1
|
Duan W, Hosea R, Wang L, Ruan C, Zhao F, Liu J, Zhao H, Miyagishi M, Wu S, Kasim V. Chromosome Missegregation Triggers Tumor Cell Pyroptosis and Enhances Anti-Tumor Immunotherapy in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409769. [PMID: 39903759 PMCID: PMC11948012 DOI: 10.1002/advs.202409769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Immune checkpoint inhibitor (ICI) therapy is a promising anti-tumor therapeutic strategy; however, its efficacy in solid tumors is limited. Chromosome missegregation is common in various solid tumors; however, its role in tumor progression remains poorly understood, and its correlation with ICI is yet to be explored. Here, it is found that increased chromosome missegregation promotes tumor immune microenvironment, and eventually immunotherapeutic efficacy, by triggering pyroptosis. yin yang 2 (YY2) is identified as a mitotic checkpoint regulator, which promotes chromosome missegregation by upregulating BUB1B transcription. Increased chromosome missegregation promoted the formation of micronuclei and release of double-stranded DNA (dsDNA) into the cytosol, triggering an AIM2-mediated cytosolic dsDNA response. The subsequent pyroptosis strengthened the tumor immune microenvironment, thereby enhancing immunoinfiltration and cytotoxicity of CD8+ T cells, while preventing their exhaustion. Finally, through in vitro and in vivo experiments, it is demonstrated that combining YY2 overexpression-induced chromosome missegregation/cytosolic dsDNA response and PD-1 inhibitor significantly enhanced the efficacy of ICI immunotherapy in microsatellite instable and microsatellite stable colorectal cancer cells. Together, these findings provide new insights on the role of chromosome missegregation in triggering cytosolic dsDNA response-mediated pyroptosis and modulating the tumor immune microenvironment, suggesting a novel strategy for improving ICI therapeutic efficacy in colorectal cancer.
Collapse
Affiliation(s)
- Wei Duan
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044China
| | - Rendy Hosea
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044China
| | - Lingxian Wang
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044China
| | - Cao Ruan
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044China
| | - Fuqiang Zhao
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044China
| | - Jingyi Liu
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044China
| | - Hezhao Zhao
- Department of Gastrointestinal SurgeryChongqing University Cancer HospitalChongqing UniversityChongqing400030China
| | - Makoto Miyagishi
- Life Science InnovationSchool of Integrative and Global MajorsUniversity of TsukubaTsukubaIbaraki305‐0006Japan
| | - Shourong Wu
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqing UniversityChongqing400030China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqing UniversityChongqing400030China
| |
Collapse
|
2
|
He Y, Tang X, Fu H, Tang Y, Lin H, Deng X. Arabidopsis KNL1 recruits type one protein phosphatase to kinetochores to silence the spindle assembly checkpoint. SCIENCE ADVANCES 2025; 11:eadq4033. [PMID: 39908360 PMCID: PMC11797493 DOI: 10.1126/sciadv.adq4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Proper chromosome segregation during cell division is essential for genomic integrity and organismal development. This process is monitored by the spindle assembly checkpoint (SAC), which delays anaphase onset until all chromosomes are properly attached to the mitotic spindle. The kinetochore protein KNL1 plays a critical role in recruiting SAC proteins. Here, we reveal that Arabidopsis KNL1 regulates SAC silencing through the direct recruitment of type one protein phosphatase (TOPP) to kinetochores. We show that KNL1 interacts with all nine TOPPs via a conserved RVSF motif in its N terminus, and this interaction is required for the proper localization of TOPPs to kinetochores during mitosis. Disrupting KNL1-TOPP interaction leads to persistent SAC activation, resulting in a severe metaphase arrest and defects in plant growth and development. Our findings highlight the evolutionary conservation of KNL1 in coordinating kinetochore-localized phosphatase to ensure timely SAC silencing and faithful chromosome segregation in Arabidopsis.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoya Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yihang Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Ballmer D, Carter W, van Hooff JJE, Tromer EC, Ishii M, Ludzia P, Akiyoshi B. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins. Open Biol 2024; 14:240025. [PMID: 38862021 PMCID: PMC11286163 DOI: 10.1098/rsob.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - William Carter
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 HB Wageningen, The Netherlands
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
4
|
Aktar K, Davies T, Leontiou I, Clark I, Spanos C, Wallace E, Tuck L, Jeyaprakash AA, Hardwick KG. Conserved signalling functions for Mps1, Mad1 and Mad2 in the Cryptococcus neoformans spindle checkpoint. PLoS Genet 2024; 20:e1011302. [PMID: 38829899 PMCID: PMC11175454 DOI: 10.1371/journal.pgen.1011302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/13/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.
Collapse
Affiliation(s)
- Koly Aktar
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Davies
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioanna Leontiou
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ivan Clark
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Christos Spanos
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Edward Wallace
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Tuck
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - A. Arockia Jeyaprakash
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universitat, Munich, Germany
| | - Kevin G. Hardwick
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Horakova A, Konecna M, Anger M. Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important? Int J Mol Sci 2024; 25:2101. [PMID: 38396778 PMCID: PMC10889803 DOI: 10.3390/ijms25042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Collapse
Affiliation(s)
- Adela Horakova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Marketa Konecna
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| |
Collapse
|
6
|
Cavalcante IL, Silva Barros CCD, Colares DF, Cruz VMS, de Andrade BAB, Nonaka CFW, Rabenhorst SHB, Cavalcante RB. BubR1 and cyclin B1 immunoexpression in pleomorphic adenoma and polymorphous adenocarcinoma of minor salivary glands. Pathol Res Pract 2024; 253:154961. [PMID: 38043194 DOI: 10.1016/j.prp.2023.154961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
The immunoexpression of BubR1 and cyclin B1 in pleomorphic adenoma (PA) and polymorphic adenocarcinoma (PAC) in minor salivary glands is poorly studied. Thus, a retrospective and observational study was performed to provide a better understanding of the role and immunopositivity patterns of these proteins in these lesions. Sixteen cases of PA and 16 cases of PAC were selected. Parenchyma cells were submitted to quantitative immunohistochemical analysis through the labeling index. Cytoplasmic immunoexpression of BubR1 was observed in neoplastic cells from all analyzed PA and PAC cases. All PA cases and 93.7% of PAC exhibited nuclear immunoexpression of BubR1. Higher cytoplasmic and nuclear immunoexpression of BubR1 was observed in PAC (p = 0.001 and p = 0.122, respectively). Cytoplasmic immunoexpression of cyclin B1 was observed in all cases of PA and PAC, with a higher labeling index in the latter (p < 0.001). There was a significant positive correlation between nuclear and cytoplasmic BubR1 immunoexpressions (p < 0.001) in PA and a significant negative correlation between BubR1 and cyclin B1 cytoplasmic immunoexpressions (p = 0.014) in PAC. The higher cytoplasmic and nuclear immunoexpression of BubR1 in PACs suggests the continuous maintenance of neoplastic cells in the cell cycle and migration. Higher immunoexpression of cyclin B1 supports this lesion's enhanced proliferative and migration ability.
Collapse
Affiliation(s)
- Israel Leal Cavalcante
- Oral Pathology Section, Department of Dentistry, University of Fortaleza, Fortaleza, CE, Brazil; Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Caio César da Silva Barros
- Postgraduate Program in Dental Sciences, Oral Pathology and Medicine, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Débora Frota Colares
- Postgraduate Program in Dental Sciences, Oral Pathology and Medicine, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vitória Maria Sousa Cruz
- Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | | | - Silvia Helena Barem Rabenhorst
- Postgraduate Program in Biological Sciences, Molecular Genetics Laboratory, Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
7
|
Jian Y, Jiang Y, Nie L, Dou Z, Liu X, Fu C. Phosphorylation of Bub1 by Mph1 promotes Bub1 signaling at the kinetochore to ensure accurate chromosome segregation. J Biol Chem 2024; 300:105559. [PMID: 38097187 PMCID: PMC10805674 DOI: 10.1016/j.jbc.2023.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/02/2024] Open
Abstract
Bub1 is a conserved mitotic kinase involved in signaling of the spindle assembly checkpoint. Multiple phosphorylation sites on Bub1 have been characterized, yet it is challenging to understand the interplay between the multiple phosphorylation sites due to the limited availability of phosphospecific antibodies. In addition, phosphoregulation of Bub1 in Schizosaccharomyces pombe is poorly understood. Here we report the identification of a new Mph1/Mps1-mediated phosphorylation site, i.e., Ser532, of Bub1 in Schizosaccharomyces pombe. A phosphospecific antibody against phosphorylated Bub1-Ser532 was developed. Using the phosphospecific antibody, we demonstrated that phosphorylation of Bub1-Ser352 was mediated specifically by Mph1/Mps1 and took place during early mitosis. Moreover, live-cell microscopy showed that inhibition of the phosphorylation of Bub1 at Ser532 impaired the localization of Bub1, Mad1, and Mad2 to the kinetochore. In addition, inhibition of the phosphorylation of Bub1 at Ser532 caused anaphase B lagging chromosomes. Hence, our study constitutes a model in which Mph1/Mps1-mediated phosphorylation of fission yeast Bub1 promotes proper kinetochore localization of Bub1 and faithful chromosome segregation.
Collapse
Affiliation(s)
- Yanze Jian
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yueyue Jiang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lingyun Nie
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
8
|
Fischer ES. Kinetochore‐catalyzed MCC
formation: A structural perspective. IUBMB Life 2022; 75:289-310. [PMID: 36518060 DOI: 10.1002/iub.2697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that functions to ensure accurate chromosome segregation during mitosis. Macromolecular complexes known as kinetochores, act as the interface of sister chromatid attachment to spindle microtubules. In response to unattached kinetochores, the SAC activates its effector, the mitotic checkpoint complex (MCC), which delays mitotic exit until all sister chromatid pairs have achieved successful attachment to the bipolar mitotic spindle. Formation of the MCC (composed of Mad2, BubR1, Bub3 and Cdc20) is regulated by an Mps1 kinase-dependent phosphorylation signaling cascade which assembles and repositions components of the MCC onto a catalytic scaffold. This scaffold functions to catalyze the conversion of the HORMA-domain protein Mad2 from an "inactive" open-state (O-Mad2) into an "active" closed-Mad2 (C-Mad2), and simultaneous Cdc20 binding. Here, our current understanding of the molecular mechanisms underlying the kinetic barrier to C-Mad2:Cdc20 formation will be reviewed. Recent progress in elucidating the precise molecular choreography orchestrated by the catalytic scaffold to rapidly assemble the MCC will be examined, and unresolved questions will be highlighted. Ultimately, understanding how the SAC rapidly activates the checkpoint not only provides insights into how cells maintain genomic integrity during mitosis, but also provides a paradigm for how cells can utilize molecular switches, including other HORMA domain-containing proteins, to make rapid changes to a cell's physiological state.
Collapse
Affiliation(s)
- Elyse S. Fischer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Cambridge UK
| |
Collapse
|
9
|
Jamasbi E, Hamelian M, Hossain MA, Varmira K. The cell cycle, cancer development and therapy. Mol Biol Rep 2022; 49:10875-10883. [PMID: 35931874 DOI: 10.1007/s11033-022-07788-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
The process of cell division plays a vital role in cancer progression. Cell proliferation and error-free chromosomes segregation during mitosis are central events in life cycle. Mistakes during cell division generate changes in chromosome content and alter the balances of chromosomes number. Any defects in expression of TIF1 family proteins, SAC proteins network, mitotic checkpoint proteins involved in chromosome mis-segregation and cancer development. Here we discuss the function of organelles deal with the chromosome segregation machinery, proteins and correction mechanisms involved in the accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Elaheh Jamasbi
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Hamelian
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kambiz Varmira
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Esposito E, Weidemann DE, Rogers JM, Morton CM, Baybay EK, Chen J, Hauf S. Mitotic checkpoint gene expression is tuned by codon usage bias. EMBO J 2022; 41:e107896. [PMID: 35811551 PMCID: PMC9340482 DOI: 10.15252/embj.2021107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
The mitotic checkpoint (also called spindle assembly checkpoint, SAC) is a signaling pathway that safeguards proper chromosome segregation. Correct functioning of the SAC depends on adequate protein concentrations and appropriate stoichiometries between SAC proteins. Yet very little is known about the regulation of SAC gene expression. Here, we show in the fission yeast Schizosaccharomyces pombe that a combination of short mRNA half-lives and long protein half-lives supports stable SAC protein levels. For the SAC genes mad2+ and mad3+ , their short mRNA half-lives are caused, in part, by a high frequency of nonoptimal codons. In contrast, mad1+ mRNA has a short half-life despite a higher frequency of optimal codons, and despite the lack of known RNA-destabilizing motifs. Hence, different SAC genes employ different strategies of expression. We further show that Mad1 homodimers form co-translationally, which may necessitate a certain codon usage pattern. Taken together, we propose that the codon usage of SAC genes is fine-tuned to ensure proper SAC function. Our work shines light on gene expression features that promote spindle assembly checkpoint function and suggests that synonymous mutations may weaken the checkpoint.
Collapse
Affiliation(s)
- Eric Esposito
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Douglas E Weidemann
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Jessie M Rogers
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Claire M Morton
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Erod Keaton Baybay
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Jing Chen
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Silke Hauf
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| |
Collapse
|
11
|
Cimini S, Giaccone G, Tagliavini F, Costantino M, Perego P, Rossi G. P301L tau mutation leads to alterations of cell cycle, DNA damage response and apoptosis: evidence for a role of tau in cancer. Biochem Pharmacol 2022; 200:115043. [DOI: 10.1016/j.bcp.2022.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
|
12
|
Bakloushinskaya I. Chromosome Changes in Soma and Germ Line: Heritability and Evolutionary Outcome. Genes (Basel) 2022; 13:genes13040602. [PMID: 35456408 PMCID: PMC9029507 DOI: 10.3390/genes13040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The origin and inheritance of chromosome changes provide the essential foundation for natural selection and evolution. The evolutionary fate of chromosome changes depends on the place and time of their emergence and is controlled by checkpoints in mitosis and meiosis. Estimating whether the altered genome can be passed to subsequent generations should be central when we consider a particular genome rearrangement. Through comparative analysis of chromosome rearrangements in soma and germ line, the potential impact of macromutations such as chromothripsis or chromoplexy appears to be fascinating. What happens with chromosomes during the early development, and which alterations lead to mosaicism are other poorly studied but undoubtedly essential issues. The evolutionary impact can be gained most effectively through chromosome rearrangements arising in male meiosis I and in female meiosis II, which are the last divisions following fertilization. The diversity of genome organization has unique features in distinct animals; the chromosome changes, their internal relations, and some factors safeguarding genome maintenance in generations under natural selection were considered for mammals.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
13
|
Lara-Gonzalez P, Pines J, Desai A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin Cell Dev Biol 2021; 117:86-98. [PMID: 34210579 PMCID: PMC8406419 DOI: 10.1016/j.semcdb.2021.06.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that promotes accurate chromosome segregation in mitosis. The checkpoint senses the attachment state of kinetochores, the proteinaceous structures that assemble onto chromosomes in mitosis in order to mediate their interaction with spindle microtubules. When unattached, kinetochores generate a diffusible inhibitor that blocks the activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase required for sister chromatid separation and exit from mitosis. Work from the past decade has greatly illuminated our understanding of the mechanisms by which the diffusible inhibitor is assembled and how it inhibits the APC/C. However, less is understood about how SAC proteins are recruited to kinetochores in the absence of microtubule attachment, how the kinetochore catalyzes formation of the diffusible inhibitor, and how attachments silence the SAC at the kinetochore. Here, we summarize current understanding of the mechanisms that activate and silence the SAC at kinetochores and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Arshad Desai
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Kops GJPL, Snel B, Tromer EC. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr Biol 2021; 30:R589-R602. [PMID: 32428500 DOI: 10.1016/j.cub.2020.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous diversity in eukaryotic life forms can ultimately be traced back to evolutionary modifications at the level of molecular networks. Deep understanding of these modifications will not only explain cellular diversity, but will also uncover different ways to execute similar processes and expose the evolutionary 'rules' that shape the molecular networks. Here, we review the evolutionary dynamics of the spindle assembly checkpoint (SAC), a signaling network that guards fidelity of chromosome segregation. We illustrate how the interpretation of divergent SAC systems in eukaryotic species is facilitated by combining detailed molecular knowledge of the SAC and extensive comparative genome analyses. Ultimately, expanding this to other core cellular systems and experimentally interrogating such systems in organisms from all major lineages may start outlining the routes to and eventual manifestation of the cellular diversity of eukaryotic life.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Lineweaver CH, Bussey KJ, Blackburn AC, Davies PCW. Cancer progression as a sequence of atavistic reversions. Bioessays 2021; 43:e2000305. [PMID: 33984158 DOI: 10.1002/bies.202000305] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022]
Abstract
It has long been recognized that cancer onset and progression represent a type of reversion to an ancestral quasi-unicellular phenotype. This general concept has been refined into the atavistic model of cancer that attempts to provide a quantitative analysis and testable predictions based on genomic data. Over the past decade, support for the multicellular-to-unicellular reversion predicted by the atavism model has come from phylostratigraphy. Here, we propose that cancer onset and progression involve more than a one-off multicellular-to-unicellular reversion, and are better described as a series of reversionary transitions. We make new predictions based on the chronology of the unicellular-eukaryote-to-multicellular-eukaryote transition. We also make new predictions based on three other evolutionary transitions that occurred in our lineage: eukaryogenesis, oxidative phosphorylation and the transition to adaptive immunity. We propose several modifications to current phylostratigraphy to improve age resolution to test these predictions. Also see the video abstract here: https://youtu.be/3unEu5JYJrQ.
Collapse
Affiliation(s)
- Charles H Lineweaver
- Planetary Science Institute, Research School of Astronomy and Astrophysics & Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia.,Mt Stromlo Observatory, Canberra, ACT, Australia
| | - Kimberly J Bussey
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA.,Precision Medicine, Midwestern University, Glendale, Arizona, USA
| | - Anneke C Blackburn
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Paul C W Davies
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
16
|
BUBR1 Pseudokinase Domain Promotes Kinetochore PP2A-B56 Recruitment, Spindle Checkpoint Silencing, and Chromosome Alignment. Cell Rep 2020; 33:108397. [PMID: 33207204 DOI: 10.1016/j.celrep.2020.108397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
The balance of phospho-signaling at the outer kinetochore is critical for forming accurate attachments between kinetochores and the mitotic spindle and timely exit from mitosis. A major player in determining this balance is the PP2A-B56 phosphatase, which is recruited to the kinase attachment regulatory domain (KARD) of budding uninhibited by benzimidazole 1-related 1 (BUBR1) in a phospho-dependent manner. This unleashes a rapid, switch-like phosphatase relay that reverses mitotic phosphorylation at the kinetochore, extinguishing the checkpoint and promoting anaphase. Here, we demonstrate that the C-terminal pseudokinase domain of human BUBR1 is required to promote KARD phosphorylation. Mutation or removal of the pseudokinase domain results in decreased PP2A-B56 recruitment to the outer kinetochore attenuated checkpoint silencing and errors in chromosome alignment as a result of imbalance in Aurora B activity. Our data, therefore, elucidate a function for the BUBR1 pseudokinase domain in ensuring accurate and timely exit from mitosis.
Collapse
|
17
|
Défachelles L, Russo AE, Nelson CR, Bhalla N. The conserved AAA-ATPase PCH-2 TRIP13 regulates spindle checkpoint strength. Mol Biol Cell 2020; 31:2219-2233. [PMID: 32697629 PMCID: PMC7550697 DOI: 10.1091/mbc.e20-05-0310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spindle checkpoint strength is dictated by the number of unattached kinetochores, cell volume, and cell fate. We show that the conserved AAA-ATPase PCH-2/TRIP13, which remodels the checkpoint effector Mad2 from an active conformation to an inactive one, controls checkpoint strength in Caenorhabditis elegans. Having previously established that this function is required for spindle checkpoint activation, we demonstrate that in cells genetically manipulated to decrease in cell volume, PCH-2 is no longer required for the spindle checkpoint or recruitment of Mad2 at unattached kinetochores. This role is not limited to large cells: the stronger checkpoint in germline precursor cells also depends on PCH-2. PCH-2 is enriched in germline precursor cells, and this enrichment relies on conserved factors that induce asymmetry in the early embryo. Finally, the stronger checkpoint in germline precursor cells is regulated by CMT-1, the ortholog of p31comet, which is required for both PCH-2′s localization to unattached kinetochores and its enrichment in germline precursor cells. Thus, PCH-2, likely by regulating the availability of inactive Mad2 at and near unattached kinetochores, governs checkpoint strength. This requirement may be particularly relevant in oocytes and early embryos enlarged for developmental competence, cells that divide in syncytial tissues, and immortal germline cells.
Collapse
Affiliation(s)
- Lénaïg Défachelles
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Anna E Russo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Christian R Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
18
|
Villar-Fernández MA, Cardoso da Silva R, Firlej M, Pan D, Weir E, Sarembe A, Raina VB, Bange T, Weir JR, Vader G. Biochemical and functional characterization of a meiosis-specific Pch2/ORC AAA+ assembly. Life Sci Alliance 2020; 3:3/11/e201900630. [PMID: 32826290 PMCID: PMC7442955 DOI: 10.26508/lsa.201900630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
The AAA+ protein Pch2 forms a biochemical complex with Orc1/ORC to suppress DNA break formation in the meiotic G2/prophase. Pch2 is a meiosis-specific AAA+ protein that controls several important chromosomal processes. We previously demonstrated that Orc1, a subunit of the ORC, functionally interacts with budding yeast Pch2. The ORC (Orc1-6) AAA+ complex loads the AAA+ MCM helicase to origins of replication, but whether and how ORC collaborates with Pch2 remains unclear. Here, we show that a Pch2 hexamer directly associates with ORC during the meiotic G2/prophase. Biochemical analysis suggests that Pch2 uses its non-enzymatic NH2-terminal domain and AAA+ core and likely engages the interface of ORC that also binds to Cdc6, a factor crucial for ORC-MCM binding. Canonical ORC function requires association with origins, but we show here that despite causing efficient removal of Orc1 from origins, nuclear depletion of Orc2 and Orc5 does not trigger Pch2/Orc1-like meiotic phenotypes. This suggests that the function for Orc1/Pch2 in meiosis can be executed without efficient association of ORC with origins of replication. In conclusion, we uncover distinct functionalities for Orc1/ORC that drive the establishment of a non-canonical, meiosis-specific AAA+ assembly with Pch2.
Collapse
Affiliation(s)
- María Ascensión Villar-Fernández
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,International Max Planck Research School in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Richard Cardoso da Silva
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Dongqing Pan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Elisabeth Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Annika Sarembe
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Vivek B Raina
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,International Max Planck Research School in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - John R Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Friedrich Miescher Laboratory, Tübingen, Germany
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
19
|
Piccoli M, Ghiroldi A, Monasky MM, Cirillo F, Ciconte G, Pappone C, Anastasia L. Reversine: A Synthetic Purine with a Dual Activity as a Cell Dedifferentiating Agent and a Selective Anticancer Drug. Curr Med Chem 2020; 27:3448-3462. [PMID: 30605049 DOI: 10.2174/0929867326666190103120725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/27/2022]
Abstract
The development of new therapeutic applications for adult and embryonic stem cells has dominated regenerative medicine and tissue engineering for several decades. However, since 2006, induced Pluripotent Stem Cells (iPSCs) have taken center stage in the field, as they promised to overcome several limitations of the other stem cell types. Nonetheless, other promising approaches for adult cell reprogramming have been attempted over the years, even before the generation of iPSCs. In particular, two years before the discovery of iPSCs, the possibility of synthesizing libraries of large organic compounds, as well as the development of high-throughput screenings to quickly test their biological activity, enabled the identification of a 2,6-disubstituted purine, named reversine, which was shown to be able to reprogram adult cells to a progenitor-like state. Since its discovery, the effect of reversine has been confirmed on different cell types, and several studies on its mechanism of action have revealed its central role in inhibitory activity on several kinases implicated in cell cycle regulation and cytokinesis. These key features, together with its chemical nature, suggested a possible use of the molecule as an anti-cancer drug. Remarkably, reversine exhibited potent cytotoxic activity against several tumor cell lines in vitro and a significant effect in decreasing tumor progression and metastatization in vivo. Thus, 15 years since its discovery, this review aims at critically summarizing the current knowledge to clarify the dual role of reversine as a dedifferentiating agent and anti-cancer drug.
Collapse
Affiliation(s)
- Marco Piccoli
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Federica Cirillo
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, via Luigi Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
20
|
PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. PLoS Genet 2020; 16:e1008904. [PMID: 32730253 PMCID: PMC7433886 DOI: 10.1371/journal.pgen.1008904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/18/2020] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2E253Q. In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.
Collapse
|
21
|
Tang R, Jiang Z, Chen F, Yu W, Fan K, Tan J, Zhang Z, Liu X, Li P, Yuan K. The Kinase Activity of Drosophila BubR1 Is Required for Insulin Signaling-Dependent Stem Cell Maintenance. Cell Rep 2020; 31:107794. [PMID: 32579921 DOI: 10.1016/j.celrep.2020.107794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/29/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
As a core component of the mitotic checkpoint complex, BubR1 has a modular organization of molecular functions, with KEN box and other motifs at the N terminus inhibiting the anaphase-promoting complex/cyclosome, and a kinase domain at the C terminus, whose function remains unsettled, especially at organismal levels. We generate knock-in BubR1 mutations in the Drosophila genome to separately disrupt the KEN box and the kinase domain. All of the mutants are homozygously viable and fertile and show no defects in mitotic progression. The mutants without kinase activity have an increased lifespan and phenotypic changes associated with attenuated insulin signaling, including reduced InR on the cell membrane, weakened PI3K and AKT activity, and elevated expression of dFoxO targets. The BubR1 kinase-dead mutants have a reduced cap cell number in female germaria, which can be rescued by expressing a constitutively active InR. We conclude that one major physiological role of BubR1 kinase in Drosophila is to modulate insulin signaling.
Collapse
Affiliation(s)
- Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weiyu Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Kaijing Fan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Jieqiong Tan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Pishun Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; Center for Clinical Biorepositories and Biospecimens, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
22
|
LaBar T, Phoebe Hsieh YY, Fumasoni M, Murray AW. Evolutionary Repair Experiments as a Window to the Molecular Diversity of Life. Curr Biol 2020; 30:R565-R574. [PMID: 32428498 PMCID: PMC7295036 DOI: 10.1016/j.cub.2020.03.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Comparative genomics reveals an unexpected diversity in the molecular mechanisms underlying conserved cellular functions, such as DNA replication and cytokinesis. However, the genetic bases and evolutionary processes underlying this 'molecular diversity' remain to be explained. Here, we review a tool to generate alternative mechanisms for conserved cellular functions and test hypotheses concerning the generation of molecular diversity - evolutionary repair experiments, in which laboratory microbial populations adapt in response to a genetic perturbation. We summarize the insights gained from evolutionary repair experiments, the spectrum and dynamics of compensatory mutations, and the alternative molecular mechanisms used to repair perturbed cellular functions. We relate these experiments to the modifications of conserved functions that have occurred outside the laboratory. We end by proposing strategies to improve evolutionary repair experiments as a tool to explore the molecular diversity of life.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Yu-Ying Phoebe Hsieh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
23
|
Fulcher LJ, Sapkota GP. Mitotic kinase anchoring proteins: the navigators of cell division. Cell Cycle 2020; 19:505-524. [PMID: 32048898 PMCID: PMC7100989 DOI: 10.1080/15384101.2020.1728014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
The coordinated activities of many protein kinases, acting on multiple protein substrates, ensures the error-free progression through mitosis of eukaryotic cells. Enormous research effort has thus been devoted to studying the roles and regulation of these mitotic kinases, and to the identification of their physiological substrates. Central for the timely deployment of specific protein kinases to their appropriate substrates during the cell division cycle are the many anchoring proteins, which serve critical regulatory roles. Through direct association, anchoring proteins are capable of modulating the catalytic activity and/or sub-cellular distribution of the mitotic kinases they associate with. The key roles of some anchoring proteins in cell division are well-established, whilst others are still being unearthed. Here, we review the current knowledge on anchoring proteins for some mitotic kinases, and highlight how targeting anchoring proteins for inhibition, instead of the mitotic kinases themselves, could be advantageous for disrupting the cell division cycle.
Collapse
Affiliation(s)
- Luke J Fulcher
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
24
|
Leontiou I, London N, May KM, Ma Y, Grzesiak L, Medina-Pritchard B, Amin P, Jeyaprakash AA, Biggins S, Hardwick KG. The Bub1-TPR Domain Interacts Directly with Mad3 to Generate Robust Spindle Checkpoint Arrest. Curr Biol 2019; 29:2407-2414.e7. [PMID: 31257143 PMCID: PMC6657678 DOI: 10.1016/j.cub.2019.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/30/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
The spindle checkpoint monitors kinetochore-microtubule interactions and generates a “wait anaphase” delay when any defects are apparent [1, 2, 3]. This provides time for cells to correct chromosome attachment errors and ensure high-fidelity chromosome segregation. Checkpoint signals are generated at unattached chromosomes during mitosis. To activate the checkpoint, Mps1Mph1 kinase phosphorylates the kinetochore component KNL1Spc105/Spc7 on conserved MELT motifs to recruit Bub3-Bub1 complexes [4, 5, 6] via a direct Bub3 interaction with phospho-MELT motifs [7, 8]. Mps1Mph1 then phosphorylates Bub1, which strengthens its interaction with Mad1-Mad2 complexes to produce a signaling platform [9, 10]. The Bub1-Mad1 platform is thought to recruit Mad3, Cdc20, and Mad2 to produce the mitotic checkpoint complex (MCC), which is the diffusible wait anaphase signal [9, 11, 12]. The MCC binds and inhibits the mitotic E3 ubiquitin ligase, known as Cdc20-anaphase promoting complex/cyclosome (APC/C), and stabilizes securin and cyclin to delay anaphase onset [13, 14, 15, 16, 17]. Here we demonstrate, in both budding and fission yeast, that kinetochores and KNL1Spc105/Spc7 can be bypassed; simply inducing heterodimers of Mps1Mph1 kinase and Bub1 is sufficient to trigger metaphase arrest that is dependent on Mad1, Mad2, and Mad3. We use this to dissect the domains of Bub1 necessary for arrest, highlighting the need for Bub1-CD1, which binds Mad1 [9], and Bub1’s highly conserved N-terminal tetratricopeptide repeat (TPR) domain [18, 19]. We demonstrate that the Bub1 TPR domain is both necessary and sufficient to bind and recruit Mad3. We propose that this brings Mad3 into close proximity to Mad1-Mad2 and Mps1Mph1 kinase, enabling efficient generation of MCC complexes. Heterodimers of Mps1 and Bub1 generate robust spindle checkpoint arrest in yeasts This arrest is independent of kinetochores but requires Bub1-CD1 and the Bub1-TPR The Bub1-TPR is both necessary and sufficient for Mad3 interaction and recruitment Recombinant fission yeast Bub1-TPR and Mad3 form a stable complex
Collapse
Affiliation(s)
- Ioanna Leontiou
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Nitobe London
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Karen M May
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Yingrui Ma
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lucile Grzesiak
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Bethan Medina-Pritchard
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Priya Amin
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - A Arockia Jeyaprakash
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kevin G Hardwick
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
25
|
Eberle-Singh JA, Sagalovskiy I, Maurer HC, Sastra SA, Palermo CF, Decker AR, Kim MJ, Sheedy J, Mollin A, Cao L, Hu J, Branstrom A, Weetall M, Olive KP. Effective Delivery of a Microtubule Polymerization Inhibitor Synergizes with Standard Regimens in Models of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2019; 25:5548-5560. [PMID: 31175095 DOI: 10.1158/1078-0432.ccr-18-3281] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/26/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer that is broadly chemoresistant, due in part to biophysical properties of tumor stroma, which serves as a barrier to drug delivery for most classical chemotherapeutic drugs. The goal of this work is to evaluate the preclinical efficacy and mechanisms of PTC596, a novel agent with potent anticancer properties in vitro and desirable pharmacologic properties in vivo.Experimental Design: We assessed the pharmacology, mechanism, and preclinical efficacy of PTC596 in combination with standards of care, using multiple preclinical models of PDA. RESULTS We found that PTC596 has pharmacologic properties that overcome the barrier to drug delivery in PDA, including a long circulating half-life, lack of P-glycoprotein substrate activity, and high systemic tolerability. We also found that PTC596 combined synergistically with standard clinical regimens to improve efficacy in multiple model systems, including the chemoresistant genetically engineered "KPC" model of PDA. Through mechanistic studies, we learned that PTC596 functions as a direct microtubule polymerization inhibitor, yet a prior clinical trial found that it lacks peripheral neurotoxicity, in contrast to other such agents. Strikingly, we found that PTC596 synergized with the standard clinical backbone regimen gemcitabine/nab-paclitaxel, yielding potent, durable regressions in a PDX model. Moreover, similar efficacy was achieved in combination with nab-paclitaxel alone, highlighting a specific synergistic interaction between two different microtubule-targeted agents in the setting of pancreatic ductal adenocarcinoma. CONCLUSIONS These data demonstrate clear rationale for the development of PTC596 in combination with standard-of-care chemotherapy for PDA.
Collapse
Affiliation(s)
- Jaime A Eberle-Singh
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Irina Sagalovskiy
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - H Carlo Maurer
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Stephen A Sastra
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Carmine F Palermo
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Amanda R Decker
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | | | | | - Anna Mollin
- PTC Therapeutics, South Plainfield, New Jersey
| | | | - Jianhua Hu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Department of Biostatistics, Columbia University Medical Center, New York, New York
| | | | | | - Kenneth P Olive
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York. .,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| |
Collapse
|
26
|
Recent Progress on the Localization of the Spindle Assembly Checkpoint Machinery to Kinetochores. Cells 2019; 8:cells8030278. [PMID: 30909555 PMCID: PMC6468716 DOI: 10.3390/cells8030278] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 12/14/2022] Open
Abstract
Faithful chromosome segregation during mitosis is crucial for maintaining genome stability. The spindle assembly checkpoint (SAC) is a surveillance mechanism that ensures accurate mitotic progression. Defective SAC signaling leads to premature sister chromatid separation and aneuploid daughter cells. Mechanistically, the SAC couples the kinetochore microtubule attachment status to the cell cycle progression machinery. In the presence of abnormal kinetochore microtubule attachments, the SAC prevents the metaphase-to-anaphase transition through a complex kinase-phosphatase signaling cascade which results in the correct balance of SAC components recruited to the kinetochore. The correct kinetochore localization of SAC proteins is a prerequisite for robust SAC signaling and, hence, accurate chromosome segregation. Here, we review recent progresses on the kinetochore recruitment of core SAC factors.
Collapse
|
27
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
28
|
White MW, Suvorova ES. Apicomplexa Cell Cycles: Something Old, Borrowed, Lost, and New. Trends Parasitol 2018; 34:759-771. [PMID: 30078701 PMCID: PMC6157590 DOI: 10.1016/j.pt.2018.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023]
Abstract
Increased parasite burden is linked to the severity of clinical disease caused by Apicomplexa parasites such as Toxoplasma gondii, Plasmodium spp, and Cryptosporidium. Pathogenesis of apicomplexan infections is greatly affected by the growth rate of the parasite asexual stages. This review discusses recent advances in deciphering the mitotic structures and cell cycle regulatory factors required by Apicomplexa parasites to replicate. As the molecular details become clearer, it is evident that the highly unconventional cell cycles of these parasites is a blending of many ancient and borrowed elements, which were then adapted to enable apicomplexan proliferation in a wide variety of different animal hosts.
Collapse
Affiliation(s)
- Michael W White
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Elena S Suvorova
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
29
|
Oliferenko S. Understanding eukaryotic chromosome segregation from a comparative biology perspective. J Cell Sci 2018; 131:131/14/jcs203653. [PMID: 30030298 DOI: 10.1242/jcs.203653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A long-appreciated variation in fundamental cell biological processes between different species is becoming increasingly tractable due to recent breakthroughs in whole-genome analyses and genome editing techniques. However, the bulk of our mechanistic understanding in cell biology continues to come from just a few well-established models. In this Review, I use the highly diverse strategies of chromosome segregation in eukaryotes as an instrument for a more general discussion on phenotypic variation, possible rules underlying its emergence and its utility in understanding conserved functional relationships underlying this process. Such a comparative approach, supported by modern molecular biology tools, might provide a wider, holistic view of biology that is difficult to achieve when concentrating on a single experimental system.
Collapse
Affiliation(s)
- Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK .,Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| |
Collapse
|
30
|
Diepeveen ET, Gehrmann T, Pourquié V, Abeel T, Laan L. Patterns of Conservation and Diversification in the Fungal Polarization Network. Genome Biol Evol 2018; 10:1765-1782. [PMID: 29931311 PMCID: PMC6054225 DOI: 10.1093/gbe/evy121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
The combined actions of proteins in networks underlie all fundamental cellular functions. Deeper insights into the dynamics of network composition across species and their functional consequences are crucial to fully understand protein network evolution. Large-scale comparative studies with high phylogenetic resolution are now feasible through the recent rise in available genomic data sets of both model and nonmodel species. Here, we focus on the polarity network, which is universally essential for cell proliferation and studied in great detail in the model organism, Saccharomyces cerevisiae. We examine 42 proteins, directly related to cell polarization, across 298 fungal strains/species to determine the composition of the network and patterns of conservation and diversification. We observe strong protein conservation for a group of 23 core proteins: >95% of all examined strains/species possess at least 14 of these core proteins, albeit in varying compositions, and non of the individual core proteins is 100% conserved. We find high levels of variation in prevalence and sequence identity in the remaining 19 proteins, resulting in distinct lineage-specific compositions of the network in the majority of strains/species. We show that the observed diversification in network composition correlates with lineage, lifestyle, and genetic distance. Yeast, filamentous and basal unicellular fungi, form distinctive groups based on these analyses, with substantial differences to their polarization network. Our study shows that the fungal polarization network is highly dynamic, even between closely related species, and that functional conservation appears to be achieved by varying the specific components of the fungal polarization repertoire.
Collapse
Affiliation(s)
- Eveline T Diepeveen
- Department of Bionanoscience, Faculty of Applied Sciences, Kavli Institute of NanoScience, Delft University of Technology, The Netherlands
| | - Thies Gehrmann
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Intelligent Systems, Delft University of Technology, The Netherlands
- Department of Molecular Epidemiology, Leiden Computational Biology Center, Leiden University Medical Centre, The Netherlands
| | - Valérie Pourquié
- Department of Bionanoscience, Faculty of Applied Sciences, Kavli Institute of NanoScience, Delft University of Technology, The Netherlands
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Intelligent Systems, Delft University of Technology, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Intelligent Systems, Delft University of Technology, The Netherlands
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts
| | - Liedewij Laan
- Department of Bionanoscience, Faculty of Applied Sciences, Kavli Institute of NanoScience, Delft University of Technology, The Netherlands
| |
Collapse
|
31
|
Pan J, Meyers RM, Michel BC, Mashtalir N, Sizemore AE, Wells JN, Cassel SH, Vazquez F, Weir BA, Hahn WC, Marsh JA, Tsherniak A, Kadoch C. Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens. Cell Syst 2018; 6:555-568.e7. [PMID: 29778836 DOI: 10.1016/j.cels.2018.04.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 11/15/2022]
Abstract
Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states.
Collapse
Affiliation(s)
- Joshua Pan
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Biomedical and Biological Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Robin M Meyers
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Brittany C Michel
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Biomedical and Biological Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Nazar Mashtalir
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Ann E Sizemore
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Seth H Cassel
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Biomedical and Biological Sciences Program, Harvard Medical School, Boston, MA 02115, USA; Medical Scientist Training Program, Harvard Medical School, Boston, MA 02115, USA
| | - Francisca Vazquez
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Barbara A Weir
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Aviad Tsherniak
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Cigall Kadoch
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Luo Y, Ahmad E, Liu ST. MAD1: Kinetochore Receptors and Catalytic Mechanisms. Front Cell Dev Biol 2018; 6:51. [PMID: 29868582 PMCID: PMC5949338 DOI: 10.3389/fcell.2018.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
The mitotic checkpoint monitors kinetochore-microtubule attachment, delays anaphase onset and prevents aneuploidy when unattached or tensionless kinetochores are present in cells. Mitotic arrest deficiency 1 (MAD1) is one of the evolutionarily conserved core mitotic checkpoint proteins. MAD1 forms a cell cycle independent complex with MAD2 through its MAD2 interaction motif (MIM) in the middle region. Such a complex is enriched at unattached kinetochores and functions as an unusual catalyst to promote conformational change of additional MAD2 molecules, constituting a crucial signal amplifying mechanism for the mitotic checkpoint. Only MAD2 in its active conformation can be assembled with BUBR1 and CDC20 to form the Mitotic Checkpoint Complex (MCC), which is a potent inhibitor of anaphase onset. Recent research has shed light on how MAD1 is recruited to unattached kinetochores, and how it carries out its catalytic activity. Here we review these advances and discuss their implications for future research.
Collapse
Affiliation(s)
- Yibo Luo
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Ejaz Ahmad
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Song-Tao Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
33
|
Petsalaki E, Dandoulaki M, Zachos G. The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling. J Cell Biol 2018; 217:861-876. [PMID: 29362225 PMCID: PMC5839794 DOI: 10.1083/jcb.201709005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/16/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
The mitotic spindle checkpoint delays anaphase onset in the presence of unattached kinetochores, and efficient checkpoint signaling requires kinetochore localization of the Rod-ZW10-Zwilch (RZZ) complex. In the present study, we show that human Chmp4c, a protein involved in membrane remodeling, localizes to kinetochores in prometaphase but is reduced in chromosomes aligned at the metaphase plate. Chmp4c promotes stable kinetochore-microtubule attachments and is required for proper mitotic progression, faithful chromosome alignment, and segregation. Depletion of Chmp4c diminishes localization of RZZ and Mad1-Mad2 checkpoint proteins to prometaphase kinetochores and impairs mitotic arrest when microtubules are depolymerized by nocodazole. Furthermore, Chmp4c binds to ZW10 through a small C-terminal region, and constitutive Chmp4c kinetochore targeting causes a ZW10-dependent checkpoint metaphase arrest. In addition, Chmp4c spindle functions do not require endosomal sorting complex required for transport-dependent membrane remodeling. These results show that Chmp4c regulates the mitotic spindle checkpoint by promoting localization of the RZZ complex to unattached kinetochores.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
| | - Maria Dandoulaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
| |
Collapse
|
34
|
Tromer E, Bade D, Snel B, Kops GJPL. Phylogenomics-guided discovery of a novel conserved cassette of short linear motifs in BubR1 essential for the spindle checkpoint. Open Biol 2017; 6:rsob.160315. [PMID: 28003474 PMCID: PMC5204127 DOI: 10.1098/rsob.160315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 11/12/2022] Open
Abstract
The spindle assembly checkpoint (SAC) maintains genomic integrity by preventing progression of mitotic cell division until all chromosomes are stably attached to spindle microtubules. The SAC critically relies on the paralogues Bub1 and BubR1/Mad3, which integrate kinetochore–spindle attachment status with generation of the anaphase inhibitory complex MCC. We previously reported on the widespread occurrences of independent gene duplications of an ancestral ‘MadBub’ gene in eukaryotic evolution and the striking parallel subfunctionalization that lead to loss of kinase function in BubR1/Mad3-like paralogues. Here, we present an elaborate subfunctionalization analysis of the Bub1/BubR1 gene family and perform de novo sequence discovery in a comparative phylogenomics framework to trace the distribution of ancestral sequence features to extant paralogues throughout the eukaryotic tree of life. We show that known ancestral sequence features are consistently retained in the same functional paralogue: GLEBS/CMI/CDII/kinase in the Bub1-like and KEN1/KEN2/D-Box in the BubR1/Mad3-like. The recently described ABBA motif can be found in either or both paralogues. We however discovered two additional ABBA motifs that flank KEN2. This cassette of ABBA1-KEN2-ABBA2 forms a strictly conserved module in all ancestral and BubR1/Mad3-like proteins, suggestive of a specific and crucial SAC function. Indeed, deletion of the ABBA motifs in human BUBR1 abrogates the SAC and affects APC/C–Cdc20 interactions. Our detailed comparative genomics analyses thus enabled discovery of a conserved cassette of motifs essential for the SAC and shows how this approach can be used to uncover hitherto unrecognized functional protein features.
Collapse
Affiliation(s)
- Eelco Tromer
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Debora Bade
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Geert J P L Kops
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands .,Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands.,Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
35
|
Zöllner SK, Selvanathan SP, Graham GT, Commins RMT, Hong SH, Moseley E, Parks S, Haladyna JN, Erkizan HV, Dirksen U, Hogarty MD, Üren A, Toretsky JA. Inhibition of the oncogenic fusion protein EWS-FLI1 causes G 2-M cell cycle arrest and enhanced vincristine sensitivity in Ewing's sarcoma. Sci Signal 2017; 10:10/499/eaam8429. [PMID: 28974650 DOI: 10.1126/scisignal.aam8429] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ewing's sarcoma (ES) is a rare and highly malignant cancer that grows in the bones or surrounding tissues mostly affecting adolescents and young adults. A chimeric fusion between the RNA binding protein EWS and the ETS family transcription factor FLI1 (EWS-FLI1), which is generated from a chromosomal translocation, is implicated in driving most ES cases by modulation of transcription and alternative splicing. The small-molecule YK-4-279 inhibits EWS-FLI1 function and induces apoptosis in ES cells. We aimed to identify both the underlying mechanism of the drug and potential combination therapies that might enhance its antitumor activity. We tested 69 anticancer drugs in combination with YK-4-279 and found that vinca alkaloids exhibited synergy with YK-4-279 in five ES cell lines. The combination of YK-4-279 and vincristine reduced tumor burden and increased survival in mice bearing ES xenografts. We determined that independent drug-induced events converged to cause this synergistic therapeutic effect. YK-4-279 rapidly induced G2-M arrest, increased the abundance of cyclin B1, and decreased EWS-FLI1-mediated generation of microtubule-associated proteins, which rendered cells more susceptible to microtubule depolymerization by vincristine. YK-4-279 reduced the expression of the EWS-FLI1 target gene encoding the ubiquitin ligase UBE2C, which, in part, contributed to the increase in cyclin B1. YK-4-279 also increased the abundance of proapoptotic isoforms of MCL1 and BCL2, presumably through inhibition of alternative splicing by EWS-FLI1, thus promoting cell death in response to vincristine. Thus, a combination of vincristine and YK-4-279 might be therapeutically effective in ES patients.
Collapse
Affiliation(s)
- Stefan K Zöllner
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.,Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Saravana P Selvanathan
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Garrett T Graham
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Ryan M T Commins
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Sung Hyeok Hong
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Eric Moseley
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Sydney Parks
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Jessica N Haladyna
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Hayriye V Erkizan
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Colket Translational Research Building, Room 3020, 3501 Civic Center Boulevard, Philadelphia, PA 19014, USA
| | - Aykut Üren
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Jeffrey A Toretsky
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.
| |
Collapse
|
36
|
Combes G, Alharbi I, Braga LG, Elowe S. Playing polo during mitosis: PLK1 takes the lead. Oncogene 2017; 36:4819-4827. [PMID: 28436952 DOI: 10.1038/onc.2017.113] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/18/2022]
Abstract
Polo-like kinase 1 (PLK1), the prototypical member of the polo-like family of serine/threonine kinases, is a pivotal regulator of mitosis and cytokinesis in eukaryotes. Many layers of regulation have evolved to target PLK1 to different subcellular structures and to its various mitotic substrates in line with its numerous functions during mitosis. Collective work is starting to illuminate an important set of substrates for PLK1: the mitotic kinases that together ensure the fidelity of the cell division process. Amongst these, recent developments argue that PLK1 regulates the activity of the histone kinases Aurora B and Haspin to define centromere identity, of MPS1 to initiate spindle checkpoint signaling, and of BUB1 and its pseudokinase paralog BUBR1 to coordinate spindle checkpoint activation and inactivation. Here, we review the recent work describing the regulation of these kinases by PLK1. We highlight common themes throughout and argue that a major mitotic function of PLK1 is as a master regulator of these key kinases.
Collapse
Affiliation(s)
- G Combes
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - I Alharbi
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - L G Braga
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - S Elowe
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
37
|
Xie Y, Lin JZ, Wang AQ, Xu WY, Long JY, Luo YF, Shi J, Liang ZY, Sang XT, Zhao HT. Threonine and tyrosine kinase may serve as a prognostic biomarker for gallbladder cancer. World J Gastroenterol 2017; 23:5787-5797. [PMID: 28883705 PMCID: PMC5569294 DOI: 10.3748/wjg.v23.i31.5787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of threonine and tyrosine kinase (TTK) in gallbladder cancer (GBC) specimens and analyze the associations between TTK expression and clinicopathological parameters and clinical prognosis.
METHODS A total of 68 patients with GBC who underwent surgical resection were enrolled in this study. The expression of TTK in GBC tissues was detected by immunohistochemistry. The assessment of TTK expression was conducted using the H-scoring system. H-score was calculated by the multiplication of the overall staining intensity with the percentage of positive cells. The expression of TTK in the cytoplasm and nucleus was scored separately to achieve respective H-score values. The correlations between TTK expression and clinicopathological parameters and clinical prognosis were analyzed using Chi-square test, Kaplan-Meier method and Cox regression.
RESULTS In both the nucleus and cytoplasm, the expression of TTK in tumor tissues was significantly lower than that in normal tissues (P < 0.001 and P = 0.026, respectively). Using the median H-score as the cutoff value, it was discovered that, GBC patients with higher levels of TTK expression in the nucleus, but not the cytoplasm, had favorable overall survival (P < 0.001), and it was still statistically meaningful in Cox regression analysis. Further investigation indicated that there were close negative correlations between TTK expression and tumor differentiation (P = 0.041), CA 19-9 levels (P = 0.016), T stage (P < 0.001), nodal involvement (P < 0.001), distant metastasis (P = 0.024) and TNM stage (P < 0.001).
CONCLUSION The expression of TTK in GBC is lower than that in normal tissues. Higher levels of TTK expression in GBC are concomitant with longer overall survival. TTK is a favorable prognostic biomarker for patients with GBC.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian-Zhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - An-Qiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei-Yu Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jun-Yu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu-Feng Luo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
38
|
The unconventional kinetoplastid kinetochore: from discovery toward functional understanding. Biochem Soc Trans 2017; 44:1201-1217. [PMID: 27911702 PMCID: PMC5095916 DOI: 10.1042/bst20160112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
The kinetochore is the macromolecular protein complex that drives chromosome segregation in eukaryotes. Its most fundamental function is to connect centromeric DNA to dynamic spindle microtubules. Studies in popular model eukaryotes have shown that centromere protein (CENP)-A is critical for DNA-binding, whereas the Ndc80 complex is essential for microtubule-binding. Given their conservation in diverse eukaryotes, it was widely believed that all eukaryotes would utilize these components to make up a core of the kinetochore. However, a recent study identified an unconventional type of kinetochore in evolutionarily distant kinetoplastid species, showing that chromosome segregation can be achieved using a distinct set of proteins. Here, I review the discovery of the two kinetochore systems and discuss how their studies contribute to a better understanding of the eukaryotic chromosome segregation machinery.
Collapse
|
39
|
Yost S, de Wolf B, Hanks S, Zachariou A, Marcozzi C, Clarke M, de Voer R, Etemad B, Uijttewaal E, Ramsay E, Wylie H, Elliott A, Picton S, Smith A, Smithson S, Seal S, Ruark E, Houge G, Pines J, Kops GJ, Rahman N. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat Genet 2017; 49:1148-1151. [PMID: 28553959 PMCID: PMC5493194 DOI: 10.1038/ng.3883] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/01/2017] [Indexed: 12/18/2022]
Abstract
Through exome sequencing, we identified six individuals with biallelic loss-of-function mutations in TRIP13. All six developed Wilms tumor. Constitutional mosaic aneuploidies, microcephaly, developmental delay and seizures, which are features of mosaic variegated aneuploidy (MVA) syndrome, were more variably present. Through functional studies, we show that TRIP13-mutant patient cells have no detectable TRIP13 and have substantial impairment of the spindle assembly checkpoint (SAC), leading to a high rate of chromosome missegregation. Accurate segregation, as well as SAC proficiency, is rescued by restoring TRIP13 function. Individuals with biallelic TRIP13 or BUB1B mutations have a high risk of embryonal tumors, and here we show that their cells display severe SAC impairment. MVA due to biallelic CEP57 mutations, or of unknown cause, is not associated with embryonal tumors and cells from these individuals show minimal SAC deficiency. These data provide insights into the complex relationships between aneuploidy and carcinogenesis.
Collapse
Affiliation(s)
- Shawn Yost
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK
| | - Bas de Wolf
- Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Sandra Hanks
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK
| | - Anna Zachariou
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK
| | - Chiara Marcozzi
- The Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Matthew Clarke
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK
| | - Richarda de Voer
- Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Banafsheh Etemad
- Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Esther Uijttewaal
- Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Emma Ramsay
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK
| | - Harriet Wylie
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK
| | - Anna Elliott
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK
| | - Susan Picton
- Children's and Adolescent Oncology and Haematology Unit, Leeds General Infirmary, Leeds, LS1 3EX, UK
| | - Audrey Smith
- Yorkshire Regional Clinical Genetics Service, Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, UK
| | - Sarah Smithson
- Clinical Genetics Service, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
| | - Sheila Seal
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK
| | - Elise Ruark
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK
| | - Gunnar Houge
- Center for Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Jonathan Pines
- The Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Geert J.P.L. Kops
- Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Cancer Genomics Netherlands, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Nazneen Rahman
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, UK SM2 5PT, UK
| |
Collapse
|
40
|
van Hooff JJ, Tromer E, van Wijk LM, Snel B, Kops GJ. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep 2017. [PMID: 28642229 PMCID: PMC5579357 DOI: 10.15252/embr.201744102] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule‐mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current‐day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co‐evolved with one another, albeit in different manners. These co‐evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.
Collapse
Affiliation(s)
- Jolien Je van Hooff
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands.,Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.,Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eelco Tromer
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands.,Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Leny M van Wijk
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Geert Jpl Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands .,Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Cancer Genomics Netherlands, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Nguyen Ba AN, Strome B, Osman S, Legere EA, Zarin T, Moses AM. Parallel reorganization of protein function in the spindle checkpoint pathway through evolutionary paths in the fitness landscape that appear neutral in laboratory experiments. PLoS Genet 2017; 13:e1006735. [PMID: 28410373 PMCID: PMC5409178 DOI: 10.1371/journal.pgen.1006735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/28/2017] [Accepted: 04/05/2017] [Indexed: 11/22/2022] Open
Abstract
Regulatory networks often increase in complexity during evolution through gene duplication and divergence of component proteins. Two models that explain this increase in complexity are: 1) adaptive changes after gene duplication, such as resolution of adaptive conflicts, and 2) non-adaptive processes such as duplication, degeneration and complementation. Both of these models predict complementary changes in the retained duplicates, but they can be distinguished by direct fitness measurements in organisms with short generation times. Previously, it has been observed that repeated duplication of an essential protein in the spindle checkpoint pathway has occurred multiple times over the eukaryotic tree of life, leading to convergent protein domain organization in its duplicates. Here, we replace the paralog pair in S. cerevisiae with a single-copy protein from a species that did not undergo gene duplication. Surprisingly, using quantitative fitness measurements in laboratory conditions stressful for the spindle-checkpoint pathway, we find no evidence that reorganization of protein function after gene duplication is beneficial. We then reconstruct several evolutionary intermediates from the inferred ancestral network to the extant one, and find that, at the resolution of our assay, there exist stepwise mutational paths from the single protein to the divergent pair of extant proteins with no apparent fitness defects. Parallel evolution has been taken as strong evidence for natural selection, but our results suggest that even in these cases, reorganization of protein function after gene duplication may be explained by neutral processes.
Collapse
Affiliation(s)
- Alex N. Nguyen Ba
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Bob Strome
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Selma Osman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth-Ann Legere
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Taraneh Zarin
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alan M. Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Evolution and Function, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Loss of Centromere Cohesion in Aneuploid Human Oocytes Correlates with Decreased Kinetochore Localization of the Sac Proteins Bub1 and Bubr1. Sci Rep 2017; 7:44001. [PMID: 28287092 PMCID: PMC5347135 DOI: 10.1038/srep44001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022] Open
Abstract
In human eggs, aneuploidy increases with age and can result in infertility and genetic diseases. Studies in mouse oocytes suggest that reduced centromere cohesion and spindle assembly checkpoint (SAC) activity could be at the origin of chromosome missegregation. Little is known about these two features in humans. Here, we show that in human eggs, inter-kinetochore distances of bivalent chromosomes strongly increase with age. This results in the formation of univalent chromosomes during metaphase I (MI) and of single chromatids in metaphase II (MII). We also investigated SAC activity by checking the localization of BUB1 and BUBR1. We found that they localize at the kinetochore with a similar temporal timing than in mitotic cells and in a MPS1-dependent manner, suggesting that the SAC signalling pathway is active in human oocytes. Moreover, our data also suggest that this checkpoint is inactivated when centromere cohesion is lost in MI and consequently cannot inhibit premature sister chromatid separation. Finally, we show that the kinetochore localization of BUB1 and BUBR1 decreases with the age of the oocyte donors. This could contribute to oocyte aneuploidy.
Collapse
|
43
|
Corbett KD. Molecular Mechanisms of Spindle Assembly Checkpoint Activation and Silencing. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:429-455. [PMID: 28840248 DOI: 10.1007/978-3-319-58592-5_18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cell division, the Spindle Assembly Checkpoint (SAC) plays a key regulatory role by monitoring the status of chromosome-microtubule attachments and allowing chromosome segregation only after all chromosomes are properly attached to spindle microtubules. While the identities of SAC components have been known, in some cases, for over two decades, the molecular mechanisms of the SAC have remained mostly mysterious until very recently. In the past few years, advances in biochemical reconstitution, structural biology, and bioinformatics have fueled an explosion in the molecular understanding of the SAC. This chapter seeks to synthesize these recent advances and place them in a biological context, in order to explain the mechanisms of SAC activation and silencing at a molecular level.
Collapse
Affiliation(s)
- Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA.
- Departments of Cellular & Molecular Medicine and Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
44
|
Heim A, Rymarczyk B, Mayer TU. Regulation of Cell Division. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:83-116. [PMID: 27975271 DOI: 10.1007/978-3-319-46095-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Beata Rymarczyk
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
45
|
Joglekar AP. A Cell Biological Perspective on Past, Present and Future Investigations of the Spindle Assembly Checkpoint. BIOLOGY 2016; 5:biology5040044. [PMID: 27869759 PMCID: PMC5192424 DOI: 10.3390/biology5040044] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/04/2022]
Abstract
The spindle assembly checkpoint (SAC) is a quality control mechanism that ensures accurate chromosome segregation during cell division. It consists of a mechanochemical signal transduction mechanism that senses the attachment of chromosomes to the spindle, and a signaling cascade that inhibits cell division if one or more chromosomes are not attached. Extensive investigations of both these component systems of the SAC have synthesized a comprehensive understanding of the underlying molecular mechanisms. This review recounts the milestone results that elucidated the SAC, compiles a simple model of the complex molecular machinery underlying the SAC, and highlights poorly understood facets of the biochemical design and cell biological operation of the SAC that will drive research forward in the near future.
Collapse
Affiliation(s)
- Ajit P Joglekar
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Duranteau M, Montagne JJ, Rahmani Z. A novel mutation in the N-terminal domain of Drosophila BubR1 affects the spindle assembly checkpoint function of BubR1. Biol Open 2016; 5:1674-1679. [PMID: 27742609 PMCID: PMC5155540 DOI: 10.1242/bio.021196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that ensures accurate segregation of chromosomes into two daughter cells. BubR1, a key component of the SAC, also plays a role in the mitotic timing since depletion of BubR1 leads to accelerated mitosis. We previously found that mutation of the KEN1-box domain of Drosophila BubR1 (bubR1-KEN1 mutant) affects the binding of BubR1 to Cdc20, the activating co-factor of the APC/C, and does not accelerate the mitotic timing despite resulting in a defective SAC, which was unlike what was reported in mammalian cells. Here, we show that a mutation in a novel Drosophila short sequence (bubR1-KAN mutant) leads to an accelerated mitotic timing as well as SAC failure. Moreover, our data indicate that the level of Fzy, the Drosophila homolog of Cdc20, recruited to kinetochores is diminished in bubR1-KEN1 mutant cells and further diminished in bubR1-KAN mutant cells. Altogether, our data show that this newly identified Drosophila BubR1 KAN motif is required for a functional SAC and suggest that it may play an important role on Cdc20/Fzy kinetochore recruitment. Summary: We have identified a novel short motif sequence in the Drosophila BubR1 protein which when mutated affects the amount of Cdc20 recruited to the kinetochores and leads to an abrogation of the SAC.
Collapse
Affiliation(s)
- Marie Duranteau
- CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Paris Cedex 13 75205, France
| | - Jean-Jacques Montagne
- CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Paris Cedex 13 75205, France
| | - Zohra Rahmani
- CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Paris Cedex 13 75205, France
| |
Collapse
|
47
|
Abstract
The mitotic checkpoint is a specialized signal transduction pathway that contributes to the fidelity of chromosome segregation. The signaling of the checkpoint originates from defective kinetochore-microtubule interactions and leads to formation of the mitotic checkpoint complex (MCC), a highly potent inhibitor of the Anaphase Promoting Complex/Cyclosome (APC/C)—the E3 ubiquitin ligase essential for anaphase onset. Many important questions concerning the MCC and its interaction with APC/C have been intensively investigated and debated in the past 15 years, such as the exact composition of the MCC, how it is assembled during a cell cycle, how it inhibits APC/C, and how the MCC is disassembled to allow APC/C activation. These efforts have culminated in recently reported structure models for human MCC:APC/C supra-complexes at near-atomic resolution that shed light on multiple aspects of the mitotic checkpoint mechanisms. However, confusing statements regarding the MCC are still scattered in the literature, making it difficult for students and scientists alike to obtain a clear picture of MCC composition, structure, function and dynamics. This review will comb through some of the most popular concepts or misconceptions about the MCC, discuss our current understandings, present a synthesized model on regulation of CDC20 ubiquitination, and suggest a few future endeavors and cautions for next phase of MCC research.
Collapse
Affiliation(s)
- Song-Tao Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Hang Zhang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
48
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
49
|
Markova K, Uzlikova M, Tumova P, Jirakova K, Hagen G, Kulda J, Nohynkova E. Absence of a conventional spindle mitotic checkpoint in the binucleated single-celled parasite Giardia intestinalis. Eur J Cell Biol 2016; 95:355-367. [DOI: 10.1016/j.ejcb.2016.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 01/26/2023] Open
|
50
|
Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet 2016; 12:e1006310. [PMID: 27631493 PMCID: PMC5025047 DOI: 10.1371/journal.pgen.1006310] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/19/2016] [Indexed: 01/06/2023] Open
Abstract
The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing. Cdk1 phosphorylates many substrates in mitosis and simultaneoulsy reduces the activity of the corresponding phosphatase PP2A through the Greatwall kinase/Mastl. When Mastl is deleted, cells progress through mitosis with missegregated chromosomes, which become unraveled. However, the molecular mechansims by which Mastl promotes proper chromosome segregation and mitotic progression remain elusive. In this study, we show that the Cdk1->Greatwall kinase/Mastl->PP2A pathway plays a central role in regulating the spindle assembly checkpoint (SAC) by preventing premature SAC silencing. We further demonstrate that Mastl is required for multi-site phosphorylation of the essntial SAC protein MPS1 as well as robust MPS1 kinase activity in mitosis by inhibiting PP2A/B55-mediated MPS1 dephosphorylation. Our findings establish the requirement of Mastl for robust SAC maintenance.
Collapse
|