1
|
Keogh K, Coen S, Lonergan P, Fair S, Kenny DA. Complement 3 (C3) within the hypothalamic arcuate nucleus is a potential key mediator of the effect of enhanced nutrition on reproductive development in young bull calves. BMC Genomics 2025; 26:466. [PMID: 40346477 PMCID: PMC12065335 DOI: 10.1186/s12864-025-11656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Reproductive development may be advanced in bull calves through enhanced dietary intake during the early life period. This effect between enhanced nutrition with subsequent earlier reproductive development is orchestrated through signalling within the hypothalamic-pituitary-testicular axis. Within the hypothalamus, the arcuate nucleus (ARC) is crucial for the integration of peripheral metabolic status with subsequent gonadotropin releasing hormone (GnRH) signalling; however, the precise molecular control regulating this effect is not fully known. The aim of this study was to evaluate the global transcriptomic and proteomic responses to varied plane of nutrition during early calf-hood in young dairy bull calves. Additionally, we sought to integrate these 'omics' datasets to determine key genes and proteins contributing to earlier reproductive development. Between 2-12 weeks of age, 30 Holstein-Friesian bull calves (mean age: 17.5 days; mean bodyweight 48.8 kg), were offered either a high or moderate plane of nutrition with 15 calves in each group. At 12 weeks of age, all calves were euthanised and the ARC tissue isolated from each calf. The ARC tissue was then used for global transcriptomic (miRNAseq and mRNAseq) and proteomic analyses. RESULTS Bioinformatic analyses were undertaken to determine differentially expressed transcripts (FDR < 0.1; fold change > 1.5) between the dietary treatment groups, resulting in the identification of 1 differentially expressed miRNA (miR-2419-3p) and 83 differentially expressed mRNA in the ARC region. mRNA target gene prediction identified Complement 3 (C3) as a target of miR-2419-3p, suggesting a relationship between the two transcripts. Furthermore, through a co-regulatory network analysis conducted on the proteomics dataset, C3 was revealed as a hub protein. Additionally, through the proteomic network analysis, C3 was interacting with proteins involved in both insulin and GnRH signalling, highlighting a potential role for C3 in mediated the effect of enhanced nutritional status with earlier reproductive development within the ARC. CONCLUSION This study highlights an effect of altered plane of nutrition in early life on the molecular control of the hypothalamic ARC. Additionally, results generated suggest a potential role for the C3 gene in mediating the interaction between enhanced metabolic status with reproductive development within the ARC, regulated by miR-2419-3p.
Collapse
Affiliation(s)
- Kate Keogh
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - Stephen Coen
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - David A Kenny
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
2
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025; 26:371-388. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Bottasso-Arias N, Mohanakrishnan M, Trovillion S, Burra K, Russell NX, Wu Y, Xu Y, Sinner D. Wnt5a and Notum influence the temporal dynamics of cartilaginous mesenchymal condensations in developing trachea. Front Cell Dev Biol 2025; 13:1523833. [PMID: 40271154 PMCID: PMC12015613 DOI: 10.3389/fcell.2025.1523833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/04/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction The trachea is essential for proper airflow to the lungs for gas exchange. Frequent congenital tracheal malformations affect the cartilage, causing the collapse of the central airway during the respiratory cycle. We have shown that Notum, a Wnt ligand de-acylase that attenuates the canonical branch of the Wnt signaling pathway, is necessary for cartilaginous mesenchymal condensations. In Notum deficient tracheas, chondrogenesis is delayed, and the tracheal lumen is narrowed. It is unknown if Notum attenuates non-canonical Wnt signaling. We observed premature tracheal chondrogenesis after mesenchymal deletion of the non-canonical Wnt5a ligand. We hypothesize that Notum and Wnt5a are required to mediate the timely formation of mesenchymal condensations, giving rise to the tracheal cartilage. Methods/Results Ex vivo culture of tracheal tissue shows that chemical inhibition of the Wnt non-canonical pathway promotes earlier condensations, while Notum inhibition presents delayed condensations. Furthermore, non-canonical Wnt induction prevents the formation of cartilaginous mesenchymal condensations. On the other hand, cell-cell interactions among chondroblasts increase in the absence of mesenchymal Wnt5a. By performing an unbiased analysis of the gene expression in Wnt5a and Notum deficient tracheas, we detect that by E11.5, mRNA of genes essential for chondrogenesis and extracellular matrix formation are upregulated in Wnt5a mutants. The expression profile supports the premature and delayed chondrogenesis observed in Wnt5a and Notum deficient tracheas, respectively. Conclusion We conclude that Notum and Wnt5a are necessary for proper tracheal cartilage patterning by coordinating timely chondrogenesis. Thus, these studies shed light on molecular mechanisms underlying congenital anomalies of the trachea.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program, Cincinnati, OH, United States
| | - Sarah Trovillion
- Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Kaulini Burra
- Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Nicholas X. Russell
- Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program, Cincinnati, OH, United States
| | - Yixin Wu
- Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yan Xu
- Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Debora Sinner
- Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
4
|
Gu B, Ferreira LMR, Herrera S, Brown L, Lieberman J, Sherwood RI, Meissner TB, Strominger JL. The TEA domain transcription factors TEAD1 and TEAD3 and WNT signaling determine HLA-G expression in human extravillous trophoblasts. Proc Natl Acad Sci U S A 2025; 122:e2425339122. [PMID: 40096597 PMCID: PMC11962456 DOI: 10.1073/pnas.2425339122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Maternal-fetal immune tolerance guarantees a successful pregnancy throughout gestation. HLA-G, a nonclassical human leukocyte antigen (HLA) molecule exclusively expressed in extravillous trophoblasts (EVT), is a crucial factor in establishing maternal-fetal immune tolerance by interacting with inhibitory receptors on various maternal immune cells residing in the uterus. While trophoblast-specific cis-regulatory elements impacting HLA-G transcription have been described, the identity of trans-acting factors controlling HLA-G expression in EVT remains poorly understood. Utilizing a genome-wide CRISPR-Cas9 knockout screen, we find that the WNT signaling pathway negatively regulates HLA-G expression in EVT. In addition, we identified two trophoblast-specific transcription factors, TEAD1 and TEAD3, required for HLA-G transcription in EVT in a Yes-associated protein-independent manner. Altogether, we systematically elucidated essential genes and pathways underlying HLA-G expression in EVT, shedding light on the mechanisms of maternal-fetal tolerance and potentially providing insights into controlling HLA-G expression beyond EVT to protect allogeneic cells from immune rejection.
Collapse
Affiliation(s)
- Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Program in Cellular and Molecular Medicine Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC29425
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC29425
- Cancer Biology and Immunology Program, Hollings Cancer Center, Charleston, SC29425
| | - Sebastian Herrera
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Lara Brown
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, MA02115
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, MA02115
| | - Torsten B. Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA02215
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Jack L. Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
5
|
Ahamad S, Saquib M, Hussain MK, Bhat SA. Targeting Wnt signaling pathway with small-molecule therapeutics for treating osteoporosis. Bioorg Chem 2025; 156:108195. [PMID: 39864370 DOI: 10.1016/j.bioorg.2025.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Small molecules are emerging as potential candidates for treating osteoporosis by activating canonical Wnt signaling. These candidates work either by inhibiting DKK-1, sclerostin, SFRP-1, NOTUM, and S1P lyase or by preventing β-catenin degradation through inhibition of GSK-3β, or by targeting Dvl-CXXC5 and axin/β-catenin interactions. While many of these anti-osteoporotic small molecules are in preclinical development, the paucity of FDA-approved small molecules, or promising candidates, that have progressed to clinical trials for treating bone disorders through this mechanism poses a challenge. Despite advancements in computer-aided drug design, it is rarely employed for designing Wnt signaling activators to treat osteoporosis, and high-throughput screen (HTS) remains the primary method for discovering initial hits. Acknowledging the promising therapeutic potential of these compounds in addressing bone diseases, this review underscores the need for further mechanistic elucidation to enhance our understanding of their applications. Additionally, caution must be exercised in the design of small molecule-based Wnt activators due to their association with oncological risks.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, UP, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, UP, India
| | | | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
6
|
Abhishek Shah A, Chand D, Ahamad S, Porwal K, Chourasia MK, Mohanan K, Srivastava KR, Chattopadhyay N. Therapeutic targeting of Wnt antagonists by small molecules for treatment of osteoporosis. Biochem Pharmacol 2024; 230:116587. [PMID: 39447984 DOI: 10.1016/j.bcp.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Wnt signaling is one of the key regulators of bone development and homeostasis. Wnt signaling regulates key biological events, including stem cell fate and osteoblast and osteoclast activity, leading to the maintenance of bone mass and strength. Wnt ligands are secreted glycoproteins that bind to Frizzled (FZD) receptors and their coreceptors, lipoprotein receptor-related proteins-5/6 (LRP5/6). Binding of Wnts to FZD triggers canonical (β-catenin-dependent) and noncanonical (β-catenin-independent) pathways. In canonical Wnt signaling, stabilized β-catenin translocates to the nucleus, where it promotes osteoblast differentiation by activating target genes, including Runx2 and Osterix. The negative regulators of Wnt or so-called Wnt antagonists, including CXXC5, sFRP, sclerostin, DKK1, and Notum, compete for Fzd binding, attenuating Wnt signaling. The critical roles of Wnt signaling in bone homeostasis have been established by various bone diseases caused by mutations in Wnt signaling pathways. Loss-of-function mutations in the LRP5 gene cause osteoporosis-pseudoglioma syndrome, whereas gain-of-function mutations are linked to osteopetrosis characterized by high bone density. Sclerosteosis and Van Buchem disease are caused by mutations affecting the SOST gene, which encodes sclerostin, a natural inhibitor of Wnt signalling. Loss-of-function mutations in SOST result in excessive bone growth, markedly increased bone density, and other skeletal abnormalities due to uncontrolled Wnt activity. Considering the clinical relevance of Wnt signaling, targeting Wnt inhibitors is being intensely pursued using small molecules that act by inhibiting endogenous Wnt agonists. We used a computational biology approach to review current data on pharmacophores of Wnt antagonists, assessing their potential as therapeutic candidates for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Aarti Abhishek Shah
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Diwan Chand
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakir Ahamad
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Konica Porwal
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets for Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kishor Mohanan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kinshuk R Srivastava
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets for Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Bottasso-Arias N, Mohanakrishnan M, Trovillion S, Burra K, Russell NX, Wu Y, Xu Y, Sinner D. Wnt5a and Notum Influence the Temporal Dynamics of Cartilaginous Mesenchymal Condensations in Developing Trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610014. [PMID: 39282283 PMCID: PMC11398369 DOI: 10.1101/2024.09.02.610014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The trachea is essential for proper airflow to the lungs for gas exchange. Frequent congenital tracheal malformations affect the cartilage, causing the collapse of the central airway during the respiratory cycle. We have shown that Notum, a Wnt ligand de-acylase that attenuates the canonical branch of the Wnt signaling pathway, is necessary for cartilaginous mesenchymal condensations. In Notum deficient tracheas, chondrogenesis is delayed, and the tracheal lumen is narrowed. It is unknown if Notum attenuates non-canonical Wnt signaling. We observed premature tracheal chondrogenesis after mesenchymal deletion of the non-canonical Wnt5a ligand. We hypothesize that Notum and Wnt5a are required to mediate the timely formation of mesenchymal condensations, giving rise to the tracheal cartilage. Ex vivo culture of tracheal tissue shows that chemical inhibition of the Wnt non-canonical pathway promotes earlier condensations, while Notum inhibition presents delayed condensations. Furthermore, non-canonical Wnt induction prevents the formation of cartilaginous mesenchymal condensations. On the other hand, cell-cell interactions among chondroblasts increase in the absence of mesenchymal Wnt5a. By performing an unbiased analysis of the gene expression in Wnt5a and Notum deficient tracheas, we detect that by E11.5, mRNA of genes essential for chondrogenesis and extracellular matrix formation are upregulated in Wnt5a mutants. The expression profile supports the premature and delayed chondrogenesis observed in Wnt5a and Notum deficient tracheas, respectively. We conclude that Notum and Wnt5a are necessary for proper tracheal cartilage patterning by coordinating timely chondrogenesis. Thus, these studies shed light on molecular mechanisms underlying congenital anomalies of the trachea.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology, Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program. Current affiliation University of Cincinnati, College of Medicine
| | - Sarah Trovillion
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Nationwide Children’s Hospital Columbus OH
| | - Nicholas X. Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - Yixin Wu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Washington University in St. Louis, Division of Biology & Biomedical Sciences
| | - Yan Xu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
8
|
Jarero F, Baillie A, Riddiford N, Montagne J, Koziol U, Olson PD. Muscular remodeling and anteroposterior patterning during tapeworm segmentation. Dev Dyn 2024; 253:998-1023. [PMID: 38689520 DOI: 10.1002/dvdy.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Tapeworms are parasitic flatworms that independently evolved a segmented body plan, historically confounding comparisons with other animals. Anteroposterior (AP) patterning in free-living flatworms and in tapeworm larvae is associated with canonical Wnt signaling and positional control genes (PCGs) are expressed by their musculature in regionalized domains along the AP axis. Here, we extend investigations of PCG expression to the adult of the mouse bile-duct tapeworm Hymenolepis microstoma, focusing on the growth zone of the neck region and the initial establishment of segmental patterning. RESULTS We show that the adult musculature includes new, segmental elements that first appear in the neck and that the spatial patterns of Wnt factors are consistent with expression by muscle cells. Wnt factor expression is highly regionalized and becomes AP-polarized in segments, marking them with axes in agreement with the polarity of the main body axis, while the transition between the neck and strobila is specifically demarcated by the expression domain of a Wnt11 paralog. CONCLUSION We suggest that segmentation could originate in the muscular system and participate in patterning the AP axis through regional and polarized expression of PCGs, akin to the gene regulatory networks employed by free-living flatworms and other animals.
Collapse
Affiliation(s)
- Francesca Jarero
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution and Environment, University College, London, UK
| | - Andrew Baillie
- Department of Life Sciences, Natural History Museum, London, UK
| | - Nick Riddiford
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jimena Montagne
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Peter D Olson
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
9
|
Shukla V, Moreno-Irusta A, Varberg KM, Kuna M, Iqbal K, Galligos AM, Aplin JD, Choudhury RH, Okae H, Arima T, Soares MJ. NOTUM-mediated WNT silencing drives extravillous trophoblast cell lineage development. Proc Natl Acad Sci U S A 2024; 121:e2403003121. [PMID: 39325428 PMCID: PMC11459147 DOI: 10.1073/pnas.2403003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Trophoblast stem (TS) cells have the unique capacity to differentiate into specialized cell types, including extravillous trophoblast (EVT) cells. EVT cells invade into and transform the uterus where they act to remodel the vasculature facilitating the redirection of maternal nutrients to the developing fetus. Disruptions in EVT cell development and function are at the core of pregnancy-related disease. WNT-activated signal transduction is a conserved regulator of morphogenesis of many organ systems, including the placenta. In human TS cells, activation of canonical WNT signaling is critical for maintenance of the TS cell stem state and its downregulation accompanies EVT cell differentiation. We show that aberrant WNT signaling undermines EVT cell differentiation. Notum, palmitoleoyl-protein carboxylesterase (NOTUM), a negative regulator of canonical WNT signaling, was prominently expressed in first-trimester EVT cells developing in situ and up-regulated in EVT cells derived from human TS cells. Furthermore, NOTUM was required for optimal human TS cell differentiation to EVT cells. Activation of NOTUM in EVT cells is driven, at least in part, by endothelial Per-Arnt-Sim (PAS) domain 1 (also called hypoxia-inducible factor 2 alpha). Collectively, our findings indicate that canonical Wingless-related integration site (WNT) signaling is essential for maintenance of human trophoblast cell stemness and regulation of human TS cell differentiation. Downregulation of canonical WNT signaling via the actions of NOTUM is required for optimal EVT cell differentiation.
Collapse
Affiliation(s)
- Vinay Shukla
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Ayelen Moreno-Irusta
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Kaela M. Varberg
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Marija Kuna
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Anna M. Galligos
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - John D. Aplin
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, The University of Manchester, ManchesterM13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary’s Hospital, University of Manchester, ManchesterM13 9WL, United Kingdom
| | - Ruhul H. Choudhury
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, The University of Manchester, ManchesterM13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary’s Hospital, University of Manchester, ManchesterM13 9WL, United Kingdom
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai980-8575, Japan
| | - Michael J. Soares
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, MO64108
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
10
|
Tan Y, Huang Z, Jin Y, Wang J, Fan H, Liu Y, Zhang L, Wu Y, Liu P, Li T, Ran J, Tian H, Lam SM, Liu M, Zhou J, Yang Y. Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice. Nat Commun 2024; 15:8273. [PMID: 39333556 PMCID: PMC11437155 DOI: 10.1038/s41467-024-52621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Disruption of ciliary homeostasis in vascular endothelial cells has been implicated in the development of atherosclerosis. However, the molecular basis for the regulation of endothelial cilia during atherosclerosis remains poorly understood. Herein, we provide evidence in male mice that the accumulation of lipid droplets in vascular endothelial cells induces ciliary loss and contributes to atherosclerosis. Triglyceride accumulation in vascular endothelial cells differentially affects the abundance of free fatty acid species in the cytosol, leading to stimulated lipid droplet formation and suppressed protein S-palmitoylation. Reduced S-palmitoylation of ciliary proteins, including ADP ribosylation factor like GTPase 13B, results in the loss of cilia. Restoring palmitic acid availability, either through pharmacological inhibition of stearoyl-CoA desaturase 1 or a palmitic acid-enriched diet, significantly restores endothelial cilia and mitigates the progression of atherosclerosis. These findings thus uncover a previously unrecognized role of lipid droplets in regulating ciliary homeostasis and provide a feasible intervention strategy for preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Yanjie Tan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Zhenzhou Huang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yi Jin
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Jiaying Wang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Hongjun Fan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yangyang Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Liang Zhang
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Yue Wu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Tianliang Li
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Jie Ran
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- LipidALL Technologies Company Limited, 213022, Changzhou, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, 300462, Tianjin, China
| | - Jun Zhou
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| |
Collapse
|
11
|
Shukla V, Moreno-Irusta A, Varberg KM, Kuna M, Iqbal K, Galligos AM, Aplin JD, Choudhury RH, Okae H, Arima T, Soares MJ. NOTUM-MEDIATED WNT SILENCING DRIVES EXTRAVILLOUS TROPHOBLAST CELL LINEAGE DEVELOPMENT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579974. [PMID: 38405745 PMCID: PMC10888853 DOI: 10.1101/2024.02.13.579974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Trophoblast stem (TS) cells have the unique capacity to differentiate into specialized cell types, including extravillous trophoblast (EVT) cells. EVT cells invade into and transform the uterus where they act to remodel the vasculature facilitating the redirection of maternal nutrients to the developing fetus. Disruptions in EVT cell development and function are at the core of pregnancy-related disease. WNT-activated signal transduction is a conserved regulator of morphogenesis of many organ systems, including the placenta. In human TS cells, activation of canonical WNT signaling is critical for maintenance of the TS cell stem state and its downregulation accompanies EVT cell differentiation. We show that aberrant WNT signaling undermines EVT cell differentiation. Notum, palmitoleoyl-protein carboxylesterase (NOTUM), a negative regulator of canonical WNT signaling, was prominently expressed in first trimester EVT cells developing in situ and upregulated in EVT cells derived from human TS cells. Furthermore, NOTUM was required for optimal human TS cell differentiation to EVT cells. Activation of NOTUM in EVT cells is driven, at least in part, by endothelial PAS domain 1 (also called hypoxia-inducible factor 2 alpha). Collectively, our findings indicate that canonical WNT signaling is essential for maintenance of human trophoblast cell stemness and regulation of human TS cell differentiation. Downregulation of canonical WNT signaling via the actions of NOTUM is required for optimal EVT cell differentiation.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Kaela M. Varberg
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Marija Kuna
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Anna M. Galligos
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - John D. Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, The University of Manchester, Manchester M13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Ruhul H. Choudhury
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, The University of Manchester, Manchester M13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, MO
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
12
|
Liu M, Hemba-Waduge RUS, Li X, Huang X, Liu TH, Han X, Wang Y, Ji JY. Wnt/Wingless signaling promotes lipid mobilization through signal-induced transcriptional repression. Proc Natl Acad Sci U S A 2024; 121:e2322066121. [PMID: 38968125 PMCID: PMC11252803 DOI: 10.1073/pnas.2322066121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid β-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid β-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid β-oxidation.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| | | | - Xiao Li
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ08540
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Department of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Department of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| |
Collapse
|
13
|
Adasooriya D, Jeong JK, Kyeong M, Kan S, Kim J, Cho ES, Cho SW. Notum regulates the cusp and root patterns in mouse molar. Sci Rep 2024; 14:13633. [PMID: 38871845 PMCID: PMC11176191 DOI: 10.1038/s41598-024-64340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Notum is a direct target of Wnt/β-catenin signaling and plays a crucial role as a Wnt inhibitor within a negative feedback loop. In the tooth, Notum is known to be expressed in odontoblasts, and severe dentin defects and irregular tooth roots have been reported in Notum-deficient mice. However, the precise expression pattern of Notum in early tooth development, and the role of Notum in crown and root patterns remain elusive. In the present study, we identified a novel Notum expression in primary enamel knot (EK), secondary EKs, and dental papilla during tooth development. Notum-deficient mice exhibited enlarged secondary EKs, resulting in broader cusp tips, altered cusp patterns, and reduced concavity in crown outline. These alterations in crown outline led to a reduction in cervical tongue length, thereby inducing root fusion in Notum-deficient mice. Overall, these results suggest that the secondary EK size, regulated by the Wnt/Notum negative feedback loop, has a significant impact on the patterns of crown and root during tooth morphogenesis.
Collapse
Affiliation(s)
- Dinuka Adasooriya
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Minjae Kyeong
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shiqi Kan
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jiwoo Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Korea.
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
14
|
Liu Y, Chen H, Xiao L, Dong P, Ma Y, Zhou Y, Yang J, Bian B, Xie G, Chen L, Shen L. Notum enhances gastric cancer stem-like cell properties through upregulation of Sox2 by PI3K/AKT signaling pathway. Cell Oncol (Dordr) 2024; 47:463-480. [PMID: 37749430 PMCID: PMC11090966 DOI: 10.1007/s13402-023-00875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
PURPOSE Considerable evidence suggests that tumor cells with stemness features contribute to initiation, progression, recurrence of gastric cancer (GC) and resistance to therapy, but involvement of underlying regulators and mechanisms remain largely unclear. However, the clinical significance and biological function of Notum in GC tumor sphere formation and tumorigenesis remain unclear. METHODS Bioinformatics analysis, RT-qPCR, western blot and imunohistochemistry staining were applied to characterize Notum expression in GC specimens. The early diagnostic value of Notum was analyzed by logistic regression analysis method. Cancer stemness assays were used in Notum knockdown and overexpressing cells in vitro and in vivo. RNA-seq was employed to reveal the downstream effectors of Notum. RESULTS Notum is highly expressed in early stage of GC patients and stem-like GC cells. For discriminating the early-stage and advanced GC patients, the joint analysis had a better diagnostic value. Overexpression of Notum markedly increased stemness features of GC cells to promote tumor sphere formation and tumorigenesis. Conversely, Notum knockdown attenuated the stem-like cell properties in vitro and in vivo. Mechanically, Notum upregulates Sox2 through activating the PI3K/AKT signaling pathway. Notum inhibitor Caffeine exhibited a potent inhibitory effect on stemness features by impairing the PI3K/AKT signaling pathway activity and targeting Sox2. CONCLUSION Our findings confer a comprehensive and mechanistic function of Notum in GC tumor sphere formation and tumorigenesis that may provide a novel and promising target for early diagnosis and clinical therapy of GC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lanshu Xiao
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingxian Bian
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lei Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, 200240, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
15
|
Zhao Q, Ren H, Wang N, Yuan X, Zhao Y, Wen Q. NOTUM plays a bidirectionally modulatory role in the odontoblastic differentiation of human stem cells from the apical papilla through the WNT/β-catenin signaling pathway. Arch Oral Biol 2024; 160:105896. [PMID: 38278124 DOI: 10.1016/j.archoralbio.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVE Notum is a secreted deacylase, which is crucial for tooth dentin development in mice. This study aimed to investigate the effect of NOTUM on the odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs), to reveal the potential value of NOTUM in pulp-dentin complex regeneration. DESIGN The expression pattern of NOTUM in human tooth germs and during in vitro odontoblastic differentiation of hSCAPs was evaluated by immunohistochemical staining, and quantitative polymerase chain reaction, respectively. To manipulate the extracellular NOTUM level, ABC99 or small interfering RNA was used to down-regulate it, while recombinant NOTUM protein was added to up-regulate it. The effects of changing NOTUM level on the odontoblastic differentiation of hSCAPs and its interaction with the WNT/β-catenin signaling pathway were studied using alkaline phosphatase staining, alizarin red staining, quantitative polymerase chain reaction, and western blot. RESULTS NOTUM was observed in the apical papilla of human tooth germs. During in vitro odontoblastic differentiation of hSCAPs, NOTUM expression initially increased, while the WNT/β-catenin pathway was activated. Downregulation of NOTUM hindered odontoblastic differentiation. Recombinant NOTUM protein had varying effects on odontoblastic differentiation depending on exposure duration. Continuous addition of the protein inhibited both odontoblastic differentiation and the WNT/β-catenin pathway. However, applying the protein solely in the first 3 days enhanced odontoblastic differentiation and up-regulated the WNT/β-catenin pathway. CONCLUSION NOTUM demonstrated a bidirectional impact on in vitro odontoblastic differentiation of hSCAPs, potentially mediated by the WNT/β-catenin pathway. These findings suggest its promising potential for pulp-dentin complex regeneration.
Collapse
Affiliation(s)
- Qingxuan Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Huihui Ren
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Nan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Xiaojing Yuan
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China.
| | - Quan Wen
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 37A Xishiku Street, Xicheng District, Beijing 100034, PR China.
| |
Collapse
|
16
|
Manning E, Placzek M. Organizing activities of axial mesoderm. Curr Top Dev Biol 2024; 157:83-123. [PMID: 38556460 DOI: 10.1016/bs.ctdb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.
Collapse
Affiliation(s)
- Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
17
|
Kim M, Jang YJ, Lee M, Guo Q, Son AJ, Kakkad NA, Roland AB, Lee BK, Kim J. The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation. Nat Commun 2024; 15:1285. [PMID: 38346993 PMCID: PMC10861538 DOI: 10.1038/s41467-024-45669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
During human pregnancy, extravillous trophoblasts play crucial roles in placental invasion into the maternal decidua and spiral artery remodeling. However, regulatory factors and their action mechanisms modulating human extravillous trophoblast specification have been unknown. By analyzing dynamic changes in transcriptome and enhancer profile during human trophoblast stem cell to extravillous trophoblast differentiation, we define stage-specific regulators, including an early-stage transcription factor, TFAP2C, and multiple late-stage transcription factors. Loss-of-function studies confirm the requirement of all transcription factors identified for adequate differentiation, and we reveal that the dynamic changes in the levels of TFAP2C are essential. Notably, TFAP2C pre-occupies the regulatory elements of the inactive extravillous trophoblast-active genes during the early stage of differentiation, and the late-stage transcription factors directly activate extravillous trophoblast-active genes, including themselves as differentiation further progresses, suggesting sequential actions of transcription factors assuring differentiation. Our results reveal stage-specific transcription factors and their inter-connected regulatory mechanisms modulating extravillous trophoblast differentiation, providing a framework for understanding early human placentation and placenta-related complications.
Collapse
Affiliation(s)
- Mijeong Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Qingqing Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Albert J Son
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nikita A Kakkad
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Abigail B Roland
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
18
|
Wu X, Yang X, Dai X, Chen X, Shen M, Dai J, Yuan F, Wang L, Yuan Y, Feng Y. 5-Aza-2'-Deoxycytidine Ameliorates Choroidal Neovascularization by Inhibiting the Wnt/β-Catenin Signaling Pathway. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 38345554 PMCID: PMC10866157 DOI: 10.1167/iovs.65.2.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose Choroidal neovascularization (CNV) can constitute the final pathology of many ocular diseases and result in severe vision loss. Studies have demonstrated that DNA methylation is critical in retinal development, aging, and disorders. The current work investigated the effects and underlying mechanism of 5-Aza-2'-deoxycytidine (5-aza-dC), a suppressor of DNA methylation, in the pathological progression of CNV. Methods The DNA methylation profiles of retinal pigment epithelial (RPE)/choroidal complexes in normal and laser-induced CNV mice were assessed by Arraystar Mouse RefSeq Promoter Arrays. The CNV area and blood flow density and intensity were observed by optical coherence tomography angiography, and fluorescence leakage was examined by fundus fluorescein angiography in CNV mice with systemic administration of 5-aza-dC. The effects of 5-aza-dC on the biological functions of bEnd.3 cells were estimated by related assays. Notum gene promoter methylation was measured using bisulfite sequencing PCR. Methyltransferases and Wnt signaling-related genes were detected in animal and cell culture experiments by real-time PCR and immunoblot. Results Methyltransferases were upregulated, but Notum (a secretion inhibitor of Wnt signaling) was downregulated in the RPE/choroidal complexes of mice with experimental CNV. Intraperitoneal injection of 5-aza-dC inactivated the Wnt pathway and ameliorated the lesion area and the intensity and density of blood flow, as well as the degree of leakage in CNV. In vitro, vascular endothelial growth factor A (VEGFA) stimulation promoted methyltransferases expression and suppressed Notum expression, consequently activating Wnt signaling, whereas exogenous 5-aza-dC reversed VEGFA-induced hyperpermeability, proliferation, migration, and tube formation in bEnd.3 cells via demethylation of Notum promoter. Conclusions We observed that 5-aza-dC attenuates the growth of CNV by inhibiting the Wnt signaling pathway via promoter demethylation of the Wnt antagonist Notum. These findings provide a theoretical basis for methylation-based treatment with the Notum gene as a potential target for CNV treatment.
Collapse
Affiliation(s)
- Xinyuan Wu
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaochan Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiuping Chen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyang Wang
- Department of Ophthalmology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Wang Y, Mao A, Liu J, Li P, Zheng S, Tong T, Li Z, Zhang H, Ma L, Lin J, Pang Z, Han Q, Qi F, Zhang X, Chen M, He X, Zhang X, Fei T, Liu BF, Gao D, Cao L, Wang Q, Li Y, Sheng R. USP10 strikes down β-catenin by dual-wielding deubiquitinase activity and phase separation potential. Cell Chem Biol 2023; 30:1436-1452.e10. [PMID: 37611590 DOI: 10.1016/j.chembiol.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 07/30/2023] [Indexed: 08/25/2023]
Abstract
Wnt/β-catenin signaling is a conserved pathway crucially governing development, homeostasis, and oncogenesis. Discoveries of its regulators hold great values in both basic and translational research. Through screening, we identified a deubiquitinase, USP10, as a critical modulator of β-catenin. Mechanistically, USP10 binds to key scaffold Axin1 via conserved motifs and stabilizes Axin1 through K48-linked deubiquitination. Surprisingly, USP10 physically tethers Axin1 and β-catenin and promotes the phase separation for β-catenin suppression regardless of the enzymatic activity. Function-wise, USP10 enzymatic activity preferably regulates embryonic development and both the enzymatic activity and physical function jointly control intestinal homeostasis by antagonizing β-catenin. In colorectal cancer, USP10 substantially represses cancer growth mainly through physical promotion of phase separation and correlates with Wnt/β-catenin magnitude clinically. Collectively, we discovered USP10 functioning in multiple biological processes against β-catenin and unearthed the enzyme-dependent and -independent "dual-regulating" mechanism. These two functions of USP10 work in parallel and are context dependent.
Collapse
Affiliation(s)
- Yinuo Wang
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Aihua Mao
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Jingwei Liu
- College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Pengjie Li
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqin Zheng
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Tong Tong
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Zexu Li
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Haijiao Zhang
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Lanjing Ma
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Jiahui Lin
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Zhongqiu Pang
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Qing Han
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Fukang Qi
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Maorong Chen
- F.M Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Xi He
- F.M Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Teng Fei
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Bi-Feng Liu
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Yiwei Li
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
20
|
Zhang L, Adu IK, Zhang H, Wang J. The WNT/β-catenin system in chronic kidney disease-mineral bone disorder syndrome. Int Urol Nephrol 2023; 55:2527-2538. [PMID: 36964322 DOI: 10.1007/s11255-023-03569-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND The WNT/β-catenin system is an evolutionarily conserved signaling pathway that plays a crucial role in morphogenesis and cell tissue formation during embryogenesis. Although usually suppressed in adulthood, it can be reactivated during organ damage and regeneration. Transient activation of the WNT/β-catenin pathway stimulates tissue regeneration after acute kidney injury, while persistent (uncontrolled) activation can promote the development of chronic kidney disease (CKD). CKD-MBD is a clinical syndrome that develops with systemic mineral and bone metabolism disorders caused by CKD, characterized by abnormal bone mineral metabolism and/or extraosseous calcification, as well as cardiovascular disease associated with CKD, including vascular stiffness and calcification. OBJECTIVE This paper aims to comprehensively review the WNT/β-catenin signaling pathway in relation to CKD-MBD, focusing on its components, regulatory molecules, and regulatory mechanisms. Additionally, this review highlights the challenges and opportunities for using small molecular compounds to target the WNT/β-catenin signaling pathway in CKD-MBD therapy. METHODS We conducted a comprehensive literature review using various scientific databases, including PubMed, Scopus, and Web of Science, to identify relevant articles. We searched for articles that discussed the WNT/β-catenin signaling pathway, CKD-MBD, and their relationship. We also reviewed articles that discussed the components of the WNT/β-catenin signaling pathway, its regulatory molecules, and regulatory mechanisms. RESULTS The WNT/β-catenin signaling pathway plays a crucial role in CKD-MBD by promoting vascular calcification and bone mineral metabolism disorders. The pathway's components include WNT ligands, Frizzled receptors, and LRP5/6 co-receptors, which initiate downstream signaling cascades leading to the activation of β-catenin. Several regulatory molecules, including GSK-3β, APC, and Axin, modulate β-catenin activation. The WNT/β-catenin signaling pathway also interacts with other signaling pathways, such as the BMP pathway, to regulate CKD-MBD. CONCLUSIONS The WNT/β-catenin signaling pathway is a potential therapeutic target for CKD-MBD. Small molecular compounds that target the components or regulatory molecules of the pathway may provide a promising approach to treat CKD-MBD. However, more research is needed to identify safe and effective compounds and to determine the optimal dosages and treatment regimens.
Collapse
Affiliation(s)
- Lingbo Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
| | - Isaac Kumi Adu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
- Department of Internal Medicine, Kings and Queens University College and Teaching Hospital, Akosombo, Ghana
| | - Haifeng Zhang
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
| | - Jiancheng Wang
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China.
| |
Collapse
|
21
|
Li M, Zheng J, Luo D, Xu K, Sheng R, MacDonald BT, He X, Zhang X. Frizzled receptors facilitate Tiki inhibition of Wnt signaling at the cell surface. EMBO Rep 2023; 24:e55873. [PMID: 36994853 PMCID: PMC10240186 DOI: 10.15252/embr.202255873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The membrane-tethered protease Tiki antagonizes Wnt3a signaling by cleaving and inactivating Wnt3a in Wnt-producing cells. Tiki also functions in Wnt-receiving cells to antagonize Wnt signaling by an unknown mechanism. Here, we demonstrate that Tiki inhibition of Wnt signaling at the cell surface requires Frizzled (FZD) receptors. Tiki associates with the Wnt-FZD complex and cleaves the N-terminus of Wnt3a or Wnt5a, preventing the Wnt-FZD complex from recruiting and activating the coreceptor LRP6 or ROR1/2 without affecting Wnt-FZD complex stability. Intriguingly, we demonstrate that the N-terminus of Wnt3a is required for Wnt3a binding to LRP6 and activating β-catenin signaling, while the N-terminus of Wnt5a is dispensable for recruiting and phosphorylating ROR1/2. Both Tiki enzymatic activity and its association with the Wnt-FZD complex contribute to its inhibitory function on Wnt5a. Our study uncovers the mechanism by which Tiki antagonizes Wnt signaling at the cell surface and reveals a negative role of FZDs in Wnt signaling by acting as Tiki cofactors. Our findings also reveal an unexpected role of the Wnt3a N-terminus in the engagement of the coreceptor LRP6.
Collapse
Affiliation(s)
- Mingyi Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jing Zheng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Dong Luo
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Kai Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ren Sheng
- College of Life and Health ScienceNortheastern UniversityShenyangChina
| | | | - Xi He
- Department of Neurology, Harvard Medical School, The F. M. Kirby Neurobiology CenterBoston Children's HospitalBostonMAUSA
| | - Xinjun Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| |
Collapse
|
22
|
Atkinson BN, Willis NJ, Zhao Y, Patel C, Frew S, Costelloe K, Magno L, Svensson F, Jones EY, Fish PV. Designed switch from covalent to non-covalent inhibitors of carboxylesterase Notum activity. Eur J Med Chem 2023; 251:115132. [PMID: 36934521 PMCID: PMC10626578 DOI: 10.1016/j.ejmech.2023.115132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
N-Acyl indolines 4 are potent, non-covalent Notum inhibitors developed from a covalent virtual screening hit 2a. The lead compounds were simple to synthesise, achieved excellent potency in a biochemical Notum-OPTS assay and restored Wnt signalling in a cell-based TCF/LEF reporter assay. Multiple high resolution X-ray structures established a common binding mode of these inhibitors with the indoline bound centred in the palmiteolate pocket with key interactions being aromatic stacking and a water mediated hydrogen bond to the oxyanion hole. These N-acyl indolines 4 will be useful tools for use in vitro studies to investigate the role of Notum in disease models, especially when paired with a structurally related covalent inhibitor (e.g. 4w and 2a). Overall, this study highlights the designed switch from covalent to non-covalent Notum inhibitors and so illustrates a complementary approach for hit generation and target inhibition.
Collapse
Affiliation(s)
- Benjamin N Atkinson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Nicky J Willis
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chandni Patel
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Sarah Frew
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Kathryn Costelloe
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
23
|
Patel DK, Kesharwani R, Verma A, Al-Abbasi FA, Anwar F, Kumar V. Scope of Wnt signaling in the precise diagnosis and treatment of breast cancer. Drug Discov Today 2023:103597. [PMID: 37100166 DOI: 10.1016/j.drudis.2023.103597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/12/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Malignant breast cancers are responsible for a growing number of deaths among women globally. The latest research has demonstrated that Wnt signaling is pivotal in this disease, regulating a safe microenvironment for the growth and proliferation of cancer cells {AuQ: Edit OK?}, sustained stemness, resistance to therapy, and aggregate formation. The three highly conserved {AuQ: Edit OK?} Wnt signaling pathways, Wnt-planar cell polarity (PCP), Wnt/β-catenin signaling and Wnt-Ca2+ signaling, assume various roles in the maintenance and amelioration of breast cancer. In this review, we examine ongoing studies on the Wnt signaling pathways and discuss how dysregulation of these pathways promotes breast cancers. We also look at how Wnt dysregulation could be exploited to foster new treatments for malignant breast cancers.
Collapse
Affiliation(s)
- Dilip K Patel
- Department of Pharmacy, Government Polytechnic Jaunpur, Uttar Pradesh, India
| | - Roohi Kesharwani
- Chandra Shekhar Singh College of Pharmacy, Koilaha, Kaushambi, Uttar Pradesh, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Naini, Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
24
|
Rees JM, Sleight VA, Clark SJ, Nakamura T, Gillis JA. Ectodermal Wnt signaling, cell fate determination, and polarity of the skate gill arch skeleton. eLife 2023; 12:e79964. [PMID: 36940244 PMCID: PMC10027317 DOI: 10.7554/elife.79964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023] Open
Abstract
The gill skeleton of cartilaginous fishes (sharks, skates, rays, and holocephalans) exhibits a striking anterior-posterior polarity, with a series of fine appendages called branchial rays projecting from the posterior margin of the gill arch cartilages. We previously demonstrated in the skate (Leucoraja erinacea) that branchial rays derive from a posterior domain of pharyngeal arch mesenchyme that is responsive to Sonic hedgehog (Shh) signaling from a distal gill arch epithelial ridge (GAER) signaling centre. However, how branchial ray progenitors are specified exclusively within posterior gill arch mesenchyme is not known. Here, we show that genes encoding several Wnt ligands are expressed in the ectoderm immediately adjacent to the skate GAER, and that these Wnt signals are transduced largely in the anterior arch environment. Using pharmacological manipulation, we show that inhibition of Wnt signalling results in an anterior expansion of Shh signal transduction in developing skate gill arches, and in the formation of ectopic anterior branchial ray cartilages. Our findings demonstrate that ectodermal Wnt signalling contributes to gill arch skeletal polarity in skate by restricting Shh signal transduction and chondrogenesis to the posterior arch environment and highlights the importance of signalling interactions at embryonic tissue boundaries for cell fate determination in vertebrate pharyngeal arches.
Collapse
Affiliation(s)
- Jenaid M Rees
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Victoria A Sleight
- School of Biological Sciences, University of AberdeenAberdeenUnited Kingdom
| | | | - Tetsuya Nakamura
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - J Andrew Gillis
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleUnited States
| |
Collapse
|
25
|
Madrigal P, Deng S, Feng Y, Militi S, Goh KJ, Nibhani R, Grandy R, Osnato A, Ortmann D, Brown S, Pauklin S. Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation. Nat Commun 2023; 14:405. [PMID: 36697417 PMCID: PMC9876972 DOI: 10.1038/s41467-023-36116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Stem cells undergo cellular division during their differentiation to produce daughter cells with a new cellular identity. However, the epigenetic events and molecular mechanisms occurring between consecutive cell divisions have been insufficiently studied due to technical limitations. Here, using the FUCCI reporter we developed a cell-cycle synchronised human pluripotent stem cell (hPSC) differentiation system for uncovering epigenome and transcriptome dynamics during the first two divisions leading to definitive endoderm. We observed that transcription of key differentiation markers occurs before cell division, while chromatin accessibility analyses revealed the early inhibition of alternative cell fates. We found that Activator protein-1 members controlled by p38/MAPK signalling are necessary for inducing endoderm while blocking cell fate shifting toward mesoderm, and that enhancers are rapidly established and decommissioned between different cell divisions. Our study has practical biomedical utility for producing hPSC-derived patient-specific cell types since p38/MAPK induction increased the differentiation efficiency of insulin-producing pancreatic beta-cells.
Collapse
Affiliation(s)
- Pedro Madrigal
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Siwei Deng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Kim Jee Goh
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Rodrigo Grandy
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anna Osnato
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniel Ortmann
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephanie Brown
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
26
|
Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023; 24:ijms24021795. [PMID: 36675309 PMCID: PMC9865322 DOI: 10.3390/ijms24021795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Thoracic aortic disease affects people of all ages and the majority of those aged <60 years have an underlying genetic cause. There is presently no effective medical therapy for thoracic aneurysm and surgery remains the principal intervention. Unlike abdominal aortic aneurysm, for which the inflammatory/atherosclerotic pathogenesis is well established, the mechanism of thoracic aneurysm is less understood. This paper examines the key cell signaling systems responsible for the growth and development of the aorta, homeostasis of endothelial and vascular smooth muscle cells and interactions between pathways. The evidence supporting a role for individual signaling pathways in pathogenesis of thoracic aortic aneurysm is examined and potential novel therapeutic approaches are reviewed. Several key signaling pathways, notably TGF-β, WNT, NOTCH, PI3K/AKT and ANGII contribute to growth, proliferation, cell phenotype and survival for both vascular smooth muscle and endothelial cells. There is crosstalk between pathways, and between vascular smooth muscle and endothelial cells, with both synergistic and antagonistic interactions. A common feature of the activation of each is response to injury or abnormal cell stress. Considerable experimental evidence supports a contribution of each of these pathways to aneurysm formation. Although human information is less, there is sufficient data to implicate each pathway in the pathogenesis of human thoracic aneurysm. As some pathways i.e., WNT and NOTCH, play key roles in tissue growth and organogenesis in early life, it is possible that dysregulation of these pathways results in an abnormal aortic architecture even in infancy, thereby setting the stage for aneurysm development in later life. Given the fine tuning of these signaling systems, functional polymorphisms in key signaling elements may set up a future risk of thoracic aneurysm. Multiple novel therapeutic agents have been developed, targeting cell signaling pathways, predominantly in cancer medicine. Future investigations addressing cell specific targeting, reduced toxicity and also less intense treatment effects may hold promise for effective new medical treatments of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Charlotte Xue Dong
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cassandra Malecki
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
| | - Elizabeth Robertson
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Brett Hambly
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richmond Jeremy
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
- Correspondence:
| |
Collapse
|
27
|
Oxidative stress-triggered Wnt signaling perturbation characterizes the tipping point of lung adeno-to-squamous transdifferentiation. Signal Transduct Target Ther 2023; 8:16. [PMID: 36627278 PMCID: PMC9832009 DOI: 10.1038/s41392-022-01227-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023] Open
Abstract
Lkb1 deficiency confers the Kras-mutant lung cancer with strong plasticity and the potential for adeno-to-squamous transdifferentiation (AST). However, it remains largely unknown how Lkb1 deficiency dynamically regulates AST. Using the classical AST mouse model (Kras LSL-G12D/+;Lkb1flox/flox, KL), we here comprehensively analyze the temporal transcriptomic dynamics of lung tumors at different stages by dynamic network biomarker (DNB) and identify the tipping point at which the Wnt signaling is abruptly suppressed by the excessive accumulation of reactive oxygen species (ROS) through its downstream effector FOXO3A. Bidirectional genetic perturbation of the Wnt pathway using two different Ctnnb1 conditional knockout mouse strains confirms its essential role in the negative regulation of AST. Importantly, pharmacological activation of the Wnt pathway before but not after the tipping point inhibits squamous transdifferentiation, highlighting the irreversibility of AST after crossing the tipping point. Through comparative transcriptomic analyses of mouse and human tumors, we find that the lineage-specific transcription factors (TFs) of adenocarcinoma and squamous cell carcinoma form a "Yin-Yang" counteracting network. Interestingly, inactivation of the Wnt pathway preferentially suppresses the adenomatous lineage TF network and thus disrupts the "Yin-Yang" homeostasis to lean towards the squamous lineage, whereas ectopic expression of NKX2-1, an adenomatous lineage TF, significantly dampens such phenotypic transition accelerated by the Wnt pathway inactivation. The negative correlation between the Wnt pathway and AST is further observed in a large cohort of human lung adenosquamous carcinoma. Collectively, our study identifies the tipping point of AST and highlights an essential role of the ROS-Wnt axis in dynamically orchestrating the homeostasis between adeno- and squamous-specific TF networks at the AST tipping point.
Collapse
|
28
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
29
|
Craig SEL, Michalski MN, Williams BO. Got WNTS? Insight into bone health from a WNT perspective. Curr Top Dev Biol 2023; 153:327-346. [PMID: 36967199 DOI: 10.1016/bs.ctdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
30
|
Velloso I, Han W, He X, Abreu JG. The role of Wnt signaling in Xenopus neural induction. Curr Top Dev Biol 2023; 153:229-254. [PMID: 36967196 DOI: 10.1016/bs.ctdb.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Development of the central nervous system in amphibians has called attention from scientists for over a century. Interested in the matter of embryonic inductions, Hans Spemann and Hilde Mangold found out that the dorsal blastopore lip of the salamander's embryo has organizer properties. Such an ectopic graft could induce structures in the host embryo, including a neural tube overlying the notochord of a perfect secondary body axis. A couple of decades later, the frog Xenopus laevis emerged as an excellent embryological experimental model and seminal concepts involving embryonic inductions began to be revealed. The so-called primary induction is, in fact, a composition of signaling and inductive events that are triggered as soon as fertilization takes place. In this regard, since early 1990s an intricate network of signaling pathways has been built. The Wnt pathway, which began to be uncovered in cancer biology studies, is crucial during the establishment of two signaling centers in Xenopus embryogenesis: Nieuwkoop center and the blastula chordin noggin expression center (BCNE). Here we will discuss the historical events that led to the discovery of those centers, as well as the molecular mechanisms by which they operate. This chapter highlights the cooperation of both signaling centers with potential to be further explored in the future. We aim to address the essential morphological transformation during gastrulation and neurulation as well as the role of Wnt signaling in patterning the organizer and the neural plate.
Collapse
Affiliation(s)
- Ian Velloso
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wonhee Han
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xi He
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Jose G Abreu
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Notum leads to potential pro-survival of OSCC through crosstalk between Shh and Wnt/β-catenin signaling via p-GSK3β. Int J Biochem Cell Biol 2022; 153:106316. [DOI: 10.1016/j.biocel.2022.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
32
|
Yuan YF, Wang S, Zhou H, Tang BB, Liu Y, Huang H, He CJ, Chen TP, Fang MH, Liang BC, Mao YDL, Qie FQ, Liu K, Shi XL. Exploratory study of sea buckthorn enhancing QiangGuYin efficacy by inhibiting CKIP-1 and Notum activating the Wnt/β-catenin signaling pathway and analysis of active ingredients by molecular docking. Front Pharmacol 2022; 13:994995. [PMID: 36304155 PMCID: PMC9592738 DOI: 10.3389/fphar.2022.994995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Sea buckthorn (SBT) is a traditional Chinese medicine (TCM), rich in calcium, phosphorus, and vitamins, which can potentially prevent and treat osteoporosis. However, no research has been conducted to confirm these hypotheses. QiangGuYin (QGY) is a TCM compound used to treat osteoporosis. There is a need to investigate whether SBT enhances QGY efficacy. Objectives: The aim of this study was to explore whether SBT enhances QGY efficacy by inhibiting CKIP-1 and Notum expression through the Wnt/β-catenin pathway. The study also aimed to explore the active components of SBT. Methods: Experimental animals were divided into control, model, QGY, SBT, SBT + Eucommia ulmoides (EU), and SBT + QGY groups. After treatment, bone morphometric parameters, such as estrogen, PINP, and S-CTX levels, and Notum, CKIP-1, and β-catenin expression were examined. Screening of SBT active components was conducted by molecular docking to obtain small molecules that bind Notum and CKIP-1. Results: The results showed that all the drug groups could elevate the estrogen, PINP, and S-CTX levels, improve femoral bone morphometric parameters, inhibit Notum and CKIP-1 expression, and promote β-catenin expression. The effect of SBT + EU and SBT + QGY was superior to the others. Molecular docking identified that SBT contains seven small molecules (folic acid, rhein, quercetin, kaempferol, mandenol, isorhamnetin, and ent-epicatechin) with potential effects on CKIP-1 and Notum. Conclusion: SBT improves bone morphometric performance in PMOP rats by inhibiting CKIP-1 and Notum expression, increasing estrogen levels, and activating the Wnt/β-catenin signaling pathway. Furthermore, SBT enhances the properties of QGY. Folic acid, rhein, quercetin, kaempferol, mandenol, isorhamnetin, and ent-epicatechin are the most likely active ingredients of SBT. These results provide insight into the pharmacological mechanisms of SBT in treating osteoporosis.
Collapse
Affiliation(s)
- Yi-Feng Yuan
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shen Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin-Bin Tang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, China
| | - Yang Liu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cai-Jian He
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tian-Peng Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mou-Hao Fang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo-Cheng Liang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, China
| | - Ying-De-Long Mao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, China
| | | | - Kang Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, China
| | - Xiao-Lin Shi
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, China
| |
Collapse
|
33
|
Colozza G, Park SY, Koo BK. Clone wars: From molecules to cell competition in intestinal stem cell homeostasis and disease. Exp Mol Med 2022; 54:1367-1378. [PMID: 36117218 PMCID: PMC9534868 DOI: 10.1038/s12276-022-00854-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
The small intestine is among the fastest self-renewing tissues in adult mammals. This rapid turnover is fueled by the intestinal stem cells residing in the intestinal crypt. Wnt signaling plays a pivotal role in regulating intestinal stem cell renewal and differentiation, and the dysregulation of this pathway leads to cancer formation. Several studies demonstrate that intestinal stem cells follow neutral drift dynamics, as they divide symmetrically to generate other equipotent stem cells. Competition for niche space and extrinsic signals in the intestinal crypt is the governing mechanism that regulates stemness versus cell differentiation, but the underlying molecular mechanisms are still poorly understood, and it is not yet clear how this process changes during disease. In this review, we highlight the mechanisms that regulate stem cell homeostasis in the small intestine, focusing on Wnt signaling and its regulation by RNF43 and ZNRF3, key inhibitors of the Wnt pathway. Furthermore, we summarize the evidence supporting the current model of intestinal stem cell regulation, highlighting the principles of neutral drift at the basis of intestinal stem cell homeostasis. Finally, we discuss recent studies showing how cancer cells bypass this mechanism to gain a competitive advantage against neighboring normal cells. Stem cells in the gut rapidly renew themselves through processes that cancer cells co-opt to trigger tumor development. Gabriele Colozza from the Institute of Molecular Biotechnology in Vienna, Austria, and colleagues review how a network of critical molecular signals and competition for limited space help to regulate the dynamics of stem cells in the intestines. The correct balance between self-renewal and differentiation is tightly controlled by the so-called Wnt signaling pathway and its inhibitors. Competition between dividing cells in the intestinal crypts, the locations between finger-like protrusions in the gut where stem cells are found, provides another protective mechanism against runaway stem cell growth. However, intestinal cancer cells, thanks to their activating mutations, bypass these safeguards to gain a survival advantage. Drugs that target these ‘super-competitive’ behaviors could therefore help combat tumor proliferation.
Collapse
|
34
|
Djptpn11 is indispensable for planarian regeneration by affecting early wound response genes expression and the Wnt pathway. Biochimie 2022; 201:184-195. [PMID: 35868605 DOI: 10.1016/j.biochi.2022.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/22/2022]
Abstract
Planarian is an ideal model system of studying regeneration. Stem cell system and positional control genes (PCGs) are two important factors for perfect regeneration of planarians and they combine to promote their regeneration. Even so, how wounds regulate proliferation and neoblast fate is still important areas to address. Ptpn11 (Protein tyrosine phosphatase non-receptor type 11), one of PTP (Protein tyrosine phosphatase) family members, plays an important role in cellular processes including cell survival, proliferation, differentiation and apoptosis. Nevertheless, the role of ptpn11 in the planarian regeneration has not been fully studied. In this study, we identify the Djptpn11 gene to observe its function in planarian regeneration. The results reveal that the regeneration is severely inhibited and cause the disorder homeostasis in planarians. Furthermore, the stem cells proliferation and differentiation decreases while the apoptosis increases following Djptpn11 RNAi. At the same time, Djptpn11 affects the expression levels of early wound response genes (Djegr2, Dj1-jun, Djrunt1, Djwnt1 and Djnotum). Djwnt1 and Djnotum are two key Wnt signaling pathway genes and Djptpn11 affects the expression levels of Djwnt1 and Djnotum in the early and late stages of planarian regeneration. In general, Djptpn11 is indispensable for the homeostasis and regeneration of planarian by affecting the stem cells, early wound response genes and the Wnt pathway.
Collapse
|
35
|
Li M, Zheng J, Luo D, Xu K, Zhang X. Tiki proteins are substrates of membrane-type matrix metalloproteinases. FEBS Lett 2022; 596:1851-1859. [PMID: 35689492 DOI: 10.1002/1873-3468.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
Tiki proteins represent a new family of Wnt-specific proteases that inhibit Wnt signalling by cleaving and inactivating Wnt proteins. Tiki proteins are glycosylphosphatidylinositol (GPI)-anchored proteases and function in both Wnt-producing and Wnt-responsive cells. However, how Tiki proteins are regulated remains elusive. In this study, we demonstrate that matrix metalloproteinase 15 (MMP15) interacts with TIKI2 and degrades TIKI2 on the cell surface. Functionally, MMP15 relieves the inhibitory effect of TIKI2 on Wnt signalling in Wnt-responsive cells. We further show that Tiki proteins are substrates of MMP14, MMP15 and MMP16 but not MMP3 or MMP13. Our study provides insights into the potential regulation of Tiki family proteins by other proteases.
Collapse
Affiliation(s)
- Mingyi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Willis N, Mahy W, Sipthorp J, Zhao Y, Woodward HL, Atkinson BN, Bayle ED, Svensson F, Frew S, Jeganathan F, Monaghan A, Benvegnù S, Jolly S, Vecchia L, Ruza RR, Kjær S, Howell S, Snijders AP, Bictash M, Salinas PC, Vincent JP, Jones EY, Whiting P, Fish PV. Design of a Potent, Selective, and Brain-Penetrant Inhibitor of Wnt-Deactivating Enzyme Notum by Optimization of a Crystallographic Fragment Hit. J Med Chem 2022; 65:7212-7230. [PMID: 35536179 PMCID: PMC9150124 DOI: 10.1021/acs.jmedchem.2c00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/26/2022]
Abstract
Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets.
Collapse
Affiliation(s)
- Nicky
J. Willis
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - William Mahy
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - James Sipthorp
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Hannah L. Woodward
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Benjamin N. Atkinson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Elliott D. Bayle
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Fredrik Svensson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Sarah Frew
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Fiona Jeganathan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Amy Monaghan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Stefano Benvegnù
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Sarah Jolly
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Luca Vecchia
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Reinis R. Ruza
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Svend Kjær
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Steven Howell
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | | | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Patricia C. Salinas
- Department
of Cell and Developmental Biology, Laboratory for Molecular and Cellular
Biology, University College London, London WC1E 6BT, U.K.
| | - Jean-Paul Vincent
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Paul Whiting
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| |
Collapse
|
37
|
Abreu de Oliveira WA, El Laithy Y, Bruna A, Annibali D, Lluis F. Wnt Signaling in the Breast: From Development to Disease. Front Cell Dev Biol 2022; 10:884467. [PMID: 35663403 PMCID: PMC9157790 DOI: 10.3389/fcell.2022.884467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt cascade is a primordial developmental signaling pathway that plays a myriad of essential functions throughout development and adult homeostasis in virtually all animal species. Aberrant Wnt activity is implicated in embryonic and tissue morphogenesis defects, and several diseases, most notably cancer. The role of Wnt signaling in mammary gland development and breast cancer initiation, maintenance, and progression is far from being completely understood and is rather shrouded in controversy. In this review, we dissect the fundamental role of Wnt signaling in mammary gland development and adult homeostasis and explore how defects in its tightly regulated and intricated molecular network are interlinked with cancer, with a focus on the breast.
Collapse
Affiliation(s)
- Willy Antoni Abreu de Oliveira
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| | - Youssef El Laithy
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Alejandra Bruna
- Centre for Paediatric Oncology Experimental Medicine, Centre for Cancer Evolution, Molecular Pathology Division, London, United Kingdom
| | - Daniela Annibali
- Department of Oncology, Gynecological Oncology Laboratory, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| |
Collapse
|
38
|
Reddien PW. Positional Information and Stem Cells Combine to Result in Planarian Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040717. [PMID: 34518341 PMCID: PMC9121904 DOI: 10.1101/cshperspect.a040717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The capacity for regeneration is broad in the animal kingdom. Planarians are flatworms that can regenerate any missing body part and their regenerative powers have combined with ease of experimentation to make them a classic regeneration model for more than a century. Pluripotent stem cells called neoblasts generate missing planarian tissues. Fate specification happens in the neoblasts, and this can occur in response to regeneration instructions in the form of positional information. Fate specification can lead to differentiating cells in single steps rather than requiring a long lineage hierarchy. Planarians display constitutive expression of positional information from muscle cells, which is required for patterned maintenance of tissues in tissue turnover. Amputation leads to the rapid resetting of positional information in a process triggered by wound signaling and the resetting of positional information is required for regeneration. These findings suggest a model for planarian regeneration in which adult positional information resets after injury to regulate stem cells to bring about the replacement of missing parts.
Collapse
Affiliation(s)
- Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
- Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Yildiz I, Yildiz BS. Computational Analysis of the Inhibition Mechanism of NOTUM by the ONIOM Method. ACS OMEGA 2022; 7:13333-13342. [PMID: 35474786 PMCID: PMC9026088 DOI: 10.1021/acsomega.2c01044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Notum is a member of serine hydrolyses that cleaves the palmitoleate moiety from Wingless-related integration site (Wnt) ligands. This enzyme plays crucial functions through modulating the Wnt signaling pathway. Inhibition of Notum carries therapeutic effects against a number of maladies including osteoporosis, cancer, and Alzheimer's disease. Recently, a class of irreversible inhibitors based on esters of 4-(indolin-1-yl)-4-oxobutanoic acid have been reported. Using the crystal structures of enzyme-4-(indolin-1-yl)-4-oxobutanoate adduct and 4-(indolin-1-yl)-4-oxobutanoic acid-enzyme complex, we studied computationally the proposed inhibition mechanism using model systems based on the own n-layered integrated molecular orbital and molecular mechanics (ONIOM) method. In the first place, model systems were formulated to investigate the transesterification between the catalytic serine residue, Ser-232, and the methyl ester of 4-(indolin-1-yl)-4-oxobutanoate. In the second place, the hydrolysis mechanism of the resultant enzyme-inhibitor adduct was studied. The energetics of these steps were analyzed using a density functional theory functional in the ONIOM method. In addition, the roles of active-site residues during these steps were highlighted. It was found that the hydrolysis of the covalent adduct is highly endergonic corroborating the irreversible inhibition mechanism. These results will shed light not only on the inhibition mechanism but also on the catalytic mechanism.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Chemistry
Department, Khalifa University, PO Box 127788, Abu Dhabi 00000, UAE
| | | |
Collapse
|
40
|
Li M, Zheng J, He X, Zhang X. Tiki proteins are glycosylphosphatidylinositol-anchored proteases. FEBS Lett 2022; 596:1037-1046. [PMID: 35182431 PMCID: PMC9038680 DOI: 10.1002/1873-3468.14320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/07/2022] [Indexed: 11/07/2022]
Abstract
Wnt signalling pathways play pivotal roles in development, homeostasis and human diseases, and are tightly regulated. We previously identified Tiki as a novel family of Wnt inhibitory proteases. Tiki proteins were predicted as type I transmembrane proteins and can act in both Wnt-producing and Wnt-responsive cells. Here, we characterize Tiki proteins as glycosylphosphatidylinositol (GPI)-anchored proteases. TIKI1/2 proteins are enriched on the detergent-resistant membrane microdomains and can be released from the plasma membrane by GPI-specific glycerophosphodiesterases GDE3 and GDE6, but not by GDE2. The GPI anchor determines the cellular localization of Tiki proteins and their regulation by GDEs, but not their inhibitory activity on Wnt signalling. Our study uncovered novel characteristics and potential regulations of the Tiki family proteases.
Collapse
Affiliation(s)
- Mingyi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xi He
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
42
|
Waghmare I, Page-McCaw A. Regulation of Wnt distribution and function by Drosophila glypicans. J Cell Sci 2022; 135:274233. [PMID: 35112708 PMCID: PMC8918805 DOI: 10.1242/jcs.259405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular distribution of secreted Wnt proteins is crucial for their ability to induce a response in target cells at short and long ranges to ensure proper development. Wnt proteins are evolutionarily conserved ligands that are lipid-modified, and their hydrophobic nature interferes with their solubility in the hydrophilic extracellular environment. This raises the question of how Wnt proteins spread extracellularly despite their lipid modifications, which are essential for both their secretion and function. Seminal studies on Drosophila Wingless (Wg), a prototypical Wnt, have discovered multiple mechanisms by which Wnt proteins spread. A central theme emerges from these studies: the Wnt lipid moiety is shielded from the aqueous environment, allowing the ligands to spread and remain viable for signaling. Wnt distribution in vivo is primarily facilitated by glypicans, which are cell-surface heparan sulfate proteoglycans, and recent studies have further provided mechanistic insight into how glypicans facilitate Wnt distribution. In this Review, we discuss the many diverse mechanisms of Wnt distribution, with a particular focus on glypican-mediated mechanisms.
Collapse
|
43
|
Canonical Wnt Signaling in the Pathology of Iron Overload-Induced Oxidative Stress and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7163326. [PMID: 35116092 PMCID: PMC8807048 DOI: 10.1155/2022/7163326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Abstract
Iron accumulates in the vital organs with aging. This is associated with oxidative stress, inflammation, and mitochondrial dysfunction leading to age-related disorders. Abnormal iron levels are linked to neurodegenerative diseases, liver injury, cancer, and ocular diseases. Canonical Wnt signaling is an evolutionarily conserved signaling pathway that regulates many cellular functions including cell proliferation, apoptosis, cell migration, and stem cell renewal. Recent evidences indicate that iron regulates Wnt signaling, and iron chelators like deferoxamine and deferasirox can inhibit Wnt signaling and cell growth. Canonical Wnt signaling is implicated in the pathogenesis of many diseases, and there are significant efforts ongoing to develop innovative therapies targeting the aberrant Wnt signaling. This review examines how intracellular iron accumulation regulates Wnt signaling in various tissues and their potential contribution in the progression of age-related diseases.
Collapse
|
44
|
Steadman D, Atkinson BN, Zhao Y, Willis NJ, Frew S, Monaghan A, Patel C, Armstrong E, Costelloe K, Magno L, Bictash M, Jones EY, Fish PV, Svensson F. Virtual Screening Directly Identifies New Fragment-Sized Inhibitors of Carboxylesterase Notum with Nanomolar Activity. J Med Chem 2022; 65:562-578. [PMID: 34939789 DOI: 10.1021/acs.jmedchem.1c01735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Notum is a negative regulator of Wnt signaling acting through the hydrolysis of a palmitoleoylate ester, which is required for Wnt activity. Inhibitors of Notum could be of use in diseases where dysfunctional Notum activity is an underlying cause. A docking-based virtual screen (VS) of a large commercial library was used to shortlist 952 compounds for experimental validation as inhibitors of Notum. The VS was successful with 31 compounds having an IC50 < 500 nM. A critical selection process was then applied with two clusters and two singletons (1-4d) selected for hit validation. Optimization of 4d guided by structural biology identified potent inhibitors of Notum activity that restored Wnt/β-catenin signaling in cell-based models. The [1,2,4]triazolo[4,3-b]pyradizin-3(2H)-one series 4 represent a new chemical class of Notum inhibitors and the first to be discovered by a VS campaign. These results demonstrate the value of VS with well-designed docking models based on X-ray structures.
Collapse
Affiliation(s)
- David Steadman
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Benjamin N Atkinson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, OxfordOX3 7BN, U.K
| | - Nicky J Willis
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Sarah Frew
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Amy Monaghan
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Chandni Patel
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Emma Armstrong
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Kathryn Costelloe
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Magda Bictash
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, OxfordOX3 7BN, U.K
| | - Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| |
Collapse
|
45
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 1076] [Impact Index Per Article: 358.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
46
|
Atkinson BN, Willis NJ, Smith J, Gill R, Ali J, Xu Z, Lai PS, Fish PV. Large-scale synthesis of Notum inhibitor 1-(2,4-dichloro-3-(trifluoromethyl)-phenyl)-1 H-1,2,3-triazole (ARUK3001185) employing a modified Sakai reaction as the key step. RSC Adv 2022; 12:26497-26503. [PMID: 36275171 PMCID: PMC9478995 DOI: 10.1039/d2ra05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
1-Phenyl-1H-1,2,3-triazole 1 (ARUK3001185) was prepared on large scale from aniline 4 by application of both (1) a copper catalyzed azide–alkyne cycloaddition (CuAAC) with (trimethylsilyl)acetylene, and (2) a Clark modification of the Sakai reaction. The one-pot Sakai–Clark method with (MeO)2CHCH
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
NNHTos (2b) proved to be superior as it was operationally simple, metal-free, and avoided the use of aryl azide 7. The Sakai–Clark method has been reliably performed on large scale to produce >100 g of 1 in good efficiency and high purity. 1-Phenyl-1H-1,2,3-triazole 1 was prepared on large scale from aniline 4 by application of a one-pot Sakai–Clark reaction in good efficiency and high purity.![]()
Collapse
Affiliation(s)
- Benjamin N. Atkinson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Nicky J. Willis
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Jennifer Smith
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, Cornwall, PL32 9RA, UK
| | - Rebecca Gill
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, Cornwall, PL32 9RA, UK
| | - Jody Ali
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, Cornwall, PL32 9RA, UK
| | - Zhou Xu
- WuXi AppTec (Tianjin) Co., Ltd., 168 Nanhai Road, 10th Avenue, Tianjin Economic-Technological Development Area (TEDA), Tianjin 300457, P.R. China
| | - Ping-Shan Lai
- WuXi AppTec (Tianjin) Co., Ltd., 168 Nanhai Road, 10th Avenue, Tianjin Economic-Technological Development Area (TEDA), Tianjin 300457, P.R. China
| | - Paul V. Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
47
|
Signalling dynamics in embryonic development. Biochem J 2021; 478:4045-4070. [PMID: 34871368 PMCID: PMC8718268 DOI: 10.1042/bcj20210043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
In multicellular organisms, cellular behaviour is tightly regulated to allow proper embryonic development and maintenance of adult tissue. A critical component in this control is the communication between cells via signalling pathways, as errors in intercellular communication can induce developmental defects or diseases such as cancer. It has become clear over the last years that signalling is not static but varies in activity over time. Feedback mechanisms present in every signalling pathway lead to diverse dynamic phenotypes, such as transient activation, signal ramping or oscillations, occurring in a cell type- and stage-dependent manner. In cells, such dynamics can exert various functions that allow organisms to develop in a robust and reproducible way. Here, we focus on Erk, Wnt and Notch signalling pathways, which are dynamic in several tissue types and organisms, including the periodic segmentation of vertebrate embryos, and are often dysregulated in cancer. We will discuss how biochemical processes influence their dynamics and how these impact on cellular behaviour within multicellular systems.
Collapse
|
48
|
Choi RB, Bullock WA, Hoggatt AM, Horan DJ, Pemberton EZ, Hong JM, Zhang X, He X, Robling AG. Notum Deletion From Late-Stage Skeletal Cells Increases Cortical Bone Formation and Potentiates Skeletal Effects of Sclerostin Inhibition. J Bone Miner Res 2021; 36:2413-2425. [PMID: 34223673 PMCID: PMC8688238 DOI: 10.1002/jbmr.4411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
Wnt signaling plays a vital role in the cell biology of skeletal patterning, differentiation, and maintenance. Notum is a secreted member of the α/β-hydrolase superfamily that hydrolyzes the palmitoleoylate modification on Wnt proteins, thereby disrupting Wnt signaling. As a secreted inhibitor of Wnt, Notum presents an attractive molecular target for improving skeletal health. To determine the cell type of action for Notum's effect on the skeleton, we generated mice with Notum deficiency globally (Notum-/- ) and selectively (Notumf/f ) in limb bud mesenchyme (Prx1-Cre) and late osteoblasts/osteocytes (Dmp1-Cre). Late-stage deletion induced increased cortical bone properties, similar to global mutants. Notum expression was enhanced in response to sclerostin inhibition, so dual inhibition (Notum/sclerostin) was also investigated using a combined genetic and pharmacologic approach. Co-suppression increased cortical properties beyond either factor alone. Notum suppressed Wnt signaling in cell reporter assays, but surprisingly also enhanced Shh signaling independent of effects on Wnt. Notum is an osteocyte-active suppressor of cortical bone formation that is likely involved in multiple signaling pathways important for bone homeostasis © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Roy B. Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Whitney A. Bullock
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - April M. Hoggatt
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel J. Horan
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily Z. Pemberton
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jung Min Hong
- Division of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Xinjun Zhang
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Xi He
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical Engineering, Indiana University–Purdue University at Indianapolis, Indianapolis, IN, USA
- Roudebush VA Medical Center, Indianapolis, IN USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
| |
Collapse
|
49
|
Gong H, Niu Q, Zhou Y, Wang YX, Xu XF, Hou KZ. Notum palmitoleoyl-protein carboxylesterase regulates Fas cell surface death receptor-mediated apoptosis via the Wnt signaling pathway in colon adenocarcinoma. Bioengineered 2021; 12:5241-5252. [PMID: 34402722 PMCID: PMC8806481 DOI: 10.1080/21655979.2021.1961657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most common types of malignancy and accounts for >3 million deaths worldwide each year. The present study aimed to evaluate the role of notum palmitoleoyl-protein carboxylesterase (NOTUM) in in vivo and in vitro, and to identify the relationship between NOTUM and the apoptosis of COAD. Moreover, the present study aimed to investigate whether NOTUM regulated Fas cell surface death receptor (FAS)-mediated apoptosis was affected by the Wnt signaling pathway. Gene expression profiling interactive analysis (GEPIA) was used to predict the potential function of NOTUM. Western blotting and reverse transcription-quantitative PCR were conducted to detect the protein and mRNA expression levels of NOTUM in different tissues or cell lines. The occurrence and development of COAD was detected after NOTUM knockdown lentivirus administration. The apoptosis of COAD was also observed. SKL2001 was applied to examine whether the role of NOTUM was regulated by Wnt. GEPIA analysis demonstrated that NOTUM expression in COAD tumor tissue was higher compared with in normal tissues. Pair-wise gene correlation analysis identified a potential relationship between NOTUM and Wnt. NOTUM protein and mRNA expression levels in colon carcinoma tissues and RKO cells were increased. NOTUM knockdown lentivirus serves a role in inhibiting COAD development by reducing tumor proliferation, reducing tumor size, and increasing the level of apoptosis in vitro and in vivo. Moreover, NOTUM could increase apoptosis in COAD, which was regulated by FAS, and SKL2001 blocked the progress of apoptosis after NOTUM regulation by NOTUM knockdown lentivirus in vitro and in vivo. Collectively, the present results suggested that NOTUM may be able to regulate the apoptosis of COAD, and that Wnt may be the down-stream target signaling of NOTUM in apoptosis.
Collapse
Affiliation(s)
- Hua Gong
- The First Department of General Surgery, Shidong Hospital, Shanghai, P.R. China
| | - Qiang Niu
- The First Department of General Surgery, Shidong Hospital, Shanghai, P.R. China
| | - Yi Zhou
- The First Department of General Surgery, Shidong Hospital, Shanghai, P.R. China
| | - Yun-Xia Wang
- The First Department of General Surgery, Shidong Hospital, Shanghai, P.R. China
| | - Xuan-Fu Xu
- Department of Gastroenterology, Shidong Hospital, Shanghai, P.R. China
| | - Ke-Zhu Hou
- The First Department of General Surgery, Shidong Hospital, Shanghai, P.R. China
| |
Collapse
|
50
|
Zhao Y, Svensson F, Steadman D, Frew S, Monaghan A, Bictash M, Moreira T, Chalk R, Lu W, Fish PV, Jones EY. Structural Insights into Notum Covalent Inhibition. J Med Chem 2021; 64:11354-11363. [PMID: 34292747 PMCID: PMC8365597 DOI: 10.1021/acs.jmedchem.1c00701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Indexed: 12/28/2022]
Abstract
The carboxylesterase Notum hydrolyzes a palmitoleate moiety from Wingless/Integrated(Wnt) ligands and deactivates Wnt signaling. Notum inhibitors can restore Wnt signaling which may be of therapeutic benefit for pathologies such as osteoporosis and Alzheimer's disease. We report the identification of a novel class of covalent Notum inhibitors, 4-(indolin-1-yl)-4-oxobutanoate esters. High-resolution crystal structures of the Notum inhibitor complexes reveal a common covalent adduct formed between the nucleophile serine-232 and hydrolyzed butyric esters. The covalent interaction in solution was confirmed by mass spectrometry analysis. Inhibitory potencies vary depending on the warheads used. Mechanistically, the resulting acyl-enzyme intermediate carbonyl atom is positioned at an unfavorable angle for the approach of the active site water, which, combined with strong hydrophobic interactions with the enzyme pocket residues, hinders the intermediate from being further processed and results in covalent inhibition. These insights into Notum catalytic inhibition may guide development of more potent Notum inhibitors.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Fredrik Svensson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - David Steadman
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Sarah Frew
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Amy Monaghan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Tiago Moreira
- Centre
for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, U.K.
| | - Rod Chalk
- Centre
for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, U.K.
| | - Weixian Lu
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| |
Collapse
|