1
|
Fu S, Xie B, Song X. Neurological Mechanisms Exploration and Therapeutic Targets in Segmental Vitiligo Accompanied by White Hair. Pigment Cell Melanoma Res 2025; 38:e70020. [PMID: 40252009 DOI: 10.1111/pcmr.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/21/2025]
Abstract
Vitiligo is the most common skin depigmentation disease, affecting 0.1%-2% of people in the world. 3.5%-20.5% of segmental patients account for the total number of vitiligo patients. It has been clinically observed that segmental vitiligo patients are more likely to generate white hair, which may be related to neuroendocrine factors. The color of human skin and hair is affected by the number and functional status of melanocytes. Vitiligo affects patients' physical and mental health due to the shame it causes from the white patches and hair. This article reviews the underlying mechanisms of segmental vitiligo with white hair based on skin and hair follicle melanocytes. The article attempts to propose possible targets for the treatment of this disease.
Collapse
Affiliation(s)
- Shiqi Fu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Kaplan MM, Hudacova E, Matejcek M, Tuaima H, Křivánek J, Machon O. Mesenchymal Meis2 controls whisker development independently from trigeminal sensory innervation. eLife 2025; 13:RP100854. [PMID: 40183774 PMCID: PMC11970903 DOI: 10.7554/elife.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.
Collapse
Affiliation(s)
- Mehmet Mahsum Kaplan
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of SciencesPragueCzech Republic
| | - Erika Hudacova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of SciencesPragueCzech Republic
- Department of Cell Biology, Faculty of Science, Charles UniversityBrnoCzech Republic
| | - Miroslav Matejcek
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of SciencesPragueCzech Republic
| | - Haneen Tuaima
- Department of Histology and Embryology, Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Jan Křivánek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of SciencesPragueCzech Republic
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics, Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
3
|
Moriwaki Y, Shiraishi M, Shen Q, Du Z, Okazaki M, Kurita M. Experimental method for creating skin with acquired appendage dysfunction. J Dermatol 2025; 52:472-480. [PMID: 39676456 DOI: 10.1111/1346-8138.17579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Mammalian skin appendages, such as hair follicles and sweat glands, are essential for both esthetic and functional purposes. Conditions such as burns and ulcers can lead to dysfunction or loss of skin appendages and result in hair loss and dry skin, posing challenges in their regeneration. Existing animal models are insufficient for studying acquired dysfunction of skin appendages without underlying genetic causes. This study aimed to develop more clinically relevant mouse models by evaluating two approaches: keratinocyte transplantation and grafting of skin at varying thicknesses. green fluorescent protein (GFP)-expressing keratinocytes were transplanted into ulcers on nude mice, leading to re-epithelialization with minimal skin appendages at 4 weeks after transplantation. However, the re-epithelialized area was largely derived from recipient cells, with the grafted cells contributing to only 1.31% of the area. In the skin-grafting model, donor skin from GFP transgenic mice was grafted onto nude mice at three thicknesses: full thickness, 10/1000 inch, and 5/1000 inch. The grafted area of the 5/1000-inch grafts remained stable at 89.5% of its original size 5 weeks after transplantation, ensuring a sufficiently large skin area. The 5/1000-inch grafts resulted in a significant reduction in skin appendages, with a mean of only 3.73 hair follicles per 5 mm, compared with 69.7 in the control group. The 5/1000-inch skin grafting in orthotopic autologous transplantation also showed the achievement of skin surfaces with a minimal number of skin appendages. Therefore, a mouse model with skin grafting demonstrated stability in producing large areas of skin with minimal appendages. In conclusion, these two models with acquired skin appendage dysfunction and no underlying genetic causes provide valuable tools for researching skin appendage regeneration, offering insights into potential therapeutic strategies for conditions involving skin appendage loss.
Collapse
Affiliation(s)
- Yuta Moriwaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Shiraishi
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Qi Shen
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Zening Du
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Masakazu Kurita
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Bai M, Shen J, Fan Y, Xu R, Hui T, Zhu Y, Zhang Q, Zhang J, Wang Z, Bai W. N6-Methyladenosine (m 6A)-Circular RNA Pappalysin 1 (circPAPPA) from Cashmere Goats: Identification, Regulatory Network and Expression Potentially Regulated by Methylation in Secondary Hair Follicles Within the First Intron of Its Host Gene. Animals (Basel) 2025; 15:581. [PMID: 40003062 PMCID: PMC11851913 DOI: 10.3390/ani15040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is one of the most abundant modifications in eukaryotic RNA molecules and mediates the functional exertion of RNA molecules. We characterized the circPAPPA and validated its potential m6A modification sites in secondary hair follicles (SHFs) of cashmere goats. Furthermore, we generated integrated regulatory networks of the circPAPPA along with enrichment analysis of signaling pathways. We also explored the potential relationship of circPAPPA expression with the first intron methylation of the PAPPA gene in SHFs of cashmere goats. Host source analysis revealed that circPAPPA is derived from the complete exon 2 of the PAPPA gene, spliced in reverse orientation, and predominantly localized in the cytoplasm of SHF stem cells in cashmere goats. The circPAPPA was verified to contain at least four m6A modification sites in SHFs of cashmere goats, including m6A-450/456, m6A-852, m6A-900, and m6A-963. The generated regulatory network indicated complex and diverse regulatory relationships of m6A-circPAPPA with its putative regulatory molecules, including miRNAs, mRNAs, and proteins. Enrichment analysis of signaling pathways showed that m6A-circPAPPA might play multiple functional roles in the growth and development of SHF in cashmere goats through the putative regulatory network mediated by its target miRNAs and regulatory proteins. The first intron methylation of the PAPPA gene most likely is significantly involved in the dynamic expression of m6A-circPAPPA in cashmere goat SHFs. Results from this study provided novel information to elucidate the biological roles and functional regulatory pathways of m6A-circPAPPA in SHF development and the growth of cashmere goat fiber.
Collapse
Affiliation(s)
- Man Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Engineering Research Center for Animal Molecular Genetics and Breeding of Liaoning Province, Shenyang 110866, China
| | - Jincheng Shen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yixing Fan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Engineering Research Center for Animal Molecular Genetics and Breeding of Liaoning Province, Shenyang 110866, China
| | - Ruqing Xu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yubo Zhu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Engineering Research Center for Animal Molecular Genetics and Breeding of Liaoning Province, Shenyang 110866, China
| | - Qi Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jialiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Engineering Research Center for Animal Molecular Genetics and Breeding of Liaoning Province, Shenyang 110866, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Engineering Research Center for Animal Molecular Genetics and Breeding of Liaoning Province, Shenyang 110866, China
| |
Collapse
|
5
|
Taye N, Karoulias SZ, Balic Z, Wang LW, Willard BB, Martin D, Richard D, Okamoto AS, Capellini TD, Apte SS, Hubmacher D. Combined ADAMTS10 and ADAMTS17 inactivation exacerbates bone shortening and compromises extracellular matrix formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634616. [PMID: 39896540 PMCID: PMC11785165 DOI: 10.1101/2025.01.23.634616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Weill-Marchesani syndrome (WMS) is characterized by severe short stature, short hands and feet (brachydactyly), joint contractures, tight skin, and heart valve, eye, and skin anomalies. Whereas recessive WMS is caused by mutations in ADAMTS10, ADAMTS17, or LTBP2, dominant WMS is caused by mutations in FBN1 (encoding fibrillin-1). Since bone growth is driven by chondrocyte proliferation and hypertrophy in the growth plates, the genetics of WMS suggests that the affected ECM proteins act within the same pathway to regulate chondrocyte and growth plate function. Here, we investigated the role of the secreted ADAMTS proteases ADAMTS10 and ADAMTS17 in growth plate function and ECM formation. We generated Adamts10;Adamts17 double knockout (DKO) mice, which showed significant postnatal lethality compared to single Adamts10 or Adamts17 KO mice. Importantly, we observed severe bone shortening DKO mice, which correlated with a narrower hypertrophic zone in their growth plates. ADAMTS17 substrates identified by N-terminomics and yeast two-hybrid screening identified the ECM proteins fibronectin and collagen VI (COL6). However, validation experiments did not reveal direct proteolysis of either fibronectin or COL6 by ADAMTS17. We then investigated ECM formation in primary ADAMTS10- and ADAMTS17-deficient skin fibroblasts and observed compromised fibronectin deposition concomitant with aberrant intracellular accumulation of fibrillin-1. These findings support a role for ADAMTS17 in ECM protein secretion and assembly. Collectively, our data suggest that ADAMTS10 and ADAMTS17 regulate bone growth by regulating chondrocyte hypertrophy or hypertrophic chondrocyte turnover. Mechanistically, ADAMTS17 appears to be a critical regulator of ECM protein secretion or pericellular matrix assembly, whereas ADAMTS10 likely modulates ECM formation at later stages, possibly regulating the spatio-temporal deposition of fibrillin isoforms.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stylianos Z. Karoulias
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zerina Balic
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lauren W. Wang
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Department of Orthopaedic Surgery, Cleveland Clinic Orthopaedic and Rheumatologic Institute, Cleveland, OH, 44195, USA
| | - Belinda B. Willard
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Daniel Richard
- Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Terence D. Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Suneel S. Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Department of Orthopaedic Surgery, Cleveland Clinic Orthopaedic and Rheumatologic Institute, Cleveland, OH, 44195, USA
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
6
|
Xia W, Wang C, Guo B, Tang Z, Ye X, Dang Y. Gpr54 deletion accelerates hair cycle and hair regeneration. EMBO Rep 2025; 26:200-217. [PMID: 39587329 PMCID: PMC11724127 DOI: 10.1038/s44319-024-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
GPR54, or KiSS-1R (Kisspeptin receptor), is key in puberty initiation and tumor metastasis prevention, but its role on hair follicles remains unclear. Our study shows that Gpr54 knockout (KO) accelerates hair cycle, synchronized hair regeneration and transplanted hair growth in mice. In Gpr54 KO mice, DPC (dermal papilla cell) activity is enhanced, with elevated expression of Wnts, VEGF, and IGF-1, which stimulate HFSCs. Gpr54 deletion also raises the number of CD34+ and Lgr5+ HFSCs. The Gpr54 inhibitor, kisspeptin234, promotes hair shaft growth in cultured mouse hair follicles and boosts synchronized hair regeneration in vivo. Mechanistically, Gpr54 deletion suppresses NFATC3 expression in DPCs and HFSCs, and decreases levels of SFRP1, a Wnt inhibitor. It also activates the Wnt/β-catenin pathway, promoting β-catenin nuclear localization and upregulating target genes such as Lef1 and ALP. Our findings suggest that Gpr54 deletion may accelerate the hair cycle and promote hair regeneration in mice by regulating the NAFTc3-SFRP1-Wnt signaling pathway. These findings suggest that Gpr54 could be a possible target for future hair loss treatments.
Collapse
Affiliation(s)
- Weili Xia
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, 250014, China
| | - Caibing Wang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Biao Guo
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zexin Tang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiyun Ye
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yongyan Dang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
7
|
Shen J, Hui T, Bai M, Fan Y, Zhu Y, Zhang Q, Xu R, Zhang J, Wang Z, Zheng W, Bai W. N6-methyladenosine (m6A)-circHECA from secondary hair follicle of cashmere goats: identification, regulatory network and expression regulated potentially by methylation of its host gene promoter. Anim Biosci 2024; 37:2066-2080. [PMID: 39210824 PMCID: PMC11541013 DOI: 10.5713/ab.24.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 05/11/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The objective of this study was to identify the N6-methyladenosine (m6A)- circHECA molecule in secondary hair follicles (SHFs) of cashmere goats, and generate its potential regulatory network, as well as explore the potential relationship between transcriptional pattern of m6A-circHECA and promoter methylation of its host gene (HECA). METHODS The validation of circHECA m6A sites was performed using methylation immunoprecipitation (Me-RIP) along with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) technique. The nucleus and cytoplasm localizations of m6AcircHECA were performed using SHF stem cells of cashmere goats with RT-qPCR analysis. Based on in-silico analysis, the regulatory networks of m6A-circHECA were generated with related signal pathway enrichment. The methylation level of promoter region of m6A-circHECA host gene (HECA) was assessed by the bisulfite sequencing PCR (BSPPCR) technique. RESULTS The m6A-circHECA was confirmed to contain four m6A modification sites including m6A-213, m6A-297, m6A-780, and m6A-927, and it was detected mainly in cytoplasm of the SHF stem cells of cashmere goats. The integrated regulatory network analysis showed directly or indirectly complex regulatory relationships between m6A-circHECA of cashmere goats and its potential target molecules: miRNAs, mRNAs, and proteins. The regulatory network and pathway enrichment indicated that m6A-circHECA might play multiple roles in the SHF physiology process of cashmere goats through directly or indirectly interacting or regulating its potential target molecules. A higher methylation level of promoter region of HECA gene in SHFs of cashmere goats might cause the lower expression of m6A-circHECA. CONCLUSION The m6A-circHECA might play multiple roles in SHF physiology process of cashmere goats through miRNA mediated pathways along with directly or indirectly interaction with its target proteins. The promoter methylation of m6A-circHECA host gene (HECA) most likely was implicated in its expression inhibition in SHFs of cashmere goats.
Collapse
Affiliation(s)
- Jincheng Shen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866,
China
| | - Taiyu Hui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866,
China
| | - Man Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866,
China
| | - Yixing Fan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866,
China
| | - Yubo Zhu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866,
China
| | - Qi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866,
China
| | - Ruqing Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866,
China
| | - Jialiang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866,
China
| | - Zeying Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866,
China
| | - Wenxin Zheng
- State Key Laboratory for Herbivorous Livestock Genetic Improvement and Germplasm Innovation of Ministry of Science and Technology and Xinjiang Uygur Autonomous Region, Urumqi 830011,
China
- Xinjiang Academy of Animal Sciences, Urumqi 830011,
China
| | - Wenlin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866,
China
| |
Collapse
|
8
|
Zhang HL, Qiu XX, Liao XH. Dermal Papilla Cells: From Basic Research to Translational Applications. BIOLOGY 2024; 13:842. [PMID: 39452150 PMCID: PMC11504027 DOI: 10.3390/biology13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual's health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for many people. Hair is produced from hair follicles, which are exclusively controlled by the dermal papilla (DP) at their base. The dermal papilla cells (DPCs) comprise a cluster of specialized mesenchymal cells that induce the formation of hair follicles during early embryonic development through interaction with epithelial precursor cells. They continue to regulate the growth cycle, color, size, and type of hair after the hair follicle matures by secreting various factors. DPCs possess stem cell characteristics and can be cultured and expanded in vitro. DPCs express numerous stemness-related factors, enabling them to be reprogrammed into induced pluripotent stem cells (iPSCs) using only two, or even one, Yamanaka factor. DPCs are an important source of skin-derived precursors (SKPs). When combined with epithelial stem cells, they can reconstitute skin and hair follicles, participating in the regeneration of the dermis, including the DP and dermal sheath. When implanted between the epidermis and dermis, DPCs can induce the formation of new hair follicles on hairless skin. Subcutaneous injection of DPCs and their exosomes can promote hair growth. This review summarizes the in vivo functions of the DP; highlights the potential of DPCs in cell therapy, particularly for the treatment of hair loss; and discusses the challenges and recent advances in the field, from basic research to translational applications.
Collapse
Affiliation(s)
- He-Li Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xi-Xi Qiu
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
9
|
Chovatiya G, Wang AB, Versluis P, Bai CK, Huang SY, DeBerardine M, Ray J, Ozer A, Lis JT, Tumbar T. A lineage-specific nascent RNA assay unveils principles of gene regulation in tissue biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618417. [PMID: 39464031 PMCID: PMC11507779 DOI: 10.1101/2024.10.15.618417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Gene regulatory mechanisms that modulate RNA Polymerase II activity are difficult to access in mammalian tissues composed of multiple cell lineages. Here, we develop a nascent RNA assay (PReCIS-seq) that measures lineage-specific transcriptionally-engaged Pol II on genes and DNA enhancer elements in intact mouse tissue. By employing keratinocytes as a prototype lineage, we unearth Pol II promoter-recruitment versus pause-release mechanisms operating in adult skin homeostasis. Moreover, we relate active enhancer proximity and transcription factor binding motifs on promoters to Pol II activity and promoter-proximal pausing level. Finally, we find Pol II firing rapidly into elongation on lineage identity genes and highly paused on cellular safeguarding genes in a context-dependent manner. Our work provides a basic platform to investigate mechanistic principles of gene regulation in individual lineages of complex mammalian tissues.
Collapse
Affiliation(s)
- Gopal Chovatiya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Alex B Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Philip Versluis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Chris K Bai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Sean Y Huang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Michael DeBerardine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Judhajeet Ray
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Abdullah Ozer
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Asami S, Yin C, Garza LA, Kalhor R. Deconvolving organogenesis in space and time via spatial transcriptomics in thick tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614640. [PMID: 39386671 PMCID: PMC11463617 DOI: 10.1101/2024.09.24.614640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Organ development is guided by a space-time landscape that constraints cell behavior. This landscape is challenging to characterize for the hair follicle - the most abundant mini organ - due to its complex microscopic structure and asynchronous development. We developed 3DEEP, a tissue clearing and spatial transcriptomic strategy for characterizing tissue blocks up to 400 µm in thickness. We captured 371 hair follicles at different stages of organogenesis in 1 mm3 of skin of a 12-hour-old mouse with 6 million transcripts from 81 genes. From this single time point, we deconvoluted follicles by age based on whole-organ molecular pseudotimes to animate a stop-motion 3D atlas of follicle development along its trajectory. We defined molecular stages for hair follicle organogenesis and characterized the order of emergence for its structures, differential signaling dynamics at its top and bottom, morphogen shifts preceding and accompanying structural changes, and series of structural changes leading to the formation of its canal and opening. We further found that hair follicle stem cells and their niche are established and stratified early in organogenesis, before the formation of the hair bulb. Overall, this work demonstrates the power of increased depth of spatial transcriptomics to provide a four-dimensional analysis of organogenesis.
Collapse
Affiliation(s)
- Soichiro Asami
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenshuo Yin
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luis A. Garza
- Department of Dermatology, Department of Cell Biology, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Department of Medicine, Department of Neuroscience, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Kalyanakrishnan K, Beaudin A, Jetté A, Ghezelbash S, Hotea DI, Chen J, Lefrançois P, Laurin M. ARHGEF3 Regulates Hair Follicle Morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612256. [PMID: 39314354 PMCID: PMC11419159 DOI: 10.1101/2024.09.13.612256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During embryogenesis, cells arrange into precise patterns that enable tissues and organs to develop specialized functions. Despite its critical importance, the molecular choreography behind these collective cellular behaviors remains elusive, posing a major challenge in developmental biology and limiting advances in regenerative medicine. By using the mouse hair follicle as a mini-organ system to study the formation of bud-like structures during embryonic development, our work uncovers a crucial role for the Rho GTPase regulator ARHGEF3 in hair follicle morphogenesis. We demonstrate that Arhgef3 expression is upregulated at the onset of hair follicle placode formation. In Arhgef3 knockout animals, we observed defects in placode compaction, leading to impaired hair follicle downgrowth. Through cell culture models, we show that ARHGEF3 promotes F-actin accumulation at the cell cortex and P-cadherin enrichment at cell-cell junctions. Collectively, our study identifies ARHGEF3 as a new regulator of cell shape rearrangements during hair placode morphogenesis, warranting further exploration of its role in other epithelial appendages that arise from similar developmental processes.
Collapse
Affiliation(s)
- Krithika Kalyanakrishnan
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Amy Beaudin
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Alexandra Jetté
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Sarah Ghezelbash
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Québec, Canada
| | - Diana Ioana Hotea
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801
| | - Philippe Lefrançois
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Québec, Canada
- Division of Dermatology, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Mélanie Laurin
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| |
Collapse
|
12
|
Vallecillo-García P, Kühnlein MN, Orgeur M, Hansmeier NR, Kotsaris G, Meisen ZG, Timmermann B, Giesecke-Thiel C, Hägerling R, Stricker S. Mesenchymal Osr1+ cells regulate embryonic lymphatic vessel formation. Development 2024; 151:dev202747. [PMID: 39221968 PMCID: PMC11441984 DOI: 10.1242/dev.202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
The lymphatic system is formed during embryonic development by the commitment of specialized lymphatic endothelial cells (LECs) and their subsequent assembly in primary lymphatic vessels. Although lymphatic cells are in continuous contact with mesenchymal cells during development and in adult tissues, the role of mesenchymal cells in lymphatic vasculature development remains poorly characterized. Here, we show that a subpopulation of mesenchymal cells expressing the transcription factor Osr1 are in close association with migrating LECs and established lymphatic vessels in mice. Lineage tracing experiments revealed that Osr1+ cells precede LEC arrival during lymphatic vasculature assembly in the back of the embryo. Using Osr1-deficient embryos and functional in vitro assays, we show that Osr1 acts in a non-cell-autonomous manner controlling proliferation and early migration of LECs to peripheral tissues. Thereby, mesenchymal Osr1+ cells control, in a bimodal manner, the production of extracellular matrix scaffold components and signal ligands crucial for lymphatic vessel formation.
Collapse
Affiliation(s)
- Pedro Vallecillo-García
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353Berlin, Germany
| | - Mira Nicola Kühnlein
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Mickael Orgeur
- Unit for Integrated Mycobacterial Pathogenomics,Institut Pasteur, Université Paris Cité, CNRS UMR 6047, 75015 Paris, France
| | - Nils Rouven Hansmeier
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies,Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’,Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georgios Kotsaris
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Zarah Gertrud Meisen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - René Hägerling
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies,Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’,Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- BIH Academy, Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Charitéplatz 1, 10117 Berlin, Germany
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| |
Collapse
|
13
|
Quílez C, Jeon EY, Pappalardo A, Pathak P, Abaci HE. Efficient Generation of Skin Organoids from Pluripotent Cells via Defined Extracellular Matrix Cues and Morphogen Gradients in a Spindle-Shaped Microfluidic Device. Adv Healthc Mater 2024; 13:e2400405. [PMID: 38452278 PMCID: PMC11305970 DOI: 10.1002/adhm.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Pluripotent stem cell-derived skin organoids (PSOs) emerge as a developmental skin model that is self-organized into multiple components, such as hair follicles. Despite their impressive complexity, PSOs are currently generated in the absence of 3D extracellular matrix (ECM) signals and have several major limitations, including an inverted anatomy (e.g., epidermis inside/dermis outside). In this work, a method is established to generate PSOs effectively in a chemically-defined 3D ECM environment. After examining various dermal ECM molecules, it is found that PSOs generated in collagen -type I (COLI) supplemented with laminin 511 (LAM511) exhibit increased growth compared to conventional free-floating conditions, but fail to induce complete skin differentiation due in part to necrosis. This problem is addressed by generating the PSOs in a 3D bioprinted spindle-shaped hydrogel device, which constrains organoid growth longitudinally. This culture system significantly reduces organoid necrosis and leads to a twofold increase in keratinocyte differentiation and an eightfold increase in hair follicle formation. Finally, the system is adapted as a microfluidic device to create asymmetrical gradients of differentiation factors and improves the spatial organization of dermal and epidermal cells. This study highlights the pivotal role of ECM and morphogen gradients in promoting and spatially-controlling skin differentiation in the PSO framework.
Collapse
Affiliation(s)
- Cristina Quílez
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, 28911 Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Eun Y. Jeon
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Pappalardo
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pooja Pathak
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hasan E. Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
14
|
Sandoval-Velasco M, Dudchenko O, Rodríguez JA, Pérez Estrada C, Dehasque M, Fontsere C, Mak SST, Khan R, Contessoto VG, Oliveira Junior AB, Kalluchi A, Zubillaga Herrera BJ, Jeong J, Roy RP, Christopher I, Weisz D, Omer AD, Batra SS, Shamim MS, Durand NC, O'Connell B, Roca AL, Plikus MV, Kusliy MA, Romanenko SA, Lemskaya NA, Serdyukova NA, Modina SA, Perelman PL, Kizilova EA, Baiborodin SI, Rubtsov NB, Machol G, Rath K, Mahajan R, Kaur P, Gnirke A, Garcia-Treviño I, Coke R, Flanagan JP, Pletch K, Ruiz-Herrera A, Plotnikov V, Pavlov IS, Pavlova NI, Protopopov AV, Di Pierro M, Graphodatsky AS, Lander ES, Rowley MJ, Wolynes PG, Onuchic JN, Dalén L, Marti-Renom MA, Gilbert MTP, Aiden EL. Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample. Cell 2024; 187:3541-3562.e51. [PMID: 38996487 DOI: 10.1016/j.cell.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.
Collapse
Affiliation(s)
| | - Olga Dudchenko
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA.
| | - Juan Antonio Rodríguez
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Marianne Dehasque
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Ruqayya Khan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bernardo J Zubillaga Herrera
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | - Jiyun Jeong
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Renata P Roy
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Departments of Biology and Physics, Texas Southern University, Houston, TX 77004, USA
| | - Ishawnia Christopher
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjit S Batra
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neva C Durand
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred L Roca
- Department of Animal Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mariya A Kusliy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Svetlana A Modina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Elena A Kizilova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Nikolai B Rubtsov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Gur Machol
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krisha Rath
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ragini Mahajan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Rob Coke
- San Antonio Zoo, San Antonio, TX 78212, USA
| | | | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia and Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | - Naryya I Pavlova
- Institute of Biological Problems of Cryolitezone SB RAS, Yakutsk 677000, Russia
| | - Albert V Protopopov
- Academy of Sciences of Sakha Republic, Yakutsk 677000, Russia; North-Eastern Federal University, Yakutsk 677027, Russia
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - Love Dalén
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marc A Marti-Renom
- Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain.
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway.
| | - Erez Lieberman Aiden
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Lee H, Kim SY, Kwon NJ, Jo SJ, Kwon O, Kim JI. Single-Cell and Spatial Transcriptome Analysis of Dermal Fibroblast Development in Perinatal Mouse Skin: Dynamic Lineage Differentiation and Key Driver Genes. J Invest Dermatol 2024; 144:1238-1250.e11. [PMID: 38072389 DOI: 10.1016/j.jid.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
Several single-cell RNA studies of developing mouse skin have elucidated the molecular and cellular processes involved in skin development. However, they have primarily focused on either the fetal or early postnatal period, leaving a gap in our understanding of skin development. In this study, we conducted a comprehensive time-series analysis by combining single-cell RNA-sequencing datasets collected at different stages of development (embryonic days 13.5, 14.5, and 16.5 and postnatal days 0, 2, and 4) and validated our findings through multipanel in situ spatial transcriptomics. Our analysis indicated that embryonic fibroblasts exhibit heterogeneity from a very early stage and that the rapid determination of each lineage occurs within days after birth. The expression of putative key driver genes, including Hey1, Ebf1, Runx3, and Sox11 for the dermal papilla trajectory; Lrrc15 for the dermal sheath trajectory; Zfp536 and Nrn1 for the papillary fibroblast trajectory; and Lrrn4cl and Mfap5 for the fascia fibroblast trajectory, was detected in the corresponding, spatially identified cell types. Finally, cell-to-cell interaction analysis indicated that the dermal papilla lineage is the primary source of the noncanonical Wnt pathway during skin development. Together, our study provides a transcriptomic reference for future research in the field of skin development and regeneration.
Collapse
Affiliation(s)
- Hanjae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - So Young Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Satta JP, Lan Q, Taketo MM, Mikkola ML. Stabilization of Epithelial β-Catenin Compromises Mammary Cell Fate Acquisition and Branching Morphogenesis. J Invest Dermatol 2024; 144:1223-1237.e10. [PMID: 38159590 DOI: 10.1016/j.jid.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
The Wnt/β-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/β-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation. In this study, we report a strong downregulation of epithelial Wnt/β-catenin activity as the mammary bud progresses to branching. We show that forced activation of epithelial β-catenin severely compromises embryonic mammary gland branching. However, the phenotype of conditional Lef1-deficient embryos implies that a low level of Wnt/β-catenin activity is necessary for mammary cell survival. Transcriptomic profiling suggests that sustained high β-catenin activity leads to maintenance of mammary bud gene signature at the expense of outgrowth/branching gene signature. In addition, it leads to upregulation of epidermal differentiation genes. Strikingly, we find a partial switch to hair follicle fate early on upon stabilization of β-catenin, suggesting that the level of epithelial Wnt/β-catenin signaling activity may contribute to the choice between skin appendage identities.
Collapse
Affiliation(s)
- Jyoti Prabha Satta
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland
| | - Makoto Mark Taketo
- Colon Cancer Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
17
|
Moreno JA, Dudchenko O, Feigin CY, Mereby SA, Chen Z, Ramos R, Almet AA, Sen H, Brack BJ, Johnson MR, Li S, Wang W, Gaska JM, Ploss A, Weisz D, Omer AD, Yao W, Colaric Z, Kaur P, Leger JS, Nie Q, Mena A, Flanagan JP, Keller G, Sanger T, Ostrow B, Plikus MV, Kvon EZ, Aiden EL, Mallarino R. Emx2 underlies the development and evolution of marsupial gliding membranes. Nature 2024; 629:127-135. [PMID: 38658750 PMCID: PMC11062917 DOI: 10.1038/s41586-024-07305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.
Collapse
Affiliation(s)
- Jorge A Moreno
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia
| | - Sarah A Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Zhuoxin Chen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Harsha Sen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Benjamin J Brack
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sha Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wei Wang
- Lewis Sigler Center for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Jenna M Gaska
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Yao
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zane Colaric
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Parwinder Kaur
- The University of Western Australia, Crawley, Western Australia, Australia
| | - Judy St Leger
- Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | | | | | - Greta Keller
- Department of Biology, Loyola University, Chicago, IL, USA
| | - Thomas Sanger
- Department of Biology, Loyola University, Chicago, IL, USA
| | - Bruce Ostrow
- Department of Biology, Grand Valley State University, Allendale, MI, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- The Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
18
|
Kiselev A, Park S. Immune niches for hair follicle development and homeostasis. Front Physiol 2024; 15:1397067. [PMID: 38711955 PMCID: PMC11070776 DOI: 10.3389/fphys.2024.1397067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The hair follicle is a dynamic mini-organ that has specialized cycles and architectures with diverse cell types to form hairs. Previous studies for several decades have investigated morphogenesis and signaling pathways during embryonic development and adult hair cycles in both mouse and human skin. In particular, hair follicle stem cells and mesenchymal niches received major attention as key players, and their roles and interactions were heavily revealed. Although resident and circulating immune cells affect cellular function and interactions in the skin, research on immune cells has mainly received attention on diseases rather than development or homeostasis. Recently, many studies have suggested the functional roles of diverse immune cells as a niche for hair follicles. Here, we will review recent findings about immune niches for hair follicles and provide insight into mechanisms of hair growth and diseases.
Collapse
Affiliation(s)
- Artem Kiselev
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Biggs LC, Miroshnikova YA. Nuclear mechanotransduction on skin stem cell fate regulation. Curr Opin Cell Biol 2024; 87:102328. [PMID: 38340567 DOI: 10.1016/j.ceb.2024.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Mammalian skin is a highly dynamic and regenerative organ that has long been recognized as a mechanically active composite of tissues withstanding daily compressive and tensile forces that arise from body movement. Importantly, cell- and tissue-scale mechanical signals are critical regulators of skin morphogenesis and homeostasis. These signals are sensed at the cellular periphery and transduced by mechanosensitive proteins within the plasma membrane to the cytoskeletal networks, and eventually into the nucleus to regulate chromatin organization and gene expression. The role of each of these nodes in producing a coherent mechanoresponse at both cell- and tissue-scales is emerging. Here we focus on the key cytoplasmic and nuclear mechanosensitive structures that are critical for the mammalian skin development and homeostatic maintenance. We propose that the mechanical state of the skin, in particular of its nuclear compartment, is a critical rheostat that fine-tunes developmental and homeostatic processes essential for the proper function of the organ.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Wang YG, Yuan VL, Liao XH. Genetic lineage tracing in skin reveals predominant expression of HEY2 in dermal papilla during telogen and that HEY2 + cells contribute to the regeneration of dermal cells during wound healing. Exp Dermatol 2023; 32:2176-2179. [PMID: 37649203 DOI: 10.1111/exd.14917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Dermal papilla (DP) cells are specialized mesenchymal cells that play a crucial role in regulating hair morphology, colour and growth through the secretion of specific factors. It is still unclear what the source of progenitor cells is for dermal cell regeneration during wound healing, and whether DP cells are involved in this process. We analyzed the gene expression profile of various skin cell populations using existing datasets and found that the Hey2 gene was predominantly expressed in DP cells. We introduced Hey2-CreERT2 knockin mice and crossed them with Rosa26-ZsGreen reporter mice. After induction in the double transgenic mice by administration of tamoxifen, the reporter ZsGreen was found to be predominantly expressed in DP cells both at anagen and telogen phases, and broadly expressed in some other dermal cells at anagen. We also created a wound after tamoxifen induction, and found there were abundant ZsGreen+ cells in the regenerated dermis. We conclude that the HEY2+ DP cells and dermal cells exhibit some stemness properties and can contribute to the dermal cell regeneration during wound healing.
Collapse
Affiliation(s)
- Yan-Ge Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Vicky Lan Yuan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
21
|
Johnson MR, Li S, Guerrero-Juarez CF, Miller P, Brack BJ, Mereby SA, Moreno JA, Feigin CY, Gaska J, Rivera-Perez JA, Nie Q, Ploss A, Shvartsman SY, Mallarino R. A multifunctional Wnt regulator underlies the evolution of rodent stripe patterns. Nat Ecol Evol 2023; 7:2143-2159. [PMID: 37813945 PMCID: PMC10839778 DOI: 10.1038/s41559-023-02213-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/27/2023] [Indexed: 10/11/2023]
Abstract
Animal pigment patterns are excellent models to elucidate mechanisms of biological organization. Although theoretical simulations, such as Turing reaction-diffusion systems, recapitulate many animal patterns, they are insufficient to account for those showing a high degree of spatial organization and reproducibility. Here, we study the coat of the African striped mouse (Rhabdomys pumilio) to uncover how periodic stripes form. Combining transcriptomics, mathematical modelling and mouse transgenics, we show that the Wnt modulator Sfrp2 regulates the distribution of hair follicles and establishes an embryonic prepattern that foreshadows pigment stripes. Moreover, by developing in vivo gene editing in striped mice, we find that Sfrp2 knockout is sufficient to alter the stripe pattern. Strikingly, mutants exhibited changes in pigmentation, revealing that Sfrp2 also regulates hair colour. Lastly, through evolutionary analyses, we find that striped mice have evolved lineage-specific changes in regulatory elements surrounding Sfrp2, many of which may be implicated in modulating the expression of this gene. Altogether, our results show that a single factor controls coat pattern formation by acting both as an orienting signalling mechanism and a modulator of pigmentation. More broadly, our work provides insights into how spatial patterns are established in developing embryos and the mechanisms by which phenotypic novelty originates.
Collapse
Affiliation(s)
- Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sha Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Christian F Guerrero-Juarez
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Pearson Miller
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Benjamin J Brack
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sarah A Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jorge A Moreno
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jenna Gaska
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
22
|
Zhang G, Xie XX, Zhang SE, Zhang FL, Li CX, Qiao T, Dyce PW, Feng XL, Lin WB, Sun QC, Shen W, Cheng SF. Induced differentiation of primordial germ cell like cells from SOX9 + porcine skin derived stem cells. Theriogenology 2023; 212:129-139. [PMID: 37717516 DOI: 10.1016/j.theriogenology.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Understanding the mechanisms behind porcine primordial germ cell like cells (pPGCLCs) development, differentiation, and gametogenesis is crucial in the treatment of infertility. In this study, SOX9+ skin derived stem cells (SOX9+ SDSCs) were isolated from fetal porcine skin and a high-purity SOX9+ SDSCs population was obtained. The SOX9+ SDSCs were induced to transdifferentiate into PGCLCs during 8 days of cultured. The results of RNA-seq, western blot and immunofluorescence staining verified SDSCs have the potential to transdifferentiate into PGCLCs from aspects of transcription factor activation, germ layer differentiation, energy metabolism, and epigenetic changes. Both adherent and suspended cells were collected. The adherent cells were found to be very similar to early porcine primordial germ cells (pPGCs). The suspended cells resembled late stage pPGCs and had a potential to enter meiotic process. This SDSCs culture-induced in vitro model is expected to provide suitable donor cells for stem cell transplantation in the future.
Collapse
Affiliation(s)
- Geng Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Xiang Xie
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Fa-Li Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Chun-Xiao Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin-Lei Feng
- Shandong Animal Products Quality and Safety Center, Jinan, 250010, China
| | - Wei-Bo Lin
- Animal Husbandry Development Center of Changyi City, Weifang, 261300, China
| | - Qi-Cheng Sun
- School of Finance, Southwestern University of Finance and Economics, Chengdu, 611130, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
23
|
Mäkelä OJM, Mikkola ML. Mesenchyme governs hair follicle induction. Development 2023; 150:dev202140. [PMID: 37982496 DOI: 10.1242/dev.202140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Tissue interactions are essential for guiding organ development and regeneration. Hair follicle formation relies on inductive signalling between two tissues, the embryonic surface epithelium and the adjacent mesenchyme. Although previous research has highlighted the hair-inducing potential of the mesenchymal component of the hair follicle - the dermal papilla and its precursor, the dermal condensate - the source and nature of the primary inductive signal before dermal condensate formation have remained elusive. Here, we performed epithelial-mesenchymal tissue recombination experiments using hair-forming back skin and glabrous plantar skin from mouse embryos to unveil that the back skin mesenchyme is inductive even before dermal condensate formation. Moreover, the naïve, unpatterned mesenchyme was sufficient to trigger hair follicle formation even in the oral epithelium. Building on previous knowledge, we explored the hair-inductive ability of the Wnt agonist R-spondin 1 and a Bmp receptor inhibitor in embryonic skin explants. Although R-spondin 1 instigated precocious placode-specific transcriptional responses, it was insufficient for hair follicle induction, either alone or in combination with Bmp receptor inhibition. Our findings pave the way for identifying the hair follicle-inducing cue.
Collapse
Affiliation(s)
- Otto J M Mäkelä
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
24
|
Jacob T, Annusver K, Czarnewski P, Dalessandri T, Kalk C, Levra Levron C, Campamà Sanz N, Kastriti ME, Mikkola ML, Rendl M, Lichtenberger BM, Donati G, Björklund ÅK, Kasper M. Molecular and spatial landmarks of early mouse skin development. Dev Cell 2023; 58:2140-2162.e5. [PMID: 37591247 PMCID: PMC11088744 DOI: 10.1016/j.devcel.2023.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
A wealth of specialized cell populations within the skin facilitates its hair-producing, protective, sensory, and thermoregulatory functions. How the vast cell-type diversity and tissue architecture develops is largely unexplored. Here, with single-cell transcriptomics, spatial cell-type assignment, and cell-lineage tracing, we deconstruct early embryonic mouse skin during the key transitions from seemingly uniform developmental precursor states to a multilayered, multilineage epithelium, and complex dermal identity. We identify the spatiotemporal emergence of hair-follicle-inducing, muscle-supportive, and fascia-forming fibroblasts. We also demonstrate the formation of the panniculus carnosus muscle (PCM), sprouting blood vessels without pericyte coverage, and the earliest residence of mast and dendritic immune cells in skin. Finally, we identify an unexpected epithelial heterogeneity within the early single-layered epidermis and a signaling-rich periderm layer. Overall, this cellular and molecular blueprint of early skin development-which can be explored at https://kasperlab.org/tools-establishes histological landmarks and highlights unprecedented dynamic interactions among skin cells.
Collapse
Affiliation(s)
- Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17165 Stockholm, Sweden
| | - Tim Dalessandri
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christina Kalk
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Michael Rendl
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
25
|
Phan QM, Salz L, Kindl SS, Lopez JS, Thompson SM, Makkar J, Driskell IM, Driskell RR. Lineage commitment of dermal fibroblast progenitors is controlled by Kdm6b-mediated chromatin demethylation. EMBO J 2023; 42:e113880. [PMID: 37602956 PMCID: PMC10548174 DOI: 10.15252/embj.2023113880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the epigenetic mechanisms that regulate DFP differentiation are not known. Our objective was to use multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanism that governs its differentiation potential. Our initial results indicated that the overall transcription profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage-specific genes. Surprisingly, the repressive chromatin profile of DFPs renders them unable to reform the skin in allograft assays despite their multipotent potential. We hypothesized that chromatin derepression was modulated by the H3K27me3 demethylase, Kdm6b/Jmjd3. Dermal fibroblast-specific deletion of Kdm6b/Jmjd3 in mice resulted in adipocyte compartment ablation and inhibition of mature dermal papilla functions, confirmed by additional single-cell RNA-seq, ChIP-seq, and allografting assays. We conclude that DFPs are functionally derepressed during murine skin development by Kdm6b/Jmjd3. Our studies therefore reveal a multimodal understanding of how DFPs differentiate into distinct fibroblast lineages and provide a novel publicly available multiomics search tool.
Collapse
Affiliation(s)
- Quan M Phan
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Lucia Salz
- North Rhine‐Westphalia Technical University of AachenAachenGermany
| | - Sam S Kindl
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Jayden S Lopez
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Sean M Thompson
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Jasson Makkar
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Iwona M Driskell
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Ryan R Driskell
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
- Center for Reproductive BiologyWashington State UniversityPullmanWAUSA
| |
Collapse
|
26
|
Du W, Yang Z, Xiao C, Liu Y, Peng J, Li J, Li F, Yang X. Identification of genes involved in regulating the development of feathered feet in chicken embryo. Poult Sci 2023; 102:102837. [PMID: 37390552 PMCID: PMC10331478 DOI: 10.1016/j.psj.2023.102837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023] Open
Abstract
The genetic and developmental factors driving the diverse distribution and morphogenesis of feathers and scales on bird feet are yet unclear. Within a single species, Guangxi domestic chickens exhibit dramatic variety in feathered feet, making them an accessible model for research into the molecular basis of variations in skin appendages. In this study, we used H&E staining to observe the morphogenesis of feathered feet, scaled feet and wings skin at different embryonic stages in Longsheng-Feng chickens and Guangxi Partridge chickens. We selected 4 periods (E6, E7, E8, and E12) that play an important role in feather development and performed transcriptome sequencing to screen for candidate genes associated with feathered feet. Through comparison and analysis of transcriptome data, we identified a set of differently expressed genes (DGEs), which were enriched in appendage organ development, hindlimb morphogenesis, activation of transcription factor binding, and binding of sequence-specific DNA in the cis-regulatory region. In addition, we identified some feathered feet-related genes by analyzing the classical signaling pathways that regulate feather development. Finally, we identified candidate genes that regulate feathered feet formation, which include TBX5, PITX1, ZIC1, FGF20, WNT11, WNT7A, WNT16, and SHH. Interestingly, we found that TBX5 was significantly overexpressed in the skin of the feathered feet and had the highest expression at E7 (P < 0.01), whereas PITX1 expression was significantly reduced at E7(P < 0.01). It is hypothesized that TBX5 and PITX1 regulate the development of hair follicles through the Wnt/β-catenin signaling pathway at E7. Our results provide a theoretical basis for investigating the molecular regulatory mechanisms underlying the formation of chicken feathered feet.
Collapse
Affiliation(s)
- Wenya Du
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yongcui Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiashuo Peng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianneng Li
- Guangxi Gangfeng Agriculture & Animal Husbandry Co., Ltd, Guigang 537000, China
| | - Fuqiu Li
- Guangxi Gangfeng Agriculture & Animal Husbandry Co., Ltd, Guigang 537000, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China.
| |
Collapse
|
27
|
Ehlers VL, Sadler KE, Stucky CL. Peripheral transient receptor potential vanilloid type 4 hypersensitivity contributes to chronic sickle cell disease pain. Pain 2023; 164:1874-1886. [PMID: 36897169 PMCID: PMC10363186 DOI: 10.1097/j.pain.0000000000002889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 03/11/2023]
Abstract
ABSTRACT Debilitating pain affects the lives of patients with sickle cell disease (SCD). Current pain treatment for patients with SCD fail to completely resolve acute or chronic SCD pain. Previous research indicates that the cation channel transient receptor potential vanilloid type 4 (TRPV4) mediates peripheral hypersensitivity in various inflammatory and neuropathic pain conditions that may share similar pathophysiology with SCD, but this channel's role in chronic SCD pain remains unknown. Thus, the current experiments examined whether TRPV4 regulates hyperalgesia in transgenic mouse models of SCD. Acute blockade of TRPV4 alleviated evoked behavioral hypersensitivity to punctate, but not dynamic, mechanical stimuli in mice with SCD. TRPV4 blockade also reduced the mechanical sensitivity of small, but not large, dorsal root ganglia neurons from mice with SCD. Furthermore, keratinocytes from mice with SCD showed sensitized TRPV4-dependent calcium responses. These results shed new light on the role of TRPV4 in SCD chronic pain and are the first to suggest a role for epidermal keratinocytes in the heightened sensitivity observed in SCD.
Collapse
Affiliation(s)
- Vanessa L Ehlers
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | |
Collapse
|
28
|
Sulic AM, Das Roy R, Papagno V, Lan Q, Saikkonen R, Jernvall J, Thesleff I, Mikkola ML. Transcriptomic landscape of early hair follicle and epidermal development. Cell Rep 2023; 42:112643. [PMID: 37318953 DOI: 10.1016/j.celrep.2023.112643] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Morphogenesis of ectodermal organs, such as hair, tooth, and mammary gland, starts with the formation of local epithelial thickenings, or placodes, but it remains to be determined how distinct cell types and differentiation programs are established during ontogeny. Here, we use bulk and single-cell transcriptomics and pseudotime modeling to address these questions in developing hair follicles and epidermis and produce a comprehensive transcriptomic profile of cellular populations in the hair placode and interplacodal epithelium. We report previously unknown cell populations and marker genes, including early suprabasal and genuine interfollicular basal markers, and propose the identity of suprabasal progenitors. By uncovering four different hair placode cell populations organized in three spatially distinct areas, with fine gene expression gradients between them, we posit early biases in cell fate establishment. This work is accompanied by a readily accessible online tool to stimulate further research on skin appendages and their progenitors.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Rishi Das Roy
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Verdiana Papagno
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Riikka Saikkonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
29
|
Li Q, Chen J, Faux P, Delgado ME, Bonfante B, Fuentes-Guajardo M, Mendoza-Revilla J, Chacón-Duque JC, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Barquera R, Everardo-Martínez P, Sánchez-Quinto M, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Hünemeier T, Ramallo V, Wu S, Du S, Giardina A, Paria SS, Khokan MR, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Rojas W, Rothhammer F, Navarro N, Wang S, Adhikari K, Ruiz-Linares A. Automatic landmarking identifies new loci associated with face morphology and implicates Neanderthal introgression in human nasal shape. Commun Biol 2023; 6:481. [PMID: 37156940 PMCID: PMC10167347 DOI: 10.1038/s42003-023-04838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
We report a genome-wide association study of facial features in >6000 Latin Americans based on automatic landmarking of 2D portraits and testing for association with inter-landmark distances. We detected significant associations (P-value <5 × 10-8) at 42 genome regions, nine of which have been previously reported. In follow-up analyses, 26 of the 33 novel regions replicate in East Asians, Europeans, or Africans, and one mouse homologous region influences craniofacial morphology in mice. The novel region in 1q32.3 shows introgression from Neanderthals and we find that the introgressed tract increases nasal height (consistent with the differentiation between Neanderthals and modern humans). Novel regions include candidate genes and genome regulatory elements previously implicated in craniofacial development, and show preferential transcription in cranial neural crest cells. The automated approach used here should simplify the collection of large study samples from across the world, facilitating a cosmopolitan characterization of the genetics of facial features.
Collapse
Affiliation(s)
- Qing Li
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
| | - Jieyi Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Pierre Faux
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France
| | - Miguel Eduardo Delgado
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, República Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, República Argentina
| | - Betty Bonfante
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, 1000000, Chile
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, 75015, France
| | - J Camilo Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - Rodrigo Barquera
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, 07745, Germany
| | - Paola Everardo-Martínez
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Mirsha Sánchez-Quinto
- Forensic Science, Faculty of Medicine, UNAM (Universidad Nacional Autónoma de México), Mexico City, 06320, Mexico
| | - Jorge Gómez-Valdés
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, 4510, Mexico
| | | | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - Sijie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Andrea Giardina
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Soumya Subhra Paria
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Mahfuzur Rahman Khokan
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
| | - Victor Acuña-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, 4510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Winston Rojas
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica, 1000000, Chile
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, 21000, France
- EPHE, PSL University, Paris, 75014, France
| | - Sijia Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China.
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
30
|
Kim DY, Sung JH. The effects of GPR40 agonists on hair growth are mediated by ANGPTL4. Biomed Pharmacother 2023; 161:114509. [PMID: 37002580 DOI: 10.1016/j.biopha.2023.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
GPR40 is found primarily in pancreatic β cells, and is well known to regulate insulin secretion. Despite numerous studies on GPR40, the role and functions of GPR40 related to hair growth are not yet known. The current study investigated hair growth promoting effect of the GPR40 agonists and its mechanism of action using various bio-informatics tools, in vitro and animal experiments. GPR40 may affect the hair cycle, according to clustering and Gene Set Enrichment Analysis (GSEA). Hair growth effect of GPR40 was validated by telogen-to-anagen transition and vibrissae organ culture in the mouse. GPR40 was predominantly expressed in the outer root sheath (ORS) in anagen stage, suggesting that ORS cell is the target of GPR40 agonists. To investigate the mechanism of action for GPR40 agonists' hair growth effect, Gene Ontology (GO) enrichment analysis was performed and it revealed that GPR40 agonists were associated with angiogenesis. ANGPTL4, known for promoting angiogenesis, was highly up-regulated after GPR40 agonists treatment in the hORS cells, and also increased the proliferation and migration. Furthermore, GPR40 agonists promoted hair growth by inducing angiogenesis via ANGPTL4 in the animal experiment. GPR40 agonists activated MAPK and peroxisome proliferator-activated receptors (PPARγ) pathway in hORS cells, while the inhibition of MAPK pathway attenuated ANGPTL4 expression. Finally, GPR40 agonists increased hair growth via autocrine effects in the ORS cells, and induced angiogenesis through paracrine effects by upregulating ANGPTL4 via p38 and PPARγ pathways. As a result, GPR40 agonists have potential as a therapeutic drug for hair loss treatment.
Collapse
Affiliation(s)
- Doo Yeong Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; Epi Biotech Co., Ltd. Incheon, South Korea.
| |
Collapse
|
31
|
Esho T, Kobbe B, Tufa S, Keene D, Paulsson M, Wagener R. The Fraser Complex Proteins (Frem1, Frem2, and Fras1) Can Form Anchoring Cords in the Absence of AMACO at the Dermal–Epidermal Junction of Mouse Skin. Int J Mol Sci 2023; 24:ijms24076782. [PMID: 37047755 PMCID: PMC10095167 DOI: 10.3390/ijms24076782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
AMACO (VWA2 protein), secreted by epithelial cells, is strongly expressed at basement membranes when budding or invagination occurs in embryos. In skin, AMACO associates with proteins of the Fraser complex, which form anchoring cords. These, during development, temporally stabilize the dermal–epidermal junction, pending the formation of collagen VII-containing anchoring fibrils. Fraser syndrome in humans results if any of the core members of the Fraser complex (Fras1, Frem1, Frem2) are mutated. Fraser syndrome is characterized by subepidermal blistering, cryptophthalmos, and syndactyly. In an attempt to determine AMACO function, we generated and characterized AMACO-deficient mice. In contrast to Fraser complex mutant mice, AMACO-deficient animals lack an obvious phenotype. The mutually interdependent basement membrane deposition of the Fraser complex proteins, and the formation of anchoring cords, are not affected. Furthermore, hair follicle development in newborn AMACO-deficient mice showed no gross aberration. Surprisingly, it appears that, while AMACO is a component of the anchoring cords, it is not essential for their formation or function.
Collapse
Affiliation(s)
- Temitope Esho
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Birgit Kobbe
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Sara Tufa
- Micro-Imaging Center, Shriners Children’s, Portland, OR 97239, USA
| | - Douglas Keene
- Micro-Imaging Center, Shriners Children’s, Portland, OR 97239, USA
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, 50931 Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics, 50931 Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
32
|
Shen XR, Zhang HL, Zhao XB, Wang YG, Tan XY, Gao L, Sun R, Liao XH. A Cre knockin mouse reveals specific expression of Agouti gene in mesenchymal lineage cells in multiple organs and provides a unique tool for conditional gene targeting. Transgenic Res 2023; 32:143-152. [PMID: 36637628 DOI: 10.1007/s11248-023-00334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
The mouse Agouti gene encodes a paracrine signaling factor which promotes melanocytes to produce yellow instead of black pigment. It has been reported that Agouti mRNA is confined to the dermal papilla after birth in various mammalian species. In this study, we created and characterized a knockin mouse strain in which Cre recombinase was expressed in-frame with endogenous Agouti coding sequence. The Agouti-Cre mice were bred with reporter mice (Rosa26-tdTomato or Rosa26-ZsGreen) to trace the lineage of Agouti-expressing cells during development. In skin, the reporter was detected in some dermal fibroblasts at the embryonic stage and in all dermal fibroblasts postnatally. It was also expressed in all mesenchymal lineage cells in other organs/tissues, including eyes, tongue, muscle, intestine, adipose, prostate and testis. Interestingly, the reporter expression was excluded from epithelial cells in the above organs/tissues. In brain, the reporter was observed in the outermost meningeal fibroblasts. Our work helps to illustrate the Agouti expression pattern during development and provides a valuable mouse strain for conditional gene targeting in mesenchymal lineage cells in multiple organs.
Collapse
Affiliation(s)
- Xing-Ru Shen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - He-Li Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xu-Bo Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yang-Ge Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao-Yang Tan
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lipeng Gao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruilin Sun
- Shanghai Model Organisms Center, Inc., Shanghai, 201318, China.
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
33
|
Phan QM, Salz L, Kindl SS, Lopez JS, Thompson SM, Makkar J, Driskell IM, Driskell RR. Lineage Commitment of Dermal Fibroblast Progenitors is Mediated by Chromatin De-repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531478. [PMID: 36945417 PMCID: PMC10028926 DOI: 10.1101/2023.03.07.531478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the mechanisms that regulate lineage commitment of naive dermal progenitors to form niches around the hair follicle, dermis, and hypodermis, are unknown. In our study, we used multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanisms that govern its differentiation potential. Our results indicate that the overall chromatin profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage specific genes. Surprisingly, the repressed chromatin profile of DFPs renders them unable to reform skin in allograft assays despite their multipotent potential. Distinct fibroblast lineages, such as the dermal papilla and adipocytes contained specific chromatin profiles that were de-repressed during late embryogenesis by the H3K27-me3 demethylase, Kdm6b/Jmjd3. Tissue-specific deletion of Kdm6b/Jmjd3 resulted in ablating the adipocyte compartment and inhibiting mature dermal papilla functions in single-cell-RNA-seq, ChIPseq, and allografting assays. Altogether our studies reveal a mechanistic multimodal understanding of how DFPs differentiate into distinct fibroblast lineages, and we provide a novel multiomic search-tool within skinregeneration.org.
Collapse
Affiliation(s)
- Quan M. Phan
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Lucia Salz
- North Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Sam S. Kindl
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Jayden S. Lopez
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Sean M. Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Jasson Makkar
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Iwona M. Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Ryan R. Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
- Center for Reproductive Biology, Washington State University, Pullman, WA
| |
Collapse
|
34
|
Ge W, Sun YC, Qiao T, Liu HX, He TR, Wang JJ, Chen CL, Cheng SF, Dyce PW, De Felici M, Shen W. Murine skin-derived multipotent papillary dermal fibroblast progenitors show germline potential in vitro. Stem Cell Res Ther 2023; 14:17. [PMID: 36737797 PMCID: PMC9898921 DOI: 10.1186/s13287-023-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Many laboratories have described the in vitro isolation of multipotent cells with stem cell properties from the skin of various species termed skin-derived stem cells (SDSCs). However, the cellular origin of these cells and their capability to give rise, among various cell types, to male germ cells, remain largely unexplored. METHODS SDSCs were isolated from newborn mice skin, and then differentiated into primordial germ cell-like cells (PGCLCs) in vitro. Single-cell RNA sequencing (scRNA-seq) was then applied to dissect the cellular origin of SDSCs using cells isolated from newborn mouse skin and SDSC colonies. Based on an optimized culture strategy, we successfully generated spermatogonial stem cell-like cells (SSCLCs) in vitro. RESULTS Here, using scRNA-seq and analyzing the profile of 7543 single-cell transcriptomes from newborn mouse skin and SDSCs, we discovered that they mainly consist of multipotent papillary dermal fibroblast progenitors (pDFPs) residing in the dermal layer. Moreover, we found that epidermal growth factor (EGF) signaling is pivotal for the capability of these progenitors to proliferate and form large colonies in vitro. Finally, we optimized the protocol to efficiently generate PGCLCs from SDSCs. Furthermore, PGCLCs were induced into SSCLCs and these SSCLCs showed meiotic potential when cultured with testicular organoids. CONCLUSIONS Our findings here identify pDFPs as SDSCs derived from newborn skin and show for the first time that such precursors can be induced to generate cells of the male germline.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuan-Chao Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hai-Xia Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tao-Ran He
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Lei Chen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
35
|
Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression. Nat Cell Biol 2023; 25:222-234. [PMID: 36717629 PMCID: PMC9931655 DOI: 10.1038/s41556-022-01065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2022] [Indexed: 02/01/2023]
Abstract
Substantial follicle remodelling during the regression phase of the hair growth cycle is coordinated by the contraction of the dermal sheath smooth muscle, but how dermal-sheath-generated forces are regulated is unclear. Here, we identify spatiotemporally controlled endothelin signalling-a potent vasoconstriction-regulating pathway-as the key activating mechanism of dermal sheath contraction. Pharmacological blocking or genetic ablation of both endothelin receptors, ETA and ETB, impedes dermal sheath contraction and halts follicle regression. Epithelial progenitors at the club hair-epithelial strand bottleneck produce the endothelin ligand ET-1, which is required for follicle regression. ET signalling in dermal sheath cells and downstream contraction is dynamically regulated by cytoplasmic Ca2+ levels through cell membrane and sarcoplasmic reticulum calcium channels. Together, these findings illuminate an epithelial-mesenchymal interaction paradigm in which progenitors-destined to undergo programmed cell death-control the contraction of the surrounding sheath smooth muscle to orchestrate homeostatic tissue regression and reorganization for the next stem cell activation and regeneration cycle.
Collapse
|
36
|
Chen GD, Fatima I, Xu Q, Rozhkova E, Fessing MY, Mardaryev AN, Sharov AA, Xu GL, Botchkarev VA. DNA dioxygenases Tet2/3 regulate gene promoter accessibility and chromatin topology in lineage-specific loci to control epithelial differentiation. SCIENCE ADVANCES 2023; 9:eabo7605. [PMID: 36630508 PMCID: PMC9833667 DOI: 10.1126/sciadv.abo7605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/05/2022] [Indexed: 05/03/2023]
Abstract
Execution of lineage-specific differentiation programs requires tight coordination between many regulators including Ten-eleven translocation (TET) family enzymes, catalyzing 5-methylcytosine oxidation in DNA. Here, by using Keratin 14-Cre-driven ablation of Tet genes in skin epithelial cells, we demonstrate that ablation of Tet2/Tet3 results in marked alterations of hair shape and length followed by hair loss. We show that, through DNA demethylation, Tet2/Tet3 control chromatin accessibility and Dlx3 binding and promoter activity of the Krt25 and Krt28 genes regulating hair shape, as well as regulate interactions between the Krt28 gene promoter and distal enhancer. Moreover, Tet2/Tet3 also control three-dimensional chromatin topology in Keratin type I/II gene loci via DNA methylation-independent mechanisms. These data demonstrate the essential roles for Tet2/3 in establishment of lineage-specific gene expression program and control of Dlx3/Krt25/Krt28 axis in hair follicle epithelial cells and implicate modulation of DNA methylation as a novel approach for hair growth control.
Collapse
Affiliation(s)
- Guo-Dong Chen
- Department of Dermatology, Boston University, Boston, MA, USA
| | - Iqra Fatima
- Department of Dermatology, Boston University, Boston, MA, USA
| | - Qin Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Elena Rozhkova
- Department of Dermatology, Boston University, Boston, MA, USA
| | - Michael Y. Fessing
- Centre for Skin Sciences, School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Andrei N. Mardaryev
- Centre for Skin Sciences, School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | | | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai, China
| | | |
Collapse
|
37
|
Basta LP, Sil P, Jones RA, Little KA, Hayward-Lara G, Devenport D. Celsr1 and Celsr2 exhibit distinct adhesive interactions and contributions to planar cell polarity. Front Cell Dev Biol 2023; 10:1064907. [PMID: 36712970 PMCID: PMC9878842 DOI: 10.3389/fcell.2022.1064907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 01/15/2023] Open
Abstract
Cadherin EGF LAG seven-pass G-type receptor (Celsr) proteins 1-3 comprise a subgroup of adhesion GPCRs whose functions range from planar cell polarity (PCP) signaling to axon pathfinding and ciliogenesis. Like its Drosophila ortholog, Flamingo, mammalian Celsr1 is a core component of the PCP pathway, which, among other roles, is responsible for the coordinated alignment of hair follicles across the skin surface. Although the role of Celsr1 in epidermal planar polarity is well established, the contribution of the other major epidermally expressed Celsr protein, Celsr2, has not been investigated. Here, using two new CRISPR/Cas9-targeted Celsr1 and Celsr2 knockout mouse lines, we define the relative contributions of Celsr1 and Celsr2 to PCP establishment in the skin. We find that Celsr1 is the major Celsr family member involved in epidermal PCP. Removal of Celsr1 function alone abolishes PCP protein asymmetry and hair follicle polarization, whereas epidermal PCP is unaffected by loss of Celsr2. Further, elimination of both Celsr proteins only minimally enhances the Celsr1 -/- phenotype. Using FRAP and junctional enrichment assays to measure differences in Celsr1 and Celsr2 adhesive interactions, we find that compared to Celsr1, which stably enriches at junctional interfaces, Celsr2 is much less efficiently recruited to and immobilized at junctions. As the two proteins seem equivalent in their ability to interact with core PCP proteins Vangl2 and Fz6, we suggest that perhaps differences in homophilic adhesion contribute to the differential involvement of Celsr1 and Celsr2 in epidermal PCP.
Collapse
Affiliation(s)
- Lena P. Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Katherine A. Little
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Gabriela Hayward-Lara
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States,Current Affiliation. University of Pennsylvania, Philadelphia, PA, United States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States,*Correspondence: Danelle Devenport,
| |
Collapse
|
38
|
Nasrin M, Ahmed O, Han X, Nojebuzzaman M, Abo-Ahmed AI, Yazawa S, Osawa M. Generation of Pmel-dependent conditional and inducible Cre-driver mouse line for melanocytic-targeted gene manipulation. Pigment Cell Melanoma Res 2023; 36:53-70. [PMID: 36318272 DOI: 10.1111/pcmr.13074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Conditional and inducible gene targeting using Cre/loxP-mediated recombination is a powerful reverse genetics approach used to study spatiotemporal gene functions in specified cell types. To enable temporal gene manipulation in the melanocyte lineage, we established a novel inducible Cre-driver mouse line by targeting an all-in-one tetracycline/doxycycline (Dox)-inducible Cre expression cassette into the Pmel locus (PmelP2A-TetON3G-TRE3G-iCre ), a gene locus preferentially expressed in pigment cells. By crossing these Cre-driver mice with a strong Cre-reporter mouse line, Gt(ROSA)26Sortm9(CAG-tdTomato)Hze , we show the effectiveness of the PmelP2A-TetON3G-TRE3G-iCre mouse line in facilitating Dox-inducible Cre/loxP recombination in a wide variety of pigment cell lineages including hair follicle melanocytes and their stem cells. Furthermore, to demonstrate proof of concept, we ablated Notch signaling postnatally in the PmelP2A-TetON3G-TRE3G-iCre mice. In agreement with the previously reported phenotype, induced ablation of Notch signaling in the melanocyte lineage resulted in premature hair graying, demonstrating the utility of the PmelP2A-TetON3G-TRE3G-iCre allele. Therefore, the PmelP2A-TetON3G-TRE3G-iCre mouse line is suitable for assessing gene functions in melanocytes using an in vivo inducible reverse genetics approach. Furthermore, we unexpectedly identified previously unrecognized PMEL-expressing cells in non-pigmentary organs in the mice, suggesting unanticipated functions of PMEL other than melanosome formation.
Collapse
Affiliation(s)
- Morsheda Nasrin
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Osama Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Xujun Han
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Md Nojebuzzaman
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ahmed I Abo-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Shigenobu Yazawa
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masatake Osawa
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
39
|
Wang S, Hu T, He M, Gu Y, Cao X, Yuan Z, Lv X, Getachew T, Quan K, Sun W. Defining ovine dermal papilla cell markers and identifying key signaling pathways regulating its intrinsic properties. Front Vet Sci 2023; 10:1127501. [PMID: 36923053 PMCID: PMC10009177 DOI: 10.3389/fvets.2023.1127501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Dermal papilla cell (DPC), one of the key cell types during hair follicle development and regeneration, specifies hair size, shape and cycling. It is also an important in vitro screening model for hair growth. Although some characteristics of DPCs, such as agglutinative growth and marker genes, have been studied in mice and humans, the intrinsic properties of ovine DPCs and the regulatory mechanism of the intrinsic properties during continued culture in vitro remained unknown. In this study, based on our previous single-cell transcriptome sequencing on sheep lambskin, we verified SOX18 and PDGFRA as the novel marker genes of ovine DPCs through immunofluorescence staining on skin sections and cultured DPCs. Using continued cell culture and alkaline phosphatase staining, we found that different from mice and humans, ovine DPCs exhibit particularly robust and stable aggregation with unbated alkaline phosphatase activity till 30 passages during continued culture in vitro. Also, we found that the expression of some marker genes and the activity of Wnt/β-catenin signaling differ between early passaged DPCs and multiple passaged DPCs. Further, using Wnt/β-catenin agonist and antagonist, we demonstrated that Wnt/β-catenin signaling could regulate cell aggregation and alkaline phosphatase activity of ovine DPCs through regulating FGF and IGF signaling. This study provides the basis for isolating ovine DPCs and defines their intrinsic properties, which contribute to improving wool performance and medicine of hair regeneration.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China.,"Innovative China" "Belt and Road" International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou, China
| |
Collapse
|
40
|
Zheng Q, Ye N, Bao P, Zhang X, Wang F, Ma L, Chu M, Guo X, Liang C, Pan H, Yan P. Construction of transcriptome atlas of white yak hair follicle during anagen and catagen using single-cell RNA sequencing. BMC Genomics 2022; 23:813. [PMID: 36482306 PMCID: PMC9730603 DOI: 10.1186/s12864-022-09003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND As the direct organ of villus, hair follicles have obvious seasonal cycles. The hair follicle cycle is orchestrated by multiple cell types that together direct cell renewal and differentiation. But the regulation property of hair follicle cells from anagen to catagen in yak is still unknown. RESULTS In this study, single-cell RNA sequencing was performed on 24,124 single cells of the scapular skin from white yak. Based on tSNE cluster analysis, the cell types of IFE-DC, epidermal cell lines, fibroblasts, keratinocytes, IRS, DS, INFU, and other cells in yak hair follicles during anagen and catagen were successfully identified, and the gene expression profiles were described. The GO enrichment analysis indicated the different cells characteristic genes to be mainly enriched in the epidermal development, epithelial cell differentiation and wound healing pathways. The pseudotime trajectory analysis described the differentiation trajectory of the epidermal lineage and dermal lineage of the hair follicle during anagen and catagen. Moreover, the dynamic changes of the genes like LHX2, KRT25, and KRT71 were found to be highly expressed in HS and IRS, but not in the IFE-DC, INFU, and keratinocyte during differentiation. CONCLUSIONS Our results analyzed the time-varying process of gene expression in the dermal cell lineage and epidermal cell lineage of hair follicles during anagen and catagen during fate differentiation was expounded at the single cell level, revealing the law of fate specialization of different types of cells. In addition, based on the enrichment analysis, the transcriptional regulatory factors involved in the different cell fates were also revealed. These results will help to enhance our understanding of yak hair follicle cycle and promote the development and utilization of yak villus.
Collapse
Affiliation(s)
- Qingbo Zheng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou, 730030, China
| | - Na Ye
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou, 730030, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaolan Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fubin Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou, 730030, China
| | - Lanhua Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou, 730030, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou, 730030, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
41
|
Sinha S, Sparks HD, Labit E, Robbins HN, Gowing K, Jaffer A, Kutluberk E, Arora R, Raredon MSB, Cao L, Swanson S, Jiang P, Hee O, Pope H, Workentine M, Todkar K, Sharma N, Bharadia S, Chockalingam K, de Almeida LGN, Adam M, Niklason L, Potter SS, Seifert AW, Dufour A, Gabriel V, Rosin NL, Stewart R, Muench G, McCorkell R, Matyas J, Biernaskie J. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell 2022; 185:4717-4736.e25. [PMID: 36493752 PMCID: PMC9888357 DOI: 10.1016/j.cell.2022.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 08/24/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022]
Abstract
Adult mammalian skin wounds heal by forming fibrotic scars. We report that full-thickness injuries of reindeer antler skin (velvet) regenerate, whereas back skin forms fibrotic scar. Single-cell multi-omics reveal that uninjured velvet fibroblasts resemble human fetal fibroblasts, whereas back skin fibroblasts express inflammatory mediators mimicking pro-fibrotic adult human and rodent fibroblasts. Consequently, injury elicits site-specific immune responses: back skin fibroblasts amplify myeloid infiltration and maturation during repair, whereas velvet fibroblasts adopt an immunosuppressive phenotype that restricts leukocyte recruitment and hastens immune resolution. Ectopic transplantation of velvet to scar-forming back skin is initially regenerative, but progressively transitions to a fibrotic phenotype akin to the scarless fetal-to-scar-forming transition reported in humans. Skin regeneration is diminished by intensifying, or enhanced by neutralizing, these pathologic fibroblast-immune interactions. Reindeer represent a powerful comparative model for interrogating divergent wound healing outcomes, and our results nominate decoupling of fibroblast-immune interactions as a promising approach to mitigate scar.
Collapse
Affiliation(s)
- Sarthak Sinha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Holly D Sparks
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hayley N Robbins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kevin Gowing
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Arzina Jaffer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eren Kutluberk
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rohit Arora
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT, USA
| | - Leslie Cao
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Peng Jiang
- Morgridge Institute for Research, Madison, WI, USA
| | - Olivia Hee
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hannah Pope
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matt Workentine
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kiran Todkar
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nilesh Sharma
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Shyla Bharadia
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Luiz G N de Almeida
- McCaig Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laura Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Antoine Dufour
- McCaig Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Vincent Gabriel
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; McCaig Institute, University of Calgary, Calgary, AB, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Nicole L Rosin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI, USA
| | - Greg Muench
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert McCorkell
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John Matyas
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; McCaig Institute, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
| |
Collapse
|
42
|
Gonzalez JR, Celli A, Weckel A, Dhariwala MO, Merana GR, Ojewumi OT, Okoro J, Dwyer LR, Tran VM, Meyer JM, Mauro TM, Scharschmidt TC. FLG Deficiency in Mice Alters the Early-Life CD4 + T-Cell Response to Skin Commensal Bacteria. J Invest Dermatol 2022; 143:790-800.e12. [PMID: 36496196 DOI: 10.1016/j.jid.2022.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
FLG variants underlie ichthyosis vulgaris and increased risk of atopic dermatitis, conditions typified by disruption of the skin microbiome and cutaneous immune response. Yet, it remains unclear whether neonatal skin barrier compromise because of FLG deficiency alters the quality of commensal-specific T cells and the functional impact of such responses. To address these questions, we profiled changes in the skin barrier and early cutaneous immune response of neonatal C57BL/6 Flg‒/‒ and wild-type mice using single-cell RNA sequencing, flow cytometry, and other modalities. Flg‒/‒ neonates showed little alteration in transepidermal water loss or lipid- or corneocyte-related gene expression. However, they showed increases in barrier disruption genes, epidermal dye penetration, and numbers of skin CD4+ T cells. Using an engineered strain of Staphylococcus epidermidis (S. epidermidis 2W) to study the response to neonatal skin colonization, we found that commensal-specific CD4+ T cells were skewed in Flg‒/‒ pups toward effector rather than regulatory T cells. This altered response persisted into adulthood, where it was typified by T helper 17 (Th17) cells and associated with increased susceptibility to imiquimod-induced skin inflammation. Thus, subtle but impactful differences in neonatal barrier function in Flg‒/‒ mice are accompanied by a skewed commensal-specific CD4+ response, with enduring consequences for skin immune homeostasis.
Collapse
Affiliation(s)
- Jeanmarie R Gonzalez
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Anna Celli
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA; Dermatology Service, San Francisco VA Medical Center, San Francisco, California, USA
| | - Antonin Weckel
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Miqdad O Dhariwala
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Geil R Merana
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Oluwasunmisola T Ojewumi
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Joy Okoro
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Laura R Dwyer
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Victoria M Tran
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Jason M Meyer
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennesse, USA
| | - Theodora M Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA; Dermatology Service, San Francisco VA Medical Center, San Francisco, California, USA
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
43
|
Single-cell chromatin landscapes of mouse skin development. Sci Data 2022; 9:741. [PMID: 36460683 PMCID: PMC9718782 DOI: 10.1038/s41597-022-01839-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
The coat of mammals is produced by hair follicles, and hair follicle is an important and complex accessory organ of skin. As a complex physiological regulation process, hair follicle morphogenesis is regulated by a series of signal pathway factors, involves the interaction of multiple cell types and begins in the early embryonic stage. However, its transcriptional regulatory mechanism is unclear. We have therefore utilized single-cell ATAC sequencing to obtain the chromatin accessibility landscapes of 6,928, 6,961 and 7,374 high-quality cells from the dorsal skins of E13.5, E16.5 and P0 mice (Mus musculus), respectively. Based on marker gene activity clustering, we defined 6, 8 and 5 distinct cell types in E13.5, E16.5 and P0 stages, respectively. Furtherly, we integrated the fibroblasts and keratinocytes clusters, performed further analysis and re-clustered. The single cell map of the chromatin open area was drawn from each cell type and the mechanism of cell transcription regulation was explored. Collectively, our data provide a reference for deeply exploring the epigenetic regulation mechanism of mouse hair follicles development.
Collapse
|
44
|
Kantzer CG, Yang W, Grommisch D, Patil KV, Mak KHM, Shirokova V, Genander M. ID1 and CEBPA coordinate epidermal progenitor cell differentiation. Development 2022; 149:282464. [PMID: 36330928 PMCID: PMC9845743 DOI: 10.1242/dev.201262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The regulatory circuits that coordinate epidermal differentiation during development are still not fully understood. Here, we report that the transcriptional regulator ID1 is enriched in mouse basal epidermal progenitor cells and find ID1 expression to be diminished upon differentiation. In utero silencing of Id1 impairs progenitor cell proliferation, leads to precocious delamination of targeted progenitor cells and enables differentiated keratinocytes to retain progenitor markers and characteristics. Transcriptional profiling suggests that ID1 acts by mediating adhesion to the basement membrane while inhibiting spinous layer differentiation. Co-immunoprecipitation reveals ID1 binding to transcriptional regulators of the class I bHLH family. We localize bHLH Tcf3, Tcf4 and Tcf12 to epidermal progenitor cells during epidermal stratification and establish TCF3 as a downstream effector of ID1-mediated epidermal proliferation. Finally, we identify crosstalk between CEBPA, a known mediator of epidermal differentiation, and Id1, and demonstrate that CEBPA antagonizes BMP-induced activation of Id1. Our work establishes ID1 as a key coordinator of epidermal development, acting to balance progenitor proliferation with differentiation and unveils how functional crosstalk between CEBPA and Id1 orchestrates epidermal lineage progression.
Collapse
Affiliation(s)
| | - Wei Yang
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - David Grommisch
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kim Vikhe Patil
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kylie Hin-Man Mak
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Vera Shirokova
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden,Author for correspondence ()
| |
Collapse
|
45
|
Hiebert P, Martyts A, Schwestermann J, Janke K, Hafner J, Boukamp P, Mazza E, Werner S. Activation of Nrf2 in fibroblasts promotes a skin aging phenotype via an Nrf2-miRNA-collagen axis. Matrix Biol 2022; 113:39-60. [PMID: 36367485 DOI: 10.1016/j.matbio.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/30/2022]
Abstract
Aging is associated with progressive skin fragility and a tendency to tear, which can lead to severe clinical complications. The transcription factor NRF2 is a key regulator of the cellular antioxidant response, and pharmacological NRF2 activation is a promising strategy for the prevention of age-related diseases. Using a combination of molecular and cellular biology, histology, imaging and biomechanical studies we show, however, that constitutive genetic activation of Nrf2 in fibroblasts of mice suppresses collagen and elastin expression, resulting in reduced skin strength as seen in aged mice. Mechanistically, the "aging matrisome" results in part from direct Nrf2-mediated overexpression of a network of microRNAs that target mRNAs of major skin collagens and other matrix components. Bioinformatics and functional studies revealed high NRF2 activity in aged human fibroblasts in 3D skin equivalents and human skin biopsies, highlighting the translational relevance of the functional mouse data. Together, these results identify activated NRF2 as a promoter of age-related molecular and biomechanical skin features.
Collapse
Affiliation(s)
- Paul Hiebert
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland.
| | - Anastasiya Martyts
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Jonas Schwestermann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Katharina Janke
- Department of Environmentally-Induced Skin and Lung Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Petra Boukamp
- Department of Environmentally-Induced Skin and Lung Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
46
|
Nestin is a marker of unipotent embryonic and adult progenitors differentiating into an epithelial cell lineage of the hair follicles. Sci Rep 2022; 12:17820. [PMID: 36280775 PMCID: PMC9592581 DOI: 10.1038/s41598-022-22427-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/14/2022] [Indexed: 01/19/2023] Open
Abstract
Nestin is an intermediate filament protein transiently expressed in neural stem/progenitor cells. We previously demonstrated that outer root sheath (ORS) keratinocytes of adult hair follicles (HFs) in mice descend from nestin-expressing cells, despite being an epithelial cell lineage. This study determined the exact stage when nestin-expressing ORS stem/precursor cells or their descendants appear during HF morphogenesis, and whether they are present in adult HFs. Using Nes-Cre/CAG-CAT-EGFP mice, in which enhanced green fluorescent protein (EGFP) is expressed following Cre-based recombination driven by the nestin promoter, we found that EGFP+ cells appeared in the epithelial layer of embryonic HFs as early as the peg stage. EGFP+ cells in hair pegs were positive for keratin 14 (K14) and K5, but not vimentin, SOX2, SOX10, or S100 alpha 6. Tracing of tamoxifen-induced EGFP+ cells in postnatal Nes-CreERT2/CAG-CAT-EGFP mice revealed labeling of some isthmus HF epithelial cells in the first anagen stage. EGFP+ cells in adult HFs were not immunolabeled for K15, an HF multipotent stem cell marker. However, when hairs were depilated in Nes-CreERT2/CAG-CAT-EGFP mice to induce the anagen stage after tamoxifen injection, the majority of ORS keratinocytes in depilation-induced anagen HFs were labeled for EGFP. Our findings indicate that nestin-expressing unipotent progenitor cells capable of differentiating into ORS keratinocytes are present in HF primordia and adult HFs.
Collapse
|
47
|
Tan CT, Leo ZY, Lim CY. Generation and integration of hair follicle-primed spheroids in bioengineered skin constructs. Biomed Mater 2022; 17. [PMID: 36268872 DOI: 10.1088/1748-605x/ac99c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022]
Abstract
Skin is a complex organ made up of different cell layers, appendages, connective tissues, and immune repertoires. These different components interact extensively to maintain the overall functions of the integumentary system. In particular, appendages such as hair follicles critically contribute to the skin's function in thermoregulation, sensory perception, and homeostatic regeneration. Despite a strong need for better skin regenerative therapeutics, efforts to bio-engineer highly functional appendage-containing human reconstituted skinin vitrohave not yielded much success. Here, we report methods in generating and incorporating hair follicle-primed heterotypic spheroids into epidermal-dermal skin constructs that induced invaginating outgrowths with follicle-like organization and lineage gene expression. By co-culturing epithelial keratinocytes (KCs) with dermal papilla (DP) cells in low attachment plates, we established the media and culture conditions that best supported the viability, signalling and remodelling of the cell aggregates to form 3D KC-DP spheroids with the expression of both DP inductiveness and hair follicle lineage genes. We show that long-term growth and maturation of KC cells in these spheroids was supported by incorporation into epidermal-dermal constructs but not in scaffold-less media. When cultured, the bio-fabricated constructs developed invaginations from the integrated spheroids with follicle-forming potential. The generation of these constructs is a step towards the development of functional hair-bearing skin mimetics.
Collapse
Affiliation(s)
- Chew Teng Tan
- ASTAR Skin Research Labs, Agency for Science, Technology and Research, Singapore
| | - Zhenn Yi Leo
- ASTAR Skin Research Labs, Agency for Science, Technology and Research, Singapore
| | - Chin Yan Lim
- ASTAR Skin Research Labs, Agency for Science, Technology and Research, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
48
|
Understanding Mammalian Hair Follicle Ecosystems by Single-Cell RNA Sequencing. Animals (Basel) 2022; 12:ani12182409. [PMID: 36139270 PMCID: PMC9495062 DOI: 10.3390/ani12182409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Single-cell sequencing technology can reflect cell population heterogeneity at the single-cell level, leading to a better understanding of the role of individual cells in the microenvironment. Over the past few years, single-cell sequencing technology has not only made more new discoveries in the study of cellular heterogeneity of other rare cells such as stem cells, but has also become the most powerful research method for embryonic development, organ differentiation, cancer occurrence, and cell mapping. In this review, we outline the use of scRNA-seq in hair follicles. In particular, by focusing on landmark studies and the recent discovery of novel subpopulations of hair follicles, we summarize the phenotypic diversity of hair follicle cells and their links to hair follicle morphogenesis. Enhancing our understanding of the progress of hair follicle research will help to elucidate the regulatory mechanisms that determine the fate of different types of cells in the hair follicle, thereby guiding hair loss treatment and hair-producing economic animal breeding research. Abstract Single-cell sequencing technology can fully reflect the heterogeneity of cell populations at the single cell level, making it possible for us to re-recognize various tissues and organs. At present, the sequencing study of hair follicles is transiting from the traditional ordinary transcriptome level to the single cell level, which will provide diverse insights into the function of hair follicle cells. This review focuses on research advances in the hair follicle microenvironment obtained from scRNA-seq studies of major cell types in hair follicle development, with a special emphasis on the discovery of new subpopulations of hair follicles by single-cell techniques. We also discuss the problems and current solutions in scRNA-seq observation and look forward to its prospects.
Collapse
|
49
|
Mabrouk I, Zhou Y, Wang S, Song Y, Fu X, Xu X, Liu T, Wang Y, Feng Z, Fu J, Ma J, Zhuang F, Cao H, Jin H, Wang J, Sun Y. Transcriptional Characteristics Showed That miR-144-y/FOXO3 Participates in Embryonic Skin and Feather Follicle Development in Zhedong White Goose. Animals (Basel) 2022; 12:ani12162099. [PMID: 36009690 PMCID: PMC9405214 DOI: 10.3390/ani12162099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Feather is one of the most valuable and economical products in goose farming and plays a crucial physiological role in birds. For avian biology and the poultry industry, it is essential to comprehend and regulate how skin and feather follicles develop during embryogenesis. This study showed that several key regulatory genes (FOXO3, CTGF, and PTCH1, among others) and miRNAs (miR-144-y) participated in the developmental process of the skin and feather follicles in Zhedong white goose. Our findings are particularly important because they will serve as a valuable resource for upcoming studies on down feathers in agricultural economic growth regarding complex molecular mechanisms and breeding techniques. Abstract Skin and feather follicle development are essential processes for goose embryonic growth. Transcriptome and next-generation sequencing (NGS) network analyses were performed to improve the genome of Zhedong White goose and discover the critical genes, miRNAs, and pathways involved in goose skin and feather follicle morphogenesis. Sequencing output generated 6,002,591,668 to 8,675,720,319 clean reads from fifteen libraries. There were 1234, 3024, 4416, and 5326 different genes showing differential expression in four stages, E10 vs. E13, E10 vs. E18, E10 vs. E23, and E10 vs. E28, respectively. The differentially expressed genes (DEGs) were found to be implicated in multiple biological processes and pathways associated with feather growth and development, such as the Wnt signaling pathway, cell adhesion molecules, ECM–receptor interaction signaling pathways, and cell cycle and DNA replication pathways, according to functional analysis. In total, 8276 DEGs were assembled into twenty gene profiles with diverse expression patterns. The reliability of transcriptome results was verified by real-time quantitative PCR by selecting seven DEGs and five miRNAs. The localization of forkhead box O3 (FOXO3), connective tissue growth factor (CTGF), protein parched homolog1 (PTCH1), and miR-144-y by in situ hybridization showed spatial-temporal expression patterns and that FOXO3 and miR-144-y have an antagonistic targeting relationship. The correlation coefficient of FOXO3 and miR-144-y was -0.948, showing a strong negative correlation. Dual-luciferase reporter assay results demonstrated that miR-144-y could bind to the expected location to suppress the expression of FOXO3, which supports that there is a targeting relationship between them. The detections in this report will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of skin and feather follicles in Zhedong white geese.
Collapse
Affiliation(s)
- Ichraf Mabrouk
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuxuan Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Sihui Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yupu Song
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xianou Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohui Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Tuoya Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yudong Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ziqiang Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jinhong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingyun Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fangming Zhuang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Heng Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Honglei Jin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingbo Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yongfeng Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
- Correspondence:
| |
Collapse
|
50
|
Hou X, Wei Z, Zouboulis CC, Ju Q. Aging in the sebaceous gland. Front Cell Dev Biol 2022; 10:909694. [PMID: 36060807 PMCID: PMC9428133 DOI: 10.3389/fcell.2022.909694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Sebaceous glands (SGs) originate from hair follicular stem cells and secrete lipids to lubricate the skin. The coordinated effects of intrinsic and extrinsic aging factors generate degradation of SGs at a late age. Senescence of SGs could be a mirror of the late aging of both the human body and skin. The procedure of SG aging goes over an initial SG hyperplasia at light-exposed skin areas to end with SG atrophy, decreased sebum secretion, and altered sebum composition, which is related to skin dryness, lack of brightness, xerosis, roughness, desquamation, and pruritus. During differentiation and aging of SGs, many signaling pathways, such as Wnt/β-catenin, c-Myc, aryl hydrocarbon receptor (AhR), and p53 pathways, are involved. Random processes lead to random cell and DNA damage due to the production of free radicals during the lifespan and neuroendocrine system alterations. Extrinsic factors include sunlight exposure (photoaging), environmental pollution, and cigarette smoking, which can directly activate signaling pathways, such as Wnt/β-catenin, Notch, AhR, and p53 pathways, and are probably associated with the de-differentiation and hyperplasia of SGs, or indirectly activate the abovementioned signaling pathways by elevating the inflammation level. The production of ROS during intrinsic SG aging is less, the signaling pathways are activated slowly and mildly, and sebocytes are still differentiated, yet terminal differentiation is not completed. With extrinsic factors, relevant signaling pathways are activated rapidly and fiercely, thus inhibiting the differentiation of progenitor sebocytes and even inducing the differentiation of progenitor sebocytes into keratinocytes. The management of SG aging is also mentioned.
Collapse
Affiliation(s)
- Xiaoxiao Hou
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Berlin Brandenburg Center for Regenerative Therapies, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Ziyu Wei
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- *Correspondence: Christos C Zouboulis, ; Qiang Ju,
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Christos C Zouboulis, ; Qiang Ju,
| |
Collapse
|