Ct.Th was 5% less, p < 0.07. In CR-E, Tb.Th was 40% less than RD-E, p < 0.0001. Exercise increased Tb.Th in RD (+23% RD-E versus RD, p < 0.003) but failed to do so in CR. Cortical porosity increased after exercise in CR (+28%, p = 0.04), suggesting exercise during CR is deleterious to bone. In terms of bone fat, metaphyseal MAT/ BV rose 159% in CR versus RD, p = 0.003 via 3D MRI. Exercise decreased MAT/BV by 52% in RD, p < 0.05, and also suppressed MAT in CR (-121%, p = 0.047). Histomorphometric analysis of adipocyte area correlated with MAT by MRI (R2 = 0.6233, p < 0.0001). With respect to bone, TRAP and Sost mRNA were reduced in CR. Intriguingly, the repressed Sost in CR rose with exercise and may underlie the failure of CR-bone quantity to increase in response to exercise. Notably, CD36, a marker of fatty acid uptake, rose 4088% in CR (p < 0.01 versus RD), suggesting that basal increases in MAT during calorie restriction serve to supply local energy needs and are depleted during exercise with a negative impact on bone. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Cody McGrath
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Jeyantt S Sankaran
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Negin Misaghian‐Xanthos
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Buer Sen
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Zhihui Xie
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Martin A Styner
- Department of Computer ScienceUniversity of North CarolinaChapel HillNCUSA
- Department of PsychiatryUniversity of North CarolinaChapel HillNCUSA
| | - Xiaopeng Zong
- Biomedical Research Imaging CenterUniversity of North CarolinaChapel HillNCUSA
| | - Janet Rubin
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Maya Styner
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| |
Collapse
|
18
|
Abstract
Chemokines are a family of small proteins, subdivided by their conserved cysteine residues and common structural features. Chemokines interact with their cognate G-protein-coupled receptors to elicit downstream signals that result in cell migration, proliferation, and survival. This review presents evidence for how the various CXC and CC subfamily chemokines influence bone hemostasis by acting on osteoclasts, osteoblasts, and progenitor cells. Also discussed are the ways in which chemokines contribute to bone loss as a result of inflammatory diseases such as rheumatoid arthritis, HIV infection, and periodontal infection. Both positive and negative effects of chemokines on bone formation and bone loss are presented. In addition, the role of chemokines in altering the bone microenvironment through effects on angiogenesis and tumor invasion is discussed. Very few therapeutic agents that influence bone formation by targeting chemokines or chemokine receptors are available, although a few are currently being evaluated.
Collapse
Affiliation(s)
- Annette Gilchrist
- Department of Pharmaceutical Sciences, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
19
|
Yu D, Hu J, Sheng Z, Fu G, Wang Y, Chen Y, Pan Z, Zhang X, Wu Y, Sun H, Dai J, Lu L, Ouyang H. Dual roles of misshapen/NIK-related kinase (MINK1) in osteoarthritis subtypes through the activation of TGFβ signaling. Osteoarthritis Cartilage 2020; 28:112-121. [PMID: 31647983 DOI: 10.1016/j.joca.2019.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the role of misshapen/NIK-related kinase (MINK1) in age-related Osteoarthritis (OA) and injury-induced OA, and the effects of enhanced TGFβ signaling in these progresses. DESIGN The effect of MINK1 was analyzed with MINK1 knock out (Mink1-/-) mice and C57BL/6J mice. OA progress was studied in age-related OA and instability-associated OA (destabilization of the medial meniscus, DMM) models. The murine knee joint was evaluated through histological staining, Osteoarthritis Research Society International (OARSI) scores, immunohistochemistry, and μCT analysis. Primary chondrocytes were isolated from wild type and Mink1-/- mice and subjected to osteogenic induction and Western blot analysis. RESULTS MINK1 is highly expressed during cartilage development and in normal cartilage. Mink1-/- mice displayed markedly lower OARSI scores, aggrecan degradation neoepitope positive cells and increased Safranin O and pSMAD2 staining in aging-related OA model. However, in injury-induced OA, loss of MINK1 accelerates extracellular matrix (ECM) destruction, osteophyte formation, and subchondral bone sclerosis. Accelerated subchondral bone remodeling in Mink1-/- mice was accompanied with increased numbers of nestin-positive mesenchymal stem cells (MSCs) and osterix-positive osteoprogenitors. pSMAD2 staining was increased in the subchondral bone marrow of Mink1-/- mice and overexpression of MINK1 inhibited SMAD2 phosphorylation in vitro. CONCLUSIONS This study shows for the first time that activation of TGFβ/SMAD2 by MINK1 deficiency plays opposite roles in aging-related and injury-induced OA. MINK1 deficiency protects cartilage from degeneration in aging joints through increased SMAD2 activation in chondrocytes, while accelerating OA progress in injury-induced model through enhanced osteogenesis of MSCs in the subchondral bone. These findings provide insights for developing precision OA therapeutics targeting TGFβ/SMAD2 signaling.
Collapse
Affiliation(s)
- D Yu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - J Hu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Z Sheng
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - G Fu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Wang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Z Pan
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - X Zhang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Wu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - H Sun
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - J Dai
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - L Lu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - H Ouyang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
20
|
Chawalitpong S, Ichikawa S, Uchibori Y, Nakamura S, Katayama S. Long-Term Intake of Glucoraphanin-Enriched Kale Suppresses Skin Aging via Activating Nrf2 and the TβRII/Smad Pathway in SAMP1 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9782-9788. [PMID: 31390859 DOI: 10.1021/acs.jafc.9b02725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sulforaphane, a potent antioxidant compound, is unstable at ambient temperature, whereas its precursor glucoraphanin is stable and metabolized to sulforaphane. Thus, we hypothesized that glucoraphanin-rich diet could effectively induce antioxidant enzyme activities and investigated the protective effects of long-term intake of a glucoraphanin-enriched kale (GEK) diet on skin aging in senescence-accelerated mouse prone 1 (SAMP1) mice. The senescence grading score was significantly lower after treatment with GEK for 39 weeks than that of the control mice. GEK also suppressed the thinning of the dorsal skin layer. Moreover, the GEK treatment enhanced the collagen production and increased the nuclear translocation of Nrf2 and HO-1 expression level in the skin tissue. TβRII and Smad3 expressions were clearly higher in the GEK-treated group than in the control group. Thus, GEK suppressed senescence in SAMP1 mice by enhancing the antioxidant activity and collagen production via the TβRII/Smad3 pathway, suggesting its practical applications for protection against skin aging.
Collapse
Affiliation(s)
- Supatta Chawalitpong
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Saki Ichikawa
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Yuki Uchibori
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Soichiro Nakamura
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| |
Collapse
|
21
|
Li T, Chubinskaya S, Esposito A, Jin X, Tagliafierro L, Loeser R, Hakimiyan AA, Longobardi L, Ozkan H, Spagnoli A. TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. Sci Transl Med 2019; 11:eaan2585. [PMID: 31068441 PMCID: PMC7102613 DOI: 10.1126/scitranslmed.aan2585] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/07/2018] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Mechanisms that govern the shift from joint homeostasis to osteoarthritis (OA) remain unknown. Here, we identify a pathway used for joint development and homeostasis, and its role in OA. Using a combination of transgenic, pharmacological, and surgical conditions in mouse and human tissues, we found that TGF-β signaling promotes joint homeostasis through regulation of the IL-36 family. We identified IL-36 receptor antagonist (IL-36 in mice and IL-36RN in humans) as a potential disease-modifying OA drug. Specifically, OA development was associated with IL-36α up-regulation and IL-36Ra down-regulation in mice with tissue-specific postnatally induced ablation of Tgfbr2, mice treated with a TGF-β signaling inhibitor, mice with posttraumatic OA, and aging mice with naturally occurring OA. In human cartilage, OA severity was associated with decreased TGFBR2 and IL-36RN, whereas IL-36α increased. Functionally, intra-articular treatment with IL-36Ra attenuated OA development in mice, and IL-36RN reduced MMP13 in human OA chondrocytes. These findings highlight the relevance of TGFBR2-IL-36 interplay in joint homeostasis and IL-36RN as a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Tieshi Li
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE 68198-5945, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Alessandra Esposito
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE 68198-5945, USA
| | - Xin Jin
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | - Richard Loeser
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arnavaz A Hakimiyan
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lara Longobardi
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Huseyin Ozkan
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Orthopedics and Traumatology, Gulhane Military Medical School, Ankara, Turkey
| | - Anna Spagnoli
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA.
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE 68198-5945, USA
| |
Collapse
|
22
|
Abstract
Synovial joints enable movement and protect the integrity of the articular cartilage. Joints form within skeletal condensations destined to undergo chondrogenesis. The suppression of this chondrogenic program in the interzone is the first morphological sign of joint formation. While we have a fairly good understanding of the essential roles of BMP and TGFβ family members in promoting chondrogenic differentiation in developing skeletal elements, we know very little about how BMP activity is suppressed specifically within the interzone, a crucial step in joint development. The function of the BMP ligand Gdf5 has been especially difficult to decipher. On the one hand, Gdf5 is required to promote chondrogenesis of articular elements. On the other hand, Gdf5 is highly expressed in the joint interzone where chondrogenesis must be suppressed for the formation of many joints. Here we review the evidence that BMP signaling must be suppressed within the joint interzone for joint morphogenesis to progress, and consider how Gdf5 exerts its divergent effects on chondrogenesis and joint formation. We also consider how TGFβ signaling impacts formation of the interzone. Finally, we propose a model whereby Gdf5 exerts distinct effects in the interzone vs. surrounding cartilage based on the repertoire of BMP receptors available in these tissues. Understanding how BMP antagonists and counteracting TGFβ signals intersect with Gdf5 to sculpt the joint interzone is essential for understanding the origin of osteoarthritis and other diseases of joint tissues.
Collapse
Affiliation(s)
- Karen M Lyons
- Department of Orthopaedic Surgery, Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States.
| |
Collapse
|
23
|
Styner M, Pagnotti GM, McGrath C, Wu X, Sen B, Uzer G, Xie Z, Zong X, Styner MA, Rubin CT, Rubin J. Exercise Decreases Marrow Adipose Tissue Through ß-Oxidation in Obese Running Mice. J Bone Miner Res 2017; 32:1692-1702. [PMID: 28436105 PMCID: PMC5550355 DOI: 10.1002/jbmr.3159] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/17/2017] [Accepted: 04/20/2017] [Indexed: 12/23/2022]
Abstract
The relationship between marrow adipose tissue (MAT) and bone health is poorly understood. We used running exercise to ask whether obesity-associated MAT can be attenuated via exercise and whether this correlates with gains in bone quantity and quality. C57BL/6 mice were divided into diet-induced obesity (DIO, n = 14) versus low-fat diet (LFD, n = 14). After 3 months, 16-week-old mice were allocated to an exercise intervention (LFD-E, DIO-E) or a control group (LFD, DIO) for 6 weeks (4 groups, n = 7/group). Marrow adipocyte area was 44% higher with obesity (p < 0.0001) and after exercise 33% lower in LFD (p < 0.0001) and 39% lower in DIO (p < 0.0001). In LFD, exercise did not affect adipocyte number; however, in DIO, the adipocyte number was 56% lower (p < 0.0001). MAT was 44% higher in DIO measured by osmium-μCT, whereas exercise associated with reduced MAT (-23% in LFD, -48% in DIO, p < 0.05). MAT was additionally quantified by 9.4TMRI, and correlated with osmium-µCT (r = 0.645; p < 0.01). Consistent with higher lipid beta oxidation, perilipin 3 (PLIN3) rose with exercise in tibial mRNA (+92% in LFD, +60% in DIO, p < 0.05). Tibial µCT-derived trabecular bone volume (BV/TV) was not influenced by DIO but responded to exercise with an increase of 19% (p < 0.001). DIO was associated with higher cortical periosteal and endosteal volumes of 15% (p = 0.012) and 35% (p < 0.01), respectively, but Ct.Ar/Tt.Ar was lower by 2.4% (p < 0.05). There was a trend for higher stiffness (N/m) in DIO, and exercise augmented this further. In conclusion, obesity associated with increases in marrow lipid-measured by osmium-μCT and MRI-and partially due to an increase in adipocyte size, suggesting increased lipid uptake into preexisting adipocytes. Exercise associated with smaller adipocytes and less bone lipid, likely invoking increased ß-oxidation and basal lipolysis as evidenced by higher levels of PLIN3. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Gabriel M Pagnotti
- Department of Biomedical Engineering, State University of New York, Stony Brook, Stony Brook, NY, USA
| | - Cody McGrath
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Xin Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Buer Sen
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Gunes Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Zhihui Xie
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Xiaopeng Zong
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin A Styner
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, State University of New York, Stony Brook, Stony Brook, NY, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Roselló-Díez A, Stephen D, Joyner AL. Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth. eLife 2017; 6. [PMID: 28741471 PMCID: PMC5526667 DOI: 10.7554/elife.27210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Regulation of organ growth is a poorly understood process. In the long bones, the growth plates (GPs) drive elongation by generating a scaffold progressively replaced by bone. Although studies have focused on intrinsic GP regulation, classic and recent experiments suggest that local signals also modulate GP function. We devised a genetic mouse model to study extrinsic long bone growth modulation, in which injury is specifically induced in the left hindlimb, such that the right hindlimb serves as an internal control. Remarkably, when only mesenchyme cells surrounding postnatal GPs were killed, left bone growth was nevertheless reduced. GP signaling was impaired by altered paracrine signals from the knee joint, including activation of the injury response and, in neonates, dampened IGF1 production. Importantly, only the combined prevention of both responses rescued neonatal growth. Thus, we identified signals from the knee joint that modulate bone growth and could underlie establishment of body proportions. DOI:http://dx.doi.org/10.7554/eLife.27210.001 As bones grow, their size is carefully controlled and coordinated with the growth of the other organs in the body. The mechanisms that control organ size also help the body to recover from injury, and play a key role in controlling body size and proportions. Over the course of evolution, these mechanisms have likely changed to produce the distinct body sizes and proportions seen in humans and other animals. Despite their importance, it is not well understood how signals from both inside and outside an organ work together to regulate its size. In growth disorders this signaling goes wrong, which can lead to a person having unusual proportions such as a very short stature or having one leg shorter than the other. Currently, most growth disorders that affect leg proportions are treated with painful surgical procedures. Researchers would like to know how bone growth is affected by signals from the surrounding tissues because this could help them to develop new non-invasive treatments for these conditions. Long bones, for example those in the leg, grow from structures near their ends called growth plates. Roselló-Díez et al. have now engineered mice in which an injury shortly after birth caused cells in the knee in the rear left leg to die off. At the same time, the rear right leg of the mice developed as normal, allowing the growth of the two legs to be compared. Roselló-Díez et al. found that the left leg of these mice grew more slowly than the right leg, even though none of the cells in the growth plate of the left leg bone had been damaged. Further investigation revealed that this was because the injury caused an imbalance between the growth-promoting and growth-restricting signals that are produced by the fat pad and articular cartilage in the knee joint. Restoring the lost balance allowed the left leg bone to grow to a more normal length. In the future, boosting bone growth signals might provide a way to treat conditions like dwarfism or leg-length discrepancies. Understanding how different tissues influence body proportions could also help researchers to investigate how different animals evolved different body proportions. DOI:http://dx.doi.org/10.7554/eLife.27210.002
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Daniel Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, United States.,Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate Schoolof Medical Sciences, New York, United States
| |
Collapse
|
25
|
Longobardi L, Temple JD, Tagliafierro L, Willcockson H, Esposito A, D'Onofrio N, Stein E, Li T, Myers TJ, Ozkan H, Balestrieri ML, Ulici V, Loeser RF, Spagnoli A. Role of the C-C chemokine receptor-2 in a murine model of injury-induced osteoarthritis. Osteoarthritis Cartilage 2017; 25:914-925. [PMID: 27856294 PMCID: PMC5430000 DOI: 10.1016/j.joca.2016.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We previously found in our embryonic studies that proper regulation of the chemokine CCL12 through its sole receptor CCR2, is critical for joint and growth plate development. In the present study, we examined the role of CCR2 in injury-induced-osteoarthritis (OA). METHOD We used a murine model of injury-induced-OA (destabilization of medial meniscus, DMM), and systemically blocked CCR2 using a specific antagonist (RS504393) at different times during disease progression. We examined joint degeneration by assessing cartilage (cartilage loss, chondrocyte hypertrophy, MMP-13 expression) and bone lesions (bone sclerosis, osteophytes formation) with or without the CCR2 antagonist. We also performed pain behavioral studies by assessing the weight distribution between the normal and arthritic hind paws using the IITS incapacitance meter. RESULTS Testing early vs delayed administration of the CCR2 antagonist demonstrated differential effects on joint damage. We found that OA changes in articular cartilage and bone were ameliorated by pharmacological CCR2 blockade, if given early in OA development: specifically, pharmacological targeting of CCR2 during the first 4 weeks (wks) following injury, reduced OA cartilage and bone damage, with less effectiveness with later treatments. Importantly, our pain-related behavioral studies showed that blockade of CCR2 signaling during early, 1-4 wks post-surgery or moderate, 4-8 wks post-surgery, OA was sufficient to decrease pain measures, with sustained improvement at later stages, after treatment was stopped. CONCLUSIONS Our data highlight the potential efficacy of antagonizing CCR2 at early stages to slow the progression of post-injury OA and, in addition, improve pain symptoms.
Collapse
Affiliation(s)
- L Longobardi
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - J D Temple
- Department of Biomedical Engineering, UNC-Chapel Hill, NC, USA; Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - L Tagliafierro
- Department of Neurology, Duke University, Durham, NC, USA.
| | - H Willcockson
- Department of Cell Biology and Physiology, UNC-Chapel Hill, NC, USA.
| | - A Esposito
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - N D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| | - E Stein
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - T Li
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - T J Myers
- Department of Pediatrics, UNC-Chapel Hill, NC, USA.
| | - H Ozkan
- Department of Orthopaedics, Gulhane Military Medical Academy, Etlik, Ankara, Turkey.
| | - M L Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| | - V Ulici
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - R F Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - A Spagnoli
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
26
|
Smeeton J, Askary A, Crump JG. Building and maintaining joints by exquisite local control of cell fate. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.245. [PMID: 27581688 PMCID: PMC5877473 DOI: 10.1002/wdev.245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022]
Abstract
We owe the flexibility of our bodies to sophisticated articulations between bones. Establishment of these joints requires the integration of multiple tissue types: permanent cartilage that cushions the articulating bones, synovial membranes that enclose a lubricating fluid-filled cavity, and a fibrous capsule and ligaments that provide structural support. Positioning the prospective joint region involves establishment of an "interzone" region of joint progenitor cells within a nascent cartilage condensation, which is achieved through the interplay of activators and inhibitors of multiple developmental signaling pathways. Within the interzone, tight regulation of BMP and TGFβ signaling prevents the hypertrophic maturation of joint chondrocytes, in part through downstream transcriptional repressors and epigenetic modulators. Synovial cells then acquire further specializations through expression of genes that promote lubrication, as well as the formation of complex structures such as cavities and entheses. Whereas genetic investigations in mice and humans have uncovered a number of regulators of joint development and homeostasis, recent work in zebrafish offers a complementary reductionist approach toward understanding joint positioning and the regulation of chondrocyte fate at joints. The complexity of building and maintaining joints may help explain why there are still few treatments for osteoarthritis, one of the most common diseases in the human population. A major challenge will be to understand how developmental abnormalities in joint structure, as well as postnatal roles for developmental genes in joint homeostasis, contribute to birth defects and degenerative diseases of joints. WIREs Dev Biol 2017, 6:e245. doi: 10.1002/wdev.245 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
27
|
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4:16009. [PMID: 27563484 PMCID: PMC4985055 DOI: 10.1038/boneres.2016.9] [Citation(s) in RCA: 1132] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Guiqian Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA; Department of neurology, Bruke Medical Research Institute, Weil Cornell Medicine of Cornell University, White Plains, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| |
Collapse
|
28
|
Abstract
Since the identification in 1988 of bone morphogenetic protein 2 (BMP2) as a potent inducer of bone and cartilage formation, BMP superfamily signalling has become one of the most heavily investigated topics in vertebrate skeletal biology. Whereas a large part of this research has focused on the roles of BMP2, BMP4 and BMP7 in the formation and repair of endochondral bone, a large number of BMP superfamily molecules have now been implicated in almost all aspects of bone, cartilage and joint biology. As modulating BMP signalling is currently a major therapeutic target, our rapidly expanding knowledge of how BMP superfamily signalling affects most tissue types of the skeletal system creates enormous potential to translate basic research findings into successful clinical therapies that improve bone mass or quality, ameliorate diseases of skeletal overgrowth, and repair damage to bone and joints. This Review examines the genetic evidence implicating BMP superfamily signalling in vertebrate bone and joint development, discusses a selection of human skeletal disorders associated with altered BMP signalling and summarizes the status of modulating the BMP pathway as a therapeutic target for skeletal trauma and disease.
Collapse
Affiliation(s)
- Valerie S Salazar
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Laura W Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Sherwood J, Bertrand J, Nalesso G, Poulet B, Pitsillides A, Brandolini L, Karystinou A, De Bari C, Luyten FP, Pitzalis C, Pap T, Dell'Accio F. A homeostatic function of CXCR2 signalling in articular cartilage. Ann Rheum Dis 2015; 74:2207-15. [PMID: 25135253 PMCID: PMC4680121 DOI: 10.1136/annrheumdis-2014-205546] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/12/2014] [Accepted: 07/20/2014] [Indexed: 01/16/2023]
Abstract
OBJECTIVE ELR+ CXC chemokines are heparin-binding cytokines signalling through the CXCR1 and CXCR2 receptors. ELR+ CXC chemokines have been associated with inflammatory arthritis due to their capacity to attract inflammatory cells. Here, we describe an unsuspected physiological function of these molecules in articular cartilage homeostasis. METHODS Chemokine receptors and ligands were detected by immunohistochemistry, western blotting and RT-PCR. Osteoarthritis was induced in wild-type and CXCR2(-/-) mice by destabilisation of the medial meniscus (DMM). CXCR1/2 signalling was inhibited in vitro using blocking antibodies or siRNA. Chondrocyte phenotype was analysed using Alcian blue staining, RT-PCR and western blotting. AKT phosphorylation and SOX9 expression were upregulated using constitutively active AKT or SOX9 plasmids. Apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. RESULTS CXCL6 was expressed in healthy cartilage and was retained through binding to heparan sulfate proteoglycans. CXCR2(-/-) mice developed more severe osteoarthritis than wild types following DMM, with increased chondrocyte apoptosis. Disruption of CXCR1/2 in human and CXCR2 signalling in mouse chondrocytes led to a decrease in extracellular matrix production, reduced expression of chondrocyte differentiation markers and increased chondrocyte apoptosis. CXCR2-dependent chondrocyte homeostasis was mediated by AKT signalling since forced expression of constitutively active AKT rescued the expression of phenotypic markers and the apoptosis induced by CXCR2 blockade. CONCLUSIONS Our study demonstrates an important physiological role for CXCR1/2 signalling in maintaining cartilage homeostasis and suggests that the loss of ELR+ CXC chemokines during cartilage breakdown in osteoarthritis contributes to the characteristic loss of chondrocyte phenotypic stability.
Collapse
Affiliation(s)
- Joanna Sherwood
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Jessica Bertrand
- Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Giovanna Nalesso
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Blandine Poulet
- Division of Medicine, Centre for Rheumatology and Connective Tissue Disease, UCL, London, UK
| | - Andrew Pitsillides
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London, UK
| | | | | | - Cosimo De Bari
- Institute of Medical Sciences, University of Aberdeen, UK
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, Belgium
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Francesco Dell'Accio
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
30
|
Tiku ML, Sabaawy HE. Cartilage regeneration for treatment of osteoarthritis: a paradigm for nonsurgical intervention. Ther Adv Musculoskelet Dis 2015; 7:76-87. [PMID: 26029269 DOI: 10.1177/1759720x15576866] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is associated with articular cartilage abnormalities and affects people of older age: preventative or therapeutic treatment measures for OA and related articular cartilage disorders remain challenging. In this perspective review, we have integrated multiple biological, morphological, developmental, stem cell and homeostasis concepts of articular cartilage to develop a paradigm for cartilage regeneration. OA is conceptually defined as an injury of cartilage that initiates chondrocyte activation, expression of proteases and growth factor release from the matrix. This regenerative process results in the local activation of inflammatory response genes in cartilage without migration of inflammatory cells or angiogenesis. The end results are catabolic and anabolic responses, and it is the balance between these two outcomes that controls remodelling of the matrix and regeneration. A tantalizing clinical clue for cartilage regrowth in OA joints has been observed in surgically created joint distraction. We hypothesize that cartilage growth in these distracted joints may have a biological connection with the size of organs and regeneration. Therefore we propose a novel, practical and nonsurgical intervention to validate the role of distraction in cartilage regeneration in OA. The approach permits normal wake-up activity while during sleep; the index knee is subjected to distraction with a pull traction device. Comparison of follow-up magnetic resonance imaging (MRI) at 3 and 6 months of therapy to those taken before therapy will provide much-needed objective evidence for the use of this mode of therapy for OA. We suggest that the paradigm presented here merits investigation for treatment of OA in knee joints.
Collapse
Affiliation(s)
- Moti L Tiku
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ 08903-2681, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
31
|
Wang W, Rigueur D, Lyons KM. TGFβ signaling in cartilage development and maintenance. ACTA ACUST UNITED AC 2015; 102:37-51. [PMID: 24677722 DOI: 10.1002/bdrc.21058] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome-wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, California, 90095
| | | | | |
Collapse
|
32
|
Longobardi L, Li T, Tagliafierro L, Temple JD, Willcockson HH, Ye P, Esposito A, Xu F, Spagnoli A. Synovial joints: from development to homeostasis. Curr Osteoporos Rep 2015; 13:41-51. [PMID: 25431159 PMCID: PMC4306636 DOI: 10.1007/s11914-014-0247-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synovial joint morphogenesis occurs through the condensation of mesenchymal cells into a non-cartilaginous region known as the interzone and the specification of progenitor cells that commit to the articular fate. Although several signaling molecules are expressed by the interzone, the mechanism is poorly understood. For treatments of cartilage injuries, it is critical to discover the presence of joint progenitor cells in adult tissues and their expression gene pattern. Potential stem cell niches have been found in different joint regions, such as the surface zone of articular cartilage, synovium, and groove of Ranvier. Inherited joint malformations as well as joint-degenerating conditions are often associated with other skeletal defects and may be seen as the failure of morphogenic factors to establish the correct microenvironment in cartilage and bone. Therefore, exploring how joints form can help us understand how cartilage and bone are damaged and develop drugs to reactivate this developing mechanism.
Collapse
Affiliation(s)
- Lara Longobardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, 109 Mason Farm Road, Chapel Hill, NC, 27599-7039, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kobayashi K, Toguchida J, Karin M, Kato T. IKKβ in postnatal perichondrium remotely controls endochondral ossification of the growth plate through downregulation of MCP-5. Cell Death Differ 2014; 22:852-61. [PMID: 25526093 DOI: 10.1038/cdd.2014.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 01/13/2023] Open
Abstract
IκB kinase β (IKKβ) is a catalytic subunit of the IKK complex, which activates nuclear factor-κB (NF-κB). Although its role in osteoclastogenesis is well established, the role of IKKβ in bone formation is poorly understood. Here, we report that conditional knockout of Ikkβ in limb bud mesenchymal cells results in the upregulation of monocyte chemoattractant protein-5 (MCP-5) in the perichondrium, which in turn inhibits the growth of longitudinal bone by compromising chondrocyte hypertrophy and increasing the apoptosis of chondrocytes within the growth plate. Contrary to expectations, IKKβ in cells of chondrocyte or osteoblast lineage was dispensable for bone growth. On the other hand, ex vivo experiments confirmed the role of MCP-5 in the growth of longitudinal bone. Furthermore, an in vitro study demonstrated that the action of IKKβ on MCP-5 is cell autonomous. Collectively, our results provide evidence for a previously unrecognized role of IKKβ in the regulation of the growth plate that is mediated through stimulation-independent downregulation of MCP-5 in the perichondrium.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - J Toguchida
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - M Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0723, USA
| | - T Kato
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
34
|
Abstract
Limb synovial joints are intricate structures composed of articular cartilage, synovial membranes, ligaments and an articular capsule. Together, these tissues give each joint its unique shape, organization and biomechanical function. Articular cartilage itself is rather complex and organized in distinct zones, including the superficial zone that produces lubricants and contains stem/progenitor cells. For many years there has been great interest in deciphering the mechanisms by which the joints form and come to acquire such unique structural features and diversity. Decades ago, classic embryologists discovered that the first overt sign of joint formation at each prescribed limb site was the appearance of a dense and compact population of mesenchymal cells collectively called the interzone. Work carried out since then by several groups has provided evidence that the interzone cells actively participate in joint tissue formation over developmental time. This minireview provides a succinct but comprehensive description of the many important recent advances in this field of research. These include studies using various conditional reporter mice to genetically trace and track the origin, fate and possible function of joint progenitor cells; studies on the involvement and roles in signaling pathways and transcription factors in joint cell determination and functioning; and studies using advanced methods of gene expression analyses to uncover novel genetic determinants of joint formation and diversity. The overall advances are impressive, and the findings are not only of obvious interest and importance but also have major implications in the conception of future translational medicine tools to repair and regenerate defective, overused or aging joints.
Collapse
|
35
|
Jenner F, IJpma A, Cleary M, Heijsman D, Narcisi R, van der Spek PJ, Kremer A, van Weeren R, Brama P, van Osch GJVM. Differential gene expression of the intermediate and outer interzone layers of developing articular cartilage in murine embryos. Stem Cells Dev 2014; 23:1883-98. [PMID: 24738827 DOI: 10.1089/scd.2013.0235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nascent embryonic joints, interzones, contain a distinct cohort of progenitor cells responsible for the formation of the majority of articular tissues. However, to date the interzone has largely been studied using in situ analysis for candidate genes in the context of the embryo rather than using an unbiased genome-wide expression analysis on isolated interzone cells, leaving significant controversy regarding the exact role of the intermediate and outer interzone layers in joint formation. Therefore, in this study, using laser capture microdissection (three biological replicates), we selectively harvested the intermediate and outer interzones of mouse embryos at gestational age 15.5 days, just prior to cavitation, when the differences between the layers should be most profound. Microarray analysis (Agilent Whole Mouse Genome Oligo Microarrays) was performed and the differential gene expression between the intermediate interzone cells and outer interzone cells was examined by performing a two-sided paired Student's t-test and pathway analysis. One hundred ninety-seven genes were differentially expressed (≥ 2-fold) between the intermediate interzone and the outer interzone with a P-value ≤ 0.01. Of these, 91 genes showed higher expression levels in the intermediate interzone and 106 were expressed higher in the outer interzone. Pathway analysis of differentially expressed genes suggests an important role for inflammatory processes in the interzone layers, especially in the intermediate interzone, and hence in joint and articular cartilage development. The high representation of genes relevant to chondrocyte hypertrophy and endochondral ossification in the outer interzone suggests that it undergoes endochondral ossification.
Collapse
Affiliation(s)
- Florien Jenner
- 1 Equine University Hospital, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna , Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Amin NM, Greco TM, Kuchenbrod LM, Rigney MM, Chung MI, Wallingford JB, Cristea IM, Conlon FL. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development 2014; 141:962-73. [PMID: 24496632 DOI: 10.1242/dev.098327] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proper dissection of the molecular mechanisms governing the specification and differentiation of specific cell types requires isolation of pure cell populations from heterogeneous tissues and whole organisms. Here, we describe a method for purification of nuclei from defined cell or tissue types in vertebrate embryos using INTACT (isolation of nuclei tagged in specific cell types). This method, previously developed in plants, flies and worms, utilizes in vivo tagging of the nuclear envelope with biotin and the subsequent affinity purification of the labeled nuclei. In this study we successfully purified nuclei of cardiac and skeletal muscle from Xenopus using this strategy. We went on to demonstrate the utility of this approach by coupling the INTACT approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic methodologies to profile proteins expressed in the nuclei of developing hearts. From these studies we have identified the Xenopus orthologs of 12 human proteins encoded by genes, which when mutated in human lead to congenital heart disease. Thus, by combining these technologies we are able to identify tissue-specific proteins that are expressed and required for normal vertebrate organ development.
Collapse
Affiliation(s)
- Nirav M Amin
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Iber D, Germann P. How do digits emerge? - mathematical models of limb development. ACTA ACUST UNITED AC 2014; 102:1-12. [DOI: 10.1002/bdrc.21057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Dagmar Iber
- Department of Biosystems; Science and Engineering (D-BSSE); ETH Zurich 4058 Basel Switzerland
- Swiss Institute of Bioinformatics (SIB); Geneva Switzerland
| | - Philipp Germann
- Department of Biosystems; Science and Engineering (D-BSSE); ETH Zurich 4058 Basel Switzerland
| |
Collapse
|
38
|
Pazin DE, Gamer LW, Capelo LP, Cox KA, Rosen V. Gene signature of the embryonic meniscus. J Orthop Res 2014; 32:46-53. [PMID: 24108661 DOI: 10.1002/jor.22490] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/29/2013] [Indexed: 02/04/2023]
Abstract
The meniscus is a fibrocartilagenous disc in the knee that protects the joint from damage. Meniscal injuries are common, however repair efforts are largely unsuccessful and are not able to prevent the degenerative changes that result in development of osteoarthritis. Tissue regeneration in adults often recapitulates events of embryonic development, suggesting the regulatory pathways controlling morphogenesis are candidate repair signals. Here we use laser capture microdissection to collect mouse embryonic day 16 (E16) meniscus, articular cartilage, and cruciate ligaments. RNA isolated from these tissues was then used to perform genome-wide microarray analysis. We found 38 genes were differentially expressed between E16 meniscus and articular cartilage and 43 genes were differentially expressed between E16 meniscus and cruciate ligaments. Included in our data set were extracellular matrix proteins, transcription factors, and growth factors, including TGF-β modulators (Lox, Dpt) and IGF-1 pathway members (Igf-1, Igfbp2, Igfbp3, Igfbp5). Ingenuity Pathway Analysis revealed that IGF-1 signaling was enriched in the meniscus compared to the other joint structures, while qPCR showed that Igf-1, Igfbp2, and Igfbp3 expression declined with age. We also found that several meniscus-enriched genes were expressed either in the inner or outer meniscus, establishing that regionalization of the meniscus occurs early in development.
Collapse
Affiliation(s)
- Dorothy E Pazin
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, Massachusetts, 02115
| | | | | | | | | |
Collapse
|
39
|
Gao L, Sheu TJ, Dong Y, Hoak DM, Zuscik MJ, Schwarz EM, Hilton MJ, O'Keefe RJ, Jonason JH. TAK1 regulates SOX9 expression in chondrocytes and is essential for postnatal development of the growth plate and articular cartilages. J Cell Sci 2013; 126:5704-13. [PMID: 24144697 DOI: 10.1242/jcs.135483] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
TAK1 is a MAP3K that mediates non-canonical TGF-β and BMP signaling. During the embryonic period, TAK1 is essential for cartilage and joint development as deletion of Tak1 in chondro-osteo progenitor cells leads to severe chondrodysplasia with defects in both chondrocyte proliferation and maturation. We have investigated the role of TAK1 in committed chondrocytes during early postnatal development. Using the Col2a1-CreER(T2); Tak1(f/f) mouse model, we induced deletion of Tak1 at postnatal day 7 and characterized the skeletal phenotypes of these mice at 1 and 3 months of age. Mice with chondrocyte-specific Tak1 deletion exhibited severe growth retardation and reduced proteoglycan and type II collagen content in the extracellular matrix of the articular cartilage. We found reduced Col2a1 and Acan expression, but increased Mmp13 and Adamts5 expression, in Tak1-deficient chondrocytes along with reduced expression of the SOX trio of transcription factors, SOX9, SOX5 and SOX6. In vitro, BMP2 stimulated Sox9 gene expression and Sox9 promoter activity. These effects were reduced; however, following Tak1 deletion or treatment with a TAK1 kinase inhibitor. TAK1 affects both canonical and non-canonical BMP signal transduction and we found that both of these pathways contribute to BMP2-mediated Sox9 promoter activation. Additionally, we found that ATF2 directly binds the Sox9 promoter in response to BMP signaling and that this effect is dependent upon TAK1 kinase activity. These novel findings establish that TAK1 contributes to BMP2-mediated Sox9 gene expression and is essential for the postnatal development of normal growth plate and articular cartilages.
Collapse
Affiliation(s)
- Lin Gao
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|