1
|
Soto J, Pinilla F, Olguín P, Castañeda LE. Genetic Architecture of the Thermal Tolerance Landscape in Drosophila melanogaster. Mol Ecol 2025; 34:e17697. [PMID: 40035350 DOI: 10.1111/mec.17697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
Increased environmental temperatures associated with global warming strongly impact natural populations of ectothermic species. Therefore, it is crucial to understand the genetic basis and evolutionary potential of heat tolerance. However, heat tolerance and its genetic components depend on the methodology, making it difficult to predict the adaptive responses to global warming. Here, we measured the knockdown time for 100 lines from the Drosophila Genetic Reference Panel (DGRP) at four different static temperatures, and we estimated their thermal-death-time (TDT) curves, which incorporate the magnitude and the time of exposure to thermal stress, to determine the genetic basis of the thermal tolerance landscape. Through quantitative genetic analyses, the knockdown time showed a significant heritability at different temperatures and that its genetic correlations decreased as temperatures differences increased. Significant genotype-by-sex and genotype-by-environment interactions were noted for heat tolerance. We also discovered genetic variability for the two parameters of TDT: CTmax and thermal sensitivity. Taking advantage of the DGRP, we performed a GWAS and identified multiple variants associated with the TDT parameters, which mapped to genes related to signalling and developmental functions. We performed functional validations for some candidate genes using RNAi, which revealed that genes such as mam, KNCQ, or robo3 affect the knockdown time at a specific temperature but are not associated with the TDT parameters. In conlusion, the thermal tolerance landscape display genetic variation and plastic responses, which may facilitate the adaptation of Drosophila populations to a changing world.
Collapse
Affiliation(s)
- Juan Soto
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisco Pinilla
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricio Olguín
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis E Castañeda
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Research Ring in Pest Insects and Climate Change (PIC2), Santiago, Chile
| |
Collapse
|
2
|
Wu J, Zhang J, Shu W, Feng W, Meng R, Kong L, Cao H, Jiang C, Wang S, Wu F, Wu C, Wang X. Taraxacum sinicum Kitag. (Binpu-3) root extract inhibits tumor invasion via Notch signaling in Drosophila and human breast cancer MDA-MB-231 cells. Front Pharmacol 2025; 16:1494545. [PMID: 40151788 PMCID: PMC11947688 DOI: 10.3389/fphar.2025.1494545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Metastasis is the primary cause of death in patients with malignant tumors. Therefore, effectively controlling or reversing tumor cell growth and metastasis is crucial for treating malignant tumors. In this study, we investigated the effects and underlying mechanisms of Binpu-3 (a strain of Taraxacum sinicum Kitag., which was cultivated in slightly saline-alkali soil) on tumor invasion both in Drosophila and human breast cancer cells. High-performance liquid chromatography (HPLC) analysis revealed that caftaric, chlorogenic, caffeic, and cichoric acids in the Binpu-3 leaves and roots were significantly higher than those in the wild-type Handan strain. Binpu-3 root extract (Binpu-3RE) suppressed the invasion rate of tumor cells at 25.00 mg/mL in the Drosophila eyeful model, whereas Binpu-3 leaf extract had no obvious effect on tumor metastasis. Accordingly, we found that caffeic acid, quercetin, apigenin, and taraxasterol content in Binpu-3 roots was significantly higher than that in the leaves. In addition, ultra performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) analysis revealed that Binpu-3RE contained various constituents, including pantothenate (0.1%), butein (0.53%), chlorogenate (0.78%), chicoric acid (1.96%), azelaic acid (0.23%), and [6]-gingerol (0.13%). In vivo, Binpu-3RE impeded ptc>scrib-IR triggered cell migration in Drosophila at an appropriate concentration, and 25.00 mg/mL was selected as the best dose to carry out follow-up mechanistic research. This dose of Binpu-3RE reduced the mRNA levels of Notch pathway key genes Delta, Serrate, Notch, Su(H), and En(spl), the expression levels of NRE-GFP (Notch activity reporter), β-integrin, and metalloproteinase-1 (MMP1) in Drosophila. Cell viability, wound healing, transwell, and Western blotting assays data implied that Binpu-3RE reduced cell growth, migration, invasion, and the expression of Notch1, Jagged1, and HES1 in human breast cancer MDA-MB-231 cells. In summary, the saline-alkali tolerant dandelion Binpu-3 used in this study was of excellent quality, and the root extract showed significant anti-tumor metastasis effects via reduction of Notch signal activity and the expression β-integrin and MMP1 proteins in Drosophila and breast cancer cells, providing a theoretical basis for the development and use of alkaline-soil dandelion herbs, and a therapeutic strategy for the clinical treatment of malignant breast cancer.
Collapse
Affiliation(s)
- Jiawei Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Jianbo Zhang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Wanyu Shu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Wei Feng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
| | - Ran Meng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
| | - Lingyu Kong
- Oncology of Chinese and Western Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Huijuan Cao
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Chunhua Jiang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Sitong Wang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Fanwu Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Chenxi Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Medical Engineering and Integrated Utilization of Saline Alkali Land, Hebei Administration of TCM Key Laboratory of Quality Control of Salt Alkali Resistant TCM, Tangshan, China
| | - Xiuping Wang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
| |
Collapse
|
3
|
Touré H, Durand N, Rincheval V, Girard-Misguich F, Guénal I, Herrmann JL, Szuplewski S. Remote disruption of intestinal homeostasis by Mycobacterium abscessus is detrimental to Drosophila survival. Sci Rep 2024; 14:30775. [PMID: 39730463 DOI: 10.1038/s41598-024-80994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium abscessus (Mabs), an intracellular and opportunistic pathogen, is considered the most pathogenic fast-growing mycobacterium, and causes severe pulmonary infections in patients with cystic fibrosis. While bacterial factors contributing to its pathogenicity are well studied, the host factors and responses that worsen Mabs infection are not fully understood. Here, we report that Mabs systemic infection alters Drosophila melanogaster intestinal homeostasis. Mechanistically, Mabs remotely induces a self-damaging oxidative burst, leading to excessive differentiation of intestinal stem cells into enterocytes. We demonstrated that the subsequent increased intestinal renewal is mediated by both the Notch and JAK/STAT pathways and is deleterious to Drosophila survival. In conclusion, this work highlights that the ability of Mabs to induce an exacerbated and self-damaging response in the host contributes to its pathogenesis.
Collapse
Affiliation(s)
- Hamadoun Touré
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.
| | - Nicolas Durand
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France
| | | | - Fabienne Girard-Misguich
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France
| | - Isabelle Guénal
- Université Paris-Saclay, UVSQ, LGBC, 78000, Versailles, France
| | - Jean-Louis Herrmann
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, 92380, Garches, France
| | | |
Collapse
|
4
|
Rogers JM, Mimoso CA, Martin BJE, Martin AP, Aster JC, Adelman K, Blacklow SC. Notch induces transcription by stimulating release of paused RNA polymerase II. Genes Dev 2024; 38:965-978. [PMID: 39414356 PMCID: PMC11610932 DOI: 10.1101/gad.352108.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examine the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.
Collapse
Affiliation(s)
- Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin J E Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexandre P Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
- Ludwig Center at Harvard, Boston, Massachusetts 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Ludwig Center at Harvard, Boston, Massachusetts 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts 02142, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
5
|
Wireko AA, Ben-Jaafar A, Kong JSH, Mannan KM, Sanker V, Rosenke SL, Boye ANA, Nkrumah-Boateng PA, Poornaselvan J, Shah MH, Abdul-Rahman T, Atallah O. Sonic hedgehog signalling pathway in CNS tumours: its role and therapeutic implications. Mol Brain 2024; 17:83. [PMID: 39568072 PMCID: PMC11580395 DOI: 10.1186/s13041-024-01155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
CNS tumours encompass a diverse group of neoplasms with significant morbidity and mortality. The SHH signalling pathway plays a critical role in the pathogenesis of several CNS tumours, including gliomas, medulloblastomas and others. By influencing cellular proliferation, differentiation and migration in CNS tumours, the SHH pathway has emerged as a promising target for therapeutic intervention. Current strategies such as vismodegib and sonidegib have shown efficacy in targeting SHH pathway activation. However, challenges such as resistance mechanisms and paradoxical effects observed in clinical settings underscore the complexity of effectively targeting this pathway. Advances in gene editing technologies, particularly CRISPR/Cas9, have provided valuable tools for studying SHH pathway biology, validating therapeutic targets and exploring novel treatment modalities. These innovations have paved the way for a better understanding of pathway dynamics and the development of more precise therapeutic interventions. In addition, the identification and validation of biomarkers of SHH pathway activation are critical to guide clinical decision making and improve patient outcomes. Molecular profiling and biomarker discovery efforts are critical steps towards personalised medicine approaches in the treatment of SHH pathway-associated CNS tumours. While significant progress has been made in understanding the role of the SHH pathway in CNS tumorigenesis, ongoing research is essential to overcome current therapeutic challenges and refine treatment strategies. The integration of molecular insights with advanced technologies and clinical expertise holds great promise for developing more effective and personalised therapies for patients with SHH pathway-driven CNS tumours.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Vivek Sanker
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Muhammad Hamza Shah
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
6
|
Wu J, Bala Tannan N, Vuong LT, Koca Y, Collu GM, Mlodzik M. Par3/bazooka binds NICD and promotes notch signaling during Drosophila development. Dev Biol 2024; 514:37-49. [PMID: 38885804 PMCID: PMC11287782 DOI: 10.1016/j.ydbio.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The conserved bazooka (baz/par3) gene acts as a key regulator of asymmetrical cell divisions across the animal kingdom. Associated Par3/Baz-Par6-aPKC protein complexes are also well known for their role in the establishment of apical/basal cell polarity in epithelial cells. Here we define a novel, positive function of Baz/Par3 in the Notch pathway. Using Drosophila wing and eye development, we demonstrate that Baz is required for Notch signaling activity and optimal transcriptional activation of Notch target genes. Baz appears to act independently of aPKC in these contexts, as knockdown of aPKC does not cause Notch loss-of-function phenotypes. Using transgenic Notch constructs, our data positions Baz activity downstream of activating Notch cleavage steps and upstream of Su(H)/CSL transcription factor complex activity on Notch target genes. We demonstrate a biochemical interaction between NICD and Baz, suggesting that Baz is required for NICD activity before NICD binds to Su(H). Taken together, our data define a novel role of the polarity protein Baz/Par3, as a positive and direct regulator of Notch signaling through its interaction with NICD.
Collapse
Affiliation(s)
- Jun Wu
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Neeta Bala Tannan
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Linh T Vuong
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Yildiz Koca
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Giovanna M Collu
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Marek Mlodzik
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
7
|
DeCotiis-Mauro J, Han SM, Mello H, Goyeneche C, Marchesini-Tovar G, Jin L, Bellofatto V, Lukac DM. The cellular Notch1 protein promotes KSHV reactivation in an Rta-dependent manner. J Virol 2024; 98:e0078824. [PMID: 38975769 PMCID: PMC11334469 DOI: 10.1128/jvi.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.
Collapse
Affiliation(s)
- Jennifer DeCotiis-Mauro
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Sun M. Han
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Helena Mello
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Corey Goyeneche
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Giuseppina Marchesini-Tovar
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Lianhua Jin
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Vivian Bellofatto
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - David M. Lukac
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
8
|
Rogers JM, Mimoso CA, Martin BJE, Martin AP, Aster JC, Adelman K, Blacklow SC. Notch induces transcription by stimulating release of paused RNA Polymerase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598853. [PMID: 38915655 PMCID: PMC11195215 DOI: 10.1101/2024.06.13.598853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examined the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction, through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.
Collapse
Affiliation(s)
- Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin JE Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandre P Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Lead contact
| |
Collapse
|
9
|
Manning SA, Kroeger B, Deng Q, Brooks E, Fonseka Y, Hinde E, Harvey KF. The Drosophila Hippo pathway transcription factor Scalloped and its co-factors alter each other's chromatin binding dynamics and transcription in vivo. Dev Cell 2024; 59:1640-1654.e5. [PMID: 38670104 DOI: 10.1016/j.devcel.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. The major mechanism by which Hippo is known to control transcription is by dictating the nucleo-cytoplasmic shuttling rate of Yorkie, a transcription co-activator, which promotes transcription with the DNA binding protein Scalloped. The nuclear biophysical behavior of Yorkie and Scalloped, and whether this is regulated by the Hippo pathway, remains unexplored. Using multiple live-imaging modalities on Drosophila tissues, we found that Scalloped interacts with DNA on a broad range of timescales, and enrichment of Scalloped at sites of active transcription is mediated by longer DNA dwell times. Further, Yorkie increased Scalloped's DNA dwell time, whereas the repressors Nervous fingers 1 (Nerfin-1) and Tondu-domain-containing growth inhibitor (Tgi) decreased it. Therefore, the Hippo pathway influences transcription not only by controlling nuclear abundance of Yorkie but also by modifying the DNA binding kinetics of the transcription factor Scalloped.
Collapse
Affiliation(s)
- Samuel A Manning
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Qiji Deng
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Elliot Brooks
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Yoshana Fonseka
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Kieran F Harvey
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
10
|
Qin Z, Zhong Y, Li P, Ma Z, Kang H, Huang Y, Zhong Y, Wang L. Vasorin promotes endothelial differentiation of glioma stem cells via stimulating the transcription of VEGFR2. FASEB J 2024; 38:e23682. [PMID: 38780524 DOI: 10.1096/fj.202400159r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Gliomas are highly vascularized malignancies, but current anti-angiogenic treatments have not demonstrated practical improvements in patient survival. Studies have suggested that glioma-derived endothelial cell (GdEC) formed by glioma stem cell (GSC) differentiation may contribute to the failure of this treatment. However, the molecular mechanisms involved in GSC endothelial differentiation remain poorly understood. We previously reported that vasorin (VASN) is highly expressed in glioma and promotes angiogenesis. Here, we show that VASN expression positively correlates with GdEC signatures in glioma patients. VASN promotes the endothelial differentiation capacity of GSC in vitro and participates in the formation of GSC-derived vessels in vivo. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) is a critical factor that mediates the regulation of VASN on GSC endothelial differentiation. Separation of cell chromatin fractionation and chromatin immunoprecipitation-sequencing analysis show that VASN interacts with Notch1 and co-translocates into the cell nuclei, where VASN binds to the VEGFR2 gene promoter to stimulate its transcription during the progression of GSC differentiation into GdEC. Together, these findings elucidate the role and mechanisms of VASN in promoting the endothelial differentiation of GSC and suggest VASN as a potential target for anti-angiogenic therapy based on intervention in GdEC formation in gliomas.
Collapse
Affiliation(s)
- Zixi Qin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Peiwen Li
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ziqing Ma
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Youwei Huang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Guangzhou, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
DeHaro-Arbona FJ, Roussos C, Baloul S, Townson J, Gómez Lamarca MJ, Bray S. Dynamic modes of Notch transcription hubs conferring memory and stochastic activation revealed by live imaging the co-activator Mastermind. eLife 2024; 12:RP92083. [PMID: 38727722 PMCID: PMC11087053 DOI: 10.7554/elife.92083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.
Collapse
Affiliation(s)
- F Javier DeHaro-Arbona
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Charalambos Roussos
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Sarah Baloul
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Jonathan Townson
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - María J Gómez Lamarca
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC/Universidad de Sevilla, Departamento de Biologıa CelularSevilleSpain
| | - Sarah Bray
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
12
|
Wilkin MB, Whiteford R, Akbar T, Hosseini-Alghaderi S, Revici R, Carbery AM, Baron M. The First Defined Null Allele of the Notch Regulator, a Suppressor of Deltex: Uncovering Its Novel Roles in Drosophila melanogaster Oogenesis. Biomolecules 2024; 14:522. [PMID: 38785929 PMCID: PMC11118177 DOI: 10.3390/biom14050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent signalling, the latter involving trafficking through the endocytic pathway and activation of the endo/lysosomal membrane. Mutations of Su(dx) result in developmental phenotypes in the Drosophila wing that reflect increased Notch signalling, leading to gaps in the specification of the wing veins, and Su(dx) functions to provide the developmental robustness of Notch activity to environmental temperature shifts. The full developmental functions of Su(dx) are unclear; however, this is due to a lack of a clearly defined null allele. Here we report the first defined null mutation of Su(dx), generated by P-element excision, which removes the complete open reading frame. We show that the mutation is recessive-viable, with the Notch gain of function phenotypes affecting wing vein and leg development. We further uncover new roles for Su(dx) in Drosophila oogenesis, where it regulates interfollicular stalk formation, egg chamber separation and germline cyst enwrapment by the follicle stem cells. Interestingly, while the null allele exhibited a gain in Notch activity during oogenesis, the previously described Su(dx)SP allele, which carries a seven amino acid in-frame deletion, displayed a Notch loss of function phenotypes and an increase in follicle stem cell turnover. This is despite both alleles displaying similar Notch gain of function in wing development. We attribute this unexpected context-dependent outcome of Su(dx)sp being due to the partial retention of function by the intact C2 and WW domain regions of the protein. Our results extend our understanding of the developmental role of Su(dx) in the tissue renewal and homeostasis of the Drosophila ovary and illustrate the importance of examining an allelic series of mutations to fully understand developmental functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Martin Baron
- Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Michael Smith Building and Oxford Rd., Manchester M13 9PT, UK
| |
Collapse
|
13
|
Vanderperre S, Merabet S. Visualization of the Association of Dimeric Protein Complexes on Specific Enhancers in the Salivary Gland Nuclei of Drosophila Larva. Cells 2024; 13:613. [PMID: 38607052 PMCID: PMC11012150 DOI: 10.3390/cells13070613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein-protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy.
Collapse
Affiliation(s)
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), UMR5242, Ecole Normale Supérieure de Lyon (ENSL), CNRS, Université de Lyon, 69007 Lyon, France;
| |
Collapse
|
14
|
Baloul S, Roussos C, Gomez-Lamarca M, Muresan L, Bray S. Changes in searching behaviour of CSL transcription complexes in Notch active conditions. Life Sci Alliance 2024; 7:e202302336. [PMID: 38097371 PMCID: PMC10721712 DOI: 10.26508/lsa.202302336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
During development cells receive a variety of signals, which are of crucial importance to their fate determination. One such source of signal is the Notch signalling pathway, where Notch activity regulates expression of target genes through the core transcription factor CSL. To understand changes in transcription factor behaviour that lead to transcriptional changes in Notch active cells, we have probed CSL behaviours in real time, using in vivo Single Molecule Localisation Microscopy. Trajectory analysis reveals that Notch-On conditions increase the fraction of bound CSL molecules, but also the proportion of molecules with exploratory behaviours. These properties are shared by the co-activator Mastermind. Furthermore, both CSL and Mastermind, exhibit characteristics of local exploration near a Notch target locus. A similar behaviour is observed for CSL molecules diffusing in the vicinity of other bound CSL clusters. We suggest therefore that CSL acquires an exploratory behaviour when part of the activation complex, favouring local searching and retention close to its target enhancers. This change explains how CSL can efficiently increase its occupancy at target sites in Notch-On conditions.
Collapse
Affiliation(s)
- Sarah Baloul
- Physiology Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Charalambos Roussos
- Physiology Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Maria Gomez-Lamarca
- Physiology Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Leila Muresan
- Physiology Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Sarah Bray
- Physiology Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Kefi M, Konstantinos P, Balabanidou V, Sarafoglou C, Tsakireli D, Douris V, Monastirioti M, Maréchal JD, Feyereisen R, Vontas J. Insights into unique features of Drosophila CYP4G enzymes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104041. [PMID: 38008364 DOI: 10.1016/j.ibmb.2023.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
The cytochrome P450 enzymes of the CYP4G subfamily are some of the most intriguing insect P450s in terms of structure and function. In Drosophila, CYP4G1 is highly expressed in the oenocytes and is the last enzyme in the biosynthesis of cuticular hydrocarbons, while CYP4G15 is expressed in the brain and is of unknown function. Both proteins have a CYP4G-specific and characteristic amino acid sequence insertion corresponding to a loop between the G and H helices whose function is unclear. Here we address these enigmatic structural and functional features of Drosophila CYP4Gs. First, we used reverse genetics to generate D. melanogaster strains in which all or part of the CYP4G-specific loop was removed from CYP4G1. We showed that the full loop was not needed for proper folding of the P450, but it is essential for function, and that just a short stretch of six amino acids is required for the enzyme's ability to make hydrocarbons. Second, we confirmed by immunocytochemistry that CYP4G15 is expressed in the brain and showed that it is specifically associated with the cortex glia cell subtype. We then expressed CYP4G15 ectopically in oenocytes, revealing that it can produce of a blend of hydrocarbons, albeit to quantitatively lower levels resulting in only a partial rescue of CYP4G1 knockdown flies. The CYP4G1 structural variants studied here should facilitate the biochemical characterization of CYP4G enzymes. Our results also raise the question of the putative role of hydrocarbons and their synthesis by cortex glial cells.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Parasyris Konstantinos
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Chara Sarafoglou
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Dimitra Tsakireli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Greece
| | - Vassilis Douris
- Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece; Biomedical Research Institute (BRI), Foundation for Research and Technology (FORTH), University Campus, 451 10, Ioannina, Greece
| | - Maria Monastirioti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Greece.
| |
Collapse
|
16
|
Rosales-Vega M, Reséndez-Pérez D, Zurita M, Vázquez M. TnaA, a trithorax group protein, modulates wingless expression in different regions of the Drosophila wing imaginal disc. Sci Rep 2023; 13:15162. [PMID: 37704704 PMCID: PMC10499800 DOI: 10.1038/s41598-023-42169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
wingless expression is exquisitely regulated by different factors and enhancers in the imaginal wing discs of Drosophila melanogaster in four domains: the dorsal band, the dorso-ventral boundary, and the inner and outer ring domains. tonalli is a trithorax group gene that encodes a putative SUMO E3 ligase that binds to chromatin to regulate the expression of its targets, including the Hox genes. However, its role in modulating gene expression is barely known. Here, we show that TnaA modulates the wingless expression at two domains of the wing disc, the dorso-ventral boundary and the inner ring. At first, tonalli interacts genetically with Notch to form the wing margin. In the inner ring domain, TnaA modulates wingless transcription. When the dosage of TnaA increases in or near the inner ring since early larval stages, this domain expands with a rapid increase in wingless expression. TnaA occupies the wingless Inner Ring Enhancer at the wing disc, meanwhile it does not affect wingless expression directed by the Ventral Disc Enhancer in leg discs, suggesting that TnaA acts as a wingless enhancer-specific factor. We describe for the first time the presence of TnaA at the Inner Ring Enhancer as a specific regulator of wingless in the development of wing boundaries.
Collapse
Affiliation(s)
- Marco Rosales-Vega
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Diana Reséndez-Pérez
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Martha Vázquez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
17
|
Rajan A, Anhezini L, Rives-Quinto N, Chhabra JY, Neville MC, Larson ED, Goodwin SF, Harrison MM, Lee CY. Low-level repressive histone marks fine-tune gene transcription in neural stem cells. eLife 2023; 12:e86127. [PMID: 37314324 PMCID: PMC10344426 DOI: 10.7554/elife.86127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/11/2023] [Indexed: 06/15/2023] Open
Abstract
Coordinated regulation of gene activity by transcriptional and translational mechanisms poise stem cells for a timely cell-state transition during differentiation. Although important for all stemness-to-differentiation transitions, mechanistic understanding of the fine-tuning of gene transcription is lacking due to the compensatory effect of translational control. We used intermediate neural progenitor (INP) identity commitment to define the mechanisms that fine-tune stemness gene transcription in fly neural stem cells (neuroblasts). We demonstrate that the transcription factor FruitlessC (FruC) binds cis-regulatory elements of most genes uniquely transcribed in neuroblasts. Loss of fruC function alone has no effect on INP commitment but drives INP dedifferentiation when translational control is reduced. FruC negatively regulates gene expression by promoting low-level enrichment of the repressive histone mark H3K27me3 in gene cis-regulatory regions. Identical to fruC loss-of-function, reducing Polycomb Repressive Complex 2 activity increases stemness gene activity. We propose low-level H3K27me3 enrichment fine-tunes gene transcription in stem cells, a mechanism likely conserved from flies to humans.
Collapse
Affiliation(s)
- Arjun Rajan
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Lucas Anhezini
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Noemi Rives-Quinto
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jay Y Chhabra
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical SchoolAnn ArborUnited States
- Rogel Cancer Center, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
18
|
Mo D, Liu C, Chen Y, Cheng X, Shen J, Zhao L, Zhang J. The mitochondrial ribosomal protein mRpL4 regulates Notch signaling. EMBO Rep 2023; 24:e55764. [PMID: 37009823 PMCID: PMC10240210 DOI: 10.15252/embr.202255764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 04/04/2023] Open
Abstract
Mitochondrial ribosomal proteins (MRPs) assemble as specialized ribosome to synthesize mtDNA-encoded proteins, which are essential for mitochondrial bioenergetic and metabolic processes. MRPs are required for fundamental cellular activities during animal development, but their roles beyond mitochondrial protein translation are poorly understood. Here, we report a conserved role of the mitochondrial ribosomal protein L4 (mRpL4) in Notch signaling. Genetic analyses demonstrate that mRpL4 is required in the Notch signal-receiving cells to permit target gene transcription during Drosophila wing development. We find that mRpL4 physically and genetically interacts with the WD40 repeat protein wap and activates the transcription of Notch signaling targets. We show that human mRpL4 is capable of replacing fly mRpL4 during wing development. Furthermore, knockout of mRpL4 in zebrafish leads to downregulated expression of Notch signaling components. Thus, we have discovered a previously unknown function of mRpL4 during animal development.
Collapse
Affiliation(s)
- Dongqing Mo
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Chenglin Liu
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of FisheriesOcean University of ChinaQingdaoChina
- Key Laboratory of Mariculture (OUC)Ministry of EducationQingdaoChina
| | - Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Xinkai Cheng
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of FisheriesOcean University of ChinaQingdaoChina
- Key Laboratory of Mariculture (OUC)Ministry of EducationQingdaoChina
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Long Zhao
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of FisheriesOcean University of ChinaQingdaoChina
- Key Laboratory of Mariculture (OUC)Ministry of EducationQingdaoChina
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
19
|
Townson JM, Gomez-Lamarca MJ, Santa Cruz Mateos C, Bray SJ. OptIC-Notch reveals mechanism that regulates receptor interactions with CSL. Development 2023; 150:dev201785. [PMID: 37294169 PMCID: PMC10309584 DOI: 10.1242/dev.201785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Active Notch signalling is elicited through receptor-ligand interactions that result in release of the Notch intracellular domain (NICD), which translocates into the nucleus. NICD activates transcription at target genes, forming a complex with the DNA-binding transcription factor CSL [CBF1/Su(H)/LAG-1] and co-activator Mastermind. However, CSL lacks its own nuclear localisation sequence, and it remains unclear where the tripartite complex is formed. To probe the mechanisms involved, we designed an optogenetic approach to control NICD release (OptIC-Notch) and monitored the subsequent complex formation and target gene activation. Strikingly, we observed that, when uncleaved, OptIC-Notch sequestered CSL in the cytoplasm. Hypothesising that exposure of a juxta membrane ΦWΦP motif is key to sequestration, we masked this motif with a second light-sensitive domain (OptIC-Notch{ω}), which was sufficient to prevent CSL sequestration. Furthermore, NICD produced by light-induced cleavage of OptIC-Notch or OptIC-Notch{ω} chaperoned CSL into the nucleus and induced target gene expression, showing efficient light-controlled activation. Our results demonstrate that exposure of the ΦWΦP motif leads to CSL recruitment and suggest this can occur in the cytoplasm prior to nuclear entry.
Collapse
Affiliation(s)
- Jonathan M. Townson
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Maria J. Gomez-Lamarca
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Carmen Santa Cruz Mateos
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J. Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
20
|
Dahal L, Walther N, Tjian R, Darzacq X, Graham TG. Single-molecule tracking (SMT): a window into live-cell transcription biochemistry. Biochem Soc Trans 2023; 51:557-569. [PMID: 36876879 PMCID: PMC10212543 DOI: 10.1042/bst20221242] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
How molecules interact governs how they move. Single-molecule tracking (SMT) thus provides a unique window into the dynamic interactions of biomolecules within live cells. Using transcription regulation as a case study, we describe how SMT works, what it can tell us about molecular biology, and how it has changed our perspective on the inner workings of the nucleus. We also describe what SMT cannot yet tell us and how new technical advances seek to overcome its limitations. This ongoing progress will be imperative to address outstanding questions about how dynamic molecular machines function in live cells.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Nike Walther
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Thomas G.W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| |
Collapse
|
21
|
Doghish AS, Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Fathi D, Elsakka EGE. miRNAs as cornerstones in chronic lymphocytic leukemia pathogenesis and therapeutic resistance- An emphasis on the interaction of signaling pathways. Pathol Res Pract 2023; 243:154363. [PMID: 36764011 DOI: 10.1016/j.prp.2023.154363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Chronic lymphocytic leukemia (CLL) accounts for the vast majority of cases of leukemia. Patients of advanced age are more likely to develop the condition, which has a highly varied clinical course. Consideration of illness features and preceding treatment sequence, as well as patient preferences and comorbidities, is necessary for selecting the appropriate treatment for the appropriate patient. Therefore, there is an urgent need for novel biomarkers with high sensitivity and specificity to detect CLL early, monitor CLL patients, select the treatment responders, and reduce ineffective treatment, unwanted side effects, and unnecessary expenses. In both homeostasis and illness, microRNAs (miRNAs/miRs) play a vital role as master regulators of gene expression and, by extension, protein expression. MiRNAs typically reduce the stability of mRNAs, including those encoding genes involved in tumorigenesis processes as cell cycle regulation, inflammation, stress response, angiogenesis, differentiation, apoptosis, and invasion. Due to their unique properties, miRNAs are rapidly being exploited as accurate biomarkers for illness detection, and medicines based on miRNA targets are finding widespread application in clinical practice. Accordingly, the current review serves as a quick primer on CLL and the biogenesis of miRNAs. In addition to providing a brief overview of the miRNAs whose function in the progression of CLL has been established by recent in vitro or in vivo research through articulating the influence of these miRNAs on a wide variety of cellular functions, including increased proliferative potential; support for angiogenesis; cell cycle aberration; evasion of apoptosis; promotion of metastasis; and reduced sensitivity to specific treatments.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
22
|
Maier D, Bauer M, Boger M, Sanchez Jimenez A, Yuan Z, Fechner J, Scharpf J, Kovall RA, Preiss A, Nagel AC. Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster. Genes (Basel) 2023; 14:205. [PMID: 36672946 PMCID: PMC9858708 DOI: 10.3390/genes14010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cellular differentiation relies on the highly conserved Notch signaling pathway. Notch activity induces gene expression changes that are highly sensitive to chromatin landscape. We address Notch gene regulation using Drosophila as a model, focusing on the genetic and molecular interactions between the Notch antagonist Hairless and the histone chaperone Asf1. Earlier work implied that Asf1 promotes the silencing of Notch target genes via Hairless (H). Here, we generate a novel HΔCT allele by genome engineering. Phenotypically, HΔCT behaves as a Hairless gain of function allele in several developmental contexts, indicating that the conserved CT domain of H has an attenuator role under native biological contexts. Using several independent methods to assay protein-protein interactions, we define the sequences of the CT domain that are involved in Hairless-Asf1 binding. Based on previous models, where Asf1 promotes Notch repression via Hairless, a loss of Asf1 binding should reduce Hairless repressive activity. However, tissue-specific Asf1 overexpression phenotypes are increased, not rescued, in the HΔCT background. Counterintuitively, Hairless protein binding mitigates the repressive activity of Asf1 in the context of eye development. These findings highlight the complex connections of Notch repressors and chromatin modulators during Notch target-gene regulation and open the avenue for further investigations.
Collapse
Affiliation(s)
- Dieter Maier
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Milena Bauer
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Mike Boger
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
| | - Anna Sanchez Jimenez
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Johannes Fechner
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Institute of Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Janika Scharpf
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Anette Preiss
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| |
Collapse
|
23
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
24
|
Fechner J, Ketelhut M, Maier D, Preiss A, Nagel AC. The Binding of CSL Proteins to Either Co-Activators or Co-Repressors Protects from Proteasomal Degradation Induced by MAPK-Dependent Phosphorylation. Int J Mol Sci 2022; 23:ijms232012336. [PMID: 36293193 PMCID: PMC9604145 DOI: 10.3390/ijms232012336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The primary role of Notch is to specify cellular identities, whereby the cells respond to amazingly small changes in Notch signalling activity. Hence, dosage of Notch components is crucial to regulation. Central to Notch signal transduction are CSL proteins: together with respective cofactors, they mediate the activation or the silencing of Notch target genes. CSL proteins are extremely similar amongst species regarding sequence and structure. We noticed that the fly homologue suppressor of hairless (Su(H)) is stabilised in transcription complexes. Using specific transgenic fly lines and HeLa RBPJKO cells we provide evidence that Su(H) is subjected to proteasomal degradation with a half-life of about two hours if not protected by binding to co-repressor hairless or co-activator Notch. Moreover, Su(H) stability is controlled by MAPK-dependent phosphorylation, matching earlier data for RBPJ in human cells. The homologous murine and human RBPJ proteins, however, are largely resistant to degradation in our system. Mutating presumptive protein contact sites, however, sensitised RBPJ for proteolysis. Overall, our data highlight the similarities in the regulation of CSL protein stability across species and imply that turnover of CSL proteins may be a conserved means of regulating Notch signalling output directly at the level of transcription.
Collapse
|
25
|
Jiang H, Bian W, Sui Y, Li H, Zhao H, Wang W, Li X. FBXO42 facilitates Notch signaling activation and global chromatin relaxation by promoting K63-linked polyubiquitination of RBPJ. SCIENCE ADVANCES 2022; 8:eabq4831. [PMID: 36129980 PMCID: PMC9491713 DOI: 10.1126/sciadv.abq4831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 05/28/2023]
Abstract
Dysregulation of the Notch-RBPJ (recombination signal-binding protein of immunoglobulin kappa J region) signaling pathway has been found associated with various human diseases including cancers; however, precisely how this key signaling pathway is fine-tuned via its interactors and modifications is still largely unknown. In this study, using a proteomic approach, we identified F-box only protein 42 (FBXO42) as a previously unidentified RBPJ interactor. FBXO42 promotes RBPJ polyubiquitination on lysine-175 via lysine-63 linkage, which enhances the association of RBPJ with chromatin remodeling complexes and induces a global chromatin relaxation. Genetically depleting FBXO42 or pharmacologically targeting its E3 ligase activity attenuates the Notch signaling-related leukemia development in vivo. Together, our findings not only revealed FBXO42 as a critical regulator of the Notch pathway by modulating RBPJ-dependent global chromatin landscape changes but also provided insights into the therapeutic intervention of the Notch pathway for leukemia treatment.
Collapse
Affiliation(s)
- Hua Jiang
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Weixiang Bian
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Yue Sui
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Huanle Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Han Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Xu Li
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
26
|
Gagliani EK, Gutzwiller LM, Kuang Y, Odaka Y, Hoffmeister P, Hauff S, Turkiewicz A, Harding-Theobald E, Dolph PJ, Borggrefe T, Oswald F, Gebelein B, Kovall RA. A Drosophila Su(H) model of Adams-Oliver Syndrome reveals cofactor titration as a mechanism underlying developmental defects. PLoS Genet 2022; 18:e1010335. [PMID: 35951645 PMCID: PMC9398005 DOI: 10.1371/journal.pgen.1010335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/23/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Notch signaling is a conserved pathway that converts extracellular receptor-ligand interactions into changes in gene expression via a single transcription factor (CBF1/RBPJ in mammals; Su(H) in Drosophila). In humans, RBPJ variants have been linked to Adams-Oliver syndrome (AOS), a rare autosomal dominant disorder characterized by scalp, cranium, and limb defects. Here, we found that a previously described Drosophila Su(H) allele encodes a missense mutation that alters an analogous residue found in an AOS-associated RBPJ variant. Importantly, genetic studies support a model that heterozygous Drosophila with the AOS-like Su(H) allele behave in an opposing manner to heterozygous flies with a Su(H) null allele, due to a dominant activity of sequestering either the Notch co-activator or the antagonistic Hairless co-repressor. Consistent with this model, AOS-like Su(H) and Rbpj variants have decreased DNA binding activity compared to wild type proteins, but these variants do not significantly alter protein binding to the Notch co-activator or the fly and mammalian co-repressors, respectively. Taken together, these data suggest a cofactor sequestration mechanism underlies AOS phenotypes associated with RBPJ variants, whereby the AOS-associated RBPJ allele encodes a protein with compromised DNA binding activity that retains cofactor binding, resulting in Notch target gene dysregulation. Adams-Oliver Syndrome (AOS) is a rare disease defined by missing skin/skull tissue, limb malformations, and cardiovascular abnormalities. Human genetic studies have revealed that ~40% of AOS patients inherit dominant mutations within specific genes in the Notch signaling pathway. Notch signaling is a highly conserved cell-to-cell communication pathway found in all metazoans and plays crucial roles during embryogenesis and tissue homeostasis in organisms from Drosophila (fruit-flies) to mammals. The Notch receptor converts cell-to-cell interactions into a Notch signal that enters the nucleus and activates target genes by binding to a highly conserved transcription factor. Here, we took advantage of the unexpected finding that a previously described dominant allele in the Drosophila Notch pathway transcription factor contains a missense variant in an analogous residue found in a family with AOS. Using this novel animal model of AOS along with biochemical DNA binding, protein-protein interaction, and transcriptional reporter assays, we found that this transcription factor variant selectively compromises DNA binding but not binding to the Notch signal nor binding to other proteins in the Notch pathway. Taken together with prior human genetic studies, these data suggest AOS phenotypes associated with variants in the Notch pathway transcription factor are caused by a dominant mechanism that sequesters the Notch signal, leading to Notch target gene dysregulation.
Collapse
Affiliation(s)
- Ellen K. Gagliani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yi Kuang
- Graduate program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Yoshinobu Odaka
- Biology Department, University of Cincinnati Blue Ash College, Cincinnati, Ohio, United States of America
| | - Phillipp Hoffmeister
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | - Stefanie Hauff
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | | | - Emily Harding-Theobald
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Patrick J. Dolph
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (BG); (RAK)
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (BG); (RAK)
| |
Collapse
|
27
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
28
|
Falo-Sanjuan J, Bray S. Notch-dependent and -independent transcription are modulated by tissue movements at gastrulation. eLife 2022; 11:e73656. [PMID: 35583918 PMCID: PMC9183233 DOI: 10.7554/elife.73656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/27/2022] [Indexed: 12/30/2022] Open
Abstract
Cells sense and integrate external information from diverse sources that include mechanical cues. Shaping of tissues during development may thus require coordination between mechanical forces from morphogenesis and cell-cell signalling to confer appropriate changes in gene expression. By live-imaging Notch-induced transcription in real time, we have discovered that morphogenetic movements during Drosophila gastrulation bring about an increase in activity-levels of a Notch-responsive enhancer. Mutations that disrupt the timing of gastrulation resulted in concomitant delays in transcription up-regulation that correlated with the start of mesoderm invagination. As a similar gastrulation-induced effect was detected when transcription was elicited by the intracellular domain NICD, it cannot be attributed to forces exerted on Notch receptor activation. A Notch-independent vnd enhancer also exhibited a modest gastrulation-induced activity increase in the same stripe of cells. Together, these observations argue that gastrulation-associated forces act on the nucleus to modulate transcription levels. This regulation was uncoupled when the complex linking the nucleoskeleton and cytoskeleton (LINC) was disrupted, indicating a likely conduit. We propose that the coupling between tissue-level mechanics, arising from gastrulation, and enhancer activity represents a general mechanism for ensuring correct tissue specification during development and that Notch-dependent enhancers are highly sensitive to this regulation.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Sarah Bray
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
29
|
Patterson LL, Velayutham TS, Byerly CD, Bui DC, Patel J, Veljkovic V, Paessler S, McBride JW. Ehrlichia SLiM Ligand Mimetic Activates Notch Signaling in Human Monocytes. mBio 2022; 13:e0007622. [PMID: 35357214 PMCID: PMC9040721 DOI: 10.1128/mbio.00076-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve the exploitation of multiple evolutionarily conserved cellular signaling pathways, including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/noncanonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full-length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands. IMPORTANCE E. chaffeensis infects and replicates in mononuclear phagocytes, but how it evades innate immune defenses of this indispensable primary innate immune cell is not well understood. This investigation revealed the molecular details of a ligand mimicry cellular reprogramming strategy that involved a short linear motif (SLiM), which enabled E. chaffeensis to exploit host cell signaling to establish and maintain infection. E. chaffeensis TRP120 is a moonlighting effector that has been associated with cellular activation and other functions, including ubiquitin ligase activity. Herein, we identified and demonstrated that a SLiM present within each tandem repeat of TRP120 activated Notch signaling. Notch is an evolutionarily conserved signaling pathway responsible for many cell functions, including cell fate, development, and innate immunity. This study is significant because it revealed the first molecularly defined pathogen encoded SLiM that appears to have evolved de novo to mimic endogenous Notch ligands. Understanding Notch activation during E. chaffeensis infection provides a model to study pathogen exploitation of signaling pathways and will be useful in developing molecularly targeted countermeasures for inhibiting infection by a multitude of disease-causing pathogens that exploit cell signaling through molecular mimicry.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
30
|
Xu DC, Wang L, Yamada KM, Baena-Lopez LA. Non-apoptotic activation of Drosophila caspase-2/9 modulates JNK signaling, the tumor microenvironment, and growth of wound-like tumors. Cell Rep 2022; 39:110718. [PMID: 35443185 PMCID: PMC9082238 DOI: 10.1016/j.celrep.2022.110718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Resistance to apoptosis due to caspase deregulation is considered one of the main hallmarks of cancer. However, the discovery of novel non-apoptotic caspase functions has revealed unknown intricacies about the interplay between these enzymes and tumor progression. To investigate this biological problem, we capitalized on a Drosophila tumor model with human relevance based on the simultaneous overactivation of the EGFR and the JAK/STAT signaling pathways. Our data indicate that widespread non-apoptotic activation of initiator caspases limits JNK signaling and facilitates cell fate commitment in these tumors, thus preventing the overgrowth and exacerbation of malignant features of transformed cells. Intriguingly, caspase activity also reduces the presence of macrophage-like cells with tumor-promoting properties in the tumor microenvironment. These findings assign tumor-suppressing activities to caspases independent of apoptosis, while providing molecular details to better understand the contribution of these enzymes to tumor progression.
Collapse
Affiliation(s)
- Derek Cui Xu
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA; Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.
| | | |
Collapse
|
31
|
Lynch TR, Xue M, Czerniak CW, Lee C, Kimble J. Notch-dependent DNA cis-regulatory elements and their dose-dependent control of C. elegans stem cell self-renewal. Development 2022; 149:dev200332. [PMID: 35394007 PMCID: PMC9058496 DOI: 10.1242/dev.200332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
A long-standing biological question is how DNA cis-regulatory elements shape transcriptional patterns during metazoan development. Reporter constructs, cell culture assays and computational modeling have made major contributions to answering this question, but analysis of elements in their natural context is an important complement. Here, we mutate Notch-dependent LAG-1 binding sites (LBSs) in the endogenous Caenorhabditis elegans sygl-1 gene, which encodes a key stem cell regulator, and analyze the consequences on sygl-1 expression (nascent transcripts, mRNA, protein) and stem cell maintenance. Mutation of one LBS in a three-element cluster approximately halved both expression and stem cell pool size, whereas mutation of two LBSs essentially abolished them. Heterozygous LBS mutant clusters provided intermediate values. Our results lead to two major conclusions. First, both LBS number and configuration impact cluster activity: LBSs act additively in trans and synergistically in cis. Second, the SYGL-1 gradient promotes self-renewal above its functional threshold and triggers differentiation below the threshold. Our approach of coupling CRISPR/Cas9 LBS mutations with effects on both molecular and biological readouts establishes a powerful model for in vivo analyses of DNA cis-regulatory elements.
Collapse
Affiliation(s)
- Tina R. Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| | - Mingyu Xue
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Cazza W. Czerniak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - ChangHwan Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| |
Collapse
|
32
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 518] [Impact Index Per Article: 172.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
33
|
Panta M, Kump AJ, Schwab KR, Ahmad SM. Assessing the Roles of Potential Notch Signaling Components in Instructive and Permissive Pathways with Two Drosophila Pericardial Reporters. Methods Mol Biol 2022; 2472:109-130. [PMID: 35674896 DOI: 10.1007/978-1-0716-2201-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The highly conserved Notch signaling pathway brings about the transcriptional activation of target genes via either instructive or permissive mechanisms that depend on the identity of the specific target gene. As additional components of the Notch signaling pathway are identified, assessing whether each of these components are utilized exclusively by one of these mechanisms (and if so, which), or by both, becomes increasingly important. Using RNA interference-mediated knockdowns of the Notch component to be tested, reporters for two Notch-activated pericardial genes in Drosophila melanogaster, immunohistochemistry, and fluorescence microscopy, we describe a method to determine the type of signaling mechanism-instructive, permissive, or both-to which a particular Notch pathway component contributes.
Collapse
Affiliation(s)
- Manoj Panta
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| | - Andrew J Kump
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN, USA
| | - Kristopher R Schwab
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN, USA
| | - Shaad M Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA.
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA.
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
34
|
Falo-Sanjuan J, Bray SJ. Membrane architecture and adherens junctions contribute to strong Notch pathway activation. Development 2021; 148:272068. [PMID: 34486648 PMCID: PMC8543148 DOI: 10.1242/dev.199831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022]
Abstract
The Notch pathway mediates cell-to-cell communication in a variety of tissues, developmental stages and organisms. Pathway activation relies on the interaction between transmembrane ligands and receptors on adjacent cells. As such, pathway activity could be influenced by the size, composition or dynamics of contacts between membranes. The initiation of Notch signalling in the Drosophila embryo occurs during cellularization, when lateral cell membranes and adherens junctions are first being deposited, allowing us to investigate the importance of membrane architecture and specific junctional domains for signalling. By measuring Notch-dependent transcription in live embryos, we established that it initiates while lateral membranes are growing and that signalling onset correlates with a specific phase in their formation. However, the length of the lateral membranes per se was not limiting. Rather, the adherens junctions, which assemble concurrently with membrane deposition, contributed to the high levels of signalling required for transcription, as indicated by the consequences of α-Catenin depletion. Together, these results demonstrate that the establishment of lateral membrane contacts can be limiting for Notch trans-activation and suggest that adherens junctions play an important role in modulating Notch activity. Summary: Measuring Notch-dependent transcription in live embryos reveals that features associated with lateral membranes are required for initiation of Notch signalling. Perturbing membrane growth or adherens junctions prevents normal activation.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
35
|
Kuang Y, Pyo A, Eafergan N, Cain B, Gutzwiller LM, Axelrod O, Gagliani EK, Weirauch MT, Kopan R, Kovall RA, Sprinzak D, Gebelein B. Enhancers with cooperative Notch binding sites are more resistant to regulation by the Hairless co-repressor. PLoS Genet 2021; 17:e1009039. [PMID: 34559800 PMCID: PMC8494340 DOI: 10.1371/journal.pgen.1009039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Notch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how synthetic enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation. Cell signaling provides a basic means of communication during development. Many signaling pathways, including the Notch pathway, convert extracellular signals into changes in gene expression via transcription factors that bind specific DNA sequences. Importantly, the Notch pathway transcription factor can either form activating complexes upon Notch activation to stimulate gene expression or repression complexes with co-repressors to inhibit gene expression. Prior studies showed that the Notch activation complex binds DNA as either an independent complex on monomer binding sites or as two cooperative complexes (dimer) on paired binding sites. In this study, we used synthetic biology to examine how these two types of DNA sites impact the binding of Notch activation versus repression complexes and the output of Notch target gene expression. Our studies reveal that unlike the Notch activation complex, the repression complex does not cooperatively bind dimer sites. Moreover, our findings support the model that the enhanced stability of the Notch activation complex on dimer sites makes target genes with dimer sites less sensitive to the repression complex than target genes with only monomer sites. Thus, our studies reveal how target genes with different binding sites differ in sensitivity to the ratio of Notch activation to repression complexes.
Collapse
Affiliation(s)
- Yi Kuang
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Anna Pyo
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Natanel Eafergan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brittany Cain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ofri Axelrod
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Ellen K. Gagliani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Viswanathan R, Hartmann J, Pallares Cartes C, De Renzis S. Desensitisation of Notch signalling through dynamic adaptation in the nucleus. EMBO J 2021; 40:e107245. [PMID: 34396565 PMCID: PMC8441390 DOI: 10.15252/embj.2020107245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, signalling pathways orchestrate organogenesis by controlling tissue‐specific gene expression programmes and differentiation. Although the molecular components of many common developmental signalling systems are known, our current understanding of how signalling inputs are translated into gene expression outputs in real‐time is limited. Here we employ optogenetics to control the activation of Notch signalling during Drosophila embryogenesis with minute accuracy and follow target gene expression by quantitative live imaging. Light‐induced nuclear translocation of the Notch Intracellular Domain (NICD) causes a rapid activation of target mRNA expression. However, target gene transcription gradually decays over time despite continuous photo‐activation and nuclear NICD accumulation, indicating dynamic adaptation to the signalling input. Using mathematical modelling and molecular perturbations, we show that this adaptive transcriptional response fits to known motifs capable of generating near‐perfect adaptation and can be best explained by state‐dependent inactivation at the target cis‐regulatory region. Taken together, our results reveal dynamic nuclear adaptation as a novel mechanism controlling Notch signalling output during tissue differentiation.
Collapse
Affiliation(s)
- Ranjith Viswanathan
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Jonas Hartmann
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany.,Department of Cell and Developmental Biology, University College London, London, UK
| | | | - Stefano De Renzis
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| |
Collapse
|
37
|
Condorelli AG, El Hachem M, Zambruno G, Nystrom A, Candi E, Castiglia D. Notch-ing up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway. J Biomed Sci 2021; 28:36. [PMID: 33966637 PMCID: PMC8106838 DOI: 10.1186/s12929-021-00732-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Fibrosis can be defined as an excessive and deregulated deposition of extracellular matrix proteins, causing loss of physiological architecture and dysfunction of different tissues and organs. In the skin, fibrosis represents the hallmark of several acquired (e.g. systemic sclerosis and hypertrophic scars) and inherited (i.e. dystrophic epidermolysis bullosa) diseases. A complex series of interactions among a variety of cellular types and a wide range of molecular players drive the fibrogenic process, often in a context-dependent manner. However, the pathogenetic mechanisms leading to skin fibrosis are not completely elucidated. In this scenario, an increasing body of evidence has recently disclosed the involvement of Notch signalling cascade in fibrosis of the skin and other organs. Despite its apparent simplicity, Notch represents one of the most multifaceted, strictly regulated and intricate pathways with still unknown features both in health and disease conditions. Starting from the most recent advances in Notch activation and regulation, this review focuses on the pro-fibrotic function of Notch pathway in fibroproliferative skin disorders describing molecular networks, interplay with other pro-fibrotic molecules and pathways, including the transforming growth factor-β1, and therapeutic strategies under development.
Collapse
Affiliation(s)
- Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy.
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy
| | - Alexander Nystrom
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.,IDI-IRCCS, via Monti di Creta 104, 00167, Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167, Rome, Italy
| |
Collapse
|
38
|
Abstract
Notch signaling is a conserved system of communication between adjacent cells, influencing numerous cell fate decisions in the development of multicellular organisms. Aberrant signaling is also implicated in many human pathologies. At its core, Notch has a mechanotransduction module that decodes receptor-ligand engagement at the cell surface under force to permit proteolytic cleavage of the receptor, leading to the release of the Notch intracellular domain (NICD). NICD enters the nucleus and acts as a transcriptional effector to regulate expression of Notch-responsive genes. In this article, we review and integrate current understanding of the detailed molecular basis for Notch signal transduction, highlighting quantitative, structural, and dynamic features of this developmentally central signaling mechanism. We discuss the implications of this mechanistic understanding for the functionality of the signaling pathway in different molecular and cellular contexts.
Collapse
Affiliation(s)
- David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
39
|
Frankenreiter L, Gahr BM, Schmid H, Zimmermann M, Deichsel S, Hoffmeister P, Turkiewicz A, Borggrefe T, Oswald F, Nagel AC. Phospho-Site Mutations in Transcription Factor Suppressor of Hairless Impact Notch Signaling Activity During Hematopoiesis in Drosophila. Front Cell Dev Biol 2021; 9:658820. [PMID: 33937259 PMCID: PMC8079769 DOI: 10.3389/fcell.2021.658820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The highly conserved Notch signaling pathway controls a multitude of developmental processes including hematopoiesis. Here, we provide evidence for a novel mechanism of tissue-specific Notch regulation involving phosphorylation of CSL transcription factors within the DNA-binding domain. Earlier we found that a phospho-mimetic mutation of the Drosophila CSL ortholog Suppressor of Hairless [Su(H)] at Ser269 impedes DNA-binding. By genome-engineering, we now introduced phospho-specific Su(H) mutants at the endogenous Su(H) locus, encoding either a phospho-deficient [Su(H) S269A ] or a phospho-mimetic [Su(H) S269D ] isoform. Su(H) S269D mutants were defective of Notch activity in all analyzed tissues, consistent with impaired DNA-binding. In contrast, the phospho-deficient Su(H) S269A mutant did not generally augment Notch activity, but rather specifically in several aspects of blood cell development. Unexpectedly, this process was independent of the corepressor Hairless acting otherwise as a general Notch antagonist in Drosophila. This finding is in agreement with a novel mode of Notch regulation by posttranslational modification of Su(H) in the context of hematopoiesis. Importantly, our studies of the mammalian CSL ortholog (RBPJ/CBF1) emphasize a potential conservation of this regulatory mechanism: phospho-mimetic RBPJ S221D was dysfunctional in both the fly as well as two human cell culture models, whereas phospho-deficient RBPJ S221A rather gained activity during fly hematopoiesis. Thus, dynamic phosphorylation of CSL-proteins within the DNA-binding domain provides a novel means to fine-tune Notch signal transduction in a context-dependent manner.
Collapse
Affiliation(s)
- Lisa Frankenreiter
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Bernd M Gahr
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Hannes Schmid
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Mirjam Zimmermann
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Sebastian Deichsel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Philipp Hoffmeister
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig University of Giessen, Giessen, Germany
| | - Franz Oswald
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Anja C Nagel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
40
|
Sun J, Wang X, Xu R, Mao D, Shen D, Wang X, Qiu Y, Han Y, Lu X, Li Y, Che Q, Zheng L, Peng P, Kang X, Zhu R, Jia Y, Wang Y, Liu L, Chang Z, Ji J, Wang Z, Liu Q, Li S, Sun F, Ni J. HP1c regulates development and gut homeostasis by suppressing Notch signaling through Su(H). EMBO Rep 2021; 22:e51298. [PMID: 33594776 PMCID: PMC8024896 DOI: 10.15252/embr.202051298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/01/2021] [Accepted: 01/13/2021] [Indexed: 12/30/2022] Open
Abstract
Notch signaling and epigenetic factors are known to play critical roles in regulating tissue homeostasis in most multicellular organisms, but how Notch signaling coordinates with epigenetic modulators to control differentiation remains poorly understood. Here, we identify heterochromatin protein 1c (HP1c) as an essential epigenetic regulator of gut homeostasis in Drosophila. Specifically, we observe that HP1c loss-of-function phenotypes resemble those observed after Notch signaling perturbation and that HP1c interacts genetically with components of the Notch pathway. HP1c represses the transcription of Notch target genes by directly interacting with Suppressor of Hairless (Su(H)), the key transcription factor of Notch signaling. Moreover, phenotypes caused by depletion of HP1c in Drosophila can be rescued by expressing human HP1γ, suggesting that HP1γ functions similar to HP1c in Drosophila. Taken together, our findings reveal an essential role of HP1c in normal development and gut homeostasis by suppressing Notch signaling.
Collapse
Affiliation(s)
- Jin Sun
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Shandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Xia Wang
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- School of Life SciencesPeking UniversityBeijingChina
| | - Rong‐Gang Xu
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Decai Mao
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Sichuan Academy of Grassland ScienceChengduChina
| | - Da Shen
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Xin Wang
- Institute for TCM‐XMOE Key Laboratory of Bioinformatics/Bioinformatics DivisionBNRISTDepartment of AutomationTsinghua UniversityBeijingChina
| | - Yuhao Qiu
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| | - Yuting Han
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Xinyi Lu
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Yutong Li
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Qinyun Che
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Li Zheng
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Ping Peng
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| | - Xuan Kang
- Research Center for Translational Medicine at East HospitalSchool of Life Sciences and TechnologyAdvanced Institute of Translational MedicineTongji UniversityShanghaiChina
| | - Ruibao Zhu
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| | - Yu Jia
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| | - Yinyin Wang
- State Key Laboratory of Membrane BiologySchool of Medicine and the School of Life SciencesTsinghua UniversityBeijingChina
| | - Lu‐Ping Liu
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
| | - Zhijie Chang
- State Key Laboratory of Membrane BiologySchool of Medicine and the School of Life SciencesTsinghua UniversityBeijingChina
| | - Jun‐Yuan Ji
- Department of Molecular and Cellular MedicineCollege of MedicineTexas A&M Health Science CenterCollege StationTXUSA
| | - Zhao Wang
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Qingfei Liu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Shao Li
- Institute for TCM‐XMOE Key Laboratory of Bioinformatics/Bioinformatics DivisionBNRISTDepartment of AutomationTsinghua UniversityBeijingChina
| | - Fang‐Lin Sun
- Research Center for Translational Medicine at East HospitalSchool of Life Sciences and TechnologyAdvanced Institute of Translational MedicineTongji UniversityShanghaiChina
| | - Jian‐Quan Ni
- Gene Regulatory LabSchool of MedicineTsinghua UniversityBeijingChina
- Tsingdao Advanced Research InstituteTongji UniversityQingdaoChina
| |
Collapse
|
41
|
Shen W, Huang J, Wang Y. Biological Significance of NOTCH Signaling Strength. Front Cell Dev Biol 2021; 9:652273. [PMID: 33842479 PMCID: PMC8033010 DOI: 10.3389/fcell.2021.652273] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved NOTCH signaling displays pleotropic functions in almost every organ system with a simple signaling axis. Different from many other signaling pathways that can be amplified via kinase cascades, NOTCH signaling does not contain any intermediate to amplify signal. Thus, NOTCH signaling can be activated at distinct signaling strength levels, disruption of which leads to various developmental disorders. Here, we reviewed mechanisms establishing different NOTCH signaling strengths, developmental processes sensitive to NOTCH signaling strength perturbation, and transcriptional regulations influenced by NOTCH signaling strength changes. We hope this could add a new layer of diversity to explain the pleotropic functions of NOTCH signaling pathway.
Collapse
Affiliation(s)
- Wei Shen
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jiaxin Huang
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
42
|
Chang X, Zhang F, Li H, Mo D, Shen J, Zhang J. Characterization of a new mastermind allele identified from somatic mosaic screen. Cells Dev 2021; 165:203664. [PMID: 33993981 DOI: 10.1016/j.cdev.2021.203664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 11/18/2022]
Abstract
The Notch signaling pathway is highly conserved and regulates various fundamental development events. Activation of Notch signaling relies on production of the Notch intracellular domain (NICD), which assembles a transcription factor complex to turn on down-stream targets expression. The mastermind (mam) gene encodes an essential co-activator that permits NICD activity in the cell nucleus. During a somatic mosaic screen in Drosophila, an uncharacterized gene l(2)S9998 is identified as a positive regulator of the Notch signaling pathway. Genetic analysis demonstrates that l(2)S9998 functions at the level of transcriptional activation of Notch targets in the signal receiving cells. Whole genome sequencing reveals that l(2)S9998 is a novel allele of the mam gene, which is further confirmed by complementation tests. Along with three molecularly defined transposon insertions isolated from the screen, four mutants of mam are shown to modulate Notch signaling during fly wing development. Our analysis provides additional genetic resources for understanding mam function and Notch signaling regulation.
Collapse
Affiliation(s)
- Xinyue Chang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fengchao Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Haomiao Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dongqing Mo
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junzheng Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
43
|
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 2021; 20:125-144. [PMID: 33293690 DOI: 10.1038/s41573-020-00091-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Notch signalling is involved in many aspects of cancer biology, including angiogenesis, tumour immunity and the maintenance of cancer stem-like cells. In addition, Notch can function as an oncogene and a tumour suppressor in different cancers and in different cell populations within the same tumour. Despite promising preclinical results and early-phase clinical trials, the goal of developing safe, effective, tumour-selective Notch-targeting agents for clinical use remains elusive. However, our continually improving understanding of Notch signalling in specific cancers, individual cancer cases and different cell populations, as well as crosstalk between pathways, is aiding the discovery and development of novel investigational Notch-targeted therapeutics.
Collapse
Affiliation(s)
- Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
44
|
Transcription Factor RBPJ as a Molecular Switch in Regulating the Notch Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:9-30. [PMID: 33034023 DOI: 10.1007/978-3-030-55031-8_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.
Collapse
|
45
|
Arthurton L, Nahotko DA, Alonso J, Wendler F, Baena‐Lopez LA. Non-apoptotic caspase activation preserves Drosophila intestinal progenitor cells in quiescence. EMBO Rep 2020; 21:e48892. [PMID: 33135280 PMCID: PMC7726796 DOI: 10.15252/embr.201948892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Caspase malfunction in stem cells often precedes the appearance and progression of multiple types of cancer, including human colorectal cancer. However, the caspase-dependent regulation of intestinal stem cell properties remains poorly understood. Here, we demonstrate that Dronc, the Drosophila ortholog of caspase-9/2 in mammals, limits the number of intestinal progenitor cells and their entry into the enterocyte differentiation programme. Strikingly, these unexpected roles for Dronc are non-apoptotic and have been uncovered under experimental conditions without epithelial replenishment. Supporting the non-apoptotic nature of these functions, we show that they require the enzymatic activity of Dronc, but are largely independent of the apoptotic pathway. Alternatively, our genetic and functional data suggest that they are linked to the caspase-mediated regulation of Notch signalling. Our findings provide novel insights into the non-apoptotic, caspase-dependent modulation of stem cell properties that could improve our understanding of the origin of intestinal malignancies.
Collapse
Affiliation(s)
- Lewis Arthurton
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | | - Jana Alonso
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma)Unidad Técnica del IPNA‐CSICSanta Cruz de La PalmaSpain
| | - Franz Wendler
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | |
Collapse
|
46
|
Panta M, Kump AJ, Dalloul JM, Schwab KR, Ahmad SM. Three distinct mechanisms, Notch instructive, permissive, and independent, regulate the expression of two different pericardial genes to specify cardiac cell subtypes. PLoS One 2020; 15:e0241191. [PMID: 33108408 PMCID: PMC7591092 DOI: 10.1371/journal.pone.0241191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
The development of a complex organ involves the specification and differentiation of diverse cell types constituting that organ. Two major cell subtypes, contractile cardial cells (CCs) and nephrocytic pericardial cells (PCs), comprise the Drosophila heart. Binding sites for Suppressor of Hairless [Su(H)], an integral transcription factor in the Notch signaling pathway, are enriched in the enhancers of PC-specific genes. Here we show three distinct mechanisms regulating the expression of two different PC-specific genes, Holes in muscle (Him), and Zn finger homeodomain 1 (zfh1). Him transcription is activated in PCs in a permissive manner by Notch signaling: in the absence of Notch signaling, Su(H) forms a repressor complex with co-repressors and binds to the Him enhancer, repressing its transcription; upon alleviation of this repression by Notch signaling, Him transcription is activated. In contrast, zfh1 is transcribed by a Notch-instructive mechanism in most PCs, where mere alleviation of repression by preventing the binding of Su(H)-co-repressor complex is not sufficient to activate transcription. Our results suggest that upon activation of Notch signaling, the Notch intracellular domain associates with Su(H) to form an activator complex that binds to the zfh1 enhancer, and that this activator complex is necessary for bringing about zfh1 transcription in these PCs. Finally, a third, Notch-independent mechanism activates zfh1 transcription in the remaining, even skipped-expressing, PCs. Collectively, our data show how the same feature, enrichment of Su(H) binding sites in PC-specific gene enhancers, is utilized by two very distinct mechanisms, one permissive, the other instructive, to contribute to the same overall goal: the specification and differentiation of a cardiac cell subtype by activation of the pericardial gene program. Furthermore, our results demonstrate that the zfh1 enhancer drives expression in two different domains using distinct Notch-instructive and Notch-independent mechanisms.
Collapse
Affiliation(s)
- Manoj Panta
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| | - Andrew J. Kump
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| | - John M. Dalloul
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
- Terre Haute South Vigo High School, Terre Haute, Indiana, United States of America
- Stanford University, Stanford, California, United States of America
| | - Kristopher R. Schwab
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| | - Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| |
Collapse
|
47
|
Notch Pathway: A Journey from Notching Phenotypes to Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:201-222. [PMID: 33034034 DOI: 10.1007/978-3-030-55031-8_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Notch is a key evolutionary conserved pathway, which has fascinated and engaged the work of investigators in an uncountable number of biological fields, from development of metazoans to immunotherapy for cancer. The study of Notch has greatly contributed to the understanding of cancer biology and a substantial effort has been spent in designing Notch-targeting therapies. Due to its broad involvement in cancer, targeting Notch would allow to virtually modulate any aspect of the disease. However, this means that Notch-based therapies must be highly specific to avoid off-target effects. This review will present the newest mechanistic and therapeutic advances in the Notch field and discuss the promises and challenges of this constantly evolving field.
Collapse
|
48
|
Kobia FM, Preusse K, Dai Q, Weaver N, Hass MR, Chaturvedi P, Stein SJ, Pear WS, Yuan Z, Kovall RA, Kuang Y, Eafergen N, Sprinzak D, Gebelein B, Brunskill EW, Kopan R. Notch dimerization and gene dosage are important for normal heart development, intestinal stem cell maintenance, and splenic marginal zone B-cell homeostasis during mite infestation. PLoS Biol 2020; 18:e3000850. [PMID: 33017398 PMCID: PMC7561103 DOI: 10.1371/journal.pbio.3000850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/15/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cooperative DNA binding is a key feature of transcriptional regulation. Here we examined the role of cooperativity in Notch signaling by CRISPR-mediated engineering of mice in which neither Notch1 nor Notch2 can homo- or heterodimerize, essential for cooperative binding to sequence-paired sites (SPS) located near many Notch-regulated genes. Although most known Notch-dependent phenotypes were unaffected in Notch1/2 dimer-deficient mice, a subset of tissues proved highly sensitive to loss of cooperativity. These phenotypes include heart development, compromised viability in combination with low gene dose, and the gut, developing ulcerative colitis in response to 1% dextran sulfate sodium (DSS). The most striking phenotypes-gender imbalance and splenic marginal zone B-cell lymphoma-emerged in combination with gene dose reduction or when challenged by chronic fur mite infestation. This study highlights the role of the environment in malignancy and colitis and is consistent with Notch-dependent anti-parasite immune responses being compromised in Notch dimer-deficient animals.
Collapse
Affiliation(s)
- Francis M. Kobia
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristina Preusse
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Quanhui Dai
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Nicholas Weaver
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew R. Hass
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sarah J. Stein
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Kuang
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Natanel Eafergen
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Eric W. Brunskill
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
49
|
Alsina B. Mechanisms of cell specification and differentiation in vertebrate cranial sensory systems. Curr Opin Cell Biol 2020; 67:79-85. [PMID: 32950922 DOI: 10.1016/j.ceb.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
Vertebrates sense a large variety of sensory stimuli that ranges from temperature, volatile and nonvolatile chemicals, touch, pain, light, sound and gravity. To achieve this, they use specialized cells present in sensory organs and cranial ganglia. Much of our understanding of the transcription factors and mechanisms responsible for sensory cell specification comes from cell-lineage tracing and genetic experiments in different species, but recent advances in single-cell transcriptomics, high-resolution imaging and systems biology approaches have allowed to study these processes in an unprecedented resolution. Here I will point to the transcription factor programs driving cell diversity in the different sensory organs of vertebrates to then discuss in vivo data of how cell specification is coupled with tissue morphogenesis.
Collapse
Affiliation(s)
- Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.
| |
Collapse
|
50
|
Kuang Y, Golan O, Preusse K, Cain B, Christensen CJ, Salomone J, Campbell I, Okwubido-Williams FV, Hass MR, Yuan Z, Eafergan N, Moberg KH, Kovall RA, Kopan R, Sprinzak D, Gebelein B. Enhancer architecture sensitizes cell specific responses to Notch gene dose via a bind and discard mechanism. eLife 2020; 9:53659. [PMID: 32297857 PMCID: PMC7213981 DOI: 10.7554/elife.53659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
Notch pathway haploinsufficiency can cause severe developmental syndromes with highly variable penetrance. Currently, we have a limited mechanistic understanding of phenotype variability due to gene dosage. Here, we unexpectedly found that inserting an enhancer containing pioneer transcription factor sites coupled to Notch dimer sites can induce a subset of Notch haploinsufficiency phenotypes in Drosophila with wild type Notch gene dose. Using Drosophila genetics, we show that this enhancer induces Notch phenotypes in a Cdk8-dependent, transcription-independent manner. We further combined mathematical modeling with quantitative trait and expression analysis to build a model that describes how changes in Notch signal production versus degradation differentially impact cellular outcomes that require long versus short signal duration. Altogether, these findings support a 'bind and discard' mechanism in which enhancers with specific binding sites promote rapid Cdk8-dependent Notch turnover, and thereby reduce Notch-dependent transcription at other loci and sensitize tissues to gene dose based upon signal duration.
Collapse
Affiliation(s)
- Yi Kuang
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States
| | - Ohad Golan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Kristina Preusse
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Brittany Cain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, United States
| | - Collin J Christensen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States.,Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Ian Campbell
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, United States
| | | | - Matthew R Hass
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Nathanel Eafergan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, United States
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|