1
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Mikhajlov O, Adar RM, Tătulea-Codrean M, Macé AS, Manzi J, Tabarin F, Battistella A, di Federico F, Joanny JF, Tran van Nhieu G, Bassereau P. Cell adhesion and spreading on fluid membranes through microtubules-dependent mechanotransduction. Nat Commun 2025; 16:1201. [PMID: 39885125 PMCID: PMC11782702 DOI: 10.1038/s41467-025-56343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Integrin clusters facilitate mechanical force transmission (mechanotransduction) and regulate biochemical signaling during cell adhesion. However, most studies have focused on rigid substrates. On fluid substrates like supported lipid bilayers (SLBs), integrin ligands are mobile, and adhesive complexes are traditionally thought unable to anchor for cell spreading. Here, we demonstrate that cells spread on SLBs coated with Invasin, a high-affinity integrin ligand. Unlike SLBs functionalized with RGD peptides, integrin clusters on Invasin-SLBs grow in size and complexity comparable to those on glass. While actomyosin contraction dominates adhesion maturation on stiff substrates, we find that on fluid SLBs, integrin mechanotransduction and cell spreading rely on dynein pulling forces along microtubules perpendicular to the membranes and microtubules pushing on adhesive complexes, respectively. These forces, potentially present on non-deformable surfaces, are revealed in fluid substrate systems. Supported by a theoretical model, our findings demonstrate a mechanical role for microtubules in integrin clustering.
Collapse
Affiliation(s)
- Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Inserm U1280, 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
- Laboratory of Biophysics and Cell Biology of Signaling, Biochemistry department, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, Switzerland.
| | - Ram M Adar
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Physics, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Maria Tătulea-Codrean
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
| | - Anne-Sophie Macé
- Institut Curie, Université PSL, CNRS UMR144, Paris, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, Université PSL, CNRS, Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Fanny Tabarin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Aude Battistella
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Fahima di Federico
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Jean-François Joanny
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Guy Tran van Nhieu
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Inserm U1280, 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
| |
Collapse
|
3
|
Valencia DA, Koeberlein AN, Nakano H, Rudas A, Harui A, Spencer C, Nakano A, Quinlan ME. Human formin FHOD3-mediated actin elongation is required for sarcomere integrity in cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618125. [PMID: 39464085 PMCID: PMC11507729 DOI: 10.1101/2024.10.13.618125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Contractility and cell motility depend on accurately controlled assembly of the actin cytoskeleton. Formins are a large group of actin assembly proteins that nucleate new actin filaments and act as elongation factors. Some formins may cap filaments, instead of elongating them, and others are known to sever or bundle filaments. The Formin HOmology Domain-containing protein (FHOD)-family of formins is critical to the formation of the fundamental contractile unit in muscle, the sarcomere. Specifically, mammalian FHOD3L plays an essential role in cardiomyocytes. Despite our knowledge of FHOD3L's importance in cardiomyocytes, its biochemical and cellular activities remain poorly understood. It has been proposed that FHOD-family formins act by capping and bundling, as opposed to assembling new filaments. Here, we demonstrate that FHOD3L nucleates actin and rapidly but briefly elongates filaments after temporarily pausing elongation, in vitro. We designed function-separating mutants that enabled us to distinguish which biochemical roles are reqùired in the cell. We found that human FHOD3L's elongation activity, but not its nucleation, capping, or bundling activity, is necessary for proper sarcomere formation and contractile function in neonatal rat ventricular myocytes. The results of this work provide new insight into the mechanisms by which formins build specific structures and will contribute to knowledge regarding how cardiomyopathies arise from defects in sarcomere formation and maintenance.
Collapse
Affiliation(s)
- Dylan A. Valencia
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Angela N. Koeberlein
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
| | - Akos Rudas
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Airi Harui
- Divison of Pulmonary & Critical Care Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Cassandra Spencer
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| | - Margot E. Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
4
|
Sengupta K, Dillard P, Limozin L. Morphodynamics of T-lymphocytes: Scanning to spreading. Biophys J 2024; 123:2224-2233. [PMID: 38425041 PMCID: PMC11331044 DOI: 10.1016/j.bpj.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Binding of the T cell receptor complex to its ligand, the subsequent molecular rearrangement, and the concomitant cell-scale shape changes represent the very first steps of adaptive immune recognition. The first minutes of the interaction of T cells and antigen presenting cells have been extensively scrutinized; yet, gaps remain in our understanding of how the biophysical properties of the environment may impact the sequence of events. In particular, many pioneering experiments were done on immobilized ligands and gave major insights into the process of T cell activation, whereas later experiments have indicated that ligand mobility was of paramount importance, especially to enable the formation of T cell receptor clusters. Systematic experiments to compare and reconcile the two schools are still lacking. Furthermore, recent investigations using compliant substrates have elucidated other intriguing aspects of T cell mechanics. Here we review experiments on interaction of T cells with planar artificial antigen presenting cells to explore the impact of mechanics on adhesion and actin morphodynamics during the spreading process. We enumerate a sequence tracing first contact to final spread state that is consistent with current understanding. Finally, we interpret the presented experimental results in light of a mechanical model that captures all the different morphodynamic states.
Collapse
Affiliation(s)
- Kheya Sengupta
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France.
| | - Pierre Dillard
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France; Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
5
|
Kumari R, Ven K, Chastney M, Kokate SB, Peränen J, Aaron J, Kogan K, Almeida-Souza L, Kremneva E, Poincloux R, Chew TL, Gunning PW, Ivaska J, Lappalainen P. Focal adhesions contain three specialized actin nanoscale layers. Nat Commun 2024; 15:2547. [PMID: 38514695 PMCID: PMC10957975 DOI: 10.1038/s41467-024-46868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Katharina Ven
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Megan Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Shrikant B Kokate
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Leonardo Almeida-Souza
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Peter W Gunning
- School of Biomedical Sciences, UNSW Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Swiatlowska P, Tipping W, Marhuenda E, Severi P, Fomin V, Yang Z, Xiao Q, Graham D, Shanahan C, Iskratsch T. Hypertensive Pressure Mechanosensing Alone Triggers Lipid Droplet Accumulation and Transdifferentiation of Vascular Smooth Muscle Cells to Foam Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308686. [PMID: 38145971 PMCID: PMC10916670 DOI: 10.1002/advs.202308686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 12/27/2023]
Abstract
Arterial Vascular smooth muscle cells (VSMCs) play a central role in the onset and progression of atherosclerosis. Upon exposure to pathological stimuli, they can take on alternative phenotypes that, among others, have been described as macrophage like, or foam cells. VSMC foam cells make up >50% of all arterial foam cells and have been suggested to retain an even higher proportion of the cell stored lipid droplets, further leading to apoptosis, secondary necrosis, and an inflammatory response. However, the mechanism of VSMC foam cell formation is still unclear. Here, it is identified that mechanical stimulation through hypertensive pressure alone is sufficient for the phenotypic switch. Hyperspectral stimulated Raman scattering imaging demonstrates rapid lipid droplet formation and changes to lipid metabolism and changes are confirmed in ABCA1, KLF4, LDLR, and CD68 expression, cell proliferation, and migration. Further, a mechanosignaling route is identified involving Piezo1, phospholipid, and arachidonic acid signaling, as well as epigenetic regulation, whereby CUT&Tag epigenomic analysis confirms changes in the cells (lipid) metabolism and atherosclerotic pathways. Overall, the results show for the first time that VSMC foam cell formation can be triggered by mechanical stimulation alone, suggesting modulation of mechanosignaling can be harnessed as potential therapeutic strategy.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - William Tipping
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1QAUK
| | - Emilie Marhuenda
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Paolo Severi
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Department of Translational MedicineLaboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerrara44121Italy
| | | | - Zhisheng Yang
- William Harvey Research InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Qingzhong Xiao
- William Harvey Research InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Duncan Graham
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1QAUK
| | - Cathy Shanahan
- School of Cardiovascular Medicine and SciencesKing's College LondonLondonSE5 9NUUK
| | - Thomas Iskratsch
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| |
Collapse
|
7
|
Das S, Banerjee A, Roy S, Mallick T, Maiti S, De P. Zwitterionic Polysulfobetaine Inhibits Cancer Cell Migration Owing to Actin Cytoskeleton Dynamics. ACS APPLIED BIO MATERIALS 2024; 7:144-153. [PMID: 38150303 DOI: 10.1021/acsabm.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell migration is an essential dynamic process for most living cells, mainly driven by the reorganization of actin cytoskeleton. To control actin dynamics, a molecular architecture that can serve as a nucleator has been designed by polymerizing sulfobetaine methacrylate. The synthesized zwitterionic polymer, poly(sulfobetaine methacrylate) (PZI), effectively nucleates the polymerization process of G-actin and substantially accelerates the rate of polymerization. Isothermal titration calorimetry (ITC) and bioinformatics analysis indicated binding between PZI and monomeric G-actin. Thus, in vitro actin dynamics was studied by dynamic light scattering (DLS), pyrene-actin polymerization assay, and total internal reflection fluorescence microscopy (TIRFM). Furthermore, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophore-containing monomeric unit was incorporated into the sulfobetaine zwitterionic architecture to visualize the effect of polymer in the cellular environment. The BODIPY-containing zwitterionic sulfobetaine polymer (PZI-F) successfully penetrated the cell and remained in the lysosome with minimal cytotoxicity. Confocal microscopy revealed the influence of this polymer on the cellular actin cytoskeleton dynamics. The PZI-F polymer was successfully able to inhibit the collective migration of the human cervical cancer cell line (HeLa cell) and breast cancer cell line (MDA-MB-231 cell), as confirmed by a wound healing assay. Therefore, polyzwitterionic sulfobetaine could be explored as an inhibitor of cancer cell migration.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Subhadip Roy
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tamanna Mallick
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
8
|
Jain K, Lim KYE, Sheetz MP, Kanchanawong P, Changede R. Intrinsic self-organization of integrin nanoclusters within focal adhesions is required for cellular mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567975. [PMID: 38045378 PMCID: PMC10690202 DOI: 10.1101/2023.11.20.567975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Upon interaction with the extracellular matrix, the integrin receptors form nanoclusters as a first biochemical response to ligand binding. Here, we uncover a critical biodesign principle where these nanoclusters are spatially self-organized, facilitating effective mechanotransduction. Mouse Embryonic Fibroblasts (MEFs) with integrin β3 nanoclusters organized themselves with an intercluster distance of ∼550 nm on uniformly coated fibronectin substrates, leading to larger focal adhesions. We determined that this spatial organization was driven by cell-intrinsic factors since there was no pre-existing pattern on the substrates. Altering this spatial organization using cyclo-RGD functionalized Titanium nanodiscs (of 100 nm, corroborating to the integrin nanocluster size) spaced at intervals of 300 nm (almost half), 600 nm (normal) or 1000 nm (almost double) resulted in abrogation in mechanotransduction, indicating that a new parameter i.e., an optimal intercluster distance is necessary for downstream function. Overexpression of α-actinin, which induces a kink in the integrin tail, disrupted the establishment of the optimal intercluster distance, while simultaneous co-overexpression of talin head with α-actinin rescued it, indicating a concentration-dependent competition, and that cytoplasmic activation of integrin by talin head is required for the optimal intercluster organization. Additionally, talin head-mediated recruitment of FHOD1 that facilitates local actin polymerization at nanoclusters, and actomyosin contractility were also crucial for establishing the optimal intercluster distance and a robust mechanotransduction response. These findings demonstrate that cell-intrinsic machinery plays a vital role in organizing integrin receptor nanoclusters within focal adhesions, encoding essential information for downstream mechanotransduction signalling.
Collapse
|
9
|
Chen Y, Yuan Y, Chen Y, Jiang X, Hua X, Chen Z, Wang J, Liu H, Zhou Q, Yu Y, Yang Z, Yu Y, Wang Y, Wang Q, Li Y, Chen J, Wang Y. Novel signaling axis of FHOD1-RNF213-Col1α/Col3α in the pathogenesis of hypertension-induced tunica media thickening. J Mol Cell Cardiol 2023; 182:57-72. [PMID: 37482037 DOI: 10.1016/j.yjmcc.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Hypertension-induced tunica media thickening (TMT) is the most important fundamental for the subsequent complications like stroke and cardiovascular diseases. Pathogenically, TMT originates from both vascular smooth muscle cells (VSMCs) hypertrophy due to synthesizing more amount of intracellular contractile proteins and excess secretion of extracellular matrix. However, what key molecules are involved in the pathogenesis of TMT is unknown. We hypothesize that formin homology 2 domain-containing protein 1 (FHOD1), an amply expressed mediator for assembly of thin actin filament in VSMCs, is a key regulator for the pathogenesis of TMT. In this study, we found that FHOD1 expression and its phosphorylation/activation were both upregulated in the arteries of three kinds of hypertensive rats. Ang-II induced actin filament formation and hypertrophy through activation and upregulation of FHOD1 in VSMCs. Active FHOD1-mediated actin filament assembly and secretions of collagen-1α/collagen-3α played crucial roles in Ang-II-induced VSMCs hypertrophy in vitro and hypertensive TMT in vivo. Proteomics demonstrated that activated FL-FHOD1 or its C-terminal diaphanous-autoregulatory domain significantly upregulated RNF213 (ring finger protein 213), a 591-kDa cytosolic E3 ubiquitin ligase with its loss-of-functional mutations being a susceptibility gene for Moyamoya disease which has prominent tunica media thinning in both intracranial and systemic arteries. Mechanistically, activated FHOD1 upregulated its downstream effector RNF213 independently of its classical pathway of decreasing G-actin/F-actin ratio, transcription, and translation, but dependently on its C-terminus-mediated stabilization of RNF213 protein. FHOD1-RNF213 signaling dramatically promoted collagen-1α/collagen-3α syntheses in VSMCs. Our results discovered a novel signaling axis of FHOD1-RNF213-collagen-1α/collagen-3α and its key role in the pathogenesis of hypertensive TMT.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yuchan Yuan
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yuhan Chen
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xueze Jiang
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xuesheng Hua
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhiyong Chen
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Julie Wang
- Department of Computer Science, Brown University, Providence, RI 02912, USA
| | - Hua Liu
- Department of Intensive Care Med, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Qing Zhou
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ying Yu
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhenwei Yang
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yi Yu
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yongqin Wang
- Division of Rheumatology and Immunology, University of Toledo Medical center, 3120 Glendale Avenue, Toledo, OH 43614, USA
| | - Qunshan Wang
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yigang Li
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jie Chen
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Yuepeng Wang
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
10
|
Antoku S, Schwartz TU, Gundersen GG. FHODs: Nuclear tethered formins for nuclear mechanotransduction. Front Cell Dev Biol 2023; 11:1160219. [PMID: 37215084 PMCID: PMC10192571 DOI: 10.3389/fcell.2023.1160219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
In this review, we discuss FHOD formins with a focus on recent studies that reveal a new role for them as critical links for nuclear mechanotransduction. The FHOD family in vertebrates comprises two structurally related proteins, FHOD1 and FHOD3. Their similar biochemical properties suggest overlapping and redundant functions. FHOD1 is widely expressed, FHOD3 less so, with highest expression in skeletal (FHOD1) and cardiac (FHOD3) muscle where specific splice isoforms are expressed. Unlike other formins, FHODs have strong F-actin bundling activity and relatively weak actin polymerization activity. These activities are regulated by phosphorylation by ROCK and Src kinases; bundling is additionally regulated by ERK1/2 kinases. FHODs are unique among formins in their association with the nuclear envelope through direct, high affinity binding to the outer nuclear membrane proteins nesprin-1G and nesprin-2G. Recent crystallographic structures reveal an interaction between a conserved motif in one of the spectrin repeats (SRs) of nesprin-1G/2G and a site adjacent to the regulatory domain in the amino terminus of FHODs. Nesprins are components of the LINC (linker of nucleoskeleton and cytoskeleton) complex that spans both nuclear membranes and mediates bidirectional transmission of mechanical forces between the nucleus and the cytoskeleton. FHODs interact near the actin-binding calponin homology (CH) domains of nesprin-1G/2G enabling a branched connection to actin filaments that presumably strengthens the interaction. At the cellular level, the tethering of FHODs to the outer nuclear membrane mechanically couples perinuclear actin arrays to the nucleus to move and position it in fibroblasts, cardiomyocytes, and potentially other cells. FHODs also function in adhesion maturation during cell migration and in the generation of sarcomeres, activities distant from the nucleus but that are still influenced by it. Human genetic studies have identified multiple FHOD3 variants linked to dilated and hypertrophic cardiomyopathies, with many mutations mapping to "hot spots" in FHOD3 domains. We discuss how FHOD1/3's role in reinforcing the LINC complex and connecting to perinuclear actin contributes to functions of mechanically active tissues such as striated muscle.
Collapse
Affiliation(s)
- Susumu Antoku
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Thomas U. Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
11
|
Mavrakis M, Juanes MA. The compass to follow: Focal adhesion turnover. Curr Opin Cell Biol 2023; 80:102152. [PMID: 36796142 DOI: 10.1016/j.ceb.2023.102152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
How cells move is a fundamental biological question. The directionality of adherent migrating cells depends on the assembly and disassembly (turnover) of focal adhesions (FAs). FAs are micron-sized actin-based structures that link cells to the extracellular matrix. Traditionally, microtubules have been considered key to triggering FA turnover. Through the years, advancements in biochemistry, biophysics, and bioimaging tools have been invaluable for many research groups to unravel a variety of mechanisms and molecular players that contribute to FA turnover, beyond microtubules. Here, we discuss recent discoveries of key molecular players that affect the dynamics and organization of the actin cytoskeleton to enable timely FA turnover and consequently proper directed cell migration.
Collapse
Affiliation(s)
- Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - M Angeles Juanes
- School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain.
| |
Collapse
|
12
|
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol 2023; 24:142-161. [PMID: 36168065 PMCID: PMC9892292 DOI: 10.1038/s41580-022-00531-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
The ability of animal cells to sense, adhere to and remodel their local extracellular matrix (ECM) is central to control of cell shape, mechanical responsiveness, motility and signalling, and hence to development, tissue formation, wound healing and the immune response. Cell-ECM interactions occur at various specialized, multi-protein adhesion complexes that serve to physically link the ECM to the cytoskeleton and the intracellular signalling apparatus. This occurs predominantly via clustered transmembrane receptors of the integrin family. Here we review how the interplay of mechanical forces, biochemical signalling and molecular self-organization determines the composition, organization, mechanosensitivity and dynamics of these adhesions. Progress in the identification of core multi-protein modules within the adhesions and characterization of rearrangements of their components in response to force, together with advanced imaging approaches, has improved understanding of adhesion maturation and turnover and the relationships between adhesion structures and functions. Perturbations of adhesion contribute to a broad range of diseases and to age-related dysfunction, thus an improved understanding of their molecular nature may facilitate therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Hawkes W, Marhuenda E, Reynolds P, O'Neill C, Pandey P, Samuel Wilson DG, Freeley M, Huang D, Hu J, Gondarenko S, Hone J, Gadegaard N, Palma M, Iskratsch T. Regulation of cardiomyocyte adhesion and mechanosignalling through distinct nanoscale behaviour of integrin ligands mimicking healthy or fibrotic extracellular matrix. Philos Trans R Soc Lond B Biol Sci 2022; 377:20220021. [PMID: 36189804 PMCID: PMC9527911 DOI: 10.1098/rstb.2022.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. Changing collagen expression and cross-linking regulate the rigidity of the cardiac extracellular matrix (ECM). Additionally, basal lamina glycoproteins, especially laminin and fibronectin regulate cardiomyocyte adhesion formation, mechanics and mechanosignalling. Laminin is abundant in the healthy heart, but fibronectin is increasingly expressed in the fibrotic heart. ECM receptors are co-regulated with the changing ECM. Owing to differences in integrin dynamics, clustering and downstream adhesion formation this is expected to ultimately influence cardiomyocyte mechanosignalling; however, details remain elusive. Here, we sought to investigate how different cardiomyocyte integrin/ligand combinations affect adhesion formation, traction forces and mechanosignalling, using a combination of uniformly coated surfaces with defined stiffness, polydimethylsiloxane nanopillars, micropatterning and specifically designed bionanoarrays for precise ligand presentation. Thereby we found that the adhesion nanoscale organization, signalling and traction force generation of neonatal rat cardiomyocytes (which express both laminin and fibronectin binding integrins) are strongly dependent on the integrin/ligand combination. Together our data indicate that the presence of fibronectin in combination with the enhanced stiffness in fibrotic areas will strongly impact on the cardiomyocyte behaviour and influence disease progression. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- William Hawkes
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Department of Chemistry, Queen Mary University of London, London E1 4NS, UK
| | - Emilie Marhuenda
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Paul Reynolds
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Caoimhe O'Neill
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Pragati Pandey
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | | | - Mark Freeley
- Department of Chemistry, Queen Mary University of London, London E1 4NS, UK
| | - Da Huang
- Department of Chemistry, Queen Mary University of London, London E1 4NS, UK
| | - Junquiang Hu
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Sasha Gondarenko
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Matteo Palma
- Department of Chemistry, Queen Mary University of London, London E1 4NS, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
14
|
Valencia FR, Sandoval E, Du J, Iu E, Liu J, Plotnikov SV. Force-dependent activation of actin elongation factor mDia1 protects the cytoskeleton from mechanical damage and promotes stress fiber repair. Dev Cell 2021; 56:3288-3302.e5. [PMID: 34822787 DOI: 10.1016/j.devcel.2021.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/02/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023]
Abstract
Plasticity of cell mechanics underlies a wide range of cell and tissue behaviors allowing cells to migrate through narrow spaces, resist shear forces, and safeguard against mechanical damage. Such plasticity depends on spatiotemporal regulation of the actomyosin cytoskeleton, but mechanisms of adaptive change in cell mechanics remain elusive. Here, we report a mechanism of mechanically activated actin polymerization at focal adhesions (FAs), specifically requiring the actin elongation factor mDia1. By combining live-cell imaging with mathematical modeling, we show that actin polymerization at FAs exhibits pulsatile dynamics where spikes of mDia1 activity are triggered by contractile forces. The suppression of mDia1-mediated actin polymerization increases tension on stress fibers (SFs) leading to an increased frequency of spontaneous SF damage and decreased efficiency of zyxin-mediated SF repair. We conclude that tension-controlled actin polymerization acts as a safety valve dampening excessive tension on the actin cytoskeleton and safeguarding SFs against mechanical damage.
Collapse
Affiliation(s)
- Fernando R Valencia
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Eduardo Sandoval
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joy Du
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Ernest Iu
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jian Liu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sergey V Plotnikov
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
15
|
Swiatlowska P, Iskratsch T. Tools for studying and modulating (cardiac muscle) cell mechanics and mechanosensing across the scales. Biophys Rev 2021; 13:611-623. [PMID: 34765044 PMCID: PMC8553672 DOI: 10.1007/s12551-021-00837-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiomyocytes generate force for the contraction of the heart to pump blood into the lungs and body. At the same time, they are exquisitely tuned to the mechanical environment and react to e.g. changes in cell and extracellular matrix stiffness or altered stretching due to reduced ejection fraction in heart disease, by adapting their cytoskeleton, force generation and cell mechanics. Both mechanical sensing and cell mechanical adaptations are multiscale processes. Receptor interactions with the extracellular matrix at the nanoscale will lead to clustering of receptors and modification of the cytoskeleton. This in turn alters mechanosensing, force generation, cell and nuclear stiffness and viscoelasticity at the microscale. Further, this affects cell shape, orientation, maturation and tissue integration at the microscale to macroscale. A variety of tools have been developed and adapted to measure cardiomyocyte receptor-ligand interactions and forces or mechanics at the different ranges, resulting in a wealth of new information about cardiomyocyte mechanobiology. Here, we take stock at the different tools for exploring cardiomyocyte mechanosensing and cell mechanics at the different scales from the nanoscale to microscale and macroscale.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Gérard A, Cope AP, Kemper C, Alon R, Köchl R. LFA-1 in T cell priming, differentiation, and effector functions. Trends Immunol 2021; 42:706-722. [PMID: 34266767 PMCID: PMC10734378 DOI: 10.1016/j.it.2021.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The integrin LFA-1 is crucial for T cell entry into mammalian lymph nodes and tissues, and for promoting interactions with antigen-presenting cells (APCs). However, it is increasingly evident that LFA-1 has additional key roles beyond the mere support of adhesion between T cells, the endothelium, and/or APCs. These include roles in homotypic T cell-T cell (T-T) communication, the induction of intracellular complement activity underlying Th1 effector cell polarization, and the support of long-lasting T cell memory. Here, we briefly summarize current knowledge of LFA-1 biology, discuss novel cytoskeletal regulators of LFA-1 functions, and review new aspects of LFA-1 mechanobiology that are relevant to its function in immunological synapses and in specific pathologies arising from LFA-1 dysregulation.
Collapse
Affiliation(s)
- Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Claudia Kemper
- National Heart, Lung and Blood Institute (NHLBI), National Institute of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ronen Alon
- The Weizmann Institute of Science, Rehovot, Israel
| | - Robert Köchl
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
| |
Collapse
|
17
|
Li Y, Zhan Q, Bao M, Yi J, Li Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci 2021; 13:20. [PMID: 34183652 PMCID: PMC8239047 DOI: 10.1038/s41368-021-00125-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Nowadays, orthodontic treatment has become increasingly popular. However, the biological mechanisms of orthodontic tooth movement (OTM) have not been fully elucidated. We were aiming to summarize the evidences regarding the mechanisms of OTM. Firstly, we introduced the research models as a basis for further discussion of mechanisms. Secondly, we proposed a new hypothesis regarding the primary roles of periodontal ligament cells (PDLCs) and osteocytes involved in OTM mechanisms and summarized the biomechanical and biological responses of the periodontium in OTM through four steps, basically in OTM temporal sequences, as follows: (1) Extracellular mechanobiology of periodontium: biological, mechanical, and material changes of acellular components in periodontium under orthodontic forces were introduced. (2) Cell strain: the sensing, transduction, and regulation of mechanical stimuli in PDLCs and osteocytes. (3) Cell activation and differentiation: the activation and differentiation mechanisms of osteoblast and osteoclast, the force-induced sterile inflammation, and the communication networks consisting of sensors and effectors. (4) Tissue remodeling: the remodeling of bone and periodontal ligament (PDL) in the compression side and tension side responding to mechanical stimuli and root resorption. Lastly, we talked about the clinical implications of the updated OTM mechanisms, regarding optimal orthodontic force (OOF), acceleration of OTM, and prevention of root resorption.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Schäringer K, Maxeiner S, Schalla C, Rütten S, Zenke M, Sechi A. LSP1-myosin1e bimolecular complex regulates focal adhesion dynamics and cell migration. FASEB J 2021; 35:e21268. [PMID: 33470457 DOI: 10.1096/fj.202000740rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Several cytoskeleton-associated proteins and signaling pathways work in concert to regulate actin cytoskeleton remodeling, cell adhesion, and migration. Although the leukocyte-specific protein 1 (LSP1) has been shown to interact with the actin cytoskeleton, its function in the regulation of actin cytoskeleton dynamics is, as yet, not fully understood. We have recently demonstrated that the bimolecular complex between LSP1 and myosin1e controls actin cytoskeleton remodeling during phagocytosis. In this study, we show that LSP1 downregulation severely impairs cell migration, lamellipodia formation, and focal adhesion dynamics in macrophages. Inhibition of the interaction between LSP1 and myosin1e also impairs these processes resulting in poorly motile cells, which are characterized by few and small lamellipodia. Furthermore, cells in which LSP1-myosin1e interaction is inhibited are typically associated with inefficient focal adhesion turnover. Collectively, our findings show that the LSP1-myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling and focal adhesion dynamics required for cell migration.
Collapse
Affiliation(s)
- Katja Schäringer
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sebastian Maxeiner
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Carmen Schalla
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Antonio Sechi
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
19
|
Inchanalkar S, Balasubramanian N. Adhesion-growth factor crosstalk regulates AURKB activation and ERK signalling in re-adherent fibroblasts. J Biosci 2021. [DOI: 10.1007/s12038-021-00164-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Kanapeckaitė A, Burokienė N. Insights into therapeutic targets and biomarkers using integrated multi-'omics' approaches for dilated and ischemic cardiomyopathies. Integr Biol (Camb) 2021; 13:121-137. [PMID: 33969404 DOI: 10.1093/intbio/zyab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
At present, heart failure (HF) treatment only targets the symptoms based on the left ventricle dysfunction severity; however, the lack of systemic 'omics' studies and available biological data to uncover the heterogeneous underlying mechanisms signifies the need to shift the analytical paradigm towards network-centric and data mining approaches. This study, for the first time, aimed to investigate how bulk and single cell RNA-sequencing as well as the proteomics analysis of the human heart tissue can be integrated to uncover HF-specific networks and potential therapeutic targets or biomarkers. We also aimed to address the issue of dealing with a limited number of samples and to show how appropriate statistical models, enrichment with other datasets as well as machine learning-guided analysis can aid in such cases. Furthermore, we elucidated specific gene expression profiles using transcriptomic and mined data from public databases. This was achieved using the two-step machine learning algorithm to predict the likelihood of the therapeutic target or biomarker tractability based on a novel scoring system, which has also been introduced in this study. The described methodology could be very useful for the target or biomarker selection and evaluation during the pre-clinical therapeutics development stage as well as disease progression monitoring. In addition, the present study sheds new light into the complex aetiology of HF, differentiating between subtle changes in dilated cardiomyopathies (DCs) and ischemic cardiomyopathies (ICs) on the single cell, proteome and whole transcriptome level, demonstrating that HF might be dependent on the involvement of not only the cardiomyocytes but also on other cell populations. Identified tissue remodelling and inflammatory processes can be beneficial when selecting targeted pharmacological management for DCs or ICs, respectively.
Collapse
Affiliation(s)
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| |
Collapse
|
21
|
Hałas-Wiśniewska M, Izdebska M, Zielińska W, Grzanka A. Downregulation of FHOD1 Inhibits Metastatic Potential in A549 Cells. Cancer Manag Res 2021; 13:91-106. [PMID: 33447082 PMCID: PMC7802784 DOI: 10.2147/cmar.s286239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Purpose Metastasis remains a serious clinical problem in which epithelial-to-mesenchymal transition is strictly involved. The change of cell phenotype is closely related to the dynamics of the cytoskeleton. Regarding the great interest in microfilaments, the manipulation of ABPs (actin-binding proteins) appears to be an interesting treatment strategy. Material The research material was the highly aggressive A549 cells with FHOD1 (F FH1/FH2 domain-containing protein 1) downregulation. The metastatic potential of the cells and the sensitivity to treatment with alkaloids (piperlongumine, sanguinarine) were analyzed. Results In comparison to A549 cells with naïve expression of FHOD1, those after manipulation were characterized by a reduced migratory potential. The obtained results were associated with microfilaments and vimentin reorganization induced by the manipulation of FHOD1 together with alkaloids treatment. The result was also an increase in the percentage of late apoptotic cells. Conclusion Downregulation of FHOD1 induced reorganization of microfilament network followed by the reduction in the metastatic potential of the A549 cells, as well as their sensitization to selected compounds. The presented results and the analysis of clinical data indicate the possibility of transferring research from the basic level to in vivo models in the context of manipulation of ABPs as a new therapeutic target in oncology.
Collapse
Affiliation(s)
- Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Bydgoszcz 85-092, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Bydgoszcz 85-092, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Bydgoszcz 85-092, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Bydgoszcz 85-092, Poland
| |
Collapse
|
22
|
Abstract
Cell-surface adhesion receptors mediate interactions with the extracellular matrix (ECM) to control many fundamental aspects of cell behavior, including cell migration, survival, and proliferation. Integrin adhesion receptors recruit structural and signaling proteins to form multimolecular adhesion complexes that link the plasma membrane to the actomyosin cytoskeleton. The assembly and turnover of adhesion complexes are tightly regulated, governed in part by the networks of physical protein interactions and functional signaling associations between components of the adhesome. Proteomic profiling of adhesion complexes has begun to reveal their molecular complexity and diversity. To interrogate the composition of cell-ECM adhesions, we detail herein an approach for the network analysis of adhesion complex proteomes. Integration of these proteomic data with adhesome databases in the context of predicted protein interactions enables the mapping of experimentally defined adhesion complex networks. Computational analysis of resultant network models can identify subnetworks of putative functionally linked adhesion protein communities. This approach provides a framework to predict functional adhesion protein relationships and generate new mechanistic hypotheses for further experimental testing.
Collapse
Affiliation(s)
- Frederic Li Mow Chee
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
23
|
Vink J, Yu V, Dahal S, Lohner J, Stern-Asher C, Mourad M, Davis G, Xue Z, Wang S, Myers K, Kitajewski J, Chen X, Wapner RJ, Ananth CV, Sheetz M, Gallos G. Extracellular Matrix Rigidity Modulates Human Cervical Smooth Muscle Contractility-New Insights into Premature Cervical Failure and Spontaneous Preterm Birth. Reprod Sci 2021; 28:237-251. [PMID: 32700284 PMCID: PMC9344974 DOI: 10.1007/s43032-020-00268-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Spontaneous preterm birth (sPTB), a major cause of infant morbidity and mortality, must involve premature cervical softening/dilation for a preterm vaginal delivery to occur. Yet, the mechanism behind premature cervical softening/dilation in humans remains unclear. We previously reported the non-pregnant human cervix contains considerably more cervical smooth muscle cells (CSMC) than historically appreciated and the CSMC organization resembles a sphincter. We hypothesize that premature cervical dilation leading to sPTB may be due to (1) an inherent CSMC contractility defect resulting in sphincter failure and/or (2) altered cervical extracellular matrix (ECM) rigidity which influences CSMC contractility. To test these hypotheses, we utilized immunohistochemistry to confirm this CSMC phenotype persists in the human pregnant cervix and then assessed in vitro arrays of contractility (F:G actin ratios, PDMS pillar arrays) using primary CSMC from pregnant women with and without premature cervical failure (PCF). We show that CSMC from pregnant women with PCF do not have an inherent CSMC contractility defect but that CSMC exhibit decreased contractility when exposed to soft ECM. Given this finding, we used UPLC-ESI-MS/MS to evaluate collagen cross-link profiles in the cervical tissue from non-pregnant women with and without PCF and found that women with PCF have decreased collagen cross-link maturity ratios, which correlates to softer cervical tissue. These findings suggest having soft cervical ECM may lead to decreased CSMC contractile tone and a predisposition to sphincter laxity that contributes to sPTB. Further studies are needed to explore the interaction between cervical ECM properties and CSMC cellular behavior when investigating the pathophysiology of sPTB.
Collapse
Affiliation(s)
- Joy Vink
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, 622 West 168th St. PH16-66, New York, NY, 10032, USA.
- Preterm Birth Prevention Center, Columbia University Irving Medical Center, New York, NY, USA.
| | - Victoria Yu
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, 622 West 168th St. PH16-66, New York, NY, 10032, USA
| | - Sudip Dahal
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, 622 West 168th St. PH16-66, New York, NY, 10032, USA
| | - James Lohner
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Conrad Stern-Asher
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, 622 West 168th St. PH16-66, New York, NY, 10032, USA
| | - Mirella Mourad
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, 622 West 168th St. PH16-66, New York, NY, 10032, USA
- Preterm Birth Prevention Center, Columbia University Irving Medical Center, New York, NY, USA
| | - George Davis
- Department of Obstetrics and Gynecology, Rowan University School of Osteopathic Medicine, Camden, NJ, USA
| | - Zenghui Xue
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shuang Wang
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaowei Chen
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ronald J Wapner
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, 622 West 168th St. PH16-66, New York, NY, 10032, USA
| | - Cande V Ananth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Epidemiology and Biostatistics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Michael Sheetz
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - George Gallos
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
24
|
Yao L, Shippy T, Li Y. Genetic analysis of the molecular regulation of electric fields-guided glia migration. Sci Rep 2020; 10:16821. [PMID: 33033380 PMCID: PMC7546725 DOI: 10.1038/s41598-020-74085-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
In a developing nervous system, endogenous electric field (EF) influence embryonic growth. We reported the EF-directed migration of both rat Schwann cells (SCs) and oligodendrocyte precursor cells (OPCs) and explored the molecular mechanism using RNA-sequencing assay. However, previous studies revealed the differentially expressed genes (DEGs) associated with EF-guided migration of SCs or OPCs alone. In this study, we performed joint differential expression analysis on the RNA-sequencing data from both cell types. We report a number of significantly enriched gene ontology (GO) terms that are related to the cytoskeleton, cell adhesion, and cell migration. Of the DEGs associated with these terms, nine up-regulated DEGs and 32 down-regulated DEGs showed the same direction of effect in both SCs and OPCs stimulated with EFs, while the remaining DEGs responded differently. Thus, our study reveals the similarities and differences in gene expression and cell migration regulation of different glial cell types in response to EF stimulation.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA.
| | - Teresa Shippy
- Bioinformatics Specialist, KSU Bioinformatics Center, Kansas State University, Manhattan, KS, 66506, USA
| | - Yongchao Li
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA
| |
Collapse
|
25
|
Ghate K, Mutalik SP, Sthanam LK, Sen S, Ghose A. Fmn2 Regulates Growth Cone Motility by Mediating a Molecular Clutch to Generate Traction Forces. Neuroscience 2020; 448:160-171. [PMID: 33002558 DOI: 10.1016/j.neuroscience.2020.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023]
Abstract
Growth cone-mediated axonal outgrowth and accurate synaptic targeting are central to brain morphogenesis. Translocation of the growth cone necessitates mechanochemical regulation of cell-extracellular matrix interactions and the generation of propulsive traction forces onto the growth environment. However, the molecular mechanisms subserving force generation by growth cones remain poorly characterized. The formin family member, Fmn2, has been identified earlier as a regulator of growth cone motility. Here, we explore the mechanisms underlying Fmn2 function in the growth cone. Evaluation of multiple components of the adhesion complexes suggests that Fmn2 regulates point contact stability. Analysis of F-actin retrograde flow reveals that Fmn2 functions as a clutch molecule and mediates the coupling of the actin cytoskeleton to the growth substrate, via point contact adhesion complexes. Using traction force microscopy, we show that the Fmn2-mediated clutch function is necessary for the generation of traction stresses by neurons. Our findings suggest that Fmn2, a protein associated with neurodevelopmental and neurodegenerative disorders, is a key regulator of a molecular clutch activity and consequently motility of neuronal growth cones.
Collapse
Affiliation(s)
- Ketakee Ghate
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sampada P Mutalik
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Lakshmi Kavitha Sthanam
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
26
|
Active FHOD1 promotes the formation of functional actin stress fibers. Biochem J 2020; 476:2953-2963. [PMID: 31657439 DOI: 10.1042/bcj20190535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
The formin FHOD1 acts as a nucleating, capping and bundling protein of actin filaments. In cells, release from the C-terminal diaphanous autoregulatory domain (DAD) of FHOD1 stimulates the protein into the active form. However, the cellular physiological relevance of active form FHOD1 and the phenotypic regulation by FHOD1 depletion are not completely understood. Here, we show that in contrast with the cytosolic diffused expression of auto-inhibited FHOD1, active FHOD1 by C-terminal truncation was recruited into all three types of actin stress fibers in human osteosarcoma cells. Notably, the recruited active FHOD1 was more incorporated with myosin II than α-actinin, and associated with both naïve and mature focal adhesions. Active FHOD1 displayed faster turnover than actin molecules on ventral stress fibers. Moreover, we witnessed the emergence of active FHOD1 from the cell periphery, which subsequently moved centripetally together with transverse arcs. Furthermore, FHOD1 knockdown resulted in defective maturation of actomyosin bundles and subsequently longer non-contractile dorsal stress fibers, whereas the turnover of both actin and myosin II were maintained normally. Importantly, the loss of FHOD1 led to slower actin centripetal flow, resulting in abnormal cell spreading and migration defects. Taken together, these results reveal a critical role of FHOD1 in temporal- and spatial- control of the morphology and dynamics of functional actin stress fibers during variable cell behavior.
Collapse
|
27
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
28
|
Antoku S, Wu W, Joseph LC, Morrow JP, Worman HJ, Gundersen GG. ERK1/2 Phosphorylation of FHOD Connects Signaling and Nuclear Positioning Alternations in Cardiac Laminopathy. Dev Cell 2020; 51:602-616.e12. [PMID: 31794718 DOI: 10.1016/j.devcel.2019.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/06/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the lamin A/C gene (LMNA) cause cardiomyopathy and also disrupt nuclear positioning in fibroblasts. LMNA mutations causing cardiomyopathy elevate ERK1/2 activity in the heart, and inhibition of the ERK1/2 kinase activity ameliorates pathology, but the downstream effectors remain largely unknown. We now show that cardiomyocytes from mice with an Lmna mutation and elevated cardiac ERK1/2 activity have altered nuclear positioning. In fibroblasts, ERK1/2 activation negatively regulated nuclear movement by phosphorylating S498 of FHOD1. Expression of an unphosphorylatable FHOD1 variant rescued the nuclear movement defect in fibroblasts expressing a cardiomyopathy-causing lamin A mutant. In hearts of mice with LMNA mutation-induced cardiomyopathy, ERK1/2 mediated phosphorylation of FHOD3, an isoform highly expressed in cardiac tissue. Phosphorylation of FHOD1 and FHOD3 inhibited their actin bundling activity. These results show that phosphorylation of FHOD proteins by ERK1/2 is a critical switch for nuclear positioning and may play a role in the pathogenesis of cardiomyopathy caused by LMNA mutations.
Collapse
Affiliation(s)
- Susumu Antoku
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Wu
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Leroy C Joseph
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - John P Morrow
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J Worman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
29
|
Ward M, Iskratsch T. Mix and (mis-)match - The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118436. [PMID: 30742931 PMCID: PMC7042712 DOI: 10.1016/j.bbamcr.2019.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
The composition and the stiffness of cardiac microenvironment change during development and/or in heart disease. Cardiomyocytes (CMs) and their progenitors sense these changes, which decides over the cell fate and can trigger CM (progenitor) proliferation, differentiation, de-differentiation or death. The field of mechanobiology has seen a constant increase in output that also includes a wealth of new studies specific to cardiac or cardiomyocyte mechanosensing. As a result, mechanosensing and transduction in the heart is increasingly being recognised as a main driver of regulating the heart formation and function. Recent work has for instance focused on measuring the molecular, physical and mechanical changes of the cellular environment - as well as intracellular contributors to the passive stiffness of the heart. On the other hand, a variety of new studies shed light into the molecular machinery that allow the cardiomyocytes to sense these properties. Here we want to discuss the recent work on this topic, but also specifically focus on how the different components are regulated at various stages during development, in health or disease in order to highlight changes that might contribute to disease progression and heart failure.
Collapse
Key Words
- cm, cardiomyocytes
- hcm, hypertrophic cardiomyopathy
- dcm, dilated cardiomyopathy
- icm, idiopathic cardiomyopathy
- myh, myosin heavy chain
- tnnt, troponin t
- tnni, troponin i
- afm, atomic force microscope
- mre, magnetic resonance elastography
- swe, ultrasound cardiac shear-wave elastography
- lv, left ventricle
- lox, lysyl oxidase
- loxl, lysyl oxidase like protein
- lh, lysyl hydroxylase
- lys, lysin
- lccs, lysald-derived collagen crosslinks
- hlccs, hylald-derived collagen crosslinks
- pka, protein kinase a
- pkc, protein kinase c
- vash1, vasohibin-1
- svbp, small vasohibin binding protein
- tcp, tubulin carboxypeptidase
- ttl, tubulin tyrosine ligase
- mrtf, myocardin-related transcription factor
- gap, gtpase activating protein
- gef, guanine nucleotide exchange factor
Collapse
Affiliation(s)
- Matthew Ward
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom.
| |
Collapse
|
30
|
Puleo JI, Parker SS, Roman MR, Watson AW, Eliato KR, Peng L, Saboda K, Roe DJ, Ros R, Gertler FB, Mouneimne G. Mechanosensing during directed cell migration requires dynamic actin polymerization at focal adhesions. J Cell Biol 2019; 218:4215-4235. [PMID: 31594807 PMCID: PMC6891092 DOI: 10.1083/jcb.201902101] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/16/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022] Open
Abstract
The mechanical properties of a cell's microenvironment influence many aspects of cellular behavior, including cell migration. Durotaxis, the migration toward increasing matrix stiffness, has been implicated in processes ranging from development to cancer. During durotaxis, mechanical stimulation by matrix rigidity leads to directed migration. Studies suggest that cells sense mechanical stimuli, or mechanosense, through the acto-myosin cytoskeleton at focal adhesions (FAs); however, FA actin cytoskeletal remodeling and its role in mechanosensing are not fully understood. Here, we show that the Ena/VASP family member, Ena/VASP-like (EVL), polymerizes actin at FAs, which promotes cell-matrix adhesion and mechanosensing. Importantly, we show that EVL regulates mechanically directed motility, and that suppression of EVL expression impedes 3D durotactic invasion. We propose a model in which EVL-mediated actin polymerization at FAs promotes mechanosensing and durotaxis by maturing, and thus reinforcing, FAs. These findings establish dynamic FA actin polymerization as a central aspect of mechanosensing and identify EVL as a crucial regulator of this process.
Collapse
Affiliation(s)
- Julieann I Puleo
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Sara S Parker
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Mackenzie R Roman
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Adam W Watson
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Kiarash Rahmani Eliato
- Department of Physics, Center for Biological Physics, and Biodesign Institute, Arizona State University, Tempe, AZ
| | - Leilei Peng
- College of Optical Sciences, University of Arizona, Tucson, AZ
| | - Kathylynn Saboda
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Denise J Roe
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Robert Ros
- Department of Physics, Center for Biological Physics, and Biodesign Institute, Arizona State University, Tempe, AZ
| | - Frank B Gertler
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Ghassan Mouneimne
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
31
|
Rafiq NBM, Grenci G, Lim CK, Kozlov MM, Jones GE, Viasnoff V, Bershadsky AD. Forces and constraints controlling podosome assembly and disassembly. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180228. [PMID: 31431172 DOI: 10.1098/rstb.2018.0228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Podosomes are a singular category of integrin-mediated adhesions important in the processes of cell migration, matrix degradation and cancer cell invasion. Despite a wealth of biochemical studies, the effects of mechanical forces on podosome integrity and dynamics are poorly understood. Here, we show that podosomes are highly sensitive to two groups of physical factors. First, we describe the process of podosome disassembly induced by activation of myosin-IIA filament assembly. Next, we find that podosome integrity and dynamics depends upon membrane tension and can be experimentally perturbed by osmotic swelling and deoxycholate treatment. We have also found that podosomes can be disrupted in a reversible manner by single or cyclic radial stretching of the substratum. We show that disruption of podosomes induced by osmotic swelling is independent of myosin-II filaments. The inhibition of the membrane sculpting protein, dynamin-II, but not clathrin, resulted in activation of myosin-IIA filament formation and disruption of podosomes. The effect of dynamin-II inhibition on podosomes was, however, independent of myosin-II filaments. Moreover, formation of organized arrays of podosomes in response to microtopographic cues (the ridges with triangular profile) was not accompanied by reorganization of myosin-II filaments. Thus, mechanical elements such as myosin-II filaments and factors affecting membrane tension/sculpting independently modulate podosome formation and dynamics, underlying a versatile response of these adhesion structures to intracellular and extracellular cues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Nisha Bte Mohd Rafiq
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Biomedical Engineering Department, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Cheng Kai Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gareth E Jones
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,CNRS UMI 3639, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
32
|
Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil 2019; 40:197-209. [PMID: 31214894 PMCID: PMC6726830 DOI: 10.1007/s10974-019-09529-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022]
Abstract
The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell-matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.
Collapse
Affiliation(s)
- Brian Sit
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Daniel Gutmann
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK.
| |
Collapse
|
33
|
Kalappurakkal JM, Anilkumar AA, Patra C, van Zanten TS, Sheetz MP, Mayor S. Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading. Cell 2019; 177:1738-1756.e23. [PMID: 31104842 PMCID: PMC6879320 DOI: 10.1016/j.cell.2019.04.037] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 11/15/2018] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a major class of lipid-anchored plasma membrane proteins. GPI-APs form nanoclusters generated by cortical acto-myosin activity. While our understanding of the physical principles governing this process is emerging, the molecular machinery and functional relevance of GPI-AP nanoclustering are unknown. Here, we first show that a membrane receptor signaling pathway directs nanocluster formation. Arg-Gly-Asp motif-containing ligands bound to the β1-integrin receptor activate src and focal adhesion kinases, resulting in RhoA signaling. This cascade triggers actin-nucleation via specific formins, which, along with myosin activity, drive the nanoclustering of membrane proteins with actin-binding domains. Concurrently, talin-mediated activation of the mechano-transducer vinculin is required for the coupling of the acto-myosin machinery to inner-leaflet lipids, thereby generating GPI-AP nanoclusters. Second, we show that these nanoclusters are functional; disruption of their formation either in GPI-anchor remodeling mutants or in vinculin mutants impairs cell spreading and migration, hallmarks of integrin function.
Collapse
Affiliation(s)
- Joseph Mathew Kalappurakkal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Anupama Ambika Anilkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India; St. Johns Research Institute, Bangalore, India
| | - Chandrima Patra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Thomas S van Zanten
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India; Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore, India.
| |
Collapse
|
34
|
Sanematsu F, Kanai A, Ushijima T, Shiraishi A, Abe T, Kage Y, Sumimoto H, Takeya R. Fhod1, an actin-organizing formin family protein, is dispensable for cardiac development and function in mice. Cytoskeleton (Hoboken) 2019; 76:219-229. [PMID: 31008549 DOI: 10.1002/cm.21523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/01/2019] [Accepted: 04/16/2019] [Indexed: 01/03/2023]
Abstract
The formin family proteins have the ability to regulate actin filament assembly, thereby functioning in diverse cytoskeletal processes. Fhod3, a cardiac member of the family, plays a crucial role in development and functional maintenance of the heart. Although Fhod1, a protein closely-related to Fhod3, has been reported to be expressed in cardiomyocytes, the role of Fhod1 in the heart has still remained elusive. To know the physiological role of Fhod1 in the heart, we disrupted the Fhod1 gene in mice by replacement of exon 1 with a lacZ reporter gene. Histological lacZ staining unexpectedly revealed no detectable expression of Fhod1 in the heart, in contrast to intensive staining in the lung, a Fhod1-containing organ. Consistent with this, expression level of the Fhod1 protein in the heart was below the lower limit of detection of the present immunoblot analysis with three independent anti-Fhod1 antibodies. Homozygous Fhod1-null mice did not show any defects in gross and histological appearance of the heart or upregulate fetal cardiac genes that are induced under stress conditions. Furthermore, Fhod1 ablation did not elicit compensatory increase in expression of other formins. Thus, Fhod1 appears to be dispensable for normal development and function of the mouse heart, even if a marginal amount of Fhod1 is expressed in the heart.
Collapse
Affiliation(s)
- Fumiyuki Sanematsu
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ami Kanai
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomoki Ushijima
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Aki Shiraishi
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaya Abe
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yohko Kage
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
35
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
36
|
Tvorogova A, Saidova A, Smirnova T, Vorobjev I. Dynamic microtubules drive fibroblast spreading. Biol Open 2018; 7:7/12/bio038968. [PMID: 30545950 PMCID: PMC6310885 DOI: 10.1242/bio.038968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cells with a mesenchymal type of motility come into contact with an adhesive substrate they adhere and start spreading by the formation of lamellipodia. Using a label-free approach and virtual synchronization approach we analyzed spreading in fibroblasts and cancer cells. In all cell lines spreading is a non-linear process undergoing isotropic or anisotropic modes with first fast (5–20 min) and then slow (30–120 min) phases. In the first 10 min cell area increases 2–4 times, while the absolute rate of initial spreading decreases 2–8 times. Fast spreading depends on actin polymerization and dynamic microtubules. Inhibition of microtubule growth was sufficient for a slowdown of initial spreading. Inhibition of myosin II in the presence of stable microtubules restored fast spreading. Inhibition of actin polymerization or complete depolymerization of microtubules slowed down fast spreading. However, in these cases inhibition of myosin II only partially restored spreading kinetics. We conclude that rapid growth of microtubules towards cell margins at the first stage of cell spreading temporarily inhibits phosphorylation of myosin II and is essential for the fast isotropic spreading. Comparison of the fibroblasts with cancer cells shows that fast spreading in different cell types shares similar kinetics and mechanisms, and strongly depends on dynamic microtubules. Summary: Cell spreading is a non-linear process. The fast spreading phase depends on dynamic microtubules (MTs). Rapid growth of MTs towards the cell membrane promotes the temporal relaxation of acto-myosin contractility.
Collapse
Affiliation(s)
- Anna Tvorogova
- Department of Electron Microscopy, A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov State University, 1-40 Leninskie Gory, Moscow 119991, Russia
| | - Aleena Saidova
- Biological Faculty, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Tatiana Smirnova
- Biological Faculty, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Ivan Vorobjev
- Department of Electron Microscopy, A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov State University, 1-40 Leninskie Gory, Moscow 119991, Russia .,Biological Faculty, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia.,Department of Biology, School of Science and Technology, Nazarbayev University, Kabanbay Batyr ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
37
|
Abstract
It is increasingly clear that mechanotransduction pathways play important roles in regulating fundamental cellular functions. Of the basic mechanical functions, the determination of cellular morphology is critical. Cells typically use many mechanosensitive steps and different cell states to achieve a polarized shape through repeated testing of the microenvironment. Indeed, morphology is determined by the microenvironment through periodic activation of motility, mechanotesting, and mechanoresponse functions by hormones, internal clocks, and receptor tyrosine kinases. Patterned substrates and controlled environments with defined rigidities limit the range of cell behavior and influence cell state decisions and are thus very useful for studying these steps. The recently defined rigidity sensing process provides a good example of how cells repeatedly test their microenvironment and is also linked to cancer. In general, aberrant extracellular matrix mechanosensing is associated with numerous conditions, including cardiovascular disease, aging, and fibrosis, that correlate with changes in tissue morphology and matrix composition. Hence, detailed descriptions of the steps involved in sensing and responding to the microenvironment are needed to better understand both the mechanisms of tissue homeostasis and the pathomechanisms of human disease.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel 31096;
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; .,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
38
|
Heuser VD, Mansuri N, Mogg J, Kurki S, Repo H, Kronqvist P, Carpén O, Gardberg M. Formin Proteins FHOD1 and INF2 in Triple-Negative Breast Cancer: Association With Basal Markers and Functional Activities. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418792247. [PMID: 30158824 PMCID: PMC6109849 DOI: 10.1177/1178223418792247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Basal-like breast cancer is an aggressive form of breast cancer with limited treatment options. The subgroup can be identified immunohistochemically, by lack of hormone receptor expression combined with expression of basal markers such as CK5/6 and/or epidermal growth factor receptor (EGFR). In vitro, several regulators of the actin cytoskeleton are essential for efficient invasion of basal-like breast cancer cell lines. Whether these proteins are expressed in vivo determines the applicability of these findings in clinical settings. The actin-regulating formin protein FHOD1 participates in invasion of the triple-negative breast cancer cell line MDA-MB-231. Here, we measure the expression of FHOD1 protein in clinical triple-negative breast cancers by using immunohistochemistry and further characterize the expression of another formin protein, INF2. We report that basal-like breast cancers frequently overexpress formin proteins FHOD1 and INF2. In cell studies using basal-like breast cancer cell lines, we show that knockdown of FHOD1 or INF2 interferes with very similar processes: maintenance of cell shape, migration, invasion, and proliferation. Inhibition of EGFR, PI3K, or mitogen-activated protein kinase activity does not alter the expression of FHOD1 and INF2 in these cell lines. We conclude that the experimental studies on these formins have implications in the clinical behavior of basal-like breast cancer.
Collapse
Affiliation(s)
- Vanina D Heuser
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Naziha Mansuri
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jasper Mogg
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Samu Kurki
- Auria Biobank, Turku University Hospital and University of Turku, Turku, Finland
| | - Heli Repo
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Pauliina Kronqvist
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Olli Carpén
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Gardberg
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|
39
|
Focal Adhesions Undergo Longitudinal Splitting into Fixed-Width Units. Curr Biol 2018; 28:2033-2045.e5. [PMID: 29910076 DOI: 10.1016/j.cub.2018.04.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/12/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023]
Abstract
Focal adhesions (FAs) and stress fibers (SFs) act in concert during cell motility and in response to the extracellular environment. Although the structures of mature FAs and SFs are well studied, less is known about how they assemble and mature de novo during initial cell spreading. In this study using live-cell Airyscan microscopy, we find that FAs undergo "splitting" during their assembly, in which the FA divides along its longitudinal axis. Before splitting, FAs initially appear as assemblies of multiple linear units (FAUs) of 0.3-μm width. Splitting occurs between FAUs, resulting in mature FAs of either a single FAU or of a small number of FAUs that remain attached at their distal tips. Variations in splitting occur based on cell type and extracellular matrix. Depletion of adenomatous polyposis coli (APC) or vasodilator-stimulated phosphoprotein (VASP) results in reduced splitting. FA-associated tension increases progressively during splitting. Early in cell spreading, ventral SFs are detected first, with other SF sub-types (transverse arcs and dorsal SFs) being detected later. Our findings suggest that the fundamental unit of FAs is the fixed-width FAU, and that dynamic interactions between FAUs control adhesion morphology.
Collapse
|
40
|
Ehler E. Actin-associated proteins and cardiomyopathy-the 'unknown' beyond troponin and tropomyosin. Biophys Rev 2018; 10:1121-1128. [PMID: 29869751 PMCID: PMC6082317 DOI: 10.1007/s12551-018-0428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been known for several decades that mutations in genes that encode for proteins involved in the control of actomyosin interactions such as the troponin complex, tropomyosin and MYBP-C and thus regulate contraction can lead to hereditary hypertrophic cardiomyopathy. In recent years, it has become apparent that actin-binding proteins not directly involved in the regulation of contraction also can exhibit changed expression levels, show altered subcellular localisation or bear mutations that might lead to hereditary cardiomyopathies. The aim of this review is to look beyond the troponin/tropomyosin mechanism and to give an overview of the different types of actin-associated proteins and their potential roles in cardiomyocytes. It will then discuss recent findings relevant to their involvement in heart disease.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), London, UK. .,School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, Room 3.26A, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
41
|
Maziveyi M, Alahari SK. Cell matrix adhesions in cancer: The proteins that form the glue. Oncotarget 2018; 8:48471-48487. [PMID: 28476046 PMCID: PMC5564663 DOI: 10.18632/oncotarget.17265] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
The main purposes of Integrin-mediated cell contacts are to interpret bi-directional signals between the extracellular environment and intracellular proteins, as well as, anchor the cell to a matrix. Many cell adhesion molecules have been discovered with a wide spectrum of responsibilities, including recruiting, activating, elongating, and maintaining. This review will perlustrate some of the key incidences that precede focal adhesion formation. Tyrosine phosphorylation is a key signaling initiation event that leads to the recruitment of multiple proteins to focal adhesion sites. Recruitment and concentration of proteins such as Paxillin and Vinculin to Integrin clutches is necessary for focal adhesion development. The assembled networks are responsible for transmitting signals back and forth from the extracellular matrix (ECM) to Actin and its binding proteins. Cancer cells exhibit highly altered focal adhesion dynamics. This review will highlight some key discoveries in cancer cell adhesion, as well as, identify current gaps in knowledge.
Collapse
Affiliation(s)
- Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
42
|
LeCorgne H, Tudosie AM, Lavik K, Su R, Becker KN, Moore S, Walia Y, Wisner A, Koehler D, Alberts AS, Williams FE, Eisenmann KM. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish. Front Pharmacol 2018; 9:340. [PMID: 29692731 PMCID: PMC5902741 DOI: 10.3389/fphar.2018.00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5–10 μM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10–20 and 50 μM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach.
Collapse
Affiliation(s)
- Hunter LeCorgne
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Andrew M Tudosie
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Kari Lavik
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Robin Su
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Kathryn N Becker
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Sara Moore
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Yashna Walia
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Alexander Wisner
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Daniel Koehler
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Arthur S Alberts
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Kathryn M Eisenmann
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| |
Collapse
|
43
|
Fessenden TB, Beckham Y, Perez-Neut M, Ramirez-San Juan G, Chourasia AH, Macleod KF, Oakes PW, Gardel ML. Dia1-dependent adhesions are required by epithelial tissues to initiate invasion. J Cell Biol 2018; 217:1485-1502. [PMID: 29437785 PMCID: PMC5881494 DOI: 10.1083/jcb.201703145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/01/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Developing tissues change shape and tumors initiate spreading through collective cell motility. Conserved mechanisms by which tissues initiate motility into their surroundings are not known. We investigated cytoskeletal regulators during collective invasion by mouse tumor organoids and epithelial Madin-Darby canine kidney (MDCK) acini undergoing branching morphogenesis in collagen. Use of the broad-spectrum formin inhibitor SMIFH2 prevented the formation of migrating cell fronts in both cell types. Focusing on the role of the formin Dia1 in branching morphogenesis, we found that its depletion in MDCK cells does not alter planar cell motility either within the acinus or in two-dimensional scattering assays. However, Dia1 was required to stabilize protrusions extending into the collagen matrix. Live imaging of actin, myosin, and collagen in control acini revealed adhesions that deformed individual collagen fibrils and generated large traction forces, whereas Dia1-depleted acini exhibited unstable adhesions with minimal collagen deformation and lower force generation. This work identifies Dia1 as an essential regulator of tissue shape changes through its role in stabilizing focal adhesions.
Collapse
Affiliation(s)
- Tim B Fessenden
- Institute for Biophysical Dynamics, James Franck Institute, and Department of Physics, University of Chicago, Chicago, IL.,Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Yvonne Beckham
- Institute for Biophysical Dynamics, James Franck Institute, and Department of Physics, University of Chicago, Chicago, IL
| | - Mathew Perez-Neut
- Committee on Cancer Biology, University of Chicago, Chicago, IL.,Ben May Department of Cancer Research, University of Chicago, Chicago, IL
| | - Guillermina Ramirez-San Juan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA.,Department of Bioengineering, Stanford University, Stanford, CA
| | - Aparajita H Chourasia
- Committee on Cancer Biology, University of Chicago, Chicago, IL.,Ben May Department of Cancer Research, University of Chicago, Chicago, IL
| | - Kay F Macleod
- Committee on Cancer Biology, University of Chicago, Chicago, IL.,Ben May Department of Cancer Research, University of Chicago, Chicago, IL
| | - Patrick W Oakes
- Department of Physics and Astronomy and Department of Biology, University of Rochester, Rochester, NY
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, James Franck Institute, and Department of Physics, University of Chicago, Chicago, IL .,Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
44
|
Cardiomyocytes Sense Matrix Rigidity through a Combination of Muscle and Non-muscle Myosin Contractions. Dev Cell 2018; 44:326-336.e3. [PMID: 29396114 PMCID: PMC5807060 DOI: 10.1016/j.devcel.2017.12.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/09/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Mechanical properties are cues for many biological processes in health or disease. In the heart, changes to the extracellular matrix composition and cross-linking result in stiffening of the cellular microenvironment during development. Moreover, myocardial infarction and cardiomyopathies lead to fibrosis and a stiffer environment, affecting cardiomyocyte behavior. Here, we identify that single cardiomyocyte adhesions sense simultaneous (fast oscillating) cardiac and (slow) non-muscle myosin contractions. Together, these lead to oscillating tension on the mechanosensitive adaptor protein talin on substrates with a stiffness of healthy adult heart tissue, compared with no tension on embryonic heart stiffness and continuous stretching on fibrotic stiffness. Moreover, we show that activation of PKC leads to the induction of cardiomyocyte hypertrophy in a stiffness-dependent way, through activation of non-muscle myosin. Finally, PKC and non-muscle myosin are upregulated at the costameres in heart disease, indicating aberrant mechanosensing as a contributing factor to long-term remodeling and heart failure. Talin in cardiomyocytes is unstretched, cyclically stretched, or continuously stretched Talin stretching depends on stiffness, myofibrillar tension, and non-myofibrillar tension Non-myofibrillar contractility requires PKC, Src, FHOD1, and non-muscle myosin PKC and non-muscle myosin activity are enhanced in cardiac disease
Collapse
|
45
|
Wang Q, Delcorde J, Tang T, Downey GP, McCulloch CA. Regulation of IL-1 signaling through control of focal adhesion assembly. FASEB J 2018; 32:3119-3132. [PMID: 29401618 DOI: 10.1096/fj.201700966r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IL-1 signaling is adhesion-restricted in many cell types, but the mechanism that drives it is not defined. We screened for proteins recruited to nascent adhesions in IL-1-treated human fibroblasts with tandem mass tag-mass spectrometry. We used fibronectin bead preparations to enrich 10 actin-associated proteins. There was a 1.2 times log 2-fold enrichment of actin capping protein (ACP) at 30 min after IL-1 stimulation. Knockdown (KD) of ACP by siRNA reduced IL-1-induced ERK activation(by 56%, matrix metalloproteinase-3 (MMP-3) expression by 48%, and MMP-9 expression by 62% (in all reductions, P < 0.01). Confocal or structured illumination microscopy showed that ACP was diffused throughout the cytosol but strongly accumulated at the ruffled border of spreading cells. ACP colocalized with nascent paxillin- and vinculin-containing adhesions at the ruffled border, but not with mature adhesions in the center. ACP KD promoted the formation of large, stable adhesions. Immunoprecipitation and proximity ligation analysis showed that ACP was associated with the IL-1 signal transduction proteins myeloid differentiation factor 88 (MyD88) and IL-1 receptor-associated kinase (IRAK) at the ruffled border of the leading edge. IL-1-induced phospho-ERK and MyD88 or IRAK colocalized at the leading edge. We concluded that ACP is required for recruitment and function of IL-1 signaling complexes in nascent adhesions at the leading edge of the cell.-Wang, Q., Delcorde, J., Tang, T., Downey, G. P., McCulloch, C. A. Regulation of IL-1 signaling through control of focal adhesion assembly.
Collapse
Affiliation(s)
- Qin Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Julie Delcorde
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Tracy Tang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Gregory P Downey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Abstract
Cell adhesion to components of the cellular microenvironment via cell-surface adhesion receptors controls many aspects of cell behavior in a range of physiological and pathological processes. Multimolecular complexes of scaffolding and signaling proteins are recruited to the intracellular domains of adhesion receptors such as integrins, and these adhesion complexes tether the cytoskeleton to the plasma membrane and compartmentalize cellular signaling events. Integrin adhesion complexes are highly dynamic, and their assembly is tightly regulated. Comprehensive, unbiased, quantitative analyses of the composition of different adhesion complexes over the course of their formation will enable better understanding of how the dynamics of adhesion protein recruitment influence the functions of adhesion complexes in fundamental cellular processes. Here, a pipeline is detailed integrating biochemical isolation of integrin adhesion complexes during a time course, quantitative proteomic analysis of isolated adhesion complexes, and computational analysis of temporal proteomic data. This approach enables the characterization of adhesion complex composition and dynamics during complex assembly.
Collapse
Affiliation(s)
- Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
47
|
Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res 2017; 5:17059. [PMID: 29285402 PMCID: PMC5738879 DOI: 10.1038/boneres.2017.59] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022] Open
Abstract
Bone biomaterials play a vital role in bone repair by providing the necessary substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity and function. In past decades, extensive efforts have been devoted to developing bone biomaterials with a focus on the following issues: (1) developing ideal biomaterials with a combination of suitable biological and mechanical properties; (2) constructing a cell microenvironment with pores ranging in size from nanoscale to submicro- and microscale; and (3) inducing the oriented differentiation of stem cells for artificial-to-biological transformation. Here we present a comprehensive review of the state of the art of bone biomaterials and their interactions with stem cells. Typical bone biomaterials that have been developed, including bioactive ceramics, biodegradable polymers, and biodegradable metals, are reviewed, with an emphasis on their characteristics and applications. The necessary porous structure of bone biomaterials for the cell microenvironment is discussed, along with the corresponding fabrication methods. Additionally, the promising seed stem cells for bone repair are summarized, and their interaction mechanisms with bone biomaterials are discussed in detail. Special attention has been paid to the signaling pathways involved in the focal adhesion and osteogenic differentiation of stem cells on bone biomaterials. Finally, achievements regarding bone biomaterials are summarized, and future research directions are proposed.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
- Jiangxi University of Science and Technology, Ganzhou, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017; 22-23:88-119. [PMID: 28688729 PMCID: PMC5712490 DOI: 10.1016/j.plrev.2017.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
Cells in vivo reside within complex microenvironments composed of both biochemical and biophysical cues. The dynamic feedback between cells and their microenvironments hinges upon biophysical cues that regulate critical cellular behaviors. Understanding this regulation from sensing to reaction to feedback is therefore critical, and a large effort is afoot to identify and mathematically model the fundamental mechanobiological mechanisms underlying this regulation. This review provides a critical perspective on recent progress in mathematical models for the responses of cells to the biophysical cues in their microenvironments, including dynamic strain, osmotic shock, fluid shear stress, mechanical force, matrix rigidity, porosity, and matrix shape. The review highlights key successes and failings of existing models, and discusses future opportunities and challenges in the field.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Mechanical Engineering & Materials Science, and NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
49
|
Patel AA, Oztug Durer ZA, van Loon AP, Bremer KV, Quinlan ME. Drosophila and human FHOD family formin proteins nucleate actin filaments. J Biol Chem 2017; 293:532-540. [PMID: 29127202 DOI: 10.1074/jbc.m117.800888] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
Formins are a conserved group of proteins that nucleate and processively elongate actin filaments. Among them, the formin homology domain-containing protein (FHOD) family of formins contributes to contractility of striated muscle and cell motility in several contexts. However, the mechanisms by which they carry out these functions remain poorly understood. Mammalian FHOD proteins were reported not to accelerate actin assembly in vitro; instead, they were proposed to act as barbed end cappers or filament bundlers. Here, we show that purified Drosophila Fhod and human FHOD1 both accelerate actin assembly by nucleation. The nucleation activity of FHOD1 is restricted to cytoplasmic actin, whereas Drosophila Fhod potently nucleates both cytoplasmic and sarcomeric actin isoforms. Drosophila Fhod binds tightly to barbed ends, where it slows elongation in the absence of profilin and allows, but does not accelerate, elongation in the presence of profilin. Fhod antagonizes capping protein but dissociates from barbed ends relatively quickly. Finally, we determined that Fhod binds the sides of and bundles actin filaments. This work establishes that Fhod shares the capacity of other formins to nucleate and bundle actin filaments but is notably less effective at processively elongating barbed ends than most well studied formins.
Collapse
Affiliation(s)
- Aanand A Patel
- From the Molecular Biology Interdepartmental Doctoral Program
| | | | | | | | - Margot E Quinlan
- the Department of Chemistry and Biochemistry, and .,the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095
| |
Collapse
|
50
|
Zhu R, Antoku S, Gundersen GG. Centrifugal Displacement of Nuclei Reveals Multiple LINC Complex Mechanisms for Homeostatic Nuclear Positioning. Curr Biol 2017; 27:3097-3110.e5. [PMID: 28988861 DOI: 10.1016/j.cub.2017.08.073] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022]
Abstract
Nuclear movement is critical for developmental events, cell polarity, and migration and is usually mediated by linker of nucleoskeleton and cytoskeleton (LINC) complexes connecting the nucleus to cytoskeletal elements. Compared to active nuclear movement, relatively little is known about homeostatic positioning of nuclei, including whether it is an active process. To explore homeostatic nuclear positioning, we developed a method to displace nuclei in adherent cells using centrifugal force. Nuclei displaced by centrifugation rapidly recentered by mechanisms that depended on cell context. In cell monolayers with wounds oriented orthogonal to the force, nuclei were displaced toward the front and back of the cells on the two sides of the wound. Nuclei recentered from both positions, but at different rates and with different cytoskeletal linkage mechanisms. Rearward recentering was actomyosin, nesprin-2G, and SUN2 dependent, whereas forward recentering was microtubule, dynein, nesprin-2G, and SUN1 dependent. Nesprin-2G engaged actin through its N terminus and microtubules through a novel dynein interacting site near its C terminus. Both activities were necessary to maintain nuclear position in uncentrifuged cells. Thus, even when not moving, nuclei are actively maintained in position by engaging the cytoskeleton through the LINC complex.
Collapse
Affiliation(s)
- Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Susumu Antoku
- Department of Pathology and Cell Biology, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|