1
|
Liu G, Wu C, Yin L, Hou L, Yin B, Qiang B, Shu P, Peng X. MiR-125/let-7 cluster orchestrates neuronal cell fate determination and cortical layer formation during neurogenesis. Biochem Biophys Res Commun 2025; 766:151815. [PMID: 40300336 DOI: 10.1016/j.bbrc.2025.151815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
MicroRNA (miRNA) clusters, defined as genomically co-localized miRNAs regulated by a shared promoter and processed from polycistronic transcripts, exhibit synergistic regulatory roles in developmental processes. Among these, the evolutionarily conserved miR-125/let-7 cluster has been identified as a key regulator of neural stem cell (NSC) dynamics. In this study, we used Dicer conditional knockout (cKO) mice to confirm the essential role of miRNAs in mouse neocortical layer formation. The miR-125/let-7 cluster is co-expressed in mice and shows significant enrichment in upper-layer (UL) neurons. Using in utero electroporation (IUE), we found that miR-125b or let-7b overexpression partially rescues cortical phenotypes in Dicer-deficient mice, restoring proper UL organization but failing to rescue laminar fate defects in deep-layer cortical neurons. Our findings demonstrate that the miR-125b/let-7b exhibits a specialized function in regulating UL neuronal fate specification in mice and promotes the differentiation of NSC. Notably, miR-125b and let-7b exhibit both overlapping and distinct regulatory functions. Collectively, these results underscore the cooperative mechanisms by which miRNA clusters orchestrate cortical development.
Collapse
Affiliation(s)
- Gaoao Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chao Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Luyao Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lin Hou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Boqin Qiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Pengcheng Shu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xiaozhong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100005, China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Zheng Y, Lee YC, Wang YT, Chiang PK, Chang SL, Hsu HJ, Hsu LS, Bach EA, Tseng CY. Age-related declines in niche self-renewal factors controls testis aging and spermatogonial stem cell competition through Hairless, Imp, and Chinmo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.01.651651. [PMID: 40370955 PMCID: PMC12077873 DOI: 10.1101/2025.05.01.651651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Aging is associated with progressive tissue decline and shifts in stem cell clonality. The role of niche signals in driving these processes remains poorly understood. Using the Drosophila testis, we identify a regulatory axis in which age-related decline of niche signals (BMPs) lead to upregulation of the co-repressor Hairless, which downregulates the RNA-binding protein Imp in aged germline stem cells (GSCs). Reduced Imp causes loss of Chinmo, a key factor in GSC aging and competition. Reduced Chinmo causes ectopic Perlecan secretion which accumulates in the testis lumen and causes GSC loss. Aging of the testis is reversed by increasing BMPs in the niche, or by overexpressing Imp or depleting Hairless in GSCs. Furthermore, GSC clones with reduced Imp or increased Hairless are more competitive, expelling wild-type neighbors and monopolizing the niche. Thus, BMPs regulate testicular niche aging through the Hairless-Imp-Chinmo axis and "winning" GSCs usurp these aging mechanisms. Highlights Aged niche cells produce less BMPs, resulting in more Hairless (H) in aged GSCs Elevated H represses Imp , resulting in less Chinmo and in ectopic ECM secretion Aging is prevented by higher BMP in niche cells, or by higher Imp or lower H in GSCs GSCs with low Imp or high H exploit these aging mechanisms to colonize the GSC pool.
Collapse
|
3
|
Force E, Debernard S. [microRNAs: regulators of metamorphosis in insects]. Biol Aujourdhui 2025; 218:165-175. [PMID: 39868715 DOI: 10.1051/jbio/2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/28/2025]
Abstract
In the animal kingdom, metamorphosis is a well-known developmental transition within various taxa (Cnidarians, Echinoderms, Molluscs, Arthropods, Vertebrates, etc.), which is characterized by the switching from a larval stage to an adult form through the induction of morpho-anatomical, physiological, behavioral, and/or ecological changes. Over the last decades, numerous studies have focused on the hormonal control of cellular processes underlying metamorphosis. Recently, another regulatory network has emerged trough the discovery of microRNAs, non-coding RNAs of 19 to 25 nucleotides that are highly conserved among taxa and act by modulating gene expression at the post-transcriptional level. Experiments carried out on model insects highlighted the relevance of microRNAs in several developmental processes during metamorphosis. This review aims to give an overview of the regulatory actions of microRNAs in the programming of cellular and molecular events associated with the metamorphosis of insects and also to provide new insights into the evolutionary history of this taxon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
4
|
Khoodoruth MAS, Khoodoruth WNCK, Uroos M, Al-Abdulla M, Khan YS, Mohammad F. Diagnostic and mechanistic roles of MicroRNAs in neurodevelopmental & neurodegenerative disorders. Neurobiol Dis 2024; 202:106717. [PMID: 39461569 DOI: 10.1016/j.nbd.2024.106717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
MicroRNAs (miRNAs) are emerging as crucial elements in the regulation of gene expression, playing a significant role in the underlying neurobiology of a wide range of neuropsychiatric disorders. This review examines the intricate involvement of miRNAs in neuropsychiatric disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Fragile X syndrome (FXS), autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), schizophrenia (SCZ), and mood disorders. This review highlights how miRNA dysregulation can illuminate the molecular pathways of these diseases and potentially serve as biomarkers for early diagnosis and prognosis. Specifically, miRNAs' ability to target genes critical to the pathology of neurodegenerative diseases, their role in the development of trinucleotide repeat and neurodevelopmental disorders, and their distinctive patterns in SCZ and mood disorders are discussed. The review also stresses the value of miRNAs in precision neuropsychiatry, where they could predict treatment outcomes and aid in disease management. Furthermore, the study of conserved miRNAs in model organisms like Drosophila underscores their broad utility and provides deeper mechanistic insights into their biological functions. This comprehensive examination of miRNAs across various conditions advocates for their integration into clinical practice, promising advancements in personalized healthcare for neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Mohamed Adil Shah Khoodoruth
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| | | | | | - Majid Al-Abdulla
- Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Yasser Saeed Khan
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar
| | - Farhan Mohammad
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar.
| |
Collapse
|
5
|
Fraire CR, Desai K, Obalapuram UA, Mendyka LK, Rajaram V, Sebastian T, Wang Y, Onel K, Lee J, Skapek SX, Chen KS. An imbalance between proliferation and differentiation underlies the development of microRNA-defective pineoblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590638. [PMID: 38712047 PMCID: PMC11071395 DOI: 10.1101/2024.04.23.590638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mutations in the microRNA processing genes DICER1 and DROSHA drive several cancers that resemble embryonic progenitors. To understand how microRNAs regulate tumorigenesis, we ablated Drosha or Dicer1 in the developing pineal gland to emulate the pathogenesis of pineoblastoma, a brain tumor that resembles undifferentiated precursors of the pineal gland. Accordingly, these mice develop pineal tumors marked by loss of microRNAs, including the let-7/miR-98-5p family, and de-repression of microRNA target genes. Pineal tumors driven by loss of Drosha or Dicer1 mimic tumors driven by Rb1 loss, as they exhibit upregulation of S-phase genes and homeobox transcription factors that regulate pineal development. Blocking proliferation of these tumors facilitates expression of pinealocyte maturation markers, with a concomitant reduction in embryonic markers. Select embryonic markers remain elevated, however, as the microRNAs that normally repress these target genes remain absent. One such microRNA target gene is the oncofetal transcription factor Plagl2, which regulates expression of pro-growth genes, and inhibiting their signaling impairs tumor growth. Thus, we demonstrate that tumors driven by loss of microRNA processing may be therapeutically targeted by inhibiting downstream drivers of proliferation.
Collapse
Affiliation(s)
- Claudette R. Fraire
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Kavita Desai
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | | | | | - Veena Rajaram
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Teja Sebastian
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia and Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Kenan Onel
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX USA
| | | | - Kenneth S. Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
6
|
Jang D, Kim CJ, Shin BH, Lim DH. The Biological Roles of microRNAs in Drosophila Development. INSECTS 2024; 15:491. [PMID: 39057224 PMCID: PMC11277110 DOI: 10.3390/insects15070491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Drosophila is a well-established insect model system for studying various physiological phenomena and developmental processes, with a focus on gene regulation. Drosophila development is controlled by programmed regulatory mechanisms specific to individual tissues. When key developmental processes are shared among various insects, the associated regulatory networks are believed to be conserved across insects. Thus, studies of developmental regulation in Drosophila have substantially contributed to our understanding of insect development. Over the past two decades, studies on microRNAs (miRNAs) in Drosophila have revealed their crucial regulatory roles in various developmental processes. This review focuses on the biological roles of miRNAs in specific tissues and processes associated with Drosophila development. Additionally, as a future direction, we discuss sequencing technologies that can analyze the interactions between miRNAs and their target genes, with the aim of enhancing miRNA studies in Drosophila development.
Collapse
Affiliation(s)
| | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (D.J.); (C.J.K.); (B.H.S.)
| |
Collapse
|
7
|
Prince GS, Reynolds M, Martina V, Sun H. Gene-environmental regulation of the postnatal post-mitotic neuronal maturation. Trends Genet 2024; 40:480-494. [PMID: 38658255 PMCID: PMC11153025 DOI: 10.1016/j.tig.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Embryonic neurodevelopment, particularly neural progenitor differentiation into post-mitotic neurons, has been extensively studied. While the number and composition of post-mitotic neurons remain relatively constant from birth to adulthood, the brain undergoes significant postnatal maturation marked by major property changes frequently disrupted in neural diseases. This review first summarizes recent characterizations of the functional and molecular maturation of the postnatal nervous system. We then review regulatory mechanisms controlling the precise gene expression changes crucial for the intricate sequence of maturation events, highlighting experience-dependent versus cell-intrinsic genetic timer mechanisms. Despite significant advances in understanding of the gene-environmental regulation of postnatal neuronal maturation, many aspects remain unknown. The review concludes with our perspective on exciting future research directions in the next decade.
Collapse
Affiliation(s)
- Gabrielle S Prince
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Molly Reynolds
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Verdion Martina
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - HaoSheng Sun
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA; Freeman Hrabowski Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
9
|
Khong H, Hattley KB, Suzuki Y. The BTB transcription factor, Abrupt, acts cooperatively with Chronologically inappropriate morphogenesis (Chinmo) to repress metamorphosis and promotes leg regeneration. Dev Biol 2024; 509:70-84. [PMID: 38373692 DOI: 10.1016/j.ydbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Many insects undergo the process of metamorphosis when larval precursor cells begin to differentiate to create the adult body. The larval precursor cells retain stem cell-like properties and contribute to the regenerative ability of larval appendages. Here we demonstrate that two Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (BTB) domain transcription factors, Chronologically inappropriate morphogenesis (Chinmo) and Abrupt (Ab), act cooperatively to repress metamorphosis in the flour beetle, Tribolium castaneum. Knockdown of chinmo led to precocious development of pupal legs and antennae. We show that although topical application of juvenile hormone (JH) prevents the decrease in chinmo expression in the final instar, chinmo and JH act in distinct pathways. Another gene encoding the BTB domain transcription factor, Ab, was also necessary for the suppression of broad (br) expression in T. castaneum in a chinmo RNAi background, and simultaneous knockdown of ab and chinmo led to the precocious onset of metamorphosis. Furthermore, knockdown of ab led to the loss of regenerative potential of larval legs independently of br. In contrast, chinmo knockdown larvae exhibited pupal leg regeneration when a larval leg was ablated. Taken together, our results show that both ab and chinmo are necessary for the maintenance of the larval tissue identity and, apart from its role in repressing br, ab acts as a crucial regulator of larval leg regeneration. Our findings indicate that BTB domain proteins interact in a complex manner to regulate larval and pupal tissue homeostasis.
Collapse
Affiliation(s)
- Hesper Khong
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Kayli B Hattley
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA.
| |
Collapse
|
10
|
Bernard EIM, Towler BP, Rogoyski OM, Newbury SF. Characterisation of the in-vivo miRNA landscape in Drosophila ribonuclease mutants reveals Pacman-mediated regulation of the highly conserved let-7 cluster during apoptotic processes. Front Genet 2024; 15:1272689. [PMID: 38444757 PMCID: PMC10912645 DOI: 10.3389/fgene.2024.1272689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
The control of gene expression is a fundamental process essential for correct development and to maintain homeostasis. Many post-transcriptional mechanisms exist to maintain the correct levels of each RNA transcript within the cell. Controlled and targeted cytoplasmic RNA degradation is one such mechanism with the 5'-3' exoribonuclease Pacman (XRN1) and the 3'-5' exoribonuclease Dis3L2 playing crucial roles. Loss of function mutations in either Pacman or Dis3L2 have been demonstrated to result in distinct phenotypes, and both have been implicated in human disease. One mechanism by which gene expression is controlled is through the function of miRNAs which have been shown to be crucial for the control of almost all cellular processes. Although the biogenesis and mechanisms of action of miRNAs have been comprehensively studied, the mechanisms regulating their own turnover are not well understood. Here we characterise the miRNA landscape in a natural developing tissue, the Drosophila melanogaster wing imaginal disc, and assess the importance of Pacman and Dis3L2 on the abundance of miRNAs. We reveal a complex landscape of miRNA expression and show that whilst a null mutation in dis3L2 has a minimal effect on the miRNA expression profile, loss of Pacman has a profound effect with a third of all detected miRNAs demonstrating Pacman sensitivity. We also reveal a role for Pacman in regulating the highly conserved let-7 cluster (containing miR-100, let-7 and miR-125) and present a genetic model outlining a positive feedback loop regulated by Pacman which enhances our understanding of the apoptotic phenotype observed in Pacman mutants.
Collapse
Affiliation(s)
- Elisa I. M. Bernard
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Oliver M. Rogoyski
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
11
|
Sun H, Hobert O. Temporal transitions in the postembryonic nervous system of the nematode Caenorhabditis elegans: Recent insights and open questions. Semin Cell Dev Biol 2023; 142:67-80. [PMID: 35688774 DOI: 10.1016/j.semcdb.2022.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
After the generation, differentiation and integration into functional circuitry, post-mitotic neurons continue to change certain phenotypic properties throughout postnatal juvenile stages until an animal has reached a fully mature state in adulthood. We will discuss such changes in the context of the nervous system of the nematode C. elegans, focusing on recent descriptions of anatomical and molecular changes that accompany postembryonic maturation of neurons. We summarize the characterization of genetic timer mechanisms that control these temporal transitions or maturational changes, and discuss that many but not all of these transitions relate to sexual maturation of the animal. We describe how temporal, spatial and sex-determination pathways are intertwined to sculpt the emergence of cell-type specific maturation events. Finally, we lay out several unresolved questions that should be addressed to move the field forward, both in C. elegans and in vertebrates.
Collapse
Affiliation(s)
- Haosheng Sun
- Department of Cell, Developmental, and Integrative Biology. University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, USA
| |
Collapse
|
12
|
Han JS, Fishman-Williams E, Decker SC, Hino K, Reyes RV, Brown NL, Simó S, Torre AL. Notch directs telencephalic development and controls neocortical neuron fate determination by regulating microRNA levels. Development 2023; 150:dev201408. [PMID: 37272771 PMCID: PMC10309580 DOI: 10.1242/dev.201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
The central nervous system contains a myriad of different cell types produced from multipotent neural progenitors. Neural progenitors acquire distinct cell identities depending on their spatial position, but they are also influenced by temporal cues to give rise to different cell populations over time. For instance, the progenitors of the cerebral neocortex generate different populations of excitatory projection neurons following a well-known sequence. The Notch signaling pathway plays crucial roles during this process, but the molecular mechanisms by which Notch impacts progenitor fate decisions have not been fully resolved. Here, we show that Notch signaling is essential for neocortical and hippocampal morphogenesis, and for the development of the corpus callosum and choroid plexus. Our data also indicate that, in the neocortex, Notch controls projection neuron fate determination through the regulation of two microRNA clusters that include let-7, miR-99a/100 and miR-125b. Our findings collectively suggest that balanced Notch signaling is crucial for telencephalic development and that the interplay between Notch and miRNAs is essential for the control of neocortical progenitor behaviors and neuron cell fate decisions.
Collapse
Affiliation(s)
- Jisoo S. Han
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | | | - Steven C. Decker
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Raenier V. Reyes
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Nadean L. Brown
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Quesnelle DC, Bendena WG, Chin-Sang ID. A Compilation of the Diverse miRNA Functions in Caenorhabditis elegans and Drosophila melanogaster Development. Int J Mol Sci 2023; 24:ijms24086963. [PMID: 37108126 PMCID: PMC10139094 DOI: 10.3390/ijms24086963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
MicroRNAs are critical regulators of post-transcriptional gene expression in a wide range of taxa, including invertebrates, mammals, and plants. Since their discovery in the nematode, Caenorhabditis elegans, miRNA research has exploded, and they are being identified in almost every facet of development. Invertebrate model organisms, particularly C. elegans, and Drosophila melanogaster, are ideal systems for studying miRNA function, and the roles of many miRNAs are known in these animals. In this review, we compiled the functions of many of the miRNAs that are involved in the development of these invertebrate model species. We examine how gene regulation by miRNAs shapes both embryonic and larval development and show that, although many different aspects of development are regulated, several trends are apparent in the nature of their regulation.
Collapse
Affiliation(s)
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
14
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
15
|
Imp is required for timely exit from quiescence in Drosophila type II neuroblasts. PLoS One 2022; 17:e0272177. [PMID: 36520944 PMCID: PMC9754222 DOI: 10.1371/journal.pone.0272177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 12/23/2022] Open
Abstract
Stem cells must balance proliferation and quiescence, with excess proliferation favoring tumor formation, and premature quiescence preventing proper organogenesis. Drosophila brain neuroblasts are a model for investigating neural stem cell entry and exit from quiescence. Neuroblasts begin proliferating during embryogenesis, enter quiescence prior to larval hatching, and resume proliferation 12-30h after larval hatching. Here we focus on the mechanism used to exit quiescence, focusing on "type II" neuroblasts. There are 16 type II neuroblasts in the brain, and they undergo the same cycle of embryonic proliferation, quiescence, and proliferation as do most other brain neuroblasts. We focus on type II neuroblasts due to their similar lineage as outer radial glia in primates (both have extended lineages with intermediate neural progenitors), and because of the availability of specific markers for type II neuroblasts and their progeny. Here we characterize the role of Insulin-like growth factor II mRNA-binding protein (Imp) in type II neuroblast proliferation and quiescence. Imp has previously been shown to promote proliferation in type II neuroblasts, in part by acting antagonistically to another RNA-binding protein called Syncrip (Syp). Here we show that reducing Imp levels delays exit from quiescence in type II neuroblasts, acting independently of Syp, with Syp levels remaining low in both quiescent and newly proliferating type II neuroblasts. We conclude that Imp promotes exit from quiescence, a function closely related to its known role in promoting neuroblast proliferation.
Collapse
|
16
|
Sato M, Suzuki T. Cutting edge technologies expose the temporal regulation of neurogenesis in the Drosophila nervous system. Fly (Austin) 2022; 16:222-232. [PMID: 35549651 PMCID: PMC9116403 DOI: 10.1080/19336934.2022.2073158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
During the development of the central nervous system (CNS), extremely large numbers of neurons are produced in a regular fashion to form precise neural circuits. During this process, neural progenitor cells produce different neurons over time due to their intrinsic gene regulatory mechanisms as well as extrinsic mechanisms. The Drosophila CNS has played an important role in elucidating the temporal mechanisms that control neurogenesis over time. It has been shown that a series of temporal transcription factors are sequentially expressed in neural progenitor cells and regulate the temporal specification of neurons in the embryonic CNS. Additionally, similar mechanisms are found in the developing optic lobe and central brain in the larval CNS. However, it is difficult to elucidate the function of numerous molecules in many different cell types solely by molecular genetic approaches. Recently, omics analysis using single-cell RNA-seq and other methods has been used to study the Drosophila nervous system on a large scale and is making a significant contribution to the understanding of the temporal mechanisms of neurogenesis. In this article, recent findings on the temporal patterning of neurogenesis and the contributions of cutting-edge technologies will be reviewed.
Collapse
Affiliation(s)
- Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative,Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Takumi Suzuki
- College of Science, Department of Science, Ibaraki University, Ibaraki, Japan
| |
Collapse
|
17
|
Suzuki N, Zou Y, Sun H, Eichel K, Shao M, Shih M, Shen K, Chang C. Two intrinsic timing mechanisms set start and end times for dendritic arborization of a nociceptive neuron. Proc Natl Acad Sci U S A 2022; 119:e2210053119. [PMID: 36322763 PMCID: PMC9659368 DOI: 10.1073/pnas.2210053119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Choreographic dendritic arborization takes place within a defined time frame, but the timing mechanism is currently not known. Here, we report that the precisely timed lin-4-lin-14 regulatory circuit triggers an initial dendritic growth activity, whereas the precisely timed lin-28-let-7-lin-41 regulatory circuit signals a subsequent developmental decline in dendritic growth ability, hence restricting dendritic arborization within a set time frame. Loss-of-function mutations in the lin-4 microRNA gene cause limited dendritic outgrowth, whereas loss-of-function mutations in its direct target, the lin-14 transcription factor gene, cause precocious and excessive outgrowth. In contrast, loss-of-function mutations in the let-7 microRNA gene prevent a developmental decline in dendritic growth ability, whereas loss-of-function mutations in its direct target, the lin-41 tripartite motif protein gene, cause further decline. lin-4 and let-7 regulatory circuits are expressed in the right place at the right time to set start and end times for dendritic arborization. Replacing the lin-4 upstream cis-regulatory sequence at the lin-4 locus with a late-onset let-7 upstream cis-regulatory sequence delays dendrite arborization, whereas replacing the let-7 upstream cis-regulatory sequence at the let-7 locus with an early-onset lin-4 upstream cis-regulatory sequence causes a precocious decline in dendritic growth ability. Our results indicate that the lin-4-lin-14 and the lin-28-let-7-lin-41 regulatory circuits control the timing of dendrite arborization through antagonistic regulation of the DMA-1 receptor level on dendrites. The LIN-14 transcription factor likely directly represses dma-1 gene expression through a transcriptional means, whereas the LIN-41 tripartite motif protein likely indirectly promotes dma-1 gene expression through a posttranscriptional means.
Collapse
Affiliation(s)
- Nobuko Suzuki
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Yan Zou
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - HaoSheng Sun
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Kelsie Eichel
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Meiyu Shao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mushaine Shih
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Kang Shen
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Chieh Chang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
18
|
Islam IM, Erclik T. Imp and Syp mediated temporal patterning of neural stem cells in the developing Drosophila CNS. Genetics 2022; 222:iyac103. [PMID: 35881070 PMCID: PMC9434295 DOI: 10.1093/genetics/iyac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
The assembly of complex neural circuits requires that stem cells generate diverse types of neurons in the correct temporal order. Pioneering work in the Drosophila embryonic ventral nerve cord has shown that neural stem cells are temporally patterned by the sequential expression of rapidly changing transcription factors to generate diversity in their progeny. In recent years, a second temporal patterning mechanism, driven by the opposing gradients of the Imp and Syp RNA-binding proteins, has emerged as a powerful way to generate neural diversity. This long-range temporal patterning mechanism is utilized in the extended neural stem cell lineages of the postembryonic fly brain. Here, we review the role played by Imp and Syp gradients in several neural stem cell lineages, focusing on how they specify sequential neural fates through the post-transcriptional regulation of target genes, including the Chinmo and Mamo transcription factors. We further discuss how upstream inputs, including hormonal signals, modify the output of these gradients to couple neurogenesis with the development of the organism. Finally, we review the roles that the Imp and Syp gradients play beyond the generation of diversity, including the regulation of stem cell proliferation, the timing of neural stem cell lineage termination, and the coupling of neuronal birth order to circuit assembly.
Collapse
Affiliation(s)
- Ishrat Maliha Islam
- Departments of Biology and Cell & Systems Biology, University of Toronto—Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Ted Erclik
- Departments of Biology and Cell & Systems Biology, University of Toronto—Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
19
|
Wang Y, Zhao J, Chen S, Li D, Yang J, Zhao X, Qin M, Guo M, Chen C, He Z, Zhou Y, Xu L. Let-7 as a Promising Target in Aging and Aging-Related Diseases: A Promise or a Pledge. Biomolecules 2022; 12:1070. [PMID: 36008964 PMCID: PMC9406090 DOI: 10.3390/biom12081070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
The abnormal regulation and expression of microRNA (miRNA) are closely related to the aging process and the occurrence and development of aging-related diseases. Lethal-7 (let-7) was discovered in Caenorhabditis elegans (C. elegans) and plays an important role in development by regulating cell fate regulators. Accumulating evidence has shown that let-7 is elevated in aging tissues and participates in multiple pathways that regulate the aging process, including affecting tissue stem cell function, body metabolism, and various aging-related diseases (ARDs). Moreover, recent studies have found that let-7 plays an important role in the senescence of B cells, suggesting that let-7 may also participate in the aging process by regulating immune function. Therefore, these studies show the diversity and complexity of let-7 expression and regulatory functions during aging. In this review, we provide a detailed overview of let-7 expression regulation as well as its role in different tissue aging and aging-related diseases, which may provide new ideas for enriching the complex expression regulation mechanism and pathobiological function of let-7 in aging and related diseases and ultimately provide help for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ya Wang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
20
|
Pandey M, Luhur A, Sokol NS, Chawla G. Molecular Dissection of a Conserved Cluster of miRNAs Identifies Critical Structural Determinants That Mediate Differential Processing. Front Cell Dev Biol 2022; 10:909212. [PMID: 35784477 PMCID: PMC9247461 DOI: 10.3389/fcell.2022.909212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Differential processing is a hallmark of clustered microRNAs (miRNAs) and the role of position and order of miRNAs in a cluster together with the contribution of stem-base and terminal loops has not been explored extensively within the context of a polycistronic transcript. To elucidate the structural attributes of a polycistronic transcript that contribute towards the differences in efficiencies of processing of the co-transcribed miRNAs, we constructed a series of chimeric variants of Drosophila let-7-Complex that encodes three evolutionary conserved and differentially expressed miRNAs (miR-100, let-7 and miR-125) and examined the expression and biological activity of the encoded miRNAs. The kinetic effects of Drosha and Dicer processing on the chimeric precursors were examined by in vitro processing assays. Our results highlight the importance of stem-base and terminal loop sequences in differential expression of polycistronic miRNAs and provide evidence that processing of a particular miRNA in a polycistronic transcript is in part determined by the kinetics of processing of adjacent miRNAs in the same cluster. Overall, this analysis provides specific guidelines for achieving differential expression of a particular miRNA in a cluster by structurally induced changes in primary miRNA (pri-miRNA) sequences.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, India
| | - Arthur Luhur
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Nicholas S. Sokol
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
21
|
Inui T, Sezutsu H, Daimon T. MicroRNA let-7 is required for hormonal regulation of metamorphosis in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103784. [PMID: 35533806 DOI: 10.1016/j.ibmb.2022.103784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The heterochronic microRNA let-7, which was first identified in Caenorhabditis elegans, controls the timing of developmental programs, and let-7 triggers the onset of the juvenile-adult transition in bilaterians. The expression of let-7 is strongly induced during the last larval stage of C. elegans and is highly expressed in the late last instar larvae/nymphs of the fly Drosophila melanogaster and the cockroach Blattella germanica. In the silkworm Bombyx mori, the expression of let-7 remarkably increases in the corpus cardiacum-corpus allatum complex (CC-CA) at the beginning of the last larval instar and is maintained at high levels during this instar. To determine the biological function of let-7 in B. mori, we generated a let-7 knockout line and a transgenic UAS-let-7 line. The let-7 knockout larvae were developmentally arrested in the prepupal stage and became pupal-adult intermediates after apolysis. When let-7 was ubiquitously overexpressed under the transcriptional control of an Actin3-GAL4 driver, developmental timing and growth of larvae were severely impaired in the penultimate (L4) instar, and these larvae underwent precocious metamorphosis from L4. Furthermore, our results showed that reception and signaling of ecdysteroids and juvenile hormones (JHs) normally occurred in the absence of let-7, whereas the biosynthesis of ecdysone and JHs were affected by disruption and overexpression of let-7. Together, the present study demonstrates that let-7 is required for the coordination of the biosynthesis of ecdysone and JH to ensure the developmental transition during the metamorphosis of B. mori.
Collapse
Affiliation(s)
- Tomohiro Inui
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba, Ibaraki, 305-8634, Japan
| | - Takaaki Daimon
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
22
|
Lai YW, Miyares RL, Liu LY, Chu SY, Lee T, Yu HH. Hormone-controlled changes in the differentiation state of post-mitotic neurons. Curr Biol 2022; 32:2341-2348.e3. [PMID: 35508173 DOI: 10.1016/j.cub.2022.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
While we think of neurons as having a fixed identity, many show spectacular plasticity.1-10 Metamorphosis drives massive changes in the fly brain;11,12 neurons that persist into adulthood often change in response to the steroid hormone ecdysone.13,14 Besides driving remodeling,11-14 ecdysone signaling can also alter the differentiation status of neurons.7,15 The three sequentially born subtypes of mushroom body (MB) Kenyon cells (γ, followed by α'/β', and finally α/β)16 serve as a model of temporal fating.17-21 γ neurons are also used as a model of remodeling during metamorphosis. As γ neurons are the only functional Kenyon cells in the larval brain, they serve the function of all three adult subtypes. Correspondingly, larval γ neurons have a similar morphology to α'/β' and α/β neurons-their axons project dorsally and medially. During metamorphosis, γ neurons remodel to form a single medial projection. Both temporal fate changes and defects in remodeling therefore alter γ-neuron morphology in similar ways. Mamo, a broad-complex, tramtrack, and bric-à-brac/poxvirus and zinc finger (BTB/POZ) transcription factor critical for temporal specification of α'/β' neurons,18,19 was recently described as essential for γ remodeling.22 In a previous study, we noticed a change in the number of adult Kenyon cells expressing γ-specific markers when mamo was manipulated.18 These data implied a role for Mamo in γ-neuron fate specification, yet mamo is not expressed in γ neurons until pupariation,18,22 well past γ specification. This indicates that mamo has a later role in ensuring that γ neurons express the correct Kenyon cell subtype-specific genes in the adult brain.
Collapse
Affiliation(s)
- Yen-Wei Lai
- Institute of Cellular and Organismic Biology, Academia Sinica, Academia Road, Taipei 11529, Taiwan; Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan
| | - Rosa L Miyares
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA 20147, USA
| | - Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA 20147, USA
| | - Sao-Yu Chu
- Institute of Cellular and Organismic Biology, Academia Sinica, Academia Road, Taipei 11529, Taiwan
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA 20147, USA.
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Academia Road, Taipei 11529, Taiwan.
| |
Collapse
|
23
|
Duan TF, Gao SJ, Wang HC, Li L, Li YY, Tan Y, Pang BP. MicroRNA let-7-5p targets the juvenile hormone primary response gene Krüppel homolog 1 and regulates reproductive diapause in Galeruca daurica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103727. [PMID: 35092820 DOI: 10.1016/j.ibmb.2022.103727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) regulate various biological processes in insects. However, their roles in the regulation of insect diapause remain unknown. In this study, we address the biological function of a conserved miRNA, let-7-5p in the regulation of a juvenile hormone primary response gene, Krüppel homolog 1 (Kr-h1), which modulates reproductive diapause in Galeruca daurica. The dual luciferase reporter assay showed that let-7-5p depressed the expression of Kr-h1. The expression profiles of let-7-5p and Kr-h1 displayed opposite patterns in the adult developmental stage. Injection of let-7-5p agomir in pre-diapause adult females inhibited the expression of Kr-h1, which consequently led to delay ovarian development, increase lipid accumulation, expand fat body, and induce reproductive diapause just as depleting Kr-h1 did. Conversely, injection of let-7-5p antagomir resulted in opposite effects by reducing fat storage and stimulating reproduction. Moreover, JH receptor agonist methoprene reduced the expression of let-7-5p, and rescued the ovarian development defects associated with let-7-5p overexpression. These results indicate that let-7-5p plays an important role in the regulation of reproductive diapause and development of G. daurica adults through its target gene Kr-h1.
Collapse
Affiliation(s)
- Tian-Feng Duan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Shu-Jing Gao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Hai-Chao Wang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ling Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan-Yan Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Yao Tan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Bao-Ping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
24
|
Fishman ES, Han JS, La Torre A. Oscillatory Behaviors of microRNA Networks: Emerging Roles in Retinal Development. Front Cell Dev Biol 2022; 10:831750. [PMID: 35186936 PMCID: PMC8847441 DOI: 10.3389/fcell.2022.831750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 01/02/2023] Open
Abstract
A broad repertoire of transcription factors and other genes display oscillatory patterns of expression, typically ranging from 30 min to 24 h. These oscillations are associated with a variety of biological processes, including the circadian cycle, somite segmentation, cell cycle, and metabolism. These rhythmic behaviors are often prompted by transcriptional feedback loops in which transcriptional activities are inhibited by their corresponding gene target products. Oscillatory transcriptional patterns have been proposed as a mechanism to drive biological clocks, the molecular machinery that transforms temporal information into accurate spatial patterning during development. Notably, several microRNAs (miRNAs) -small non-coding RNA molecules-have been recently shown to both exhibit rhythmic expression patterns and regulate oscillatory activities. Here, we discuss some of these new findings in the context of the developing retina. We propose that miRNA oscillations are a powerful mechanism to coordinate signaling pathways and gene expression, and that addressing the dynamic interplay between miRNA expression and their target genes could be key for a more complete understanding of many developmental processes.
Collapse
Affiliation(s)
| | | | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
25
|
Naitore C, Villinger J, Kibet CK, Kalayou S, Bargul JL, Christoffels A, Masiga DK. The developmentally dynamic microRNA transcriptome of Glossina pallidipes tsetse flies, vectors of animal trypanosomiasis. BIOINFORMATICS ADVANCES 2021; 2:vbab047. [PMID: 36699416 PMCID: PMC9710702 DOI: 10.1093/bioadv/vbab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 12/24/2021] [Indexed: 01/28/2023]
Abstract
Summary MicroRNAs (miRNAs) are single stranded gene regulators of 18-25 bp in length. They play a crucial role in regulating several biological processes in insects. However, the functions of miRNA in Glossina pallidipes, one of the biological vectors of African animal trypanosomosis in sub-Saharan Africa, remain poorly characterized. We used a combination of both molecular biology and bioinformatics techniques to identify miRNA genes at different developmental stages (larvae, pupae, teneral and reproductive unmated adults, gravid females) and sexes of G. pallidipes. We identified 157 mature miRNA genes, including 12 novel miRNAs unique to G. pallidipes. Moreover, we identified 93 miRNA genes that were differentially expressed by sex and/or in specific developmental stages. By combining both miRanda and RNAhybrid algorithms, we identified 5550 of their target genes. Further analyses with the Gene Ontology term and KEGG pathways for these predicted target genes suggested that the miRNAs may be involved in key developmental biological processes. Our results provide the first repository of G. pallidipes miRNAs across developmental stages, some of which appear to play crucial roles in tsetse fly development. Hence, our findings provide a better understanding of tsetse biology and a baseline for exploring miRNA genes in tsetse flies. Availability and implementation Raw sequence data are available from NCBI Sequence Read Archives (SRA) under Bioproject accession number PRJNA590626. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Careen Naitore
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,To whom correspondence should be addressed. or
| | - Caleb K Kibet
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| | - Shewit Kalayou
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville 7530, South Africa
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,To whom correspondence should be addressed. or
| |
Collapse
|
26
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
27
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
28
|
Pandey M, Bansal S, Bar S, Yadav AK, Sokol NS, Tennessen JM, Kapahi P, Chawla G. miR-125-chinmo pathway regulates dietary restriction-dependent enhancement of lifespan in Drosophila. eLife 2021; 10:62621. [PMID: 34100717 PMCID: PMC8233039 DOI: 10.7554/elife.62621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/07/2021] [Indexed: 01/06/2023] Open
Abstract
Dietary restriction (DR) extends healthy lifespan in diverse species. Age and nutrient-related changes in the abundance of microRNAs (miRNAs) and their processing factors have been linked to organismal longevity. However, the mechanisms by which they modulate lifespan and the tissue-specific role of miRNA-mediated networks in DR-dependent enhancement of lifespan remains largely unexplored. We show that two neuronally enriched and highly conserved microRNAs, miR-125 and let-7 mediate the DR response in Drosophila melanogaster. Functional characterization of miR-125 demonstrates its role in neurons while its target chinmo acts both in neurons and the fat body to modulate fat metabolism and longevity. Proteomic analysis revealed that Chinmo exerts its DR effects by regulating the expression of FATP, CG2017, CG9577, CG17554, CG5009, CG8778, CG9527, and FASN1. Our findings identify miR-125 as a conserved effector of the DR pathway and open the avenue for this small RNA molecule and its downstream effectors to be considered as potential drug candidates for the treatment of late-onset diseases and biomarkers for healthy aging in humans.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, India
| | - Sudipta Bar
- Buck Institute for Research on Aging, Novato, United States
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, Faridabad, India
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, United States
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, United States
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, United States
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
29
|
let-7 microRNAs: Their Role in Cerebral and Cardiovascular Diseases, Inflammation, Cancer, and Their Regulation. Biomedicines 2021; 9:biomedicines9060606. [PMID: 34073513 PMCID: PMC8227213 DOI: 10.3390/biomedicines9060606] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
The let-7 family is among the first microRNAs found. Recent investigations have indicated that it is highly expressed in many systems, including cerebral and cardiovascular systems. Numerous studies have implicated the aberrant expression of let-7 members in cardiovascular diseases, such as stroke, myocardial infarction (MI), cardiac fibrosis, and atherosclerosis as well as in the inflammation related to these diseases. Furthermore, the let-7 microRNAs are involved in development and differentiation of embryonic stem cells in the cardiovascular system. Numerous genes have been identified as target genes of let-7, as well as a number of the let-7’ regulators. Further studies are necessary to identify the gene targets and signaling pathways of let-7 in cardiovascular diseases and inflammatory processes. The bulk of the let-7’ regulatory proteins are well studied in development, proliferation, differentiation, and cancer, but their roles in inflammation, cardiovascular diseases, and/or stroke are not well understood. Further knowledge on the regulation of let-7 is crucial for therapeutic advances. This review focuses on research progress regarding the roles of let-7 and their regulation in cerebral and cardiovascular diseases and associated inflammation.
Collapse
|
30
|
Grmai L, Harsh S, Lu S, Korman A, Deb IB, Bach EA. Transcriptomic analysis of feminizing somatic stem cells in the Drosophila testis reveals putative downstream effectors of the transcription factor Chinmo. G3 (BETHESDA, MD.) 2021; 11:jkab067. [PMID: 33751104 PMCID: PMC8759813 DOI: 10.1093/g3journal/jkab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 11/12/2022]
Abstract
One of the best examples of sexual dimorphism is the development and function of the gonads, ovaries and testes, which produce sex-specific gametes, oocytes, and spermatids, respectively. The development of these specialized germ cells requires sex-matched somatic support cells. The sexual identity of somatic gonadal cells is specified during development and must be actively maintained during adulthood. We previously showed that the transcription factor Chinmo is required to ensure the male sexual identity of somatic support cells in the Drosophila melanogaster testis. Loss of chinmo from male somatic gonadal cells results in feminization: they transform from squamous to epithelial-like cells that resemble somatic cells in the female gonad but fail to properly ensheath the male germline, causing infertility. To identify potential target genes of Chinmo, we purified somatic cells deficient for chinmo from the adult Drosophila testis and performed next-generation sequencing to compare their transcriptome to that of control somatic cells. Bioinformatics revealed 304 and 1549 differentially upregulated and downregulated genes, respectively, upon loss of chinmo in early somatic cells. Using a combination of methods, we validated several differentially expressed genes. These data sets will be useful resources to the community.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Sneh Harsh
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Sean Lu
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Aryeh Korman
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Ishan B Deb
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Erika A Bach
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
31
|
Dalla Costa E, Dai F, Lecchi C, Ambrogi F, Lebelt D, Stucke D, Ravasio G, Ceciliani F, Minero M. Towards an improved pain assessment in castrated horses using facial expressions (HGS) and circulating miRNAs. Vet Rec 2021; 188:e82. [PMID: 33960478 DOI: 10.1002/vetr.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/11/2020] [Accepted: 12/26/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pain in horses is an emergent welfare concern, and its assessment represents a challenge for equine clinicians. This study aimed at improving pain assessment in horses through a convergent validation of existing tools: we investigated whether an effective analgesic treatment influences the horse grimace scale (HGS) and the concentration of specific circulating microRNAs (miRNAs). METHODS Eleven stallions underwent routine surgical castration under general anaesthesia. They were divided into two analgesic treatment groups: castration with the administration of preoperative flunixin and castration with preoperative flunixin plus a local injection of mepivacaine into the spermatic cords. HGS and levels of seven circulating miRNAs were evaluated pre-, 8 and 20 hours post-procedure. RESULTS Compared to pre-castration, HGS, miR-126-5p, miR-145 and miR-let7e increased significantly in horses receiving flunixin at 8 hours post-castration (Friedman test, p < 0.05). Both behavioural and molecular changes occurred in horses receiving flunixin only, confirming that the addition of local mepivacaine is an effective analgesic treatment. CONCLUSIONS Combining the use of HGS and circulating miRNAs, particularly miR-145, could be meaningful to monitor acute pain conditions in horses. Our results further validate the HGS as a method to assess acute pain in horses and point out miR-145 as a promising biomarker to identify pain.
Collapse
Affiliation(s)
- Emanuela Dalla Costa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Francesca Dai
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Federico Ambrogi
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - Dirk Lebelt
- Equine Research and Consulting, Sencelles, Spain
| | | | - Giuliano Ravasio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Michela Minero
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
32
|
Sood C, Doyle SE, Siegrist SE. Steroid hormones, dietary nutrients, and temporal progression of neurogenesis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:70-77. [PMID: 33127508 PMCID: PMC8058227 DOI: 10.1016/j.cois.2020.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 05/13/2023]
Abstract
Temporal patterning of neural progenitors, in which different factors are sequentially expressed, is an evolutionarily conserved strategy for generating neuronal diversity during development. In the Drosophila embryo, mechanisms that mediate temporal patterning of neural stem cells (neuroblasts) are largely cell-intrinsic. However, after embryogenesis, neuroblast temporal patterning relies on extrinsic cues as well, as freshly hatched larvae seek out nutrients and other key resources in varying natural environments. We recap current understanding of neuroblast-intrinsic temporal programs and discuss how neuroblast extrinsic cues integrate and coordinate with neuroblast intrinsic programs to control numbers and types of neurons produced. One key emerging extrinsic factor that impacts temporal patterning of neuroblasts and their daughters as well as termination of neurogenesis is the steroid hormone, ecdysone, a known regulator of large-scale developmental transitions in insects and arthropods. Lastly, we consider evolutionary conservation and discuss recent work on thyroid hormone signaling in early vertebrate brain development.
Collapse
Affiliation(s)
- Chhavi Sood
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Susan E Doyle
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
33
|
Galagali H, Kim JK. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol 2020; 67:118-140. [PMID: 33152557 DOI: 10.1016/j.ceb.2020.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are major drivers of cell fate specification and differentiation. The post-transcriptional regulation of key molecular factors by microRNAs contributes to the progression of embryonic and postembryonic development in several organisms. Following the discovery of lin-4 and let-7 in Caenorhabditis elegans and bantam microRNAs in Drosophila melanogaster, microRNAs have emerged as orchestrators of cellular differentiation and developmental timing. Spatiotemporal control of microRNAs and associated protein machinery can modulate microRNA activity. Additionally, adaptive modulation of microRNA expression and function in response to changing environmental conditions ensures that robust cell fate specification during development is maintained. Herein, we review the role of microRNAs in the regulation of differentiation during development.
Collapse
Affiliation(s)
- Himani Galagali
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
34
|
Soleimani S, Valizadeh Arshad Z, Moradi S, Ahmadi A, Davarpanah SJ, Azimzadeh Jamalkandi S. Small regulatory noncoding RNAs in Drosophila melanogaster: biogenesis and biological functions. Brief Funct Genomics 2020; 19:309-323. [PMID: 32219422 DOI: 10.1093/bfgp/elaa005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
RNA interference (RNAi) is an important phenomenon that has diverse genetic regulatory functions at the pre- and posttranscriptional levels. The major trigger for the RNAi pathway is double-stranded RNA (dsRNA). dsRNA is processed to generate various types of major small noncoding RNAs (ncRNAs) that include microRNAs (miRNAs), small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) in Drosophila melanogaster (D. melanogaster). Functionally, these small ncRNAs play critical roles in virtually all biological systems and developmental pathways. Identification and processing of dsRNAs and activation of RNAi machinery are the three major academic interests that surround RNAi research. Mechanistically, some of the important biological functions of RNAi are achieved through: (i) supporting genomic stability via degradation of foreign viral genomes; (ii) suppressing the movement of transposable elements and, most importantly, (iii) post-transcriptional regulation of gene expression by miRNAs that contribute to regulation of epigenetic modifications such as heterochromatin formation and genome imprinting. Here, we review various routes of small ncRNA biogenesis, as well as different RNAi-mediated pathways in D. melanogaster with a particular focus on signaling pathways. In addition, a critical discussion of the most relevant and latest findings that concern the significant contribution of small ncRNAs to the regulation of D. melanogaster physiology and pathophysiology is presented.
Collapse
|
35
|
Chen HM, Marques JG, Sugino K, Wei D, Miyares RL, Lee T. CAMIO: a transgenic CRISPR pipeline to create diverse targeted genome deletions in Drosophila. Nucleic Acids Res 2020; 48:4344-4356. [PMID: 32187363 PMCID: PMC7192631 DOI: 10.1093/nar/gkaa177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
The genome is the blueprint for an organism. Interrogating the genome, especially locating critical cis-regulatory elements, requires deletion analysis. This is conventionally performed using synthetic constructs, making it cumbersome and non-physiological. Thus, we created Cas9-mediated Arrayed Mutagenesis of Individual Offspring (CAMIO) to achieve comprehensive analysis of a targeted region of native DNA. CAMIO utilizes CRISPR that is spatially restricted to generate independent deletions in the intact Drosophila genome. Controlled by recombination, a single guide RNA is stochastically chosen from a set targeting a specific DNA region. Combining two sets increases variability, leading to either indels at 1–2 target sites or inter-target deletions. Cas9 restriction to male germ cells elicits autonomous double-strand-break repair, consequently creating offspring with diverse mutations. Thus, from a single population cross, we can obtain a deletion matrix covering a large expanse of DNA at both coarse and fine resolution. We demonstrate the ease and power of CAMIO by mapping 5′UTR sequences crucial for chinmo's post-transcriptional regulation.
Collapse
Affiliation(s)
- Hui-Min Chen
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Jorge Garcia Marques
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Dingjun Wei
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Rosa Linda Miyares
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
36
|
Rossi AM, Desplan C. Extrinsic activin signaling cooperates with an intrinsic temporal program to increase mushroom body neuronal diversity. eLife 2020; 9:58880. [PMID: 32628110 PMCID: PMC7365662 DOI: 10.7554/elife.58880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Temporal patterning of neural progenitors leads to the sequential production of diverse neurons. To understand how extrinsic cues influence intrinsic temporal programs, we studied Drosophila mushroom body progenitors (neuroblasts) that sequentially produce only three neuronal types: γ, then α’β’, followed by αβ. Opposing gradients of two RNA-binding proteins Imp and Syp comprise the intrinsic temporal program. Extrinsic activin signaling regulates the production of α’β’ neurons but whether it affects the intrinsic temporal program was not known. We show that the activin ligand Myoglianin from glia regulates the temporal factor Imp in mushroom body neuroblasts. Neuroblasts missing the activin receptor Baboon have a delayed intrinsic program as Imp is higher than normal during the α’β’ temporal window, causing the loss of α’β’ neurons, a decrease in αβ neurons, and a likely increase in γ neurons, without affecting the overall number of neurons produced. Our results illustrate that an extrinsic cue modifies an intrinsic temporal program to increase neuronal diversity.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, New York, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, United States
| |
Collapse
|
37
|
Song J, Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell Mol Life Sci 2020; 77:1893-1909. [PMID: 31724082 PMCID: PMC11105025 DOI: 10.1007/s00018-019-03361-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Metamorphic transformation from larvae to adults along with the high fecundity is key to insect success. Insect metamorphosis and reproduction are governed by two critical endocrines, juvenile hormone (JH), and 20-hydroxyecdysone (20E). Recent studies have established a crucial role of microRNA (miRNA) in insect metamorphosis and oogenesis. While miRNAs target genes involved in JH and 20E-signaling pathways, these two hormones reciprocally regulate miRNA expression, forming regulatory loops of miRNA with JH and 20E-signaling cascades. Insect metamorphosis and oogenesis rely on the coordination of hormones, cognate genes, and miRNAs for precise regulation. In addition, the alternative splicing of genes in JH and 20E-signaling pathways has distinct functions in insect metamorphosis and oogenesis. We, therefore, focus in this review on recent advances in post-transcriptional regulation, with the emphasis on the regulatory role of miRNA and alternative splicing, in insect metamorphosis and oogenesis. We will highlight important new findings of miRNA interactions with hormonal signaling and alternative splicing of JH receptor heterodimer gene Taiman.
Collapse
Affiliation(s)
- Jiasheng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
38
|
let-7-Complex MicroRNAs Regulate Broad-Z3, Which Together with Chinmo Maintains Adult Lineage Neurons in an Immature State. G3-GENES GENOMES GENETICS 2020; 10:1393-1401. [PMID: 32071070 PMCID: PMC7144073 DOI: 10.1534/g3.120.401042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During Drosophila melanogaster metamorphosis, arrested immature neurons born during larval development differentiate into their functional adult form. This differentiation coincides with the downregulation of two zinc-finger transcription factors, Chronologically Inappropriate Morphogenesis (Chinmo) and the Z3 isoform of Broad (Br-Z3). Here, we show that br-Z3 is regulated by two microRNAs, let-7 and miR-125, that are activated at the larval-to-pupal transition and are known to also regulate chinmo. The br-Z3 3′UTR contains functional binding sites for both let-7 and miR-125 that confers sensitivity to both of these microRNAs, as determined by deletion analysis in reporter assays. Forced expression of let-7 and miR-125 miRNAs leads to early silencing of Br-Z3 and Chinmo and is associated with inappropriate neuronal sprouting and outgrowth. Similar phenotypes were observed by the combined but not separate depletion of br-Z3 and chinmo. Because persistent Br-Z3 was not detected in let-7-C mutants, this work suggests a model in which let-7 and miR-125 activation at the onset of metamorphosis may act as a failsafe mechanism that ensures the coordinated silencing of both br-Z3 and chinmo needed for the timely outgrowth of neurons arrested during larval development. The let-7 and miR-125 binding site sequences are conserved across Drosophila species and possibly other insects as well, suggesting that this functional relationship is evolutionarily conserved.
Collapse
|
39
|
Lim D, Lee S, Choi M, Han JY, Seong Y, Na D, Kwon Y, Lee YS. The conserved microRNA miR‐8‐3p coordinates the expression of V‐ATPase subunits to regulate ecdysone biosynthesis forDrosophilametamorphosis. FASEB J 2020; 34:6449-6465. [DOI: 10.1096/fj.201901516r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/28/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Do‐Hwan Lim
- College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
- Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| | - Seungjae Lee
- College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
- Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| | - Min‐Seok Choi
- College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
- Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| | - Jee Yun Han
- College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
| | - Youngmo Seong
- Department of Bioscience and Biotechnology Sejong University Seoul Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering Chung‐Ang University Seoul Republic of Korea
| | - Young‐Soo Kwon
- Department of Bioscience and Biotechnology Sejong University Seoul Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
- Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| |
Collapse
|
40
|
Wang W, Wang X, Luo C, Pu Q, Yin Q, Xu L, Peng X, Ma S, Xia Q, Liu S. Let-7 microRNA is a critical regulator in controlling the growth and function of silk gland in the silkworm. RNA Biol 2020; 17:703-717. [PMID: 32019402 DOI: 10.1080/15476286.2020.1726128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The silk gland is characterized by high protein synthesis. However, the molecular mechanisms controlling silk gland growth and silk protein synthesis remain undetermined. Here we demonstrated that CRISPR/Cas9-based knockdown of let-7 or the whole cluster promoted endoreduplication and enlargement of the silk gland, accompanied by changing silk yield, whereas transgenic overexpression of let-7 led to atrophy and degeneration of the silk gland. Mechanistically, let-7 controls cell growth in the silk gland through coordinating nutrient metabolism processes and energy signalling pathways. Transgenic overexpression of pyruvate carboxylase, a novel target of let-7, resulted in enlargement of the silk glands, which is consistent with the abnormal phenotype of the let-7 knockdown. Overall, our data reveal a previously unknown miRNA-mediated regulation of silk gland growth and physiology and shed light on involvement of let-7 as a critical stabilizer and booster in carbohydrate metabolism, which may have important implications for understanding of the molecular mechanism and physiological function of specialized organs in other species.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, PR China
| | - Xinran Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, PR China
| | - Chengyi Luo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, PR China
| | - Qian Pu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, PR China
| | - Quan Yin
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, PR China
| | - Lili Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, PR China
| | - Xinyue Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, PR China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, PR China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, PR China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, PR China
| | - Shiping Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, PR China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, PR China.,College of Life Science, China West Normal University, Nanchong, PR China
| |
Collapse
|
41
|
Shahjin F, Guda RS, Schaal VL, Odegaard K, Clark A, Gowen A, Xiao P, Lisco SJ, Pendyala G, Yelamanchili SV. Brain-Derived Extracellular Vesicle microRNA Signatures Associated with In Utero and Postnatal Oxycodone Exposure. Cells 2019; 9:cells9010021. [PMID: 31861723 PMCID: PMC7016745 DOI: 10.3390/cells9010021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022] Open
Abstract
Oxycodone (oxy) is a semi-synthetic opioid commonly used as a pain medication that is also a widely abused prescription drug. While very limited studies have examined the effect of in utero oxy (IUO) exposure on neurodevelopment, a significant gap in knowledge is the effect of IUO compared with postnatal oxy (PNO) exposure on synaptogenesis—a key process in the formation of synapses during brain development—in the exposed offspring. One relatively unexplored form of cell–cell communication associated with brain development in response to IUO and PNO exposure are extracellular vesicles (EVs). EVs are membrane-bound vesicles that serve as carriers of cargo, such as microRNAs (miRNAs). Using RNA-Seq analysis, we identified distinct brain-derived extracellular vesicle (BDEs) miRNA signatures associated with IUO and PNO exposure, including their gene targets, regulating key functional pathways associated with brain development to be more impacted in the IUO offspring. Further treatment of primary 14-day in vitro (DIV) neurons with IUO BDEs caused a significant reduction in spine density compared to treatment with BDEs from PNO and saline groups. In summary, our studies identified for the first time, key BDE miRNA signatures in IUO- and PNO-exposed offspring, which could impact their brain development as well as synaptic function.
Collapse
Affiliation(s)
- Farah Shahjin
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Rahul S. Guda
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Victoria L. Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Katherine Odegaard
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Alexander Clark
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Austin Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Peng Xiao
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Steven J. Lisco
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
- Correspondence: (G.P.); (S.V.Y.); Tel.: +1-402-559-8690 (G.P.); +1-402-559-5348 (S.V.Y.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
- Correspondence: (G.P.); (S.V.Y.); Tel.: +1-402-559-8690 (G.P.); +1-402-559-5348 (S.V.Y.)
| |
Collapse
|
42
|
Goodwin PR, Meng A, Moore J, Hobin M, Fulga TA, Van Vactor D, Griffith LC. MicroRNAs Regulate Sleep and Sleep Homeostasis in Drosophila. Cell Rep 2019; 23:3776-3786. [PMID: 29949763 PMCID: PMC6091868 DOI: 10.1016/j.celrep.2018.05.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022] Open
Abstract
To discover microRNAs that regulate sleep, we performed a genetic screen using a library of miRNA sponge-expressing flies. We identified 25 miRNAs that regulate baseline sleep; 17 were sleep-promoting and 8 promoted wake. We identified one miRNA that is required for recovery sleep after deprivation and 8 miRNAs that limit the extent of recovery sleep. 65% of the hits belong to human-conserved families. Interestingly, the majority (75%), but not all, of the baseline sleep-regulating miRNAs are required in neurons. Sponges that target miRNAs in the same family, including the miR-92a/92b/310 family and the miR-263a/263b family, have similar effects. Finally, mutation of one of the screen's strongest hits, let-7, using CRISPR/Cas-9, phenocopies sponge-mediated let-7 inhibition. Cell-type-specific and temporally restricted let-7 sponge expression experiments suggest that let-7 is required in the mushroom body both during development and in adulthood. This screen sets the stage for understanding the role of miRNAs in sleep.
Collapse
Affiliation(s)
- Patricia R Goodwin
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454-9110, USA
| | - Alice Meng
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454-9110, USA
| | - Jessie Moore
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454-9110, USA
| | - Michael Hobin
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454-9110, USA
| | - Tudor A Fulga
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
43
|
Marchetti G, Tavosanis G. Modulators of hormonal response regulate temporal fate specification in the Drosophila brain. PLoS Genet 2019; 15:e1008491. [PMID: 31809495 PMCID: PMC6919624 DOI: 10.1371/journal.pgen.1008491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/18/2019] [Accepted: 10/24/2019] [Indexed: 12/03/2022] Open
Abstract
Neuronal diversity is at the core of the complex processing operated by the nervous system supporting fundamental functions such as sensory perception, motor control or memory formation. A small number of progenitors guarantee the production of this neuronal diversity, with each progenitor giving origin to different neuronal types over time. How a progenitor sequentially produces neurons of different fates and the impact of extrinsic signals conveying information about developmental progress or environmental conditions on this process represent key, but elusive questions. Each of the four progenitors of the Drosophila mushroom body (MB) sequentially gives rise to the MB neuron subtypes. The temporal fate determination pattern of MB neurons can be influenced by extrinsic cues, conveyed by the steroid hormone ecdysone. Here, we show that the activation of Transforming Growth Factor-β (TGF-β) signalling via glial-derived Myoglianin regulates the fate transition between the early-born α’β’ and the pioneer αβ MB neurons by promoting the expression of the ecdysone receptor B1 isoform (EcR-B1). While TGF-β signalling is required in MB neuronal progenitors to promote the expression of EcR-B1, ecdysone signalling acts postmitotically to consolidate theα’β’ MB fate. Indeed, we propose that if these signalling cascades are impaired α’β’ neurons lose their fate and convert to pioneer αβ. Conversely, an intrinsic signal conducted by the zinc finger transcription factor Krüppel-homolog 1 (Kr-h1) antagonises TGF-β signalling and acts as negative regulator of the response mediated by ecdysone in promoting α’β’ MB neuron fate consolidation. Taken together, the consolidation of α’β’ MB neuron fate requires the response of progenitors to local signalling to enable postmitotic neurons to sense a systemic signal. Throughout the development of the central nervous system (CNS), a vast number of neuronal types are produced with striking precision. The unique identity of each neuronal cell type and the great cellular complexity in the CNS are established by intricate gene regulatory networks. Disruption of these identity programs leads to neurodevelopmental disorders and defects in cognition. Here, we report an important regulatory mechanism involved in consolidating neuronal fate. We show that during brain development local signalling, derived from interactions between glial cells and neuronal progenitors, is required to promote the expression of a hormone receptor in immature neurons. The perception of a systemic hormonal cue in those postmitotic neurons is fundamental for the consolidation of their neuronal fate. In this context, we additionally uncover an intrinsic regulatory mechanism that coordinates the hormone response to maintain the final neuronal fate.
Collapse
Affiliation(s)
- Giovanni Marchetti
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE), Germany
- * E-mail: (GM); (GT)
| | - Gaia Tavosanis
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE), Germany
- LIMES-Institute, University of Bonn, Germany
- * E-mail: (GM); (GT)
| |
Collapse
|
44
|
Liu LY, Long X, Yang CP, Miyares RL, Sugino K, Singer RH, Lee T. Mamo decodes hierarchical temporal gradients into terminal neuronal fate. eLife 2019; 8:e48056. [PMID: 31545163 PMCID: PMC6764822 DOI: 10.7554/elife.48056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Temporal patterning is a seminal method of expanding neuronal diversity. Here we unravel a mechanism decoding neural stem cell temporal gene expression and transforming it into discrete neuronal fates. This mechanism is characterized by hierarchical gene expression. First, Drosophila neuroblasts express opposing temporal gradients of RNA-binding proteins, Imp and Syp. These proteins promote or inhibit chinmo translation, yielding a descending neuronal gradient. Together, first and second-layer temporal factors define a temporal expression window of BTB-zinc finger nuclear protein, Mamo. The precise temporal induction of Mamo is achieved via both transcriptional and post-transcriptional regulation. Finally, Mamo is essential for the temporally defined, terminal identity of α'/β' mushroom body neurons and identity maintenance. We describe a straightforward paradigm of temporal fate specification where diverse neuronal fates are defined via integrating multiple layers of gene regulation. The neurodevelopmental roles of orthologous/related mammalian genes suggest a fundamental conservation of this mechanism in brain development.
Collapse
Affiliation(s)
- Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Xi Long
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Rosa L Miyares
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Robert H Singer
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineNew YorkUnited States
- Dominick P Purpura Department of Neuroscience, Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineNew YorkUnited States
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| |
Collapse
|
45
|
Sander M, Herranz H. MicroRNAs in Drosophila Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:157-173. [PMID: 31520354 DOI: 10.1007/978-3-030-23629-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MiRNAs are post-transcriptional regulators of gene expression which have been implicated in virtually all biological processes. MiRNAs are frequently dysregulated in human cancers. However, the functional consequences of aberrant miRNA levels are not well understood. Drosophila is emerging as an important in vivo tumor model, especially in the identification of novel cancer genes. Here, we review Drosophila studies which functionally dissect the roles of miRNAs in tumorigenesis. Ultimately, these advances help to understand the implications of miRNA dysregulation in human cancers.
Collapse
Affiliation(s)
- Moritz Sander
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
van den Ameele J, Brand AH. Neural stem cell temporal patterning and brain tumour growth rely on oxidative phosphorylation. eLife 2019; 8:47887. [PMID: 31513013 PMCID: PMC6763261 DOI: 10.7554/elife.47887] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Translating advances in cancer research to clinical applications requires better insight into the metabolism of normal cells and tumour cells in vivo. Much effort has focused on understanding how glycolysis and oxidative phosphorylation (OxPhos) support proliferation, while their impact on other aspects of development and tumourigenesis remain largely unexplored. We found that inhibition of OxPhos in neural stem cells (NSCs) or tumours in the Drosophila brain not only decreases proliferation, but also affects many different aspects of stem cell behaviour. In NSCs, OxPhos dysfunction leads to a protracted G1/S-phase and results in delayed temporal patterning and reduced neuronal diversity. As a consequence, NSCs fail to undergo terminal differentiation, leading to prolonged neurogenesis into adulthood. Similarly, in brain tumours inhibition of OxPhos slows proliferation and prevents differentiation, resulting in reduced tumour heterogeneity. Thus, in vivo, highly proliferative stem cells and tumour cells require OxPhos for efficient growth and generation of diversity.
Collapse
Affiliation(s)
- Jelle van den Ameele
- The Gurdon Institute, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrea H Brand
- The Gurdon Institute, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Lawson H, Vuong E, Miller RM, Kiontke K, Fitch DHA, Portman DS. The Makorin lep-2 and the lncRNA lep-5 regulate lin-28 to schedule sexual maturation of the C. elegans nervous system. eLife 2019; 8:e43660. [PMID: 31264582 PMCID: PMC6606027 DOI: 10.7554/elife.43660] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Sexual maturation must occur on a controlled developmental schedule. In mammals, Makorin3 (MKRN3) and the miRNA regulators LIN28A/B are key regulators of this process, but how they act is unclear. In C. elegans, sexual maturation of the nervous system includes the functional remodeling of postmitotic neurons and the onset of adult-specific behaviors. Here, we find that the lin-28-let-7 axis (the 'heterochronic pathway') determines the timing of these events. Upstream of lin-28, the Makorin lep-2 and the lncRNA lep-5 regulate maturation cell-autonomously, indicating that distributed clocks, not a central timer, coordinate sexual differentiation of the C. elegans nervous system. Overexpression of human MKRN3 delays aspects of C. elegans sexual maturation, suggesting the conservation of Makorin function. These studies reveal roles for a Makorin and a lncRNA in timing of sexual differentiation; moreover, they demonstrate deep conservation of the lin-28-let-7 system in controlling the functional maturation of the nervous system.
Collapse
Affiliation(s)
- Hannah Lawson
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Edward Vuong
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
| | - Renee M Miller
- Department of Brain and Cognitive SciencesUniversity of RochesterRochesterUnited States
| | - Karin Kiontke
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - David HA Fitch
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - Douglas S Portman
- Department of BiologyUniversity of RochesterRochesterUnited States
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
- Department of NeuroscienceUniversity of RochesterRochesterUnited States
- DelMonte Institute for NeuroscienceUniversity of RochesterRochesterUnited States
| |
Collapse
|
48
|
Regulation of Caenorhabditis elegans neuronal polarity by heterochronic genes. Proc Natl Acad Sci U S A 2019; 116:12327-12336. [PMID: 31164416 DOI: 10.1073/pnas.1820928116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many neurons display characteristic patterns of synaptic connections that are under genetic control. The Caenorhabditis elegans DA cholinergic motor neurons form synaptic connections only on their dorsal axons. We explored the genetic pathways that specify this polarity by screening for gene inactivations and mutations that disrupt this normal polarity of a DA motorneuron. A RAB-3::GFP fusion protein that is normally localized to presynaptic terminals along the dorsal axon of the DA9 motorneuron was used to screen for gene inactivations that disrupt the DA9 motorneuron polarity. This screen identified heterochronic genes as major regulators of DA neuron presynaptic polarity. In many heterochronic mutants, presynapses of this cholinergic motoneuron are mislocalized to the dendrite at the ventral side: inactivation of the blmp-1 transcription factor gene, the lin-29/Zn finger transcription factor, lin-28/RNA binding protein, and the let-7miRNA gene all disrupt the presynaptic polarity of this DA cholinergic neuron. We also show that the dre-1/F box heterochronic gene functions early in development to control maintenance of polarity at later stages, and that a mutation in the let-7 heterochronic miRNA gene causes dendritic misplacement of RAB-3 presynaptic markers that colocalize with muscle postsynaptic terminals ectopically. We propose that heterochronic genes are components in the UNC-6/Netrin pathway of synaptic polarity of these neurons. These findings highlight the role of heterochronic genes in postmitotic neuronal patterning events.
Collapse
|
49
|
Wu F, Luo J, Chen Z, Ren Q, Xiao R, Liu W, Hao J, Liu X, Guo J, Qu Z, Wu Z, Wang H, Luo J, Yin H, Liu G. MicroRNA let-7 regulates the expression of ecdysteroid receptor (ECR) in Hyalomma asiaticum (Acari: Ixodidae) ticks. Parasit Vectors 2019; 12:235. [PMID: 31092286 PMCID: PMC6521442 DOI: 10.1186/s13071-019-3488-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background Ticks are blood-sucking arthropods that can transmit diseases to humans and animals. These arthropods are the second most important vectors of pathogens. MicroRNAs are a class of conserved small noncoding RNAs that play regulatory roles in gene expression at the post-transcriptional level. Molting is an important biological process in arthropods. Research on the molting process is important for understanding tick physiology and control. Methods Dual-luciferase reporter assays were used to assess the role of miRNA let-7 in ecdysteroid receptor (ECR) biology. The expression levels of ECR and let-7 were measured by real-time qPCR before and after tick molting. To explore the function of let-7 and ECR, we performed overexpression and knocking down of let-7 and RNAi of ECR in tick nymphs. The biological function of let-7 in molting was explored by injecting nymphs, ten days after engorgement, with let-7 agomir for overexpression and let-7 antagomir for knocking down. The rate of molting was then determined. ECR dsRNA was injected into ticks to evaluate the function of ECR by gene silencing. The expression of ECR and let-7 was measured using RT-qPCR. All data were analyzed using GraphPad Prism v.6. Results The results of the luciferase assay using a eukaryotic expression system revealed that ECR was a natural target of let-7. Let-7 overexpressed by agomir affected the rate of molting (P < 0.01) and the period of molting (P < 0.01). Let-7 antagomir for knockdown affected the period of molting (P < 0.01), but there was no effect on the rate of molting (P = 0.27). ECR dsRNA gene silencing significantly affected the rate of molting (P < 0.05). Conclusions This study demonstrated that let-7 can regulate the expression of ECR and that let-7 can affect molting in ticks. Our results help to understand the regulation of let-7 by 20-hydroxyecdysone (20E) and will provide a reference for functional analysis studies of microRNAs in ticks.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Ronghai Xiao
- Inspection and Comprehensive Technology Center of Ruili Entry-Exit Inspection and Quarantine Bureau No. 75, Ruihong Road, Ruili, 678600, Yunnan, People's Republic of China
| | - Wenge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jiawei Hao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xiaocui Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Junhui Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Zhiqiang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Zegong Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Department of Engineering, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
50
|
Shu P, Wu C, Ruan X, Liu W, Hou L, Fu H, Wang M, Liu C, Zeng Y, Chen P, Yin B, Yuan J, Qiang B, Peng X, Zhong W. Opposing Gradients of MicroRNA Expression Temporally Pattern Layer Formation in the Developing Neocortex. Dev Cell 2019; 49:764-785.e4. [PMID: 31080058 DOI: 10.1016/j.devcel.2019.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 11/08/2018] [Accepted: 04/07/2019] [Indexed: 12/24/2022]
Abstract
The precisely timed generation of different neuronal types is a hallmark of development from invertebrates to vertebrates. In the developing mammalian neocortex, neural stem cells change competence over time to sequentially produce six layers of functionally distinct neurons. Here, we report that microRNAs (miRNAs) are dispensable for stem-cell self-renewal and neuron production but essential for timing neocortical layer formation and specifying laminar fates. Specifically, as neurogenesis progresses, stem cells reduce miR-128 expression and miR-9 activity but steadily increase let-7 expression, whereas neurons initially maintain the differences in miRNA expression present at birth. Moreover, miR-128, miR-9, and let-7 are functionally distinct; capable of specifying neurons for layer VI and layer V and layers IV, III, and II, respectively; and transiently altering their relative levels of expression can modulate stem-cell competence in a neurogenic-stage-specific manner to shift neuron production between earlier-born and later-born fates, partly by temporally regulating a neurogenesis program involving Hmga2.
Collapse
Affiliation(s)
- Pengcheng Shu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chao Wu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiangbin Ruan
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wei Liu
- Department of Anatomy and Histology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lin Hou
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hongye Fu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ming Wang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chang Liu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yi Zeng
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Pan Chen
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jiangang Yuan
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaozhong Peng
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Weimin Zhong
- Department of Molecular, Cellular, and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA.
| |
Collapse
|