1
|
Yin M, Li Y, Sun Z, Wu X, Ding L, Zhang Q, Zhou H, Zhang M, Qin D, Qin B, Wang L. α-Ketoglutarate inhibits the pluripotent-to-totipotent state transition in stem cells. FEBS J 2025; 292:2398-2409. [PMID: 39930914 DOI: 10.1111/febs.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/06/2025] [Indexed: 05/11/2025]
Abstract
In early mouse embryogenesis, the distinct enrichment of α-ketoglutarate (αKG) in blastocysts and L-2-hydroxyglutarate (L-2HG) in 2-cell (2C) embryos serves as a key metabolic signature. While elevated L-2HG levels inhibit the resolution of totipotency during the transition from the 2C stage to the blastocyst, the role of αKG remains elusive. Mouse embryonic stem cells (mESCs) cultured in vitro naturally harbor a subpopulation that transitions dynamically into a 2C-like totipotent state, providing a convenient model to investigate the role of αKG in totipotency reprogramming. This study demonstrates that αKG significantly inhibits the pluripotency to totipotency transition through upregulating ten-eleven translocation (TET) DNA hydroxylases. We further show that reducing endogenous αKG levels via glutamine withdrawal or inhibiting αKG-dependent dioxygenases by blocking succinate dehydrogenase (SDH) markedly enhances the induction of 2C-like cells (2CLCs). Finally, leveraging the potent SDH inhibitor dimethyl malonate (DMM), we have developed a highly efficient protocol for 2CLC induction, producing cells that transcriptionally resemble mid-to-late 2C embryos. Our findings deepen the understanding of the metabolic regulation of totipotency and provide a previously undescribed approach for capturing totipotent-like stem cells in vitro.
Collapse
Affiliation(s)
- Mengran Yin
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenzhu Sun
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinyu Wu
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liang Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiang Zhang
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hai Zhou
- Guangzhou National Laboratory, Guangzhou, China
| | - Man Zhang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Biological Targeting Diagnosis, Therapy and Rehabilitation, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baoming Qin
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Lulu Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Ketchum HC, Morganti C, Yanase C, Ebert B, Ito K, Dawlaty MM. TET3 regulates hematopoietic stem cell homeostasis during embryonic and adult hematopoiesis. Hemasphere 2025; 9:e70140. [PMID: 40330736 PMCID: PMC12053453 DOI: 10.1002/hem3.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
The ten-eleven translocation family of enzymes (TET1/2/3) promotes DNA demethylation and is essential for hematopoiesis. While the roles of TET1 and TET2 are well-studied in hematopoiesis, the requirement of TET3 in embryonic and adult hematopoiesis is less investigated. In this study, by characterizing embryonic and adult hematopoiesis in Tie2 +/cre ; Tet3 f/f mice, we have established a requirement for TET3 in regulating hematopoietic stem cells (HSCs; CD150+CD48-). We found that loss of TET3 in the fetal liver and adult bone marrow causes a reduction in the percent of long-term HSCs (LT-HSCs; CD150+CD48-CD34-). This was accompanied by reduced colony forming capacity of TET3-deficient HSCs in vitro and reduced contribution of HSCs after a competitive bone marrow transplantation in vivo. TET3 deficiency increased DNA methylation at several cell cycle regulator genes leading to their down regulation. This is consistent with, and likely underpins, the reduced number of quiescent HSCs in TET3-deficient bone marrow. These findings uncover a new role for TET3 in HSC homeostasis during embryonic and adult hematopoiesis.
Collapse
Affiliation(s)
- Harmony C. Ketchum
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Departments of Cell Biology, Medicine and OncologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Chie Yanase
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Departments of Cell Biology, Medicine and OncologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Blake Ebert
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Departments of Cell Biology, Medicine and OncologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Meelad M. Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
3
|
Heilman SA, Schriever HC, Kostka D, Koenig KM, Gross JM. tet2 and tet3 regulate cell fate specification and differentiation events during retinal development. Sci Rep 2025; 15:10404. [PMID: 40140485 PMCID: PMC11947307 DOI: 10.1038/s41598-025-93825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Tet family methylcytosine dioxygenases recognize and oxidize 5-methyl-cytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Previous work demonstrated the requirement for Tet and 5hmC during zebrafish retinogenesis. tet2-/-;tet3-/- mutants possessed defects in the formation of differentiated retinal neurons, but the mechanisms underlying these defects are unknown. Here, we leveraged scRNAseq technologies to better understand cell type-specific deficits and molecular signatures underlying the tet2-/-;tet3-/- retinal phenotype. Our results identified defects in tet2-/-;tet3-/- retinae that included delayed specification of several retinal cell types, reduced maturity across late-stage cones, expansions of immature subpopulations of horizontal and bipolar cells, and altered biases of bipolar cell subtype fates at late differentiation stages. Together, these data highlight the critical role that tet2 and tet3 play as regulators of cell fate specification and terminal differentiation events during retinal development.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hannah C Schriever
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis Kostka
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kristen M Koenig
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Maezawa S, Yukawa M, Sakashita A, Barski A, Namekawa SH. Site-specific DNA demethylation during spermatogenesis presets the sites of nucleosome retention in mouse sperm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632457. [PMID: 39829778 PMCID: PMC11741358 DOI: 10.1101/2025.01.10.632457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA methylation patterns are inherited from the parental germline to the embryo. In mature sperm, the sites of unmethylated DNA are tightly coupled to sites of histone retention at gene regulatory elements that are implicated in paternal epigenetic inheritance. The timing and mechanism of site-specific DNA demethylation in the male germline currently remains unknown. Here, we perform genome-wide profiling of DNA methylation during spermatogenesis by capturing methylated DNA through interaction with a methyl-DNA binding protein domain (MBD). Our data demonstrate that there is a site-specific change in DNA methylation during the mitosis-to-meiosis transition. Importantly, the genomic sites that are demethylated during this transition predetermine nucleosome retention sites in spermatozoa. These results suggest that site-specific DNA demethylation during the mitosis-to-meiosis transition of spermatogenesis prepares embryonic gene expression after fertilization. We therefore propose DNA demethylation during spermatogenesis as a novel phase of epigenetic reprogramming that contributes to embryonic gene regulation.
Collapse
Affiliation(s)
- So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba 278-8510, Japan
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Masashi Yukawa
- Division of Allergy and immunology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582 Japan
| | - Artem Barski
- Division of Allergy and immunology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Satoshi H. Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
6
|
Heilman SA, Schriever HC, Kostka D, Koenig KM, Gross JM. tet2 and tet3 regulate cell fate specification and differentiation events during retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627071. [PMID: 39713311 PMCID: PMC11661121 DOI: 10.1101/2024.12.06.627071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tet enzymes are epigenetic modifiers that impact gene expression via 5mC to 5hmC oxidation. Previous work demonstrated the requirement for Tet and 5hmC during zebrafish retinogenesis. tet2 -/- ;tet3 -/- mutants possessed defects in the formation of differentiated retinal neurons, but the mechanisms underlying these defects are unknown. Here, we leveraged scRNAseq technologies to better understand cell type-specific deficits and molecular signatures underlying the tet2 -/- ;tet3 -/- retinal phenotype. Our results identified defects in the tet2 -/- ;tet3 -/- retinae that included delayed specification of several retinal cell types, reduced maturity across late-stage cones, expansions of immature subpopulations of horizontal and bipolar cells, and altered biases of bipolar cell subtype fates at late differentiation stages. Together, these data highlight the critical role that tet2 and tet3 play as regulators of cell fate specification and terminal differentiation events during retinal development.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Hannah C Schriever
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dennis Kostka
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Kristen M Koenig
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jeffrey M Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
7
|
Foong YH, Caldwell B, Thorvaldsen JL, Krapp C, Mesaros CA, Zhou W, Kohli RM, Bartolomei MS. TET1 displays catalytic and non-catalytic functions in the adult mouse cortex. Epigenetics 2024; 19:2374979. [PMID: 38970823 PMCID: PMC11229741 DOI: 10.1080/15592294.2024.2374979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.
Collapse
Affiliation(s)
- Yee Hoon Foong
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Blake Caldwell
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Joanne L. Thorvaldsen
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Christopher Krapp
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Clementina A. Mesaros
- Translational Biomarkers Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wanding Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
| | - Rahul M. Kohli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
| |
Collapse
|
8
|
Feng Q, Li Q, Hu Y, Wang Z, Zhou H, Lin C, Wang D. TET1 overexpression affects cell proliferation and apoptosis in aging ovaries. J Assist Reprod Genet 2024; 41:3491-3502. [PMID: 39317913 PMCID: PMC11707214 DOI: 10.1007/s10815-024-03271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE Along with the progress of society, human life expectancy has been increasing, and late marriage and late childbearing are the current trend. Since reproductive aging affects fertility, ovarian aging in women has become a major reproductive health issue in the current society. During ovarian aging, DNA methylation levels may change. The ten-eleven translocation (TET) protein family proteins TET1, TET2, and TET3 are important DNA demethylation enzymes, and differential expression of TET1, TET2, and TET3 may affect the proliferation and apoptosis of aging ovarian cells. The aim of this study was to investigate the role of TET1 in the regulation of ovarian aging. METHODS The expression of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) was analyzed by immunofluorescence (IF) in young and aging ovaries of six 6-8-week-old female mice and six 6-8-month-old female mice. Then, the expression pattern of the TET protein family in young and aging ovaries of mice was investigated. To determine the impact of TET1 on ovarian development, the aging of IOSE-80, KGN, and SKOV-3 cells was induced with D-galactosidase (D-gal). Cells were then transfected using the TET1 overexpression vector or si-TET1. We assessed the proliferation and apoptosis of aging cells after transfection and analyzed the regulatory effect of TET1 expression on aging cells. Additionally, we verified the Tet1 expression in Tet1-KO mice. RESULTS The 5mC to 5hmC transition, oocyte maturation, and blastocyst rate were reduced in aging mice compared to young mice. In aging mice ovaries, the expression levels of Tet1, Tet2, and Tet3 were reduced significantly, with Tet1 being particularly pronounced. The overexpression of TET1 promoted proliferation and inhibited apoptosis in aging human ovarian cells. Furthermore, Tet1 expression was very low in Tet1-KO C57BL/6 J mice ovaries. CONCLUSION This study demonstrates that the expression levels of TET family proteins are low in aging ovaries, and the overexpression of TET1 can promote proliferation and inhibit apoptosis in aging ovarian cells.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, 130062, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yurui Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Zhan Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, 130062, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
9
|
Xu C, Fu X, Qin H, Yao K. Traversing the epigenetic landscape: DNA methylation from retina to brain in development and disease. Front Cell Neurosci 2024; 18:1499719. [PMID: 39678047 PMCID: PMC11637887 DOI: 10.3389/fncel.2024.1499719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
DNA methylation plays a crucial role in development, aging, degeneration of various tissues and dedifferentiated cells. This review explores the multifaceted impact of DNA methylation on the retina and brain during development and pathological processes. First, we investigate the role of DNA methylation in retinal development, and then focus on retinal diseases, detailing the changes in DNA methylation patterns in diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Since the retina is considered an extension of the brain, its unique structure allows it to exhibit similar immune response mechanisms to the brain. We further extend our exploration from the retina to the brain, examining the role of DNA methylation in brain development and its associated diseases, such as Alzheimer's disease (AD) and Huntington's disease (HD) to better understand the mechanistic links between retinal and brain diseases, and explore the possibility of communication between the visual system and the central nervous system (CNS) from an epigenetic perspective. Additionally, we discuss neurodevelopmental brain diseases, including schizophrenia (SZ), autism spectrum disorder (ASD), and intellectual disability (ID), focus on how DNA methylation affects neuronal development, synaptic plasticity, and cognitive function, providing insights into the molecular mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Fleming A, Knatko EV, Li X, Zoch A, Heckhausen Z, Stransky S, Brenes AJ, Sidoli S, Hajkova P, O'Carroll D, Rasmussen KD. PROSER1 modulates DNA demethylation through dual mechanisms to prevent syndromic developmental malformations. Genes Dev 2024; 38:952-964. [PMID: 39562138 DOI: 10.1101/gad.352176.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
The link between DNA methylation and neurodevelopmental disorders is well established. However, how DNA methylation is fine-tuned-ensuring precise gene expression and developmental fidelity-remains poorly understood. PROSER1, a known TET2 interactor, was recently linked to a severe neurodevelopmental disorder. Here, we demonstrate that PROSER1 interacts with all TET enzymes and stabilizes chromatin-bound TET-OGT-PROSER1-DBHS (TOPD) complexes, which regulate DNA demethylation and developmental gene expression. Surprisingly, we found that PROSER1 also sequesters TET enzymes, preventing widespread demethylation and transposable element derepression. Our findings identify PROSER1 as a key factor that both positively and negatively regulates DNA demethylation essential for mammalian neurodevelopment.
Collapse
Affiliation(s)
- Anna Fleming
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Elena V Knatko
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Xiang Li
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Zoe Heckhausen
- MRC Laboratory of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Alejandro J Brenes
- Division of Cell Signalling and Immunology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Petra Hajkova
- MRC Laboratory of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Kasper D Rasmussen
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
11
|
Mohanty SK, Singh K, Kumar M, Verma SS, Srivastava R, Gnyawali SC, Palakurti R, Sahi AK, El Masry MS, Banerjee P, Kacar S, Rustagi Y, Verma P, Ghatak S, Hernandez E, Rubin JP, Khanna S, Roy S, Yoder MC, Sen CK. Vasculogenic skin reprogramming requires TET-mediated gene demethylation in fibroblasts for rescuing impaired perfusion in diabetes. Nat Commun 2024; 15:10277. [PMID: 39604331 PMCID: PMC11603198 DOI: 10.1038/s41467-024-54385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Tissue nanotransfection (TNT) topically delivers Etv2, Foxc2, and Fli1 (EFF) plasmids increasing vasculogenic fibroblasts (VF) and promoting vascularization in ischemic murine skin. Human dermal fibroblasts respond to EFF nanoelectroporation with elevated expression of endothelial genes in vitro, which is linked to increased ten-eleven translocase 1/2/3 (TET) expression. Single cell RNA sequencing dependent validation of VF induction reveals a TET-dependent transcript signature. TNTEFF also induces TET expression in vivo, and fibroblast-specific EFF overexpression leads to VF-transition, with TET-activation correlating with higher 5-hydroxymethylcytosine (5-hmC) levels in VF. VF emergence requires TET-dependent demethylation of endothelial genes in vivo, enhancing VF abundance and restoring perfusion in diabetic ischemic limbs. TNTEFF improves perfusion and wound closure in diabetic mice, while increasing VF in cultured human skin explants. Suppressed in diabetes, TET1/2/3 play a critical role in TNT-mediated VF formation which supports de novo blood vessel development to rescue diabetic ischemic tissue.
Collapse
Affiliation(s)
- Sujit K Mohanty
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sumit S Verma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajneesh Srivastava
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Surya C Gnyawali
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ravichand Palakurti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ajay K Sahi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed S El Masry
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pradipta Banerjee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Peter Rubin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Savita Khanna
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sashwati Roy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mervin C Yoder
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Mulet I, Grueso-Cortina C, Cortés-Cano M, Gerovska D, Wu G, Iakab SA, Jimenez-Blasco D, Curtabbi A, Hernansanz-Agustín P, Ketchum H, Manjarrés-Raza I, Wunderlich FT, Bolaños JP, Dawlaty MM, Hopf C, Enríquez JA, Araúzo-Bravo MJ, Tapia N. TET3 regulates terminal cell differentiation at the metabolic level. Nat Commun 2024; 15:9749. [PMID: 39557858 PMCID: PMC11573987 DOI: 10.1038/s41467-024-54044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
TET-family members play a critical role in cell fate commitment. Indeed, TET3 is essential to postnatal development due to yet unknown reasons. To define TET3 function in cell differentiation, we have profiled the intestinal epithelium at single-cell level from wild-type and Tet3 knockout mice. We have found that Tet3 is mostly expressed in differentiated enterocytes. In the absence of TET3, enterocytes exhibit an aberrant differentiation trajectory and do not acquire a physiological cell identity due to an impairment in oxidative phosphorylation, specifically due to an ATP synthase assembly deficiency. Moreover, spatial metabolomics analysis has revealed that Tet3 knockout enterocytes exhibit an unphysiological metabolic profile when compared with their wild-type counterparts. In contrast, no metabolic differences have been observed between both genotypes in the stem cell compartment where Tet3 is mainly not expressed. Collectively, our findings suggest a mechanism by which TET3 regulates mitochondrial function and, thus, terminal cell differentiation at the metabolic level.
Collapse
Affiliation(s)
- Isabel Mulet
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Carmen Grueso-Cortina
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Mireia Cortés-Cano
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastián, Spain
| | - Guangming Wu
- Guangzhou National Laboratory, Guangzhou, China
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stefania Alexandra Iakab
- Center for Mass Spectrometry and Optical Spectroscopy, Manheim University of Applied Sciences, Mannheim, Germany
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | - Andrea Curtabbi
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pablo Hernansanz-Agustín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Harmony Ketchum
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Resarch, Albert Einstein College of Medicine, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Israel Manjarrés-Raza
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | | | - Juan Pedro Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Resarch, Albert Einstein College of Medicine, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy, Manheim University of Applied Sciences, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - José Antonio Enríquez
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Leioa, Spain
| | - Natalia Tapia
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain.
| |
Collapse
|
13
|
Zheng K, Lyu Z, Chen J, Chen G. 5-Hydroxymethylcytosine: Far Beyond the Intermediate of DNA Demethylation. Int J Mol Sci 2024; 25:11780. [PMID: 39519332 PMCID: PMC11546248 DOI: 10.3390/ijms252111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Epigenetics plays a pivotal role in regulating gene expression and cellular differentiation. DNA methylation, involving the addition of methyl groups to specific cytosine bases, is a well-known epigenetic modification. The recent discovery of 5-hydroxymethylcytosine (5hmC) has provided new insights into cytosine modifications. 5hmC, derived from the oxidation of 5-methylcytosine (5mC), serves as both an intermediate in demethylation and a stable chemical modification in the genome. In this comprehensive review, we summarize the recent research advancements regarding the functions of 5hmC in development and disease. We discuss its implications in gene expression regulation, cellular differentiation, and its potential role as a diagnostic and prognostic marker in various diseases. Additionally, we highlight the challenges associated with accurately detecting and quantifying 5hmC and present the latest methodologies employed for its detection. Understanding the functional role of 5hmC in epigenetic regulation and further advancing our understanding of gene expression dynamics and cellular processes hold immense promise for the development of novel therapeutic strategies and precision medicine approaches.
Collapse
Affiliation(s)
- Kaixi Zheng
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
- School of Life Sciences, Central South University, Changsha 410031, China
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
| | - Guodong Chen
- School of Life Sciences, Central South University, Changsha 410031, China
| |
Collapse
|
14
|
Jin SG, Johnson J, Huang Z, Cui W, Dunwell T, Pfeifer GP. CXXC5 stabilizes DNA methylation patterns in mouse embryonic stem cells. Epigenomics 2024; 16:1351-1363. [PMID: 39585161 PMCID: PMC11622772 DOI: 10.1080/17501911.2024.2426450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
AIMS Mammalian genomes encode 12 proteins that contain a CXXC zinc finger domain. Most members of this family are large multi-domain proteins that function in the control of DNA methylation and histone methylation patterns. CXXC5 is a smaller member of the family, along with its closest homologue CXXC4. These two proteins lack known catalytic domains. Here, we have characterized CXXC5 in mouse embryonic stem (ES) cells. MATERIALS & METHODS We used gene knockouts, RNA sequencing, and DNA methylation analysis by whole-genome bisulfite sequencing. RESULTS & CONCLUSIONS We show that CXXC5 is a nuclear protein that interacts with 5-methylcytosine oxidases (TET proteins). Removal of CXXC5 from ES cells leads to very few changes in gene expression. CXXC5 extensively colocalizes with TET1 and TET2 at CpG islands. CXXC5 inactivation leads to a substantial reduction of DNA methylation levels that affects all genomic compartments including genic and intergenic regions and CpG island shores. We propose a model in which CXXC5 serves as an anchor for TET proteins at CpG islands. In the absence of CXXC5, the 5-methylcytosine oxidases become dislodged from CpG islands and are enabled to induce genome-scale DNA demethylation. Thus, CXXC5 serves as a stabilizer of DNA methylation patterns.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Zhijun Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei Cui
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Gerd P. Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
15
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
16
|
Stötzel M, Cheng CY, IIik IA, Kumar AS, Omgba PA, van der Weijden VA, Zhang Y, Vingron M, Meissner A, Aktaş T, Kretzmer H, Bulut-Karslioğlu A. TET activity safeguards pluripotency throughout embryonic dormancy. Nat Struct Mol Biol 2024; 31:1625-1639. [PMID: 38783076 PMCID: PMC11479945 DOI: 10.1038/s41594-024-01313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Dormancy is an essential biological process for the propagation of many life forms through generations and stressful conditions. Early embryos of many mammals are preservable for weeks to months within the uterus in a dormant state called diapause, which can be induced in vitro through mTOR inhibition. Cellular strategies that safeguard original cell identity within the silent genomic landscape of dormancy are not known. Here we show that the protection of cis-regulatory elements from silencing is key to maintaining pluripotency in the dormant state. We reveal a TET-transcription factor axis, in which TET-mediated DNA demethylation and recruitment of methylation-sensitive transcription factor TFE3 drive transcriptionally inert chromatin adaptations during dormancy transition. Perturbation of TET activity compromises pluripotency and survival of mouse embryos under dormancy, whereas its enhancement improves survival rates. Our results reveal an essential mechanism for propagating the cellular identity of dormant cells, with implications for regeneration and disease.
Collapse
Affiliation(s)
- Maximilian Stötzel
- Stem Cell Chromatin Lab, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Chieh-Yu Cheng
- Stem Cell Chromatin Lab, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ibrahim A IIik
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Abhishek Sampath Kumar
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Persia Akbari Omgba
- Stem Cell Chromatin Lab, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | | | - Yufei Zhang
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tuğçe Aktaş
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
17
|
Wang M, Wang L, Huang Y, Qiao Z, Yi S, Zhang W, Wang J, Yang G, Cui X, Kou X, Zhao Y, Wang H, Jiang C, Gao S, Chen J. Loss of Tet hydroxymethylase activity causes mouse embryonic stem cell differentiation bias and developmental defects. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2132-2148. [PMID: 39037697 DOI: 10.1007/s11427-024-2631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 07/23/2024]
Abstract
The TET family is well known for active DNA demethylation and plays important roles in regulating transcription, the epigenome and development. Nevertheless, previous studies using knockdown (KD) or knockout (KO) models to investigate the function of TET have faced challenges in distinguishing its enzymatic and nonenzymatic roles, as well as compensatory effects among TET family members, which has made the understanding of the enzymatic role of TET not accurate enough. To solve this problem, we successfully generated mice catalytically inactive for specific Tet members (Tetm/m). We observed that, compared with the reported KO mice, mutant mice exhibited distinct developmental defects, including growth retardation, sex imbalance, infertility, and perinatal lethality. Notably, Tetm/m mouse embryonic stem cells (mESCs) were successfully established but entered an impaired developmental program, demonstrating extended pluripotency and defects in ectodermal differentiation caused by abnormal DNA methylation. Intriguingly, Tet3, traditionally considered less critical for mESCs due to its lower expression level, had a significant impact on the global hydroxymethylation, gene expression, and differentiation potential of mESCs. Notably, there were common regulatory regions between Tet1 and Tet3 in pluripotency regulation. In summary, our study provides a more accurate reference for the functional mechanism of Tet hydroxymethylase activity in mouse development and ESC pluripotency regulation.
Collapse
Affiliation(s)
- Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Liping Wang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai, 200065, China
| | - Yanxin Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Zhibin Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Shanru Yi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Weina Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Jing Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Guang Yang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai, 200065, China
| | - Xinyu Cui
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai, 200065, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Cizhong Jiang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai, 200065, China.
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
18
|
Montgomery T, Uh K, Lee K. TET enzyme driven epigenetic reprogramming in early embryos and its implication on long-term health. Front Cell Dev Biol 2024; 12:1358649. [PMID: 39149518 PMCID: PMC11324557 DOI: 10.3389/fcell.2024.1358649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Mammalian embryo development is initiated by the union of paternal and maternal gametes. Upon fertilization, their epigenome landscape is transformed through a series of finely orchestrated mechanisms that are crucial for survival and successful embryogenesis. Specifically, maternal or oocyte-specific reprogramming factors modulate germ cell specific epigenetic marks into their embryonic states. Rapid and dynamic changes in epigenetic marks such as DNA methylation and histone modifications are observed during early embryo development. These changes govern the structure of embryonic genome prior to zygotic genome activation. Differential changes in epigenetic marks are observed between paternal and maternal genomes because the structure of the parental genomes allows interaction with specific oocyte reprogramming factors. For instance, the paternal genome is targeted by the TET family of enzymes which oxidize the 5-methylcytosine (5mC) epigenetic mark into 5-hydroxymethylcytosine (5hmC) to lower the level of DNA methylation. The maternal genome is mainly protected from TET3-mediated oxidation by the maternal factor, STELLA. The TET3-mediated DNA demethylation occurs at the global level and is clearly observed in many mammalian species. Other epigenetic modulating enzymes, such as DNA methyltransferases, provide fine tuning of the DNA methylation level by initiating de novo methylation. The mechanisms which initiate the epigenetic reprogramming of gametes are critical for proper activation of embryonic genome and subsequent establishment of pluripotency and normal development. Clinical cases or diseases linked to mutations in reprogramming modulators exist, emphasizing the need to understand mechanistic actions of these modulators. In addition, embryos generated via in vitro embryo production system often present epigenetic abnormalities. Understanding mechanistic actions of the epigenetic modulators will potentially improve the well-being of individuals suffering from these epigenetic disorders and correct epigenetic abnormalities in embryos produced in vitro. This review will summarize the current understanding of epigenetic reprogramming by TET enzymes during early embryogenesis and highlight its clinical relevance and potential implication for assisted reproductive technologies.
Collapse
Affiliation(s)
- Ty Montgomery
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Kyungjun Uh
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Republic of Korea
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
19
|
Becht DC, Mohid SA, Lee JE, Zandian M, Benz C, Biswas S, Sinha VK, Ivarsson Y, Ge K, Zhang Y, Kutateladze TG. MLL4 binds TET3. Structure 2024; 32:706-714.e3. [PMID: 38579707 PMCID: PMC11162309 DOI: 10.1016/j.str.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Human mixed lineage leukemia 4 (MLL4), also known as KMT2D, regulates cell type specific transcriptional programs through enhancer activation. Along with the catalytic methyltransferase domain, MLL4 contains seven less characterized plant homeodomain (PHD) fingers. Here, we report that the sixth PHD finger of MLL4 (MLL4PHD6) binds to the hydrophobic motif of ten-eleven translocation 3 (TET3), a dioxygenase that converts methylated cytosine into oxidized derivatives. The solution NMR structure of the TET3-MLL4PHD6 complex and binding assays show that, like histone H4 tail, TET3 occupies the hydrophobic site of MLL4PHD6, and that this interaction is conserved in the seventh PHD finger of homologous MLL3 (MLL3PHD7). Analysis of genomic localization of endogenous MLL4 and ectopically expressed TET3 in mouse embryonic stem cells reveals a high degree overlap on active enhancers and suggests a potential functional relationship of MLL4 and TET3.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sk Abdul Mohid
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Soumi Biswas
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vikrant Kumar Sinha
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Yi Zhang
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Prasasya RD, Caldwell BA, Liu Z, Wu S, Leu NA, Fowler JM, Cincotta SA, Laird DJ, Kohli RM, Bartolomei MS. Iterative oxidation by TET1 is required for reprogramming of imprinting control regions and patterning of mouse sperm hypomethylated regions. Dev Cell 2024; 59:1010-1027.e8. [PMID: 38569549 PMCID: PMC11042979 DOI: 10.1016/j.devcel.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Ten-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V). Tet1 knockout and catalytic mutant primordial germ cells (PGCs) fail to erase methylation at select imprinting control regions and promoters of meiosis-associated genes, validating the requirement for the iterative oxidation of 5mC for complete germline reprogramming. TET1V and TET1HxD rescue most hypermethylation of Tet1-/- sperm, suggesting the role of TET1 beyond its oxidative capability. We additionally identify a broader class of hypermethylated regions in Tet1 mutant mouse sperm that depend on TET oxidation for reprogramming. Our study demonstrates the link between TET1-mediated germline reprogramming and sperm methylome patterning.
Collapse
Affiliation(s)
- Rexxi D Prasasya
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake A Caldwell
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhengfeng Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Songze Wu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Johanna M Fowler
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 84143, USA
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 84143, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Ketchum HC, Suzuki M, Dawlaty MM. Catalytic-dependent and -independent roles of TET3 in the regulation of specific genetic programs during neuroectoderm specification. Commun Biol 2024; 7:415. [PMID: 38580843 PMCID: PMC10997653 DOI: 10.1038/s42003-024-06120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
The ten-eleven-translocation family of proteins (TET1/2/3) are epigenetic regulators of gene expression. They regulate genes by promoting DNA demethylation (i.e., catalytic activity) and by partnering with regulatory proteins (i.e., non-catalytic functions). Unlike Tet1 and Tet2, Tet3 is not expressed in mouse embryonic stem cells (ESCs) but is induced upon ESC differentiation. However, the significance of its dual roles in lineage specification is less defined. By generating TET3 catalytic-mutant (Tet3m/m) and knockout (Tet3-/-) mouse ESCs and differentiating them to neuroectoderm (NE), we identify distinct catalytic-dependent and independent roles of TET3 in NE specification. We find that the catalytic activity of TET3 is important for activation of neural genes while its non-catalytic functions are involved in suppressing mesodermal programs. Interestingly, the vast majority of differentially methylated regions (DMRs) in Tet3m/m and Tet3-/- NE cells are hypomethylated. The hypo-DMRs are associated to aberrantly upregulated genes while the hyper-DMRs are linked to downregulated neural genes. We find the maintenance methyltransferase Dnmt1 as a direct target of TET3, which is downregulated in TET3-deficient NE cells and may contribute to the increased DNA hypomethylation. Our findings establish that the catalytic-dependent and -independent roles of TET3 have distinct contributions to NE specification with potential implications in development.
Collapse
Affiliation(s)
- Harmony C Ketchum
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Masako Suzuki
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
22
|
Tu R, Ping Z, Liu J, Tsoi ML, Song X, Liu W, Xie T. Niche Tet maintains germline stem cells independently of dioxygenase activity. EMBO J 2024; 43:1570-1590. [PMID: 38499787 PMCID: PMC11021519 DOI: 10.1038/s44318-024-00074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Ten-eleven translocation (TET) proteins are dioxygenases that convert 5-methylcytosine (5mC) into 5-hydroxylmethylcytosine (5hmC) in DNA and RNA. However, their involvement in adult stem cell regulation remains unclear. Here, we identify a novel enzymatic activity-independent function of Tet in the Drosophila germline stem cell (GSC) niche. Tet activates the expression of Dpp, the fly homologue of BMP, in the ovary stem cell niche, thereby controlling GSC self-renewal. Depletion of Tet disrupts Dpp production, leading to premature GSC loss. Strikingly, both wild-type and enzyme-dead mutant Tet proteins rescue defective BMP signaling and GSC loss when expressed in the niche. Mechanistically, Tet interacts directly with Bap55 and Stat92E, facilitating recruitment of the Polybromo Brahma associated protein (PBAP) complex to the dpp enhancer and activating Dpp expression. Furthermore, human TET3 can effectively substitute for Drosophila Tet in the niche to support BMP signaling and GSC self-renewal. Our findings highlight a conserved novel catalytic activity-independent role of Tet as a scaffold protein in supporting niche signaling for adult stem cell self-renewal.
Collapse
Affiliation(s)
- Renjun Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| | - Zhaohua Ping
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA
| | - Jian Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Man Lung Tsoi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, New Territories, Hong Kong Special Administrative Region, China
| | - Xiaoqing Song
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China.
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA.
| |
Collapse
|
23
|
Lee SM. Detecting DNA hydroxymethylation: exploring its role in genome regulation. BMB Rep 2024; 57:135-142. [PMID: 38449301 PMCID: PMC10979348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten-eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, encompassing chemical and enzymatic approaches, as well as thirdgeneration sequencing techniques. These advancements have paved the way for a thorough exploration of the role of 5hmC across a diverse array of cell types, from embryonic stem cells (ESCs) to various differentiated cells. This review aims to comprehensively report on recent techniques and discuss the emerging roles of 5hmC. [BMB Reports 2024; 57(3): 135-142].
Collapse
Affiliation(s)
- Sun-Min Lee
- Department of Physics, Konkuk Univeristy, Seoul 05029, Korea
| |
Collapse
|
24
|
Guarnera L, Jha BK. TET2 mutation as prototypic clonal hematopoiesis lesion. Semin Hematol 2024; 61:51-60. [PMID: 38431463 PMCID: PMC10978279 DOI: 10.1053/j.seminhematol.2024.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy; Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Babal K Jha
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute (LRI) Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
25
|
Yoshikawa C, Ariyani W, Kohno D. DNA Methylation in the Hypothalamic Feeding Center and Obesity. J Obes Metab Syndr 2023; 32:303-311. [PMID: 38124554 PMCID: PMC10786209 DOI: 10.7570/jomes23073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Obesity rates have been increasing worldwide for decades, mainly due to environmental factors, such as diet, nutrition, and exercise. However, the molecular mechanisms through which environmental factors induce obesity remain unclear. Several mechanisms underlie the body's response to environmental factors, and one of the main mechanisms involves epigenetic modifications, such as DNA methylation. The pattern of DNA methylation is influenced by environmental factors, and altered DNA methylation patterns can affect gene expression profiles and phenotypes. DNA methylation may mediate the development of obesity caused by environmental factors. Similar to the factors governing obesity, DNA methylation is influenced by nutrients and metabolites. Notably, DNA methylation is associated with body size and weight programming. The DNA methylation levels of proopiomelanocortin (Pomc) and neuropeptide Y (Npy) in the hypothalamic feeding center, a key region controlling systemic energy balance, are affected by diet. Conditional knockout mouse studies of epigenetic enzymes have shown that DNA methylation in the hypothalamic feeding center plays an indispensable role in energy homeostasis. In this review, we discuss the role of DNA methylation in the hypothalamic feeding center as a potential mechanism underlying the development of obesity induced by environmental factors.
Collapse
Affiliation(s)
- Chiharu Yoshikawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
26
|
Fischer V, Kretschmer M, Germain PL, Kaur J, Mompart-Barrenechea S, Pelczar P, Schürmann D, Schär P, Gapp K. Sperm chromatin accessibility's involvement in the intergenerational effects of stress hormone receptor activation. Transl Psychiatry 2023; 13:378. [PMID: 38065942 PMCID: PMC10709351 DOI: 10.1038/s41398-023-02684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dexamethasone is a stress hormone receptor agonist used widely in clinics. We and others previously showed that paternal administration of dexamethasone in mice affects the phenotype of their offspring. The substrate of intergenerational transmission of environmentally induced effects often involves changes in sperm RNA, yet other epigenetic modifications in the germline can be affected and are also plausible candidates. First, we tested the involvement of altered sperm RNAs in the transmission of dexamethasone induced phenotypes across generations. We did this by injecting sperm RNA into naïve fertilized oocytes, before performing metabolic and behavioral phenotyping of the offspring. We observed phenotypic changes in discordance with those found in offspring generated by in vitro fertilization using sperm from dexamethasone exposed males. Second, we investigated the effect of dexamethasone on chromatin accessibility using ATAC sequencing and found significant changes at specific genomic features and gene regulatory loci. Employing q-RT-PCR, we show altered expression of a gene in the tissue of offspring affected by accessibility changes in sperm. Third, we establish a correlation between specific DNA modifications and stress hormone receptor activity as a likely contributing factor influencing sperm accessibility. Finally, we independently investigated this dependency by genetically reducing thymine-DNA glycosylase levels and observing concomitant changes at the level of chromatin accessibility and stress hormone receptor activity.
Collapse
Affiliation(s)
- Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Laboratory of Statistical Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Jasmine Kaur
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sergio Mompart-Barrenechea
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - David Schürmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland.
| |
Collapse
|
27
|
Gaggi G, Di Credico A, Barbagallo F, Ghinassi B, Di Baldassarre A. Bisphenols and perfluoroalkyls alter human stem cells integrity: A possible link with infertility. ENVIRONMENTAL RESEARCH 2023; 235:116487. [PMID: 37419196 DOI: 10.1016/j.envres.2023.116487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Bisphenols and Perfluoroalkyls are chemical compounds widely used in industry known to be endocrine disruptors (EDs). Once ingested through contaminated aliments, they mimic the activity of endogenous hormones leading to a broad spectrum of diseases. Due to the extensive use of plastic in human life, particular attention should be paid to antenatal exposure to Bisphenols and Perfluoroalkyls since they cross the placental barrier and accumulates in developing embryo. Here we investigated the effects of Bisphenol-A (BPA), Bisphenol-S (BPS), perfluorooctane-sulfonate (PFOS) and perfluorooctanoic-acid (PFOA), alone or combined, on human-induced pluripotent stem cells (hiPSCs) that share several biological features with the stem cells of blastocysts. Our data show that these EDs affect hiPSC inducing a great mitotoxicity and dramatic changes in genes involved in the maintenance of pluripotency, germline specification, and epigenetic regulation. We also evidenced that these chemicals, when combined, may have additive, synergistic but also negative effects. All these data suggest that antenatal exposure to these EDs may affect the integrity of stem cells in the developing embryos, interfering with critical stages of early human development that might be determinant for fertility. The observation that the effects of exposure to a combination of these chemicals are not easily foreseeable further highlights the need for wider awareness of the complexity of the EDs effects on human health and of the social and economic burden attributable to these compounds.
Collapse
Affiliation(s)
- Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | - Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy.
| | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
28
|
Cheng G, Wu J, Ji M, Hu W, Wu C, Jiang J. TET2 inhibits the proliferation and metastasis of lung adenocarcinoma cells via activation of the cGAS-STING signalling pathway. BMC Cancer 2023; 23:825. [PMID: 37667220 PMCID: PMC10478367 DOI: 10.1186/s12885-023-11343-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Effective identification and development of new molecular methods for the diagnosis, treatment and prognosis of lung adenocarcinoma (LUAD) remains an urgent clinical need. DNA methylation patterns at cytosine bases in the genome are closely related to gene expression, and abnormal DNA methylation is frequently observed in various cancers. The ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA methylation reversal. This study aimed to explore the role of the TET2 protein and its downstream effector, 5-hmC/5-mC DNA modification, in LUAD progression. METHODS The expression of TET2 was analysed by real-time PCR, Western blotting and immunohistochemistry. The 5-hmC DNA content was determined by a colorimetric kit. Activation of the cGAS-STING signalling pathway was evaluated by Western blotting. CCK-8, wound healing and Transwell assays were performed to evaluate the effect of TET2 on cell proliferation, migration and invasion abilities. A xenograft model was used to analyse the effect of TET2 on the tumorigenic ability of A549 cells. RESULTS TET2 overexpression decreased proliferation and metastasis of A549 and H1975 cells in vitro and in vivo. However, TET2 knockdown dramatically enhanced the proliferation, migration and invasion of A549 and H1975 cells. Mechanistically, activation of the cGAS-STING signalling pathway is critical for the TET2-mediated suppression of LUAD cell tumorigenesis and metastasis. CONCLUSION In this study, we demonstrate a tumour suppressor role of TET2 in LUAD, providing new potential molecular therapeutic targets and clinical therapies for patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Gui Cheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Jun Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Mei Ji
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Wenwei Hu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China.
| |
Collapse
|
29
|
Anvar Z, Chakchouk I, Sharif M, Mahadevan S, Nasiotis ET, Su L, Liu Z, Wan YW, Van den Veyver IB. Loss of the Maternal Effect Gene Nlrp2 Alters the Transcriptome of Ovulated Mouse Oocytes and Impacts Expression of Histone Demethylase KDM1B. Reprod Sci 2023; 30:2780-2793. [PMID: 36976514 PMCID: PMC10524210 DOI: 10.1007/s43032-023-01218-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
The subcortical maternal complex (SCMC) is a multiprotein complex in oocytes and preimplantation embryos that is encoded by maternal effect genes. The SCMC is essential for zygote-to-embryo transition, early embryogenesis, and critical zygotic cellular processes, including spindle positioning and symmetric division. Maternal deletion of Nlrp2, which encodes an SCMC protein, results in increased early embryonic loss and abnormal DNA methylation in embryos. We performed RNA sequencing on pools of meiosis II (MII) oocytes from wild-type and Nlrp2-null female mice that were isolated from cumulus-oocyte complexes (COCs) after ovarian stimulation. Using a mouse reference genome-based analysis, we found 231 differentially expressed genes (DEGs) in Nlrp2-null compared to WT oocytes (123 up- and 108 downregulated; adjusted p < 0.05). The upregulated genes include Kdm1b, a H3K4 histone demethylase required during oocyte development for the establishment of DNA methylation marks at CpG islands, including those at imprinted genes. The identified DEGs are enriched for processes involved in neurogenesis, gland morphogenesis, and protein metabolism and for post-translationally methylated proteins. When we compared our RNA sequencing data to an oocyte-specific reference transcriptome that contains many previously unannotated transcripts, we found 228 DEGs, including genes not identified with the first analysis. Interestingly, 68% and 56% of DEGs from the first and second analyses, respectively, overlap with oocyte-specific hyper- and hypomethylated domains. This study shows that there are substantial changes in the transcriptome of mouse MII oocytes from female mice with loss of function of Nlrp2, a maternal effect gene that encodes a member of the SCMC.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sangeetha Mahadevan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Eleni Theodora Nasiotis
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Li Su
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Zhandong Liu
- Department of Pediatrics - Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Ying-Wooi Wan
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
30
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
31
|
Chen F, Li MG, Hua ZD, Ren HY, Gu H, Luo AF, Zhou CF, Zhu Z, Huang T, Bi YZ. TET Family Members Are Integral to Porcine Oocyte Maturation and Parthenogenetic Pre-Implantation Embryogenesis. Int J Mol Sci 2023; 24:12455. [PMID: 37569830 PMCID: PMC10419807 DOI: 10.3390/ijms241512455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The ten-eleven translocation (TET) enzyme family, which includes TET1/2/3, participates in active DNA demethylation in the eukaryotic genome; moreover, TET1/2/3 are functionally redundant in mice embryos. However, the combined effect of TET1/2/3 triple-gene knockdown or knockout on the porcine oocytes or embryos is still unclear. In this study, using Bobcat339, a specific small-molecule inhibitor of the TET family, we explored the effects of TET enzymes on oocyte maturation and early embryogenesis in pigs. Our results revealed that Bobcat339 treatment blocked porcine oocyte maturation and triggered early apoptosis. Furthermore, in the Bobcat339-treated oocytes, spindle architecture and chromosome alignment were disrupted, probably due to the huge loss of 5-hydroxymethylcytosine (5hmC)and concurrent increase in 5-methylcytosine (5mC). After Bobcat339 treatment, early parthenogenetic embryos exhibited abnormal 5mC and 5hmC levels, which resulted in compromised cleavage and blastocyst rate. The mRNA levels of EIF1A and DPPA2 (ZGA marker genes) were significantly decreased, which may explain why the embryos were arrested at the 4-cell stage after Bobcat339 treatment. In addition, the mRNA levels of pluripotency-related genes OCT4 and NANOG were declined after Bobcat339 treatment. RNA sequencing analysis revealed differentially expressed genes in Bobcat339-treated embryos at the 4-cell stage, which were significantly enriched in cell proliferation, cell component related to mitochondrion, and cell adhesion molecule binding. Our results indicated that TET proteins are essential for porcine oocyte maturation and early embryogenesis, and they act by mediating 5mC/5hmC levels and gene transcription.
Collapse
Affiliation(s)
- Fan Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Ming-Guo Li
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Zai-Dong Hua
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Hong-Yan Ren
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Hao Gu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - An-Feng Luo
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Chang-Fan Zhou
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Zhe Zhu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi 832061, China
| | - Yan-Zhen Bi
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| |
Collapse
|
32
|
Flores JC, Sidoli S, Dawlaty MM. Tet2 regulates Sin3a recruitment at active enhancers in embryonic stem cells. iScience 2023; 26:107170. [PMID: 37456851 PMCID: PMC10338317 DOI: 10.1016/j.isci.2023.107170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/11/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Tet2 is a member of the Ten-eleven translocation (Tet1/2/3) family of enzymes and is expressed in embryonic stem cells (ESCs). It demethylates DNA (catalytic functions) and partners with chromatin modifiers (noncatalytic functions) to regulate genes. However, the significance of these functions in ESCs is less defined. Using Tet2 catalytic mutant (Tet2m/m) and knockout (Tet2-/-) ESCs, we identified Tet2 target genes regulated by its catalytic dependent versus independent roles. Tet2 was enriched at their active enhancers and promoters to demethylate them. We also identified the histone deacetylase component Sin3a as a Tet2 partner, co-localizing at promoters and active enhancers. Tet2 deficiency diminished Sin3a at these regions. Tet2 and Sin3a co-occupancy overlapped with Tet1. Combined loss of Tet1/2, but not of their catalytic activities, reduced Sin3a at active enhancers. These findings establish Tet2 catalytic and noncatalytic functions as regulators of DNA demethylation and Sin3a recruitment at active enhancers in ESCs.
Collapse
Affiliation(s)
- Julio C. Flores
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Meelad M. Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
33
|
Singh A, Rappolee DA, Ruden DM. Epigenetic Reprogramming in Mice and Humans: From Fertilization to Primordial Germ Cell Development. Cells 2023; 12:1874. [PMID: 37508536 PMCID: PMC10377882 DOI: 10.3390/cells12141874] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, advances in the understanding of epigenetic reprogramming from fertilization to the development of primordial germline cells in a mouse and human embryo are discussed. To gain insights into the molecular underpinnings of various diseases, it is essential to comprehend the intricate interplay between genetic, epigenetic, and environmental factors during cellular reprogramming and embryonic differentiation. An increasing range of diseases, including cancer and developmental disorders, have been linked to alterations in DNA methylation and histone modifications. Global epigenetic reprogramming occurs in mammals at two stages: post-fertilization and during the development of primordial germ cells (PGC). Epigenetic reprogramming after fertilization involves rapid demethylation of the paternal genome mediated through active and passive DNA demethylation, and gradual demethylation in the maternal genome through passive DNA demethylation. The de novo DNA methyltransferase enzymes, Dnmt3a and Dnmt3b, restore DNA methylation beginning from the blastocyst stage until the formation of the gastrula, and DNA maintenance methyltransferase, Dnmt1, maintains methylation in the somatic cells. The PGC undergo a second round of global demethylation after allocation during the formative pluripotent stage before gastrulation, where the imprints and the methylation marks on the transposable elements known as retrotransposons, including long interspersed nuclear elements (LINE-1) and intracisternal A-particle (IAP) elements are demethylated as well. Finally, DNA methylation is restored in the PGC at the implantation stage including sex-specific imprints corresponding to the sex of the embryo. This review introduces a novel perspective by uncovering how toxicants and stress stimuli impact the critical period of allocation during formative pluripotency, potentially influencing both the quantity and quality of PGCs. Furthermore, the comprehensive comparison of epigenetic events between mice and humans breaks new ground, empowering researchers to make informed decisions regarding the suitability of mouse models for their experiments.
Collapse
Affiliation(s)
- Aditi Singh
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Daniel A. Rappolee
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Reproductive Stress Measurement, Mechanisms and Management, Corp., 135 Lake Shore Rd., Grosse Pointe Farms, MI 48236, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Douglas M. Ruden
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
34
|
Chung WCJ, Tsai PS. The initiation and maintenance of gonadotropin-releasing hormone neuron identity in congenital hypogonadotropic hypogonadism. Front Endocrinol (Lausanne) 2023; 14:1166132. [PMID: 37181038 PMCID: PMC10173152 DOI: 10.3389/fendo.2023.1166132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Neurons that secrete gonadotropin-releasing hormone (GnRH) drive vertebrate reproduction. Genetic lesions that disrupt these neurons in humans lead to congenital hypogonadotropic hypogonadism (CHH) and reproductive failure. Studies on CHH have largely focused on the disruption of prenatal GnRH neuronal migration and postnatal GnRH secretory activity. However, recent evidence suggests a need to also focus on how GnRH neurons initiate and maintain their identity during prenatal and postnatal periods. This review will provide a brief overview of what is known about these processes and several gaps in our knowledge, with an emphasis on how disruption of GnRH neuronal identity can lead to CHH phenotypes.
Collapse
Affiliation(s)
- Wilson CJ Chung
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
35
|
Vasconcelos S, Caniçais C, Chuva de Sousa Lopes SM, Marques CJ, Dória S. The role of DNA hydroxymethylation and TET enzymes in placental development and pregnancy outcome. Clin Epigenetics 2023; 15:66. [PMID: 37095555 PMCID: PMC10127343 DOI: 10.1186/s13148-023-01483-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
The placenta is a temporary organ that is essential for supporting mammalian embryo and fetal development. Understanding the molecular mechanisms underlying trophoblast differentiation and placental function may contribute to improving the diagnosis and treatment of obstetric complications. Epigenetics plays a significant role in the regulation of gene expression, particularly at imprinted genes, which are fundamental in the control of placental development. The Ten-Eleven-Translocation enzymes are part of the epigenetic machinery, converting 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). DNA hydroxymethylation is thought to act as an intermediate in the DNA demethylation mechanism and potentially be a stable and functionally relevant epigenetic mark on its own. The role of DNA hydroxymethylation during differentiation and development of the placenta is not fully understood but increasing knowledge in this field will help to evaluate its potential role in pregnancy complications. This review focuses on DNA hydroxymethylation and its epigenetic regulators in human and mouse placental development and function. Additionally, we address 5hmC in the context of genomic imprinting mechanism and in pregnancy complications, such as intrauterine growth restriction, preeclampsia and pregnancy loss. The cumulative findings show that DNA hydroxymethylation might be important for the control of gene expression in the placenta and suggest a dynamic role in the differentiation of trophoblast cell types during gestation.
Collapse
Affiliation(s)
- Sara Vasconcelos
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carla Caniçais
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | | | - C Joana Marques
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| | - Sofia Dória
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| |
Collapse
|
36
|
Liang X, Aranyi T, Zhou J, Guan Y, Hu H, Liu H, Susztak K. Tet2- and Tet3- Mediated Cytosine Hydroxymethylation in Six2 Progenitor Cells in Mice Is Critical for Nephron Progenitor Differentiation and Nephron Endowment. J Am Soc Nephrol 2023; 34:572-589. [PMID: 36522157 PMCID: PMC10103262 DOI: 10.1681/asn.2022040460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
SIGNIFICANCE STATEMENT Epigenetic changes have been proposed to mediate nephron endowment during development, a critical determinant of future renal disease development. Hydroxymethyl cytosine, an epigenetic modification important for gene regulation, is abundant in the human kidney, but its physiologic role and the role of DNA demethylase enzymes encoded by the Tet1 , Tet2 , or Tet3 , which mediate cytosine hydroxymethylation, are unclear. By genetically deleting Tet1 , Tet2 , or Tet3 in nephron progenitors in mice, the authors showed that combined Tet2 and Tet3 loss in nephron progenitors cause defective kidney development, leading to kidney failure and perinatal death. Tet2 and Tet3 deletion also caused an alteration in demethylation and expression of genes critical for nephron formation. These findings establish that Tet2- and Tet3 -mediated cytosine hydroxymethylation in nephron progenitors plays a critical role in nephron endowment. BACKGROUND Nephron endowment is a key determinant of hypertension and renal disease in later life. Epigenetic changes have been proposed to mediate fetal programming and nephron number. DNA cytosine methylation, which plays a critical role in gene regulation, is affected by proteins encoded by the ten-eleven translocation (TET) DNA demethylase gene family ( Tet1 , Tet2 , and Tet3 ), but the roles of TET proteins in kidney development and nephron endowment have not been characterized . METHODS To study whether epigenetic changes-specifically, active DNA hydroxymethylation mediated by Tet1 , Tet2 , and Tet3- are necessary for nephron progenitor differentiation and nephron endowment, we generated mice with deletion of Tet1 , Tet2 , or Tet3 in Six2-positive nephron progenitors cells (NPCs). We then performed unbiased omics profiling, including whole-genome bisulfite sequencing on isolated Six2-positive NPCs and single-cell RNA sequencing on kidneys from newborn mice. RESULTS We did not observe changes in kidney development or function in mice with NPC-specific deletion of Tet1 , Tet2 , Tet3 or Tet1 / Tet2 , or Tet1 / Tet3 . On the other hand, mice with combined Tet2 and Tet3 loss in Six2-positive NPCs failed to form nephrons, leading to kidney failure and perinatal death. Tet2 and Tet3 loss in Six2 -positive NPCs resulted in defective mesenchymal to epithelial transition and renal vesicle differentiation. Whole-genome bisulfite sequencing, single-cell RNA sequencing, and gene and protein expression analysis identified a defect in expression in multiple genes, including the WNT- β -catenin signaling pathway, due to a failure in demethylation of these loci in the absence of Tet2 and Tet3 . CONCLUSIONS These findings suggest that Tet2- and Tet3 -mediated active cytosine hydroxymethylation in NPCs play a key role in kidney development and nephron endowment.
Collapse
Affiliation(s)
- Xiujie Liang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tamas Aranyi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Jianfu Zhou
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yuting Guan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
38
|
Xu X, Elkenani M, Tan X, Hain JK, Cui B, Schnelle M, Hasenfuss G, Toischer K, Mohamed BA. DNA Methylation Analysis Identifies Novel Epigenetic Loci in Dilated Murine Heart upon Exposure to Volume Overload. Int J Mol Sci 2023; 24:ijms24065885. [PMID: 36982963 PMCID: PMC10059258 DOI: 10.3390/ijms24065885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Left ventricular (LV) dilatation, a prominent risk factor for heart failure (HF), precedes functional deterioration and is used to stratify patients at risk for arrhythmias and cardiac mortality. Aberrant DNA methylation contributes to maladaptive cardiac remodeling and HF progression following pressure overload and ischemic cardiac insults. However, no study has examined cardiac DNA methylation upon exposure to volume overload (VO) despite being relatively common among HF patients. We carried out global methylome analysis of LV harvested at a decompensated HF stage following exposure to VO induced by aortocaval shunt. VO resulted in pathological cardiac remodeling, characterized by massive LV dilatation and contractile dysfunction at 16 weeks after shunt. Although methylated DNA was not markedly altered globally, 25 differentially methylated promoter regions (DMRs) were identified in shunt vs. sham hearts (20 hypermethylated and 5 hypomethylated regions). The validated hypermethylated loci in Junctophilin-2 (Jph2), Signal peptidase complex subunit 3 (Spcs3), Vesicle-associated membrane protein-associated protein B (Vapb), and Inositol polyphosphate multikinase (Ipmk) were associated with the respective downregulated expression and were consistently observed in dilated LV early after shunt at 1 week after shunt, before functional deterioration starts to manifest. These hypermethylated loci were also detected peripherally in the blood of the shunt mice. Altogether, we have identified conserved DMRs that could be novel epigenetic biomarkers in dilated LV upon VO exposure.
Collapse
Affiliation(s)
- Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Manar Elkenani
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xiaoying Tan
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, 37075 Göttingen, Germany
| | - Jara Katharina Hain
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Baolong Cui
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| |
Collapse
|
39
|
Xia M, Yan R, Kim MH, Xu X. Tet Enzyme-Mediated Response in Environmental Stress and Stress-Related Psychiatric Diseases. Mol Neurobiol 2023; 60:1594-1608. [PMID: 36534335 DOI: 10.1007/s12035-022-03168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Mental disorders caused by stress have become a worldwide public health problem. These mental disorders are often the results of a combination of genes and environment, in which epigenetic modifications play a crucial role. At present, the genetic and epigenetic mechanisms of mental disorders such as posttraumatic stress disorder or depression caused by environmental stress are not entirely clear. Although many epigenetic modifications affect gene regulation, the most well-known modification in eukaryotic cells is the DNA methylation of CpG islands. Stress causes changes in DNA methylation in the brain to participate in the neuronal function or mood-modulating behaviors, and these epigenetic modifications can be passed on to offspring. Ten-eleven translocation (Tet) enzymes are the 5-methylcytosine (5mC) hydroxylases of DNA, which recognize 5mC on the DNA sequence and oxidize it to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Tet regulates gene expression at the transcriptional level through the demethylation of DNA. This review will elaborate on the molecular mechanism and the functions of Tet enzymes in environmental stress-related disorders and discuss future research directions.
Collapse
Affiliation(s)
- Meiling Xia
- Departments of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, 215006, China.,Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul City, 03080, Korea
| | - Rui Yan
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Myoung-Hwan Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul City, 03080, Korea.
| | - Xingshun Xu
- Departments of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, 215006, China. .,Institute of Neuroscience, Soochow University, Suzhou City, China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou City, China.
| |
Collapse
|
40
|
Prasasya RD, Caldwell BA, Liu Z, Wu S, Leu NA, Fowler JM, Cincotta SA, Laird DJ, Kohli RM, Bartolomei MS. TET1 Catalytic Activity is Required for Reprogramming of Imprinting Control Regions and Patterning of Sperm-Specific Hypomethylated Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529426. [PMID: 36865267 PMCID: PMC9980038 DOI: 10.1101/2023.02.21.529426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
DNA methylation erasure is required for mammalian primordial germ cell reprogramming. TET enzymes iteratively oxidize 5-methylcytosine to generate 5-hyroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxycytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during germline reprogramming remains unresolved due to the lack of genetic models that decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 ( Tet1-HxD ) and TET1 that stalls oxidation at 5hmC ( Tet1-V ). Tet1 -/- , Tet1 V/V , and Tet1 HxD/HxD sperm methylomes show that TET1 V and TET1 HxD rescue most Tet1 -/- hypermethylated regions, demonstrating the importance of TET1’s extra-catalytic functions. Imprinted regions, in contrast, require iterative oxidation. We further reveal a broader class of hypermethylated regions in sperm of Tet1 mutant mice that are excluded from de novo methylation during male germline development and depend on TET oxidation for reprogramming. Our study underscores the link between TET1-mediated demethylation during reprogramming and sperm methylome patterning.
Collapse
|
41
|
Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development. Nat Genet 2023; 55:130-143. [PMID: 36539615 DOI: 10.1038/s41588-022-01258-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
In mammals, DNA 5-hydroxymethylcytosine (5hmC) is involved in methylation reprogramming during early embryonic development. Yet, to what extent 5hmC participates in genome-wide methylation reprogramming remains largely unknown. Here, we characterize the 5hmC landscapes in mouse early embryos and germ cells with parental allele specificity. DNA hydroxymethylation was most strongly correlated with DNA demethylation as compared with de novo or maintenance methylation in zygotes, while 5hmC was targeted to particular de novo methylated sites in postimplantation epiblasts. Surprisingly, DNA replication was also required for 5hmC generation, especially in the female pronucleus. More strikingly, aberrant nuclear localization of Dnmt1/Uhrf1 in mouse zygotes due to maternal deficiency of Nlrp14 led to defects in DNA-replication-coupled passive demethylation and impaired 5hmC deposition, revealing the divergency between genome-wide 5-methylcytosine (5mC) maintenance and Tet-mediated oxidation. In summary, our work provides insights and a valuable resource for the study of epigenetic regulation in early embryo development.
Collapse
|
42
|
Wu F, Li X, Looso M, Liu H, Ding D, Günther S, Kuenne C, Liu S, Weissmann N, Boettger T, Atzberger A, Kolahian S, Renz H, Offermanns S, Gärtner U, Potente M, Zhou Y, Yuan X, Braun T. Spurious transcription causing innate immune responses is prevented by 5-hydroxymethylcytosine. Nat Genet 2023; 55:100-111. [PMID: 36539616 PMCID: PMC9839451 DOI: 10.1038/s41588-022-01252-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Generation of functional transcripts requires transcriptional initiation at regular start sites, avoiding production of aberrant and potentially hazardous aberrant RNAs. The mechanisms maintaining transcriptional fidelity and the impact of spurious transcripts on cellular physiology and organ function have not been fully elucidated. Here we show that TET3, which successively oxidizes 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and other derivatives, prevents aberrant intragenic entry of RNA polymerase II pSer5 into highly expressed genes of airway smooth muscle cells, assuring faithful transcriptional initiation at canonical start sites. Loss of TET3-dependent 5hmC production in SMCs results in accumulation of spurious transcripts, which stimulate the endosomal nucleic-acid-sensing TLR7/8 signaling pathway, thereby provoking massive inflammation and airway remodeling resembling human bronchial asthma. Furthermore, we found that 5hmC levels are substantially lower in human asthma airways compared with control samples. Suppression of spurious transcription might be important to prevent chronic inflammation in asthma.
Collapse
Affiliation(s)
- Fan Wu
- grid.418032.c0000 0004 0491 220XDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Xiang Li
- grid.418032.c0000 0004 0491 220XDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- grid.418032.c0000 0004 0491 220XDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hang Liu
- grid.418032.c0000 0004 0491 220XDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dong Ding
- grid.418032.c0000 0004 0491 220XDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- grid.418032.c0000 0004 0491 220XDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- grid.418032.c0000 0004 0491 220XDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shuya Liu
- grid.418032.c0000 0004 0491 220XDepartment of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany ,grid.13648.380000 0001 2180 3484Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Norbert Weissmann
- grid.440517.3Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany ,grid.8664.c0000 0001 2165 8627Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Thomas Boettger
- grid.418032.c0000 0004 0491 220XDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ann Atzberger
- grid.418032.c0000 0004 0491 220XDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saeed Kolahian
- grid.10253.350000 0004 1936 9756Philipps University of Marburg - Medical Faculty, Center for Tumor- and Immunobiology (ZTI), Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Marburg, Germany
| | - Harald Renz
- grid.10253.350000 0004 1936 9756Philipps University of Marburg - Medical Faculty, Center for Tumor- and Immunobiology (ZTI), Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Marburg, Germany
| | - Stefan Offermanns
- grid.418032.c0000 0004 0491 220XDepartment of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ulrich Gärtner
- Institute for Anatomy und Cell Biology, Giessen, Germany
| | - Michael Potente
- grid.418032.c0000 0004 0491 220XAngiogenesis and Metabolism Laboratory, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yonggang Zhou
- grid.418032.c0000 0004 0491 220XDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Xuejun Yuan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany. .,Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
43
|
Li Z, Fang F, Long Y, Zhao Q, Wang X, Ye Z, Meng T, Gu X, Xiang W, Xiong C, Li H. The balance between NANOG and SOX17 mediated by TET proteins regulates specification of human primordial germ cell fate. Cell Biosci 2022; 12:181. [PMID: 36333732 PMCID: PMC9636699 DOI: 10.1186/s13578-022-00917-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Human primordial germ cells (hPGCs) initiate from the early post-implantation embryo at week 2–3 and undergo epigenetic reprogramming during development. However, the regulatory mechanism of DNA methylation during hPGC specification is still largely unknown due to the difficulties in analyzing early human embryos. Using an in vitro model of hPGC induction, we found a novel function of TET proteins and NANOG in the hPGC specification which was different from that discovered in mice. Methods Using the CRISPR–Cas9 system, we generated a set of TET1, TET2 and TET3 knockout H1 human embryonic stem cell (hESC) lines bearing a BLIMP1-2A-mKate2 reporter. We determined the global mRNA transcription and DNA methylation profiles of pluripotent cells and induced hPGC-like cells (hPGCLCs) by RNA-seq and whole-genome bisulfite sequencing (WGBS) to reveal the involved signaling pathways after TET proteins knockout. ChIP-qPCR was performed to verify the binding of TET and NANOG proteins in the SOX17 promoter. Real-time quantitative PCR, western blot and immunofluorescence were performed to measure gene expression at mRNA and protein levels. The efficiency of hPGC induction was evaluated by FACS. Results In humans, TET1, TET2 and TET3 triple-knockout (TKO) human embryonic stem cells (hESCs) impaired the NODAL signaling pathway and impeded hPGC specification in vitro, while the hyperactivated NODAL signaling pathway led to gastrulation failure when Tet proteins were inactivated in mouse. Specifically, TET proteins stimulated SOX17 through the NODAL signaling pathway and directly regulates NANOG expression at the onset of hPGCLCs induction. Notably, NANOG could bind to SOX17 promoter to regulate its expression in hPGCLCs specification. Furthermore, in TKO hESCs, DNMT3B-mediated hypermethylation of the NODAL signaling-related genes and NANOG/SOX17 promoters repressed their activation and inhibited hPGCLC induction. Knockout of DNMT3B in TKO hESCs partially restored NODAL signaling and NANOG/SOX17 expression, and rescued hPGCLC induction. Conclusion Our results show that TETs-mediated oxidation of 5-methylcytosine modulates the NODAL signaling pathway and its downstream genes, NANOG and SOX17, by promoting demethylation in opposition to DNMT3B-mediated methylation, suggesting that the epigenetic balance of DNA methylation and demethylation in key genes plays a fundamental role in early hPGC specification. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00917-0.
Collapse
|
44
|
Georges RO, Sepulveda H, Angel JC, Johnson E, Palomino S, Nowak RB, Desai A, López-Moyado IF, Rao A. Acute deletion of TET enzymes results in aneuploidy in mouse embryonic stem cells through decreased expression of Khdc3. Nat Commun 2022; 13:6230. [PMID: 36266342 PMCID: PMC9584922 DOI: 10.1038/s41467-022-33742-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
TET (Ten-Eleven Translocation) dioxygenases effect DNA demethylation through successive oxidation of the methyl group of 5-methylcytosine (5mC) in DNA. In humans and in mouse models, TET loss-of-function has been linked to DNA damage, genome instability and oncogenesis. Here we show that acute deletion of all three Tet genes, after brief exposure of triple-floxed, Cre-ERT2-expressing mouse embryonic stem cells (mESC) to 4-hydroxytamoxifen, results in chromosome mis-segregation and aneuploidy; moreover, embryos lacking all three TET proteins showed striking variation in blastomere numbers and nuclear morphology at the 8-cell stage. Transcriptional profiling revealed that mRNA encoding a KH-domain protein, Khdc3 (Filia), was downregulated in triple TET-deficient mESC, concomitantly with increased methylation of CpG dinucleotides in the vicinity of the Khdc3 gene. Restoring KHDC3 levels in triple Tet-deficient mESC prevented aneuploidy. Thus, TET proteins regulate Khdc3 gene expression, and TET deficiency results in mitotic infidelity and genome instability in mESC at least partly through decreased expression of KHDC3.
Collapse
Affiliation(s)
- Romain O Georges
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Hugo Sepulveda
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - J Carlos Angel
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Eric Johnson
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Susan Palomino
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Roberta B Nowak
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Arshad Desai
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Isaac F López-Moyado
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego; 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
45
|
Role of TET dioxygenases in the regulation of both normal and pathological hematopoiesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:294. [PMID: 36203205 PMCID: PMC9540719 DOI: 10.1186/s13046-022-02496-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The family of ten-eleven translocation dioxygenases (TETs) consists of TET1, TET2, and TET3. Although all TETs are expressed in hematopoietic tissues, only TET2 is commonly found to be mutated in age-related clonal hematopoiesis and hematopoietic malignancies. TET2 mutation causes abnormal epigenetic landscape changes and results in multiple stages of lineage commitment/differentiation defects as well as genetic instability in hematopoietic stem/progenitor cells (HSPCs). TET2 mutations are founder mutations (first hits) in approximately 40–50% of cases of TET2-mutant (TET2MT) hematopoietic malignancies and are later hits in the remaining cases. In both situations, TET2MT collaborates with co-occurring mutations to promote malignant transformation. In TET2MT tumor cells, TET1 and TET3 partially compensate for TET2 activity and contribute to the pathogenesis of TET2MT hematopoietic malignancies. Here we summarize the most recent research on TETs in regulating of both normal and pathogenic hematopoiesis. We review the concomitant mutations and aberrant signals in TET2MT malignancies. We also discuss the molecular mechanisms by which concomitant mutations and aberrant signals determine lineage commitment in HSPCs and the identity of hematopoietic malignancies. Finally, we discuss potential strategies to treat TET2MT hematopoietic malignancies, including reverting the methylation state of TET2 target genes and targeting the concomitant mutations and aberrant signals.
Collapse
|
46
|
Chao L, Yang S, Li H, Long C, Xi Q, Zuo Y. Competitive binding of TET1 and DNMT3A/B cooperates the DNA methylation pattern in human embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194861. [PMID: 35998875 DOI: 10.1016/j.bbagrm.2022.194861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
DNMT3A/B and TET1 play indispensable roles in regulating DNA methylation that undergoes extensive reprogramming during mammalian embryogenesis. Yet the competitive and cooperative relationships between TET1 and DNMT3A/B remain largely unknown in the human embryonic stem cells. Here, we revealed that the main DNA-binding domain of TET1 contains more positive charges by using charge reduction of amino acid alphabet, followed by DNMT3A and DNMT3B. The genome-wide binding profiles showed that TET1 prefers binding to the proximal promoters and CpG islands compared with DNMT3A/B. Moreover, the binding regions of these three transcription factors can be divided into specific and co-binding regions. And a stronger inhibitory effect of DNMT3A on TET1 demethylation was observed in co-binding regions. Furthermore, we integrated TET1 knockout data to further discuss the competitive binding patterns of TET1 and DNMT3A/B. The lack of TET1 increased the occupation of DNMT3A/B at the specific binding regions of TET1 causing focal hypermethylation. The knockout of TET1 was also accompanied by a reduction of DNMT3A/B binding in the co-binding regions, further confirming the cooperative binding function between TET1 and DNMT3A/B. In conclusion, our studies found that the competitive binding of TET1 and DNMT3A/B cooperatively shapes the global DNA methylation pattern in human embryonic stem cells.
Collapse
Affiliation(s)
- Lemuge Chao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qilemuge Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China..
| |
Collapse
|
47
|
Wang S, Zeng Y, Pei P, He X, Liu F, Zhang T. Abnormal transcriptome-wide DNA demethylation induced by folate deficiency causes neural tube defects. Front Genet 2022; 13:987210. [PMID: 36199572 PMCID: PMC9529027 DOI: 10.3389/fgene.2022.987210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neural tube defect (NTDs) is one of the most common and serious fetal and neonatal birth defects. Neural tube closure (NTC) is an exquisitely coordinated process and this procedure is influenced by both genetic and environmental factor. Folic acid (FA) supplementation is an effective for prevention of a proportion of NTDs, however, the mechanism remains unclear. In this study, our data demonstrated genome-wide enrichment of 5-hydroxymethylcytosine (5hmC) modification on active transcriptional start sites (TSS) and decreased 5-methylcytosine (5mC) binding to TSS under folate deficiency in mESCs (mouse embryonic stem cells). Furthermore, folate deficiency promoted 5hmC enrichment enhancer histone 3 lysine 27 acetylation (H3K27ac) binding to Shh pathway genes in mESCs. Upregulation of Shh target genes was observed in mouse brain tissue under low levels of maternal serum folate, along with increased expression of 5-methylcytosine dioxygenase Tet1 levels. Taken together, we found that folate deficiency promoted DNA demethylation and enriched 5hmC through recruitment of H3K27ac to activate the Shh signaling pathway. These results suggest that the 5hmC modification increases concomitantly with a positive correlation to Shh gene expression in folate deficiency-induced mouse NTDs.
Collapse
Affiliation(s)
- Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Shan Wang, ; Ting Zhang,
| | - Yubing Zeng
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xuejia He
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Fan Liu
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Shan Wang, ; Ting Zhang,
| |
Collapse
|
48
|
Turpin M, Salbert G. 5-methylcytosine turnover: Mechanisms and therapeutic implications in cancer. Front Mol Biosci 2022; 9:976862. [PMID: 36060265 PMCID: PMC9428128 DOI: 10.3389/fmolb.2022.976862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation at the fifth position of cytosine (5mC) is one of the most studied epigenetic mechanisms essential for the control of gene expression and for many other biological processes including genomic imprinting, X chromosome inactivation and genome stability. Over the last years, accumulating evidence suggest that DNA methylation is a highly dynamic mechanism driven by a balance between methylation by DNMTs and TET-mediated demethylation processes. However, one of the main challenges is to understand the dynamics underlying steady state DNA methylation levels. In this review article, we give an overview of the latest advances highlighting DNA methylation as a dynamic cycling process with a continuous turnover of cytosine modifications. We describe the cooperative actions of DNMT and TET enzymes which combine with many additional parameters including chromatin environment and protein partners to govern 5mC turnover. We also discuss how mathematical models can be used to address variable methylation levels during development and explain cell-type epigenetic heterogeneity locally but also at the genome scale. Finally, we review the therapeutic implications of these discoveries with the use of both epigenetic clocks as predictors and the development of epidrugs that target the DNA methylation/demethylation machinery. Together, these discoveries unveil with unprecedented detail how dynamic is DNA methylation during development, underlying the establishment of heterogeneous DNA methylation landscapes which could be altered in aging, diseases and cancer.
Collapse
Affiliation(s)
- Marion Turpin
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| | - Gilles Salbert
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| |
Collapse
|
49
|
Wang L, You X, Ruan D, Shao R, Dai HQ, Shen W, Xu GL, Liu W, Zou W. TET enzymes regulate skeletal development through increasing chromatin accessibility of RUNX2 target genes. Nat Commun 2022; 13:4709. [PMID: 35953487 PMCID: PMC9372040 DOI: 10.1038/s41467-022-32138-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
The Ten-eleven translocation (TET) family of dioxygenases mediate cytosine demethylation by catalyzing the oxidation of 5-methylcytosine (5mC). TET-mediated DNA demethylation controls the proper differentiation of embryonic stem cells and TET members display functional redundancy during early gastrulation. However, it is unclear if TET proteins have functional significance in mammalian skeletal development. Here, we report that Tet genes deficiency in mesoderm mesenchymal stem cells results in severe defects of bone development. The existence of any single Tet gene allele can support early bone formation, suggesting a functional redundancy of TET proteins. Integrative analyses of RNA-seq, Whole Genome Bisulfite Sequencing (WGBS), 5hmC-Seal and Assay for Transposase-Accessible Chromatin (ATAC-seq) demonstrate that TET-mediated demethylation increases the chromatin accessibility of target genes by RUNX2 and facilities RUNX2-regulated transcription. In addition, TET proteins interact with RUNX2 through their catalytic domain to regulate cytosine methylation around RUNX2 binding region. The catalytic domain is indispensable for TET enzymes to regulate RUNX2 transcription activity on its target genes and to regulate bone development. These results demonstrate that TET enzymes function to regulate RUNX2 activity and maintain skeletal homeostasis. Here the authors investigate the role of the TET family of DNA demethylases in mammalian skeletal development. They find that loss of TETs leads to hypermethylation that results in decreased chromatin accessibility of RUNX2 target genes, repressing osteoblast differentiation and leading to skeletal defects in mouse such as short limbs.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiuling You
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Rui Shao
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hai-Qiang Dai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Guo-Liang Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Wanlu Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China. .,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China.
| | - Weiguo Zou
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
50
|
Maki M, JeongMin H, Nakagawa T, Kawai H, Sakamoto N, Sato Y, Noguchi M. Aberrant OCIAD2 demethylation in lung adenocarcinoma is associated with outcome. Pathol Int 2022; 72:496-505. [PMID: 35920378 DOI: 10.1111/pin.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022]
Abstract
Overexpression of OCIAD2 in lung adenocarcinoma has already been reported in several research articles, but the molecular mechanism involved remains unknown. Promoter CpG methylation is a representative form of epigenetic gene regulation, and a considerable number of tumor suppressor genes show hypermethylation in many cancers. In contrast, promoter CpG hypomethylation causes oncogene overexpression, resulting in carcinogenesis and malignant progression. In the present study, we investigated the CpG methylation and expression status of OCIAD2 using tumor tissues and adjacent normal tissues from seven cases of lung adenocarcinoma. We also examined the relationship between CpG methylation status and outcome in 58 patients with adenocarcinoma. Pyrosequencing showed that CpG sites in OCIAD2 promoter regions were more frequently demethylated in tumor tissues than in adjacent normal tissues, and reverse transcription-quantitative polymerase chain reaction revealed overexpression of OCIAD2 in lung adenocarcinoma. There was a correlation between OCIAD2 CpG demethylation and the level of mRNA expression, and statistical analysis showed that CpG hypomethylation of OCIAD2 was associated with poor outcomes. Our results suggest that overexpression of OCIAD2 might be caused mainly by CpG hypomethylation and that OCIAD2 methylation status might be a useful prognostic indicator in lung adenocarcinoma.
Collapse
Affiliation(s)
- Masahiro Maki
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hong JeongMin
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tomoki Nakagawa
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitomi Kawai
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Noriaki Sakamoto
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukio Sato
- Department of Thoracic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kanagawa, Japan
| |
Collapse
|